51
|
Zhao JW, Li Y, Luan D, Lou XW(D. Structural evolution and catalytic mechanisms of perovskite oxides in electrocatalysis. SCIENCE ADVANCES 2024; 10:eadq4696. [PMID: 39321283 PMCID: PMC11804782 DOI: 10.1126/sciadv.adq4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Electrocatalysis plays a pivotal role in driving the progress of modern technologies and industrial processes such as energy conversion and emission reduction. Perovskite oxides, an important family of electrocatalysts, have garnered substantial attention in diverse catalytic reactions because of their highly tunable composition and structure, as well as their considerable activity and stability. This review delves into the mechanisms of electrocatalytic reactions that use perovskite oxides as electrocatalysts, while also providing a comprehensive summary of the potential key factors that influence catalytic activity across various reactions. Furthermore, this review offers an overview of advanced characterizations used for studying catalytic mechanisms and proposes approaches to designing highly efficient perovskite oxide electrocatalysts.
Collapse
Affiliation(s)
- Jia-Wei Zhao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Yunxiang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Xiong Wen (David) Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| |
Collapse
|
52
|
Puthiyaparambath MF, Samuel JE, Chatanathodi R. Tailoring surface morphology on anatase TiO 2 supported Au nanoclusters: implications for O 2 activation. NANOSCALE ADVANCES 2024:d4na00744a. [PMID: 39359353 PMCID: PMC11441460 DOI: 10.1039/d4na00744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Strong interaction between the support surface and metal clusters activates the adsorbed molecules at the metal cluster-support interface. Using plane-wave DFT calculations, we precisely model the interface between anatase TiO2 and small Au nanoclusters. Our study focusses on the adsorption and activation of oxygen molecules on anatase TiO2, considering the influence of oxygen vacancies and steps on the surface. We find that the plane (101) and the stepped (103) surfaces do not support O2 activation, but the presence of oxygen vacancies results in strong adsorption and O-O bond length elongation. Modifying the TiO2 surface with supported small Au n nanoclusters (n = 3-5) also significantly enhances O2 adsorption and stretches the O-O bond. We observe that manipulating the cluster orientation through discrete rotations results in improved O2 adsorption and promotes charge transfer from the surface to the molecule. We propose that the orientation of the supported cluster may be manipulated by making the cluster adsorb at the step-edge of (103) TiO2. This results in activated O2 at the cluster-support interface, with a peroxide-range bond length and a low barrier for dissociation. Our modeling demonstrates a straightforward means of exploiting the interface morphology for O2 activation under low precious metal loading, which has important implications for electrocatalytic oxidation reactions and the rational design of supported catalysts.
Collapse
Affiliation(s)
| | - Julian Ezra Samuel
- Department of Physics, National Institute of Technology Calicut Calicut Kerala 673601 India
| | - Raghu Chatanathodi
- Department of Physics, National Institute of Technology Calicut Calicut Kerala 673601 India
| |
Collapse
|
53
|
Liu J, Hagopian A, McCrum IT, Doblhoff-Dier K, Koper MTM. Unraveling the Origin of the Repulsive Interaction between Hydrogen Adsorbates on Platinum Single-Crystal Electrodes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:15019-15028. [PMID: 39291272 PMCID: PMC11403660 DOI: 10.1021/acs.jpcc.4c05193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Hydrogen adsorption on platinum (Pt) single-crystal electrodes has been studied intensively in both experiments and computations. Yet, the precise origin and nature of the repulsive interactions observed between hydrogen adsorbates (Hads) have remained elusive. Here, we use first-principles density functional theory calculations to investigate in detail the interactions between Hads on Pt(111), Pt(100), and Pt(110) surfaces. The repulsive interaction between Hads on Pt(111) is deconvoluted into three different physical contributions, namely, (i) electrostatic interactions, (ii) surface distortion effect, and (iii) surface coordination effect. The long-range electrostatic interaction, which is generally considered the most important source of repulsive interactions in surface adsorption, was found to contribute less than 30% of the overall repulsive interaction. The remaining >70% arises from the other two contributions, underscoring the critical influence of surface-mediated interactions on the adsorption process. Surface distortion and coordination effects are found to strongly depend on the coverage and adsorption geometry: the effect of surface distortion dominates when adsorbates reside two or more Pt atoms apart; the effect of surface coordination dominates if hydrogen is adsorbed on neighboring adsorption sites. The above effects are considerably less pronounced on Pt(100) and Pt(110), therefore resulting in weaker interactions between Hads on these two surfaces. Overall, the study highlights the relevance of surface-mediated effects on adsorbate-adsorbate interactions, such as the often-overlooked surface distortion. The effect of these interactions on the hotly debated adsorption site for the adsorbed hydrogen intermediate in the hydrogen evolution reaction is also discussed.
Collapse
Affiliation(s)
- Jinwen Liu
- Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, The Netherlands
| | - Arthur Hagopian
- Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, The Netherlands
| | - Ian T McCrum
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | | | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Leiden 2333 CC, The Netherlands
| |
Collapse
|
54
|
Janssen M, Drnec J, Martens I, Quinson J, Pittkowski R, Park D, Weber P, Arenz M, Oezaslan M. Monitoring the Morphological Changes of Skeleton-PtCo Electrocatalyst during PEMFC Start-Up/Shut-Down probed by in situ WAXS and SAXS. CHEMSUSCHEM 2024; 17:e202400303. [PMID: 38507245 DOI: 10.1002/cssc.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Advanced in situ analyses are indispensable for comprehending the catalyst aging mechanisms of Pt-based PEM fuel cell cathode materials, particularly during accelerated stress tests (ASTs). In this study, a combination of in situ small-angle and wide-angle X-ray scattering (SAXS & WAXS) techniques were employed to establish correlations between structural parameters (crystal phase, quantity, and size) of a highly active skeleton-PtCo (sk-PtCo) catalyst and their degradation cycles within the potential range of the start-up/shut-down (SUSD) conditions. Despite the complex case of the sk-PtCo catalyst comprising two distinct fcc alloy phases, our complementary techniques enabled in situ monitoring of structural changes in each crystal phase in detail. Remarkably, the in situ WAXS measurements uncover two primary catalyst aging processes, namely the cobalt depletion (regime I) followed by the crystallite growth via Ostwald ripening and/or particle coalescence (regime II). Additionally, in situ SAXS data reveal a continuous size growth over the AST. The Pt-enriched shell thickening based on the Co depletion within the first 100 SUSD cycles and particle growth induced by additional potential cycles were also collaborated by ex situ STEM-EELS. Overall, our work shows a comprehensive aging model for the sk-PtCo catalyst probed by complementary in situ WAXS and SAXS techniques.
Collapse
Affiliation(s)
- Marek Janssen
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Jakub Drnec
- European Synchrotron Radiation Facility (ESRF), 38000, Grenoble, France
| | - Isaac Martens
- European Synchrotron Radiation Facility (ESRF), 38000, Grenoble, France
| | - Jonathan Quinson
- Biological and Chemical Engineering Department, Aarhus University, 40 Åbogade, 8200, Aarhus, Denmark
| | - Rebecca Pittkowski
- Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Daesung Park
- Physikalisch-Technische Bundesanstalt (PTB), 38116, Braunschweig, Germany
- Laboratory of Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Philipp Weber
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Matthias Arenz
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Mehtap Oezaslan
- Technical Electrocatalysis Laboratory, Institute of Technical Chemistry, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
55
|
Roy S, Joseph A, Zhang X, Bhattacharyya S, Puthirath AB, Biswas A, Tiwary CS, Vajtai R, Ajayan PM. Engineered Two-Dimensional Transition Metal Dichalcogenides for Energy Conversion and Storage. Chem Rev 2024; 124:9376-9456. [PMID: 39042038 DOI: 10.1021/acs.chemrev.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Designing efficient and cost-effective materials is pivotal to solving the key scientific and technological challenges at the interface of energy, environment, and sustainability for achieving NetZero. Two-dimensional transition metal dichalcogenides (2D TMDs) represent a unique class of materials that have catered to a myriad of energy conversion and storage (ECS) applications. Their uniqueness arises from their ultra-thin nature, high fractions of atoms residing on surfaces, rich chemical compositions featuring diverse metals and chalcogens, and remarkable tunability across multiple length scales. Specifically, the rich electronic/electrical, optical, and thermal properties of 2D TMDs have been widely exploited for electrochemical energy conversion (e.g., electrocatalytic water splitting), and storage (e.g., anodes in alkali ion batteries and supercapacitors), photocatalysis, photovoltaic devices, and thermoelectric applications. Furthermore, their properties and performances can be greatly boosted by judicious structural and chemical tuning through phase, size, composition, defect, dopant, topological, and heterostructure engineering. The challenge, however, is to design and control such engineering levers, optimally and specifically, to maximize performance outcomes for targeted applications. In this review we discuss, highlight, and provide insights on the significant advancements and ongoing research directions in the design and engineering approaches of 2D TMDs for improving their performance and potential in ECS applications.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Antony Joseph
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Abhijit Biswas
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
56
|
Wei K, Wang X, Ge J. Towards bridging thermo/electrocatalytic CO oxidation: from nanoparticles to single atoms. Chem Soc Rev 2024; 53:8903-8948. [PMID: 39129479 DOI: 10.1039/d3cs00868a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), as a feasible alternative to replace the traditional fossil fuel-based energy converter, contribute significantly to the global sustainability agenda. At the PEMFC anode, given the high exchange current density, Pt/C is deemed the catalyst-of-choice to ensure that the hydrogen oxidation reaction (HOR) occurs at a sufficiently fast pace. The high performance of Pt/C, however, can only be achieved under the premise that high purity hydrogen is used. For instance, in the presence of trace level carbon monoxide, a typical contaminant during H2 production, Pt is severely deactivated by CO surface blockage. Addressing the poisoning issue necessitates for either developing anti-poisoning electrocatalysts or using pre-purified H2 obtained via a thermo-catalysis route. In other words, the CO poisoning issue can be addressed by either thermal-catalysis from the H2 supply side or electrocatalysis at the user side, respectively. In spite of the distinction between thermo-catalysis and electro-catalysis, there are high similarities between the two routes. Essentially, a reduction in the kinetic barrier for the combination of CO to oxygen containing intermediates is required in both techniques. Therefore, bridging electrocatalysis and thermocatalysis might offer new insight into the development of cutting edge catalysts to solve the poisoning issue, which, however, stands as an underexplored frontier in catalysis science. This review provides a critical appraisal of the recent advancements in preferential CO oxidation (CO-PROX) thermocatalysts and anti-poisoning HOR electrocatalysts, aiming to bridge the gap in cognition between the two routes. First, we discuss the differences in thermal/electrocatalysis, CO oxidation mechanisms, and anti-CO poisoning strategies. Second, we comprehensively summarize the progress of supported and unsupported CO-tolerant catalysts based on the timeline of development (nanoparticles to clusters to single atoms), focusing on metal-support interactions and interface reactivity. Third, we elucidate the stability issue and theoretical understanding of CO-tolerant electrocatalysts, which are critical factors for the rational design of high-performance catalysts. Finally, we underscore the imminent challenges in bridging thermal/electrocatalytic CO oxidation, with theory, materials, and the mechanism as the three main weapons to gain a more in-depth understanding. We anticipate that this review will contribute to the cognition of both thermocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Kai Wei
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Junjie Ge
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
57
|
Qiu D, Wang H, Ma T, Huang J, Meng Z, Fan D, Bowen CR, Lu H, Liu Y, Chandrasekaran S. Promoting Electrocatalytic Oxygen Reactions Using Advanced Heterostructures for Rechargeable Zinc-Air Battery Applications. ACS NANO 2024; 18:21651-21684. [PMID: 39129497 PMCID: PMC11342935 DOI: 10.1021/acsnano.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
In order to facilitate electrochemical oxygen reactions in electrically rechargeable zinc-air batteries (ZABs), there is a need to develop innovative approaches for efficient oxygen electrocatalysts. Due to their reliability, high energy density, material abundance, and ecofriendliness, rechargeable ZABs hold promise as next-generation energy storage and conversion devices. However, the large-scale application of ZABs is currently hindered by the slow kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). However, the development of heterostructure-based electrocatalysts has the potential to surpass the limitations imposed by the intrinsic properties of a single material. This Account begins with an explanation of the configurations of ZABs and the fundamentals of the oxygen electrochemistry of the air electrode. Then, we summarize recent progress with respect to the variety of heterostructures that exploit bifunctional electrocatalytic reactions and overview their impact on ZAB performance. The range of heterointerfacial engineering strategies for improving the ORR/OER and ZAB performance includes tailoring the surface chemistry, dimensionality of catalysts, interfacial charge transfer, mass and charge transport, and morphology. We highlight the multicomponent design approaches that take these features into account to create advanced highly active bifunctional catalysts. Finally, we discuss the challenges and future perspectives on this important topic that aim to enhance the bifunctional activity and performance of zinc-air batteries.
Collapse
Affiliation(s)
- Dingrong Qiu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Huihui Wang
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Tingting Ma
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Jiangdu Huang
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Zhen Meng
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Dayong Fan
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Chris R. Bowen
- Department
of Mechanical Engineering, University of
Bath, BA2 7AY Bath, U.K.
| | - Huidan Lu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Yongping Liu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Sundaram Chandrasekaran
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| |
Collapse
|
58
|
Boulangeot N, Brix F, Sur F, Gaudry É. Hydrogen, Oxygen, and Lead Adsorbates on Al 13Co 4(100): Accurate Potential Energy Surfaces at Low Computational Cost by Machine Learning and DFT-Based Data. J Chem Theory Comput 2024. [PMID: 39158468 DOI: 10.1021/acs.jctc.4c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Intermetallic compounds are promising materials in numerous fields, especially those involving surface interactions, such as catalysis. A key factor to investigate their surface properties lies in adsorption energy maps, typically built using first-principles approaches. However, exploring the adsorption energy landscapes of intermetallic compounds can be cumbersome, usually requiring huge computational resources. In this work, we propose an efficient method to predict adsorption energies, based on a Machine Learning (ML) scheme fed by a few Density Functional Theory (DFT) estimates performed on n sites selected through the Farthest Point Sampling (FPS) process. We detail its application on the Al13Co4(100) quasicrystalline approximant surface for several atomic adsorbates (H, O, and Pb). On this specific example, our approach is shown to outperform both simple interpolation strategies and the recent ML force field MACE [arXiv.2206.07697], especially when the number n is small, i.e., below 36 sites. The ground-truth DFT adsorption energies are much more correlated with the predicted FPS-ML estimates (Pearson R-factor of 0.71, 0.73, and 0.90 for H, O and Pb, respectively, when n = 36) than with interpolation-based or MACE-ML ones (Pearson R-factors of 0.43, 0.39, and 0.56 for H, O, and Pb, in the former case and 0.22, 0.35, and 0.63 in the latter case). The unbiased root-mean-square error (ubRMSE) is lower for FPS-ML than for interpolation-based and MACE-ML predictions (0.15, 0.17, and 0.17 eV, respectively, for hydrogen and 0.17, 0.25, and 0.22 eV for lead), except for oxygen (0.55, 0.47, and 0.46 eV) due to large surface relaxations in this case. We believe that these findings and the corresponding methodology can be extended to a wide range of systems, which will motivate the discovery of novel functional materials.
Collapse
Affiliation(s)
- Nathan Boulangeot
- Univ. de Lorraine, CNRS UMR7198, Institut Jean Lamour, Campus Artem, 2 allée André Guinier, 54000 Nancy, France
- Univ. de Lorraine, INRIA, CNRS UMR7503, Laboratoire Lorrain de Recherche en Informatique et Ses Applications, Campus Scientifique, 615 Rue du Jardin-Botanique, 54506 Vandœuvre-lès-Nancy, France
| | - Florian Brix
- Univ. de Lorraine, CNRS UMR7198, Institut Jean Lamour, Campus Artem, 2 allée André Guinier, 54000 Nancy, France
- Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Frédéric Sur
- Univ. de Lorraine, INRIA, CNRS UMR7503, Laboratoire Lorrain de Recherche en Informatique et Ses Applications, Campus Scientifique, 615 Rue du Jardin-Botanique, 54506 Vandœuvre-lès-Nancy, France
| | - Émilie Gaudry
- Univ. de Lorraine, CNRS UMR7198, Institut Jean Lamour, Campus Artem, 2 allée André Guinier, 54000 Nancy, France
| |
Collapse
|
59
|
Ziehl TJ, Li J, Sun S, Zhang P. New Insights into the ORR Catalysis on Pt Alloy Nanoparticles from an Element Specific d-Band Analysis. J Phys Chem Lett 2024; 15:8306-8314. [PMID: 39109518 DOI: 10.1021/acs.jpclett.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Bolstered by their unique atomic structures and tailored compositions, nanoalloys exhibit extraordinary properties making them ideal materials to solve challenges in energy storage and conversion catalysis. However, a quantitative description of the structure-property relationships using an accurate descriptor-based model for nanoalloys, ranging from bimetallic to multimetallic compositions, is needed to drive efficient material design toward high-performance catalysis. In this work, we highlight the electronic property and catalytic activity relationship from an element specific d-band analysis of Pt-based alloy catalysts using X-ray absorption near-edge spectroscopy (XANES). Using a series of L10-MPt/Pt (M = Fe, Co, Ni) core/shell alloy catalysts with well-defined atomic structures, we quantified subtle differences in the Pt d-electron states and correlated the Pt d-band structure to their superior catalytic activity toward the oxygen reduction reaction (ORR). Our analysis used the upper d-band edge position as a predictive descriptor for the mass activity toward the ORR instead of the commonly used d-band center position. Together with density functional theory calculations and Nørskov d-band theory, the upper d-band edge position for the Pt states, derived from experimental measurements, elucidates new physical insights into the ORR performance of the L10-MPt/Pt core/shell catalysts. An element specific Pt d-band analysis using XANES overcomes challenges in traditional X-ray photoelectron spectroscopy-based valence d-band analysis, which cannot distinguish signals from independent elements in nanoalloys. Thus, the insights from the element specific d-band analysis presented in this work are a promising approach to determine structure-property relationships in a variety of transition metal nanoalloys and will be useful in the design of future high-performance catalysts.
Collapse
Affiliation(s)
- Tyler Joe Ziehl
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Junrui Li
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Shouheng Sun
- Department of Chemistry, Brown Universtiy, Providence, Rhode Island 02912, United States
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
60
|
Singh M, Sharma HM, Gupta RK, Kumar A. Recent advancements and prospects in noble and non-noble electrocatalysts for materials methanol oxidation reactions. DISCOVER NANO 2024; 19:128. [PMID: 39143373 PMCID: PMC11324629 DOI: 10.1186/s11671-024-04066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
The direct methanol fuel cell (DMFC) represents a highly promising alternative power source for small electronics and automobiles due to its low operating temperatures, high efficiency, and energy density. The methanol oxidation process (MOR) constitutes a fundamental chemical reaction occurring at the positive electrode of a DMFC. Pt-based materials serve as widely utilized MOR electrocatalysts in DMFCs. Nevertheless, various challenges, such as sluggish reaction rates, high production costs primarily attributed to the expensive Pt-based catalyst, and the adverse effects of CO poisoning on the Pt catalysts, hinder the commercialization of DMFCs. Consequently, endeavors to identify an alternative catalyst to Pt-based catalysts that mitigate these drawbacks represent a critical focal point of DMFC research. In pursuit of this objective, researchers have developed diverse classes of MOR electrocatalysts, encompassing those derived from noble and non-noble metals. This review paper delves into the fundamental concept of MOR and its operational mechanisms, as well as the latest advancements in electrocatalysts derived from noble and non-noble metals, such as single-atom and molecule catalysts. Moreover, a comprehensive analysis of the constraints and prospects of MOR electrocatalysts, encompassing those based on noble metals and those based on non-noble metals, has been undertaken.
Collapse
Affiliation(s)
- Monika Singh
- Department of Chemistry, GLA University, Mathura-281406, India
| | | | - Ram K Gupta
- Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA.
- National Institute of Material Advancement, Pittsburg, KS, 66762, USA.
| | - Anuj Kumar
- Department of Chemistry, GLA University, Mathura-281406, India.
- National Institute of Material Advancement, Pittsburg, KS, 66762, USA.
| |
Collapse
|
61
|
Sivakumar S, Kulkarni A. Toward an ab Initio Description of Adsorbate Surface Dynamics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:13238-13248. [PMID: 39140094 PMCID: PMC11317978 DOI: 10.1021/acs.jpcc.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
The advent of machine learning potentials (MLPs) provides a unique opportunity to access simulation time scales and to directly compute physicochemical properties that are typically intractable using density functional theory (DFT). In this study, we use an active learning curriculum to train a generalizable MLP using the DeepMD-kit architecture. By using sufficiently long MLP-based molecular dynamics (MD) simulations, which provide DFT-level accuracy, we investigate the diffusion of key surface-bound adsorbates on a Ag(111) facet. Detailed analysis of the MLP/MD-calculated diffusivities sheds light on the potential shortcomings of using DFT-based nudged elastic band to estimate surface diffusion barriers. More generally, while this study is focused on a specific system, we anticipate that the underlying workflows and the resulting models can be extended to other adsorbates and other materials in the future.
Collapse
Affiliation(s)
- Saurabh Sivakumar
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Ambarish Kulkarni
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
62
|
Chu YJ, Zhu CY, Liu CG, Geng Y, Su ZM, Zhang M. Carbon-metal versus metal-metal synergistic mechanism of ethylene electro-oxidation via electrolysis of water on TM 2N 6 sites in graphene. Chem Sci 2024:d4sc03944k. [PMID: 39144461 PMCID: PMC11320337 DOI: 10.1039/d4sc03944k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
Acetaldehyde (AA) and ethylene oxide (EO) are important fine chemicals, and are also substrates with wide applications for high-value chemical products. Direct electrocatalytic oxidation of ethylene to AA and EO can avoid the untoward effects from harmful byproducts and high energy emissions. The most central intermediate state is the co-adsorption and coupling of ethylene and active oxygen intermediates (*O) at the active site(s), which is restricted by two factors: the stability of the *O intermediate generated during the electrolysis of water on the active site at a certain applied potential and pH range; and the lower kinetic energy barriers of the oxidation process based on the thermo-migration barrier from the *O intermediate to produce AA/EO. The benefit of two adjacent active atoms is more promising, since diverse adsorption and flexible catalytic sites may be provided for elementary reaction steps. Motivated by this strategy, we explored the feasibility of various homonuclear TM2N6@graphenes with dual-atomic-site catalysts (DASCs) for ethylene electro-oxidation through first-principles calculations via thermodynamic evaluation, analysis of the surface Pourbaix diagram, and kinetic evaluation. Two reaction mechanisms through C-TM versus TM-TM synergism were determined. Between them, a TM-TM mechanism on 4 TM2N6@graphenes and a C-TM mechanism on 5 TM2N6@graphenes are built. All 5 TM2N6@graphenes through the C-TM mechanism exhibit lower kinetic energy barriers for AA and EO generation than the 4 TM2N6@graphenes through the TM-TM mechanism. In particular, Pd2N6@graphene exhibits the most excellent catalytic activity, with energy barriers for generating AA and EO of only 0.02 and 0.65 eV at an applied potential of 1.77 V vs. RHE for the generation of an active oxygen intermediate. Electronic structure analysis indicates that the intrinsic C-TM mechanism is more advantageous than the TM-TM mechanism for ethylene electro-oxidation, and this study also provides valuable clues for further experimental exploration.
Collapse
Affiliation(s)
- Yun-Jie Chu
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University Changchun 130024 China
| | - Chang-Yan Zhu
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University Changchun 130024 China
| | - Chun-Guang Liu
- Department of Chemistry, Faculty of Science, Beihua University Jilin City 132013 P. R. China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University Changchun 130024 China
| | - Zhong-Min Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University Changchun 130021 P. R. China
| | - Min Zhang
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University Changchun 130024 China
| |
Collapse
|
63
|
Wang Y, Arandiyan H, Mofarah SS, Shen X, Bartlett SA, Koshy P, Sorrell CC, Sun H, Pozo-Gonzalo C, Dastafkan K, Britto S, Bhargava SK, Zhao C. Stacking Fault-Enriched MoNi 4/MoO 2 Enables High-Performance Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402156. [PMID: 38869191 DOI: 10.1002/adma.202402156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/01/2024] [Indexed: 06/14/2024]
Abstract
Producing green hydrogen in a cost-competitive manner via water electrolysis will make the long-held dream of hydrogen economy a reality. Although platinum (Pt)-based catalysts show good performance toward hydrogen evolution reaction (HER), the high cost and scarce abundance challenge their economic viability and sustainability. Here, a non-Pt, high-performance electrocatalyst for HER achieved by engineering high fractions of stacking fault (SF) defects for MoNi4/MoO2 nanosheets (d-MoNi) through a combined chemical and thermal reduction strategy is shown. The d-MoNi catalyst offers ultralow overpotentials of 78 and 121 mV for HER at current densities of 500 and 1000 mA cm-2 in 1 M KOH, respectively. The defect-rich d-MoNi exhibits four times higher turnover frequency than the benchmark 20% Pt/C, together with its excellent durability (> 100 h), making it one of the best-performing non-Pt catalysts for HER. The experimental and theoretical results reveal that the abundant SFs in d-MoNi induce a compressive strain, decreasing the proton adsorption energy and promoting the associated combination of *H into hydrogen and molecular hydrogen desorption, enhancing the HER performance. This work provides a new synthetic route to engineer defective metal and metal alloy electrocatalysts for emerging electrochemical energy conversion and storage applications.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Xiangjian Shen
- Engineering Research Centre of Advanced Functional Material Manufacturing of Ministry of Education, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Stuart A Bartlett
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Cristina Pozo-Gonzalo
- Institute for Frontier Materials, Deakin University, Melbourne, VIC, 3125, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sylvia Britto
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Suresh K Bhargava
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
64
|
Gunton AL, Jenkins SJ. Chemical Softness in Aromatic Adsorption: Benzene, Nitrobenzene and Anisole on Pt{111}. J Phys Chem A 2024; 128:6296-6304. [PMID: 39037904 PMCID: PMC11299172 DOI: 10.1021/acs.jpca.4c02214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
We describe a method for the calculation of chemical softness at metal surfaces, demonstrating its utility in understanding the adsorption of benzene, nitrobenzene and anisole at the Pt{111} surface. Based on this method, we show that directing effects due to either of the substituent groups are mostly swamped by substrate influences, while significant variations in softness within the groups themselves are readily apparent.
Collapse
Affiliation(s)
- Amy L. Gunton
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Stephen J. Jenkins
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
65
|
Ahn H, Ahn H, Goo BS, Kwon Y, Kim Y, Wi DH, Hong JW, Lee S, Lee YW, Han SW. Freestanding Penta-Twinned Palladium Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401230. [PMID: 38698589 DOI: 10.1002/smll.202401230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Control over the morphology of nanomaterials to have a 2D structure and manipulating the surface strain of nanostructures through defect control have proved to be promising for developing efficient catalysts for sustainable chemical and energy conversion. Here a one-pot aqueous synthesis route of freestanding Pd nanosheets with a penta-twinned structure (PdPT NSs) is presented. The generation of the penta-twinned nanosheet structure can be succeeded by directing the anisotropic growth of Pd under the controlled reduction kinetics of Pd precursors. Experimental and computational investigations showed that the surface atoms of the PdPT NSs are effectively under a compressive environment due to the strain imposed by their twin boundary defects. Due to the twin boundary-induced surface strain as well as the 2D structure of the PdPT NSs, they exhibited highly enhanced electrocatalytic activity for oxygen reduction reaction compared to Pd nanosheets without a twin boundary, 3D Pd nanocrystals, and commercial Pd/C and Pt/C catalysts.
Collapse
Affiliation(s)
- Hojin Ahn
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| | - Hochan Ahn
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| | - Bon Seung Goo
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| | - Yongmin Kwon
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| | - Yonghyeon Kim
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| | - Dae Han Wi
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| | - Jong Wook Hong
- Department of Chemistry, University of Ulsan, Ulsan, 44610, South Korea
| | - Seunghoon Lee
- Department of Chemistry (BK21 FOUR Graduate Program), Dong-A University, Busan, 49315, South Korea
| | - Young Wook Lee
- Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Sang Woo Han
- Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
66
|
Zhao J, Urrego-Ortiz R, Liao N, Calle-Vallejo F, Luo J. Rationally designed Ru catalysts supported on TiN for highly efficient and stable hydrogen evolution in alkaline conditions. Nat Commun 2024; 15:6391. [PMID: 39079996 PMCID: PMC11289485 DOI: 10.1038/s41467-024-50691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Electrocatalysis holds the key to enhancing the efficiency and cost-effectiveness of water splitting devices, thereby contributing to the advancement of hydrogen as a clean, sustainable energy carrier. This study focuses on the rational design of Ru nanoparticle catalysts supported on TiN (Ru NPs/TiN) for the hydrogen evolution reaction in alkaline conditions. The as designed catalysts exhibit a high mass activity of 20 A mg-1Ru at an overpotential of 63 mV and long-term stability, surpassing the present benchmarks for commercial electrolyzers. Structural analysis highlights the effective modification of the Ru nanoparticle properties by the TiN substrate, while density functional theory calculations indicate strong adhesion of Ru particles to TiN substrates and advantageous modulation of hydrogen adsorption energies via particle-support interactions. Finally, we assemble an anion exchange membrane electrolyzer using the Ru NPs/TiN as the hydrogen evolution reaction catalyst, which operates at 5 A cm-2 for more than 1000 h with negligible degradation, exceeding the performance requirements for commercial electrolyzers. Our findings contribute to the design of efficient catalysts for water splitting by exploiting particle-support interactions.
Collapse
Affiliation(s)
- Jia Zhao
- Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Ricardo Urrego-Ortiz
- Department of Materials Science and Chemical Physics & Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, Barcelona, Spain
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Advanced Materials and Polymers: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Av. Tolosa 72, San Sebastian, Spain
| | - Nan Liao
- Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Federico Calle-Vallejo
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Advanced Materials and Polymers: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Av. Tolosa 72, San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, Bilbao, Spain.
| | - Jingshan Luo
- Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin, China.
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
| |
Collapse
|
67
|
Shi H, Liang Y, Hou J, Wang H, Jia Z, Wu J, Song F, Yang H, Guo X. Boosting Solar-Driven CO 2 Conversion to Ethanol via Single-Atom Catalyst with Defected Low-Coordination Cu-N 2 Motif. Angew Chem Int Ed Engl 2024; 63:e202404884. [PMID: 38760322 DOI: 10.1002/anie.202404884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Cu-based catalysts have been shown to selectively catalyze CO2 photoreduction to C2+ solar fuels. However, they still suffer from poor activity and low selectivity. Herein, we report a high-performance carbon nitride supported Cu single-atom catalyst featuring defected low-coordination Cu-N2 motif (Cu-N2-V). Lead many recently reported photocatalysts and its Cu-N3 and Cu-N4 counterparts, Cu-N2-V exhibits superior photocatalytic activity for CO2 reduction to ethanol and delivers 69.8 μmol g-1 h-1 ethanol production rate, 97.8 % electron-based ethanol selectivity, and a yield of ~10 times higher than Cu-N3 and Cu-N4. Revealed by the extensive experimental investigation combined with DFT calculations, the superior photoactivity of Cu-N2-V stems from its defected Cu-N2 configuration, in which the Cu sites are electron enriched and enhance electron delocalization. Importantly, Cu in Cu-N2-V exist in both Cu+ and Cu2+ valence states, although predominantly as Cu+. The Cu+ sites support the CO2 activation, while the co-existence of Cu+/Cu2+ sites are highly conducive for strong *CO adsorption and subsequent *CO-*CO dimerization enabling C-C coupling. Furthermore, the hollow microstructure of the catalyst also promotes light adsorption and charge separation efficiency. Collectively, these make Cu-N2-V an effective and high-performance catalyst for the solar-driven CO2 conversion to ethanol. This study also elucidates the C-C coupling reaction path via *CO-*CO to *COCOH and rate-determining step, and reveals the valence state change of partial Cu species from Cu+ to Cu2+ in Cu-N2-V during CO2 photoreduction reaction.
Collapse
Affiliation(s)
- Hainan Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yan Liang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhenghao Jia
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
- Division of Energy Research Resources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jiaming Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Fei Song
- Shanghai Synchrotron Radiation Faciality, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Hong Yang
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
68
|
Golio N, Sen I, Yu X, Kondratyuk P, Gellman AJ. H 2-D 2 Exchange Activity and Electronic Structure of Ag x Pd 1-x Alloy Catalysts Spanning Composition Space. ACS Catal 2024; 14:11014-11025. [PMID: 39050898 PMCID: PMC11264212 DOI: 10.1021/acscatal.4c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024]
Abstract
Many computational studies of catalytic surface reaction kinetics have demonstrated the existence of linear scaling relationships between physical descriptors of catalysts and reaction barriers on their surfaces. In this work, the relationship between catalyst activity, electronic structure, and alloy composition was investigated experimentally using a Ag x Pd1-x Composition Spread Alloy Film (CSAF) and a multichannel reactor array that allows measurement of steady-state reaction kinetics at 100 alloy compositions simultaneously. Steady-state H2-D2 exchange kinetics were measured at atmospheric pressure on Ag x Pd1-x catalysts over a temperature range of 333-593 K and a range of inlet H2 and D2 partial pressures. X-ray photoelectron spectroscopy (XPS) was used to characterize the CSAF by determining the local surface compositions and the valence band electronic structure at each composition. The valence band photoemission spectra showed that the average energy of the valence band, ε̅v, shifts linearly with composition from -6.2 eV for pure Ag to -3.4 eV for pure Pd. At all reaction conditions, the H2-D2 exchange activity was found to be highest on pure Pd and gradually decreased as the alloy was diluted with Ag until no activity was observed for compositions with x Pd < 0.58. Measured H2-D2 exchange rates across the CSAF were fit using the Dual Subsurface Hydrogen (2H') mechanism to extract estimates for the activation energy barriers to dissociative adsorption, ΔE ads ‡, associative desorption, ΔE des ‡, and the surface-to-subsurface diffusion energy, ΔE ss, as a function of alloy composition, x Pd. The 2H' mechanism predicts ΔE ads ‡ = 0-10 kJ/mol, ΔE des ‡ = 30-65 kJ/mol, and ΔE ss = 20-30 kJ/mol for all alloy compositions with x Pd ≥ 0.64, including for the pure Pd catalyst (i.e., x Pd = 1). For these Pd-rich catalysts, ΔE des ‡ and ΔE ss appeared to increase by ∼5 kJ/mol with decreasing x Pd. However, due to the coupling of kinetic parameters in the 2H' mechanism, we are unable to exclude the possibility that the kinetic parameters predicted when x Pd ≥ 0.64 are identical to those predicted for pure Pd. This suggests that H2-D2 exchange occurs only on bulk-like Pd domains, presumably due to the strong interactions between H2 and Pd. In this case, the decrease in catalytic activity with decreasing x Pd can be explained by a reduction in the availability of surface Pd at high Ag compositions.
Collapse
Affiliation(s)
- Nicholas Golio
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Irem Sen
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaoxiao Yu
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Petro Kondratyuk
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Andrew J. Gellman
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
69
|
Ard SG, Sweeny BC, Lewis TWR, Long BA, Viggiano AA, Shuman NS. A Common Bottleneck for Metal Oxidation by Molecular Oxygen Across Size Regimes: Kinetics of Atomic Lanthanide Cations (La +-Lu +) with O 2. J Phys Chem A 2024; 128:5668-5675. [PMID: 38968412 DOI: 10.1021/acs.jpca.4c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Kinetics of the lanthanide cations (Ln+ = La+-Lu+ excluding Pm+) reacting with molecular oxygen were measured in a selected-ion flow tube apparatus from 300 to 600 K. Where exothermic, these reactions occur efficiently, producing LnO+ + O. The reactions display positive temperature dependences consistent with Arrhenius equation behavior and show small activation energies (0-2 kJ mol-1) that are strongly correlated to promotion energies of the Ln+ atoms. Reanalysis of literature data on neutral Ln + O2 reactions show a similar correlation with slightly larger activation energies (0-10 kJ mol-1). The data are explained by a common mechanism controlling oxidation by molecular oxygen in these systems, as well as in gas-phase reactions of transition metal and posttransition metal cluster anions, neutral clusters deposited on surfaces, and for oxygen incident on metal surfaces. It is posited that across these systems, the height of an early barrier along the reaction coordinate is predictable based on knowledge of the electronic states of the reactants and may be used to either promote or inhibit oxygen activation.
Collapse
Affiliation(s)
- Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Kirtland, New Mexico 87117, United States
| | - Brendan C Sweeny
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Kirtland, New Mexico 87117, United States
| | - Tucker W R Lewis
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Kirtland, New Mexico 87117, United States
| | - Bryan A Long
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Kirtland, New Mexico 87117, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Kirtland, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Kirtland, New Mexico 87117, United States
| |
Collapse
|
70
|
Grimes M, Atlan C, Chatelier C, Bellec E, Olson K, Simonne D, Levi M, Schülli TU, Leake SJ, Rabkin E, Eymery J, Richard MI. Capturing Catalyst Strain Dynamics during Operando CO Oxidation. ACS NANO 2024. [PMID: 39009584 DOI: 10.1021/acsnano.4c04127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Understanding the strain dynamic behavior of catalysts is crucial for the development of cost-effective, efficient, stable, and long-lasting catalysts. Using time-resolved Bragg coherent diffraction imaging at the fourth generation Extremely Brilliant Source of the European Synchrotron (ESRF-EBS), we achieved subsecond time resolution during operando chemical reactions. Upon investigation of Pt nanoparticles during CO oxidation, the three-dimensional strain profile highlights significant changes in the surface and subsurface regions, where localized strain is probed along the [111] direction. Notably, a rapid increase in tensile strain was observed at the top and bottom Pt {111} facets during CO adsorption. Moreover, we detected oscillatory strain changes (6.4 s period) linked to CO adsorption during oxidation, where a time resolution of 0.25 s was achieved. This approach allows for the study of adsorption dynamics of catalytic nanomaterials at the single-particle level under operando conditions, which provides insight into nanoscale catalytic mechanisms.
Collapse
Affiliation(s)
- Michael Grimes
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Clément Atlan
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Corentin Chatelier
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Ewen Bellec
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Kyle Olson
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - David Simonne
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- SOLEIL, L'Orme des Merisiers Départementale 128, 91190 Saint-Aubin, France
| | - Mor Levi
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Tobias U Schülli
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Steven J Leake
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Eugen Rabkin
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Joël Eymery
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
| | - Marie-Ingrid Richard
- Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRX, 17 rue des Martyrs, F-38000 Grenoble, France
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, F-38000 Grenoble, France
| |
Collapse
|
71
|
Yang Y, Wang G, Liu C, Lin Y, Jiao C, Chen Q, Zhuo Z, Mao J, Liu Y. Asymmetrically Coordinated Calcium Single Atom for High-Performance Oxygen Reduction Reaction. Inorg Chem 2024; 63:13086-13092. [PMID: 38937860 DOI: 10.1021/acs.inorgchem.4c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
S-block single atoms represent an ideal catalyst for the oxygen reduction reaction (ORR) as they can suppress the Fenton reaction. However, the symmetry of the s/p orbitals tends to generate either an excessively strong or weak interaction with intermediates. Herein, Ca single atoms coordinated with -S, -OP, and three N atoms (Ca/NPS-HC) were fabricated to modulate the adsorption of intermediates and promote the efficiency of s-block ORR catalysts. The experimental results from ORR demonstrated that the Ca/NPS-HC catalyst exhibited outstanding catalytic capability with a half-wave potential of 0.89 V, a kinetic current density of 56.6 mA cm-2 at 0.85 V, and a Tafel slope of 42 mV dec-1, outperforming commercial Pt/C. The detailed mechanistic studies revealed that the asymmetric coordination of Ca single atoms led to the symmetry-breaking of electron distribution in Ca single atoms, attenuating the s-p hybridization from the intermediate adsorption process, and thereby minimizing the energy barrier of the whole ORR.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Gang Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changwei Liu
- Chery New Energy Automobile Co., Ltd, Wuhu 241002, China
| | - Yutao Lin
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Chi Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingqing Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Zhiwen Zhuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yan Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
72
|
Mancera LA, Groß A, Behm RJ. Stability, electronic properties and CO adsorption properties of bimetallic PtAg/Pt(111) surfaces. Phys Chem Chem Phys 2024; 26:18435-18448. [PMID: 38916054 DOI: 10.1039/d4cp01640h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Aiming at a better fundamental understanding of the chemistry of bimetallic PtAg/Pt(111) surfaces, we have investigated the stability, electronic properties and CO adsorption properties of bimetallic PtAg surfaces, including pseudomorphic Ag film covered Pt(111) surfaces and PtxAg1-x/Pt(111) monolayer surface alloys, using periodic density functional theory calculations. The data provide detailed insights into the relative stabilities of different surface configurations, as indicated by their formation enthalpies and surface energies, and changes in their electronic properties, i.e., in the projected local densities of states and shifts in the d-band center. The adsorption properties of different Ptn ensembles were systematically tested using CO as a probe molecule. In addition to electronic ligand and strain effects, we were particularly interested in the role of different adsorption sites and of the local COad coverage, given by the number of CO molecules per Pt surface atom in the Ptn ensemble. Different from PdAg surfaces, variations in the adsorption energy with adsorption sites and with increasing local coverage are small up to one COad per Pt surface atom. Finally, formation of multicarbonyl species with more than one COad per Pt surface atom was tested for separated Pt1 monomers and can be excluded at finite temperatures. General trends and aspects are derived by comparison with comparable data for PdAg bimetallic surfaces. Fundamental insights relevant for applications of bimetallic Pt catalysts, specifically PtAg catalysts, are briefly discussed.
Collapse
Affiliation(s)
- Luis A Mancera
- Institute of Theoretical Chemistry, Ulm University, Oberberghof 7, D-89081 Ulm, Germany.
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, Oberberghof 7, D-89081 Ulm, Germany.
| | - R Jürgen Behm
- Institute of Theoretical Chemistry, Ulm University, Oberberghof 7, D-89081 Ulm, Germany.
| |
Collapse
|
73
|
Zhou Y, Hong G, Zhang W. Nanoengineering of Cathode Catalysts for Li-O 2 Batteries. ACS NANO 2024; 18:16489-16504. [PMID: 38899523 DOI: 10.1021/acsnano.4c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Lithium-oxygen (Li-O2) batteries have obtained widespread attention as next-generation energy storage systems due to their extremely high energy density. However, the high charge overpotential, attributed to the insulating property of Li2O2, significantly limits the energy efficiency and triggers solvent degradation. The high electrochemical activities of oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) on the cathode are crucial for alleviating the high charging polarizations and enhancing the lifetime of Li-O2 batteries, which are also top challenges of state-of-art research. In this review, the scientific challenges and the proposed solutions in the development of cathode catalysts have been summarized. The recent research advancements on the nanoengineering of cathode catalysts for Li-O2 batteries have been comprehensively discussed, and the perspectives on the structure optimization are presented. Meanwhile, we have elucidated the structure-performance relationship between the electronic state and performance of the cathode catalysts at the nanoscale level. This review intends to provide guidelines for the design and construction of cathode catalysts in advanced Li-O2 batteries.
Collapse
Affiliation(s)
- Yin Zhou
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guo Hong
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
74
|
Li Y, Wu Y, Li T, Yao Y, Cai H, Gao J, Qian G. Amorphous Engineering of Scalable Metal-Organic Framework-Derived Electrocatalyst for Highly Efficient Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311356. [PMID: 38295058 DOI: 10.1002/smll.202311356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Indexed: 02/02/2024]
Abstract
The engineering of amorphous metal-organic frameworks (MOFs) offers potential opportunities for the construction of electrocatalysts for efficient oxygen evolution reaction (OER). Herein, highly efficient OER performance and durability in alkaline electrolyte are discovered for MOF-derived amorphous and porous electrocatalysts, which are synthesized in a brief procedure and can be facilely produced in scalable quantities. The structural inheritance of MOF amorphous catalysts is significant for the retention of catalytic sites and the diffusion of electrolytes, and the presence of Fe sites can change the electronic structure and effectively control the adsorption behavior of important intermediates, accelerating reaction kinetics. The obtained amorphous A-FeNi can be transformed from FeNi-MOF effortlessly and instantly, and it only needs low overpotentials of 152 and 232 mV at 10 and 100 mA cm-2 with a Tafel slope of 17 mV dec-1 in 1 m KOH for OER. Moreover, A-FeNi possesses high corrosion resistance and durability, therefore A-FeNi can work continually for at least 400 h at 100 mA cm-2. This work may pave a new avenue for the design of MOFs-related amorphous electrocatalyst.
Collapse
Affiliation(s)
- Yuwen Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yuhang Wu
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Tongtong Li
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yue Yao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haotian Cai
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
75
|
Zhi X, Yang Q, Zhang X, Zhang H, Gao Y, Zhang L, Tong Y, He W. Copper regulation of PtRhRuCu nanozyme targeted boosting peroxidase-like activity for ultrasensitive smartphone-assisted colorimetric sensing of glucose. Food Chem 2024; 445:138788. [PMID: 38394910 DOI: 10.1016/j.foodchem.2024.138788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Point-of-care testing (POCT) is promising for biodetection in home healthcare due to advantages of simplicity, rapidity, low cost, portability, high sensitivity and accuracy, and object-oriented POCT platform can be developed by nanozyme-based biosensing. However, designing high-performance nanozymes with targeted regulated catalytic activity remains challenging. Herein, advanced PtRhRuCu quaternary alloy nanozymes (QANs) were rationally designed and successfully synthesized. Cu atoms induced mechanisms of hydrogen peroxide (H2O2) activation and d-band center regulation, achieving high enhancement of peroxide (POD)-like activity and inhibition of oxidase (OXD)-like activity. Inspired by this, a smartphone-assisted colorimetric platform integrated with test strips was established for glucose detection of soft drinks, with a detection limit of 0.021 mM and a recovery rate of 97.87 to 103.36 %. This work not only provides a novel path for tuning specific enzyme-like activities of metal nanozymes, but also shows the potential feasibility for rational design of POCT sensors in actual samples.
Collapse
Affiliation(s)
- Xinpeng Zhi
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, PR China; Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China
| | - Qi Yang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China.
| | - Xinghao Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China
| | - Hanbo Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China
| | - Ya Gao
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China
| | - Lulu Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China
| | - Yuping Tong
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, PR China.
| | - Weiwei He
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, Henan 461000, PR China.
| |
Collapse
|
76
|
Chen Z, Ma T, Wei W, Wong WY, Zhao C, Ni BJ. Work Function-Guided Electrocatalyst Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401568. [PMID: 38682861 DOI: 10.1002/adma.202401568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Indexed: 05/01/2024]
Abstract
The development of high-performance electrocatalysts for energy conversion reactions is crucial for advancing global energy sustainability. The design of catalysts based on their electronic properties (e.g., work function) has gained significant attention recently. Although numerous reviews on electrocatalysis have been provided, no such reports on work function-guided electrocatalyst design are available. Herein, a comprehensive summary of the latest advancements in work function-guided electrocatalyst design for diverse electrochemical energy applications is provided. This includes the development of work function-based catalytic activity descriptors, and the design of both monolithic and heterostructural catalysts. The measurement of work function is first discussed and the applications of work function-based catalytic activity descriptors for various reactions are fully analyzed. Subsequently, the work function-regulated material-electrolyte interfacial electron transfer (IET) is employed for monolithic catalyst design, and methods for regulating the work function and optimizing the catalytic performance of catalysts are discussed. In addition, key strategies for tuning the work function-governed material-material IET in heterostructural catalyst design are examined. Finally, perspectives on work function determination, work function-based activity descriptors, and catalyst design are put forward to guide future research. This work paves the way to the work function-guided rational design of efficient electrocatalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, P. R. China
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
77
|
Xu M, Liu S, Vijay S, Bligaard T, Kastlunger G. Benchmarking water adsorption on metal surfaces with ab initio molecular dynamics. J Chem Phys 2024; 160:244707. [PMID: 38920400 DOI: 10.1063/5.0205552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Solid-water interfaces are ubiquitous in nature and technology. In particular, technologies evolving in the green transition, such as electrocatalysis, heavily rely on the junction of an electrolyte and an electrode as a central part of the device. For the understanding of atomic-scale processes taking place at the electrolyte-electrode interface, density functional theory (DFT) has become the de facto standard. The validation of DFT's ability to simulate the interfacial solid/water interaction is crucial, and ideal simulation setups need to be identified in order to prevent avoidable systematic errors. Here, we develop a rigorous sampling protocol for benchmarking the adsorption/desorption energetics of water on metallic surfaces against experimental temperature programmed desorption, single crystal adsorption calorimetry, and thermal energy atom scattering. We screened DFT's quality on a series of transition metal surfaces, applying three of the most common exchange-correlation approximations: PBE-D3, RPBE-D3, and BEEF-vdW. We find that all three xc-functionals reflect the pseudo-zeroth order desorption of water rooted in the combination of attractive adsorbate-adsorbate interactions and their saturation at low and intermediate coverages, respectively. However, both RPBE-D3 and BEEF-vdW lead to more accurate water adsorption strengths, while PBE-D3 clearly overbinds near-surface water. We relate the variations in binding strength to specific variations in water-metal and water-water interactions, highlighting the structural consequences inherent in an uninformed choice of simulation parameters. Our study gives atomistic insight into water's complex adsorption equilibrium. Furthermore, it represents a guideline for future DFT-based simulations of solvated solid interfaces by providing an assessment of systematic errors in specific setups.
Collapse
Affiliation(s)
- Mianle Xu
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sihang Liu
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sudarshan Vijay
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas Bligaard
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Georg Kastlunger
- Catalysis Theory Center, Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
78
|
Tran B, Goldsmith BR. Theoretical Investigation of the Potential-Dependent CO Adsorption on Copper Electrodes. J Phys Chem Lett 2024; 15:6538-6543. [PMID: 38885201 DOI: 10.1021/acs.jpclett.4c01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Despite the importance of CO adsorption in many electrocatalytic reaction mechanisms, there has been little investigation of the dependence of the free energy of CO adsorption on the applied potential. Herein, we report on the potential-dependent adsorption of CO on Cu electrodes using a grand-canonical density functional theory approach. We demonstrate that, within the working potential range of electrocatalytic CO2 reduction on Cu(111) and Cu(100), the CO adsorption strength can change by over 0.1 eV. Our analyses explain the potential dependence through an interfacial capacitance loss upon CO adsorption as well as orbital relaxation induced by the electrode potential. Via sensitivity analysis with respect to two electrolyte model parameters (solvent dielectric constant and Debye screening length), we find that the surface excess charge density is a useful descriptor of the CO adsorption free energy.
Collapse
Affiliation(s)
- Bolton Tran
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bryan R Goldsmith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
79
|
Liang Q, Liu S, Sun W, Sun H, Wei L, Li Z, Chen L, Tian Z, Chen Q, Su J. Enhancing Electrocatalytic CO 2-to-CO Conversion by Weakening CO Binding through Nitrogen Integration in the Metallic Fe Catalyst. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28473-28481. [PMID: 38785067 DOI: 10.1021/acsami.4c02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Metallic iron (Fe) typically demonstrates the unfavorable catalytic activity for the CO2 reduction reaction (CO2RR), mainly attributed to the excessively strong binding of CO products on Fe sites. Toward this end, we employed an effective approach involving electronic structure modulation through nitrogen (N) integration to enhance the performance of the CO2RR. Here, an efficient catalyst has been developed, composed of N-doped metallic iron (Fe) nanoparticles encapsulated in a porous N-doped carbon framework. Notably, this N-integrated Fe catalyst displays significantly enhanced performance in the electrocatalytic reduction of CO2, yielding the highest CO Faradaic efficiency of 97.5% with a current density of 6.68 mA cm-2 at -0.7 V versus the reversible hydrogen electrode. The theoretical calculations, combined with the in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study, reveal that N integration modulates the electron density around Fe, resulting in the weakening of the binding strength between the Fe active sites and *CO intermediates, consequently promoting the desorption of CO and the overall CO2RR process.
Collapse
Affiliation(s)
- Qiyang Liang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| | - Shilong Liu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| | - Wenli Sun
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| | - Hongfei Sun
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| | - Lingzhi Wei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| | - Zonglin Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| | - Liang Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Ziqi Tian
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jianwei Su
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
| |
Collapse
|
80
|
Yan F, Dong X, Wang Y, Wang Q, Wang S, Zang S. Asymmetrical Interactions between Ni Single Atomic Sites and Ni Clusters in a 3D Porous Organic Framework for Enhanced CO 2 Photoreduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401508. [PMID: 38489671 PMCID: PMC11187926 DOI: 10.1002/advs.202401508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/06/2024] [Indexed: 03/17/2024]
Abstract
3D porous organic frameworks, which possess the advantages of high surface area and abundant exposed active sites, are considered ideal platforms to accommodate single atoms (SAs) and metal nanoclusters (NCs) in high-performance catalysts; however, very little research has been conducted in this field. In the present work, a 3D porous organic framework containing Ni1 SAs and Nin NCs is prepared through the metal-assisted one-pot polycondensation of tetraaldehyde and hexaaminotriptycene. The single metal sites and metal clusters confined in the 3D space created a favorable micro-environment that facilitated the activation of chemically inert CO2 molecules, thus promoting the overall photoconversion efficiency and selectivity of CO2 reduction. The 3D-NiSAs/NiNCs-POPs, as a CO2 photoreduction catalyst, demonstrated an exceptional CO production rate of 6.24 mmol g-1 h-1, high selectivity of 98%, and excellent stability. The theoretical calculations uncovered that asymmetrical interaction between Ni1 SAs and Nin NCs not only favored the bending of CO2 molecules and reducing the CO2 reduction energy, but also regulated the electronic structure of the catalyst leading to the optimal binding strength of intermediates.
Collapse
Affiliation(s)
- Fang‐Qin Yan
- Henan Key Laboratory of Crystalline Molecular Functional Materialsand College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Xiao‐Yu Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materialsand College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Yi‐Man Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materialsand College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Qian‐You Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materialsand College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Shan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materialsand College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Shuang‐Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materialsand College of ChemistryZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
81
|
Lyu Z, Cai J, Zhang XG, Li H, Huang H, Wang S, Li T, Wang Q, Xie Z, Xie S. Biphase Pd Nanosheets with Atomic-Hybrid RhO x/Pd Amorphous Skins Disentangle the Activity-Stability Trade-Off in Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314252. [PMID: 38551140 DOI: 10.1002/adma.202314252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/16/2024] [Indexed: 04/05/2024]
Abstract
The activity-stability trade-off relationship of oxygen reduction reaction (ORR) is a tricky issue that strikes the electrocatalyst population and hinders the widespread application of fuel cells. Here neoteric biphase Pd nanosheets that are structured with ultrathin two-dimensional crystalline Pd inner cores and ≈1 nm thin atomic-hybrid RhOx/Pd amorphous skins, named c/a-Pd@PdRh NSs, for disentangling this trade-off dilemma for alkaline ORR are developed. The superthin amorphous skins significantly amplify the quantity of flexibly low-coordinated atoms for electrocatalysis. An in situ selected oxidation of the top-surface Rh dopants creates atomically hybrid RhOx/Pd disorder surfaces. Detailed energy spectra and theoretical simulation confirm that these RhOx/Pd interfaces can arouse a surface charge redistribution, causing significant electron deficiency and lowered d-band center for surface Pd. Meanwhile, anticorrosive Rh/RhOx species can thermodynamically passivate the neighboring Pd atoms from oxidative dissolution. Thanks to these amplified interfacial effects, the biphase c/a-Pd@PdRh NSs simultaneously exhibit a superhigh ORR activity (5.92 A mg-1, 22.8 times that of Pt/C) and an outstanding long-lasting stability after 100k cycles of accelerated durability test, showcasing unprecedented electrocatalysts for breaking the activity-stability trade-off relationship of ORR. This work paves a bran-new strategy for designing high-performance electrocatalysts through creating modulated amorphous skins on low-dimensional nanomaterials.
Collapse
Affiliation(s)
- Zixi Lyu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Junlin Cai
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Huiqi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongpu Huang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Shupeng Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Tianyu Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Qiuxiang Wang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shuifen Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
82
|
Cui L, Sun Z, Wang Y, Jian X, Li H, Zhang X, Gao X, Li R, Liu J. *H migration-assisted MvK mechanism for efficient electrochemical NH 3 synthesis over TM-TiNO. Phys Chem Chem Phys 2024; 26:15705-15716. [PMID: 38766741 DOI: 10.1039/d4cp01207k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The electrochemical NH3 synthesis on TiNO is proposed to follow the Mars-van Krevelen (MvK) mechanism, offering more favorable N2 adsorption and activation on the N vacancy (Nv) site, compared to the conventional associative mechanism. The regeneration cycle of Nv represents the rate-determining step in this process. This study investigates a series of TM (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt)-TiNO to explore the *H migration (from TM to TiNO)-promoted Nv cycle. The screening results indicate that Ni-TiNO exhibits strong H2O decomposition for *H production with 0.242 eV and low *H migration resistance with 0.913 eV. Notably, *H migration from Ni to TiNO significantly reduces the Nv formation energy to 0.811 eV, compared to 1.387 eV on pure TiNO. Meanwhile, in the presence of *H, Nv formation takes precedence over Tiv and Ov. Lastly, electronic performance calculations reveal that the collaborative function provided by Ni and Nv enables highly stable and efficient NH3 synthesis. The *H migration-assisted MvK mechanism demonstrates effective catalytic cycle performance in electrochemical N2 fixation and may have potential applicability to other hydrogenation reactions utilizing water as a proton source.
Collapse
Affiliation(s)
- Luyao Cui
- Key Laboratory of Coal Science and Technology Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Zijun Sun
- Xi'an North Huian Chemical Industries Co. Ltd, Xi'an 710302, Shaanxi, China
| | - Yawen Wang
- Key Laboratory of Coal Science and Technology Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Xuan Jian
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Houfen Li
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiao Zhang
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiaoming Gao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, Shaanxi, China
| | - Rui Li
- Key Laboratory of Coal Science and Technology Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
- Shanxi Key Laboratory of Compound Air Pollutions Identification and Control, College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jianxin Liu
- Key Laboratory of Coal Science and Technology Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| |
Collapse
|
83
|
Hu H, Zhang Z, Liu L, Che X, Wang J, Zhu Y, Attfield JP, Yang M. Efficient and durable seawater electrolysis with a V 2O 3-protected catalyst. SCIENCE ADVANCES 2024; 10:eadn7012. [PMID: 38758788 PMCID: PMC11100561 DOI: 10.1126/sciadv.adn7012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
The ocean, a vast hydrogen reservoir, holds potential for sustainable energy and water development. Developing high-performance electrocatalysts for hydrogen production under harsh seawater conditions is challenging. Here, we propose incorporating a protective V2O3 layer to modulate the microcatalytic environment and create in situ dual-active sites consisting of low-loaded Pt and Ni3N. This catalyst demonstrates an ultralow overpotential of 80 mV at 500 mA cm-2, a mass activity 30.86 times higher than Pt-C and maintains at least 500 hours in seawater. Moreover, the assembled anion exchange membrane water electrolyzers (AEMWE) demonstrate superior activity and durability even under demanding industrial conditions. In situ localized pH analysis elucidates the microcatalytic environmental regulation mechanism of the V2O3 layer. Its role as a Lewis acid layer enables the sequestration of excess OH- ions, mitigate Cl- corrosion, and alkaline earth salt precipitation. Our catalyst protection strategy by using V2O3 presents a promising and cost-effective approach for large-scale sustainable green hydrogen production.
Collapse
Affiliation(s)
- Huashuai Hu
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhaorui Zhang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lijia Liu
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Xiangli Che
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jiacheng Wang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - J. Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, UK
| | - Minghui Yang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
84
|
Kong Y, Pan J, Li Y, Zhang Y, Lin W. Synergistic effect between transition metal single atom and SnS 2 toward deep CO 2 reduction. iScience 2024; 27:109658. [PMID: 38646174 PMCID: PMC11031821 DOI: 10.1016/j.isci.2024.109658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
The electrochemical reduction of CO2 is an efficient channel to facilitate energy conversion, but the rapid design and rational screening of high-performance catalysts remain a great challenge. In this work, we investigated the relationships between the configuration, energy, and electronic properties of SnS2 loaded with transition metal single atom (TM@SnS2) and analyzed the mechanism of CO2 activation and reduction by using density functional theory. The "charge transfer bridge" promoted the adsorption of CO2 on TM@SnS2, thus enhancing the binding of HCOOH∗ to the catalyst for further hydrogenation and reduction to high-value CH4. The research revealed that the binding free energy of COOH∗ on TM@SnS2 formed a "volcano curve" with the limiting potential of CO2 reduction to CH4, and the TM@SnS2 (TM = Cr, Ru, Os, and Pt) at the "volcano top" exhibited a high CH4 activity.
Collapse
Affiliation(s)
- Yuehua Kong
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Junhui Pan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Yi Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, People’s Republic of China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, People’s Republic of China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, People’s Republic of China
| |
Collapse
|
85
|
Ahlstedt O, Akola J. Hydrogen evolution descriptors of 55-atom PtNi nanoclusters and interaction with graphite. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:325001. [PMID: 38670082 DOI: 10.1088/1361-648x/ad4432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Density functional simulations have been performed for PtnNi55-nclusters (n=0,12,20,28,42,55) to investigate their catalytic properties for the hydrogen evolution reaction (HER). Starting from the icosahedralPt12Ni43, hydrogen adsorption energetics and electronicd-band descriptors indicate HER activity comparable to that of purePt55(distorted reduced core structure). The PtNi clusters accommodate a large number of adsorbed hydrogen before reaching a saturated coverage, corresponding to 3-4 H atoms per icosahedron facet (in total ∼70-80). The differential adsorption free energies are well within the window of|ΔGH|<0.1 eV which is considered optimal for HER. The electronic descriptors show similarities with the platinumd-band, although the uncovered PtNi clusters are magnetic. Increasing hydrogen coverage suppresses magnetism and depletes electron density, resulting in expansion of the PtNi clusters. For a single H atom, the adsorption free energy varies between -0.32 (Pt12Ni43) and -0.59 eV (Pt55). The most stable adsorption site is Pt-Pt bridge for Pt-rich compositions and a hollow site surrounded by three Ni for Pt-poor compositions. A hydrogen molecule dissociates spontaneously on the Pt-rich clusters. The above HER activity predictions can be extended to PtNi on carbon support as the interaction with a graphite model structure (w/o vacancy defect) results in minor changes in the cluster properties only. The cluster-surface interaction is the strongest forPt55due to its large facing facet and associated van der Waals forces.
Collapse
Affiliation(s)
- Olli Ahlstedt
- Computational Physics Laboratory, Tampere University, PO Box 692, FI-33014 Tampere, Finland
| | - Jaakko Akola
- Computational Physics Laboratory, Tampere University, PO Box 692, FI-33014 Tampere, Finland
- Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
86
|
Li Q, Kudo A, Ma J, Kawashima R, Toyama K, Xu W, Gao Z, Liang Y, Jiang H, Li Z, Cui Z, Zhu S, Chen M. Tuning Electrocatalytic Activities of Dealloyed Nanoporous Catalysts by Macroscopic Strain Engineering. NANO LETTERS 2024; 24:5543-5549. [PMID: 38652819 DOI: 10.1021/acs.nanolett.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
It is technically challenging to quantitatively apply strains to tune catalysis because most heterogeneous catalysts are nanoparticles, and lattice strains can only be applied indirectly via core-shell structures or crystal defects. Herein, we report quantitative relations between macroscopic strains and hydrogen evolution reaction (HER) activities of dealloyed nanoporous gold (NPG) by directly applying macroscopic strains upon bulk NPG. It was found that macroscopic compressive strains lead to a decrease, while macroscopic tensile strains improve the HER activity of NPG, which is in line with the d-band center model. The overpotential and onset potential of HER display approximately a linear relation with applied macroscopic strains, revealing an ∼2.9 meV decrease of the binding energy per 0.1% lattice strains from compressive to tensile. The methodology with the high strain sensitivity of electrocatalysis, developed in this study, paves a new way to investigate the insights of strain-dependent electrocatalysis with high precision.
Collapse
Affiliation(s)
- Qite Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
- WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Akira Kudo
- WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Jinling Ma
- WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Ryotaro Kawashima
- Department of Mechanical and Aerospace Engineering, Tohoku University, Sendai 980-8577, Japan
| | - Kota Toyama
- Department of Electrical and Computer Engineering, Tohoku University, Sendai 980-8577, Japan
| | - Wence Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Zhonghui Gao
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Hui Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Mingwei Chen
- WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| |
Collapse
|
87
|
Schumann J, Stamatakis M, Michaelides A, Réocreux R. Ten-electron count rule for the binding of adsorbates on single-atom alloy catalysts. Nat Chem 2024; 16:749-754. [PMID: 38263384 PMCID: PMC11087240 DOI: 10.1038/s41557-023-01424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
Single-atom alloys have recently emerged as highly active and selective alloy catalysts. Unlike pure metals, single-atom alloys escape the well-established conceptual framework developed nearly three decades ago for predicting catalytic performance. Although this offers the opportunity to explore so far unattainable chemistries, this leaves us without a simple guide for the design of single-atom alloys able to catalyse targeted reactions. Here, based on thousands of density functional theory calculations, we reveal a 10-electron count rule for the binding of adsorbates on the dopant atoms, usually the active sites, of single-atom alloy surfaces. A simple molecular orbital approach rationalizes this rule and the nature of the adsorbate-dopant interaction. In addition, our intuitive model can accelerate the rational design of single-atom alloy catalysts. Indeed, we illustrate how the unique insights provided by the electron count rule help identify the most promising dopant for an industrially relevant hydrogenation reaction, thereby reducing the number of potential materials by more than one order of magnitude.
Collapse
Affiliation(s)
- Julia Schumann
- Thomas Young Centre and Department of Chemical Engineering, University College London, London, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Physics Department and IRIS Adlershof, Humboldt Universität zu Berlin, Berlin, Germany
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, London, UK
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Romain Réocreux
- Thomas Young Centre and Department of Chemical Engineering, University College London, London, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
88
|
Liu C, Wu T, Lalanne P, Maier SA. Enhanced Light-Matter Interaction in Metallic Nanoparticles: A Generic Strategy of Smart Void Filling. NANO LETTERS 2024; 24:4641-4648. [PMID: 38579120 PMCID: PMC11036389 DOI: 10.1021/acs.nanolett.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
The intrinsic properties of materials play a substantial role in light-matter interactions, impacting both bulk metals and nanostructures. While plasmonic nanostructures exhibit strong interactions with photons via plasmon resonances, achieving efficient light absorption/scattering in other transition metals remains a challenge, impeding various applications related to optoelectronics, chemistry, and energy harvesting. Here, we propose a universal strategy to enhance light-matter interaction, through introducing voids onto the surface of metallic nanoparticles. This strategy spans nine metals including those traditionally considered optically inactive. The absorption cross section of void-filled nanoparticles surpasses the value of plasmonic (Ag/Au) counterparts with tunable resonance peaks across a broad spectral range. Notably, this enhancement is achieved under arbitrary polarizations and varied particle sizes and in the presence of geometric disorder, highlighting the universal adaptability. Our strategy holds promise for inspiring emerging devices in photocatalysis, bioimaging, optical sensing, and beyond, particularly when metals other than gold or silver are preferred.
Collapse
Affiliation(s)
- Changxu Liu
- Centre
for Metamaterial Research & Innovation, Department of Engineering, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Tong Wu
- LP2N, Institut d’Optique Graduate School, CNRS, Université
de Bordeaux, Talence 33400, France
| | - Philippe Lalanne
- LP2N, Institut d’Optique Graduate School, CNRS, Université
de Bordeaux, Talence 33400, France
| | - Stefan A. Maier
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Blackett
Laboratory, Imperial College London, London SW7 2BZ, United Kingdom
| |
Collapse
|
89
|
Hsieh TE, Frisch J, Wilks RG, Papp C, Bär M. Impact of Catalysis-Relevant Oxidation and Annealing Treatments on Nanostructured GaRh Alloys. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19858-19865. [PMID: 38591845 DOI: 10.1021/acsami.4c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In this study, we examine the surface-derived electronic and chemical structures of nanostructured GaRh alloys as a model system for supported catalytically active liquid metal solutions (SCALMS), a novel catalyst candidate for dehydrogenation reactions that are important for the petrochemical and hydrogen energy industry. It is reported that under ambient conditions, SCALMS tends to form a gallium oxide shell, which can be removed by an activation treatment at elevated temperatures and hydrogen flow to enhance the catalytic reactivity. We prepared a 7 at. % Rh containing the GaRh sample and interrogated the evolution of the surface chemical and electronic structure by photoelectron spectroscopy (complemented by scanning electron microscopy) upon performing surface oxidation and (activation treatment mimicking) annealing treatments in ultrahigh vacuum conditions. The initially pronounced Rh 4d and Fermi level-derived states in the valence band spectra disappear upon oxidation (due to formation of a GaOx shell) but reemerge upon annealing, especially for temperatures of 600 °C and above, i.e., when the GaOx shell is efficiently being removed and the Ga matrix is expected to be liquid. At the same temperature, new spectroscopic features at both the high and low binding energy sides of the Rh 3d5/2 spectra are observed, which we attribute to new GaRh species with depleted and enriched Rh contents, respectively. A liquefied and GaOx-free surface is also expected for GaRh SCALMS at reaction conditions, and thus the revealed high-temperature properties of the GaRh alloy provide insights about respective catalysts at work.
Collapse
Affiliation(s)
- Tzung-En Hsieh
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 12489 Berlin, Germany
| | - Johannes Frisch
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 12489 Berlin, Germany
- Energy Materials In-situ Laboratory Berlin (EMIL), HZB, 12489 Berlin, Germany
| | - Regan G Wilks
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 12489 Berlin, Germany
- Energy Materials In-situ Laboratory Berlin (EMIL), HZB, 12489 Berlin, Germany
| | - Christian Papp
- Freie Universität Berlin, Physical and Theoretical Chemistry, 14195Berlin, Germany
| | - Marcus Bär
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), 12489 Berlin, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
- Energy Materials In-situ Laboratory Berlin (EMIL), HZB, 12489 Berlin, Germany
- Department X-ray Spectroscopy at Interfaces of Thin Films, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), 12489 Berlin, Germany
| |
Collapse
|
90
|
Gao S, Wang B, Chen F, He G, Zhang T, Li L, Li J, Zhou Y, Feng B, Mei D, Yu J. Confinement of CsPbBr 3 Perovskite Nanocrystals into Extra-large-pore Zeolite for Efficient and Stable Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202319996. [PMID: 38316641 DOI: 10.1002/anie.202319996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
Metal halide perovskites (MHPs), renowned for their outstanding optoelectronic properties, hold significant promise as photocatalysts for hydrogen evolution reaction (HER). However, the low stability and insufficient exposure of catalytically active sites of bulky MHPs seriously impair their catalytic efficiency. Herein, we utilized an extra-large-pore zeolite ZEO-1 (JZO) as a host to confine and stabilize the CsPbBr3 nanocrystals (3.4 nm) for boosting hydrogen iodide (HI) splitting. The as-prepared CsPbBr3@ZEO-1 featured sufficiently exposed active sites, superior stability in acidic media, along with intrinsic extra-large pores of ZEO-1 that were favorable for molecule/ion adsorption and diffusion. Most importantly, the unique nanoconfinement effect of ZEO-1 led to the narrowing of the band gap of CsPbBr3, allowing for more efficient light utilization. As a result, the photocatalytic HER rate of the as-prepared CsPbBr3@ZEO-1 photocatalyst was increased to 1734 μmol ⋅ h-1 ⋅ g-1 (CsPbBr3) under visible light irradiation compared with bulk CsPbBr3 (11 μmol ⋅ h-1 ⋅ g-1 (CsPbBr3)), and the long-term durability (36 h) can be achieved. Furthermore, Pt was incorporated with well-dispersed CsPbBr3 nanocrystals into ZEO-1, resulting in a significant enhancement in activity (4826 μmol ⋅ h-1 ⋅ g-1 (CsPbBr3)), surpassing most of the Pt-integrated perovskite-based photocatalysts. Density functional theory (DFT) calculations and charge-carrier dynamics investigation revealed that the dramatically boosted photocatalytic performance of Pt/CsPbBr3@ZEO-1 could be attributed to the promotion of charge separation and transfer, as well as to the substantially lowered energy barrier for HER. This work highlights the advantage of extra-large-pore zeolites as the nanoscale platform to accommodate multiple photoactive components, opening up promising prospects in the design and exploitation of novel zeolite-confined photocatalysts for energy harvesting and storage.
Collapse
Affiliation(s)
- Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
| | - Bolun Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
| | - Feijian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
| | - Guangyuan He
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, 300387, Tianjin, China
| | - Tianjun Zhang
- College of Chemistry and Materials Science, Hebei University, 071002, Baoding, China
| | - Lin Li
- Electron Microscopy Center, Jilin University, 130012, Changchun, China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- Center for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yida Zhou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Binyao Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Donghai Mei
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, 300387, Tianjin, China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 130012, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
| |
Collapse
|
91
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
92
|
Yakovlev IV, Shubin AA, Papulovskiy ES, Toktarev AV, Lapina OB. Repulsive Lateral Interaction of Water Molecules at the Initial Stages of Adsorption in Microporous AlPO 4-11 According to 27Al NMR and DFT. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6384-6393. [PMID: 38475698 DOI: 10.1021/acs.langmuir.3c03969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Lateral (adsorbate-adsorbate) interactions between adsorbed molecules affect various physical and chemical properties of microporous adsorbents and catalysts, influencing their functional properties. In this work, we studied the hydration of microporous AlPO4-11 aluminophosphate, which has an unusually ordered structure upon adsorption of water vapor, and according to 27Al NMR data, only tetrahedrally or octahedrally coordinated Al sites are present in the AlPO4-11. These 27Al NMR data are consistent with the results of density functional theory (DFT) calculations of hydrated AlPO4-11, which revealed the presence of a strong repulsive lateral interaction at the initial stage of adsorption, suppressing the adsorption of water on neighboring (separated by one -O-P-O- bridge) Al crystallographic sites. As a result, of all the different aluminum sites, only half of the Al1 sites adsorb two water molecules and acquire octahedral coordination.
Collapse
Affiliation(s)
- Ilya V Yakovlev
- Boreskov Institute of Catalysis, Prospekt Lavrentieva 5, 630090 Novosibirsk, Russia
- Novosibirsk State University, ul. Pirogova 1, 630090 Novosibirsk, Russia
| | - Aleksandr A Shubin
- Institute of Solid State Chemistry and Mechanochemistry, Kutateladze 18, 630090 Novosibirsk, Russia
| | | | - Alexander V Toktarev
- Boreskov Institute of Catalysis, Prospekt Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Olga B Lapina
- Boreskov Institute of Catalysis, Prospekt Lavrentieva 5, 630090 Novosibirsk, Russia
- Novosibirsk State University, ul. Pirogova 1, 630090 Novosibirsk, Russia
| |
Collapse
|
93
|
Yonge A, Gusmão GS, Fushimi R, Medford AJ. Model-Based Design of Experiments for Temporal Analysis of Products (TAP): A Simulated Case Study in Oxidative Propane Dehydrogenation. Ind Eng Chem Res 2024; 63:4756-4770. [PMID: 38525291 PMCID: PMC10958505 DOI: 10.1021/acs.iecr.3c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/26/2024]
Abstract
Temporal analysis of products (TAP) reactors enable experiments that probe numerous kinetic processes within a single set of experimental data through variations in pulse intensity, delay, or temperature. Selecting additional TAP experiments often involves an arbitrary selection of reaction conditions or the use of chemical intuition. To make experiment selection in TAP more robust, we explore the efficacy of model-based design of experiments (MBDoE) for precision in TAP reactor kinetic modeling. We successfully applied this approach to a case study of synthetic oxidative propane dehydrogenation (OPDH) that involves pulses of propane and oxygen. We found that experiments identified as optimal through the MBDoE for precision generally reduce parameter uncertainties to a higher degree than alternative experiments. The performance of MBDoE for model divergence was also explored for OPDH, with the relevant active sites (catalyst structure) being unknown. An experiment that maximized the divergence between the three proposed mechanisms was identified and provided evidence that improved the mechanism discrimination. However, reoptimization of kinetic parameters eliminated the ability to discriminate between models. The findings yield insight into the prospects and limitations of MBDoE for TAP and transient kinetic experiments.
Collapse
Affiliation(s)
- Adam Yonge
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Gabriel S. Gusmão
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rebecca Fushimi
- Catalysis
and Transient Kinetics Group, Idaho National
Laboratory, Idaho
Falls, Idaho 83415, United States
| | - Andrew J. Medford
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
94
|
Li Z, Zhao C, Wang H, Ding Y, Chen Y, Schwaller P, Yang K, Hua C, He Y. Interpreting chemisorption strength with AutoML-based feature deletion experiments. Proc Natl Acad Sci U S A 2024; 121:e2320232121. [PMID: 38478684 PMCID: PMC10962981 DOI: 10.1073/pnas.2320232121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/10/2024] [Indexed: 03/27/2024] Open
Abstract
The chemisorption energy of reactants on a catalyst surface, [Formula: see text], is among the most informative characteristics of understanding and pinpointing the optimal catalyst. The intrinsic complexity of catalyst surfaces and chemisorption reactions presents significant difficulties in identifying the pivotal physical quantities determining [Formula: see text]. In response to this, the study proposes a methodology, the feature deletion experiment, based on Automatic Machine Learning (AutoML) for knowledge extraction from a high-throughput density functional theory (DFT) database. The study reveals that, for binary alloy surfaces, the local adsorption site geometric information is the primary physical quantity determining [Formula: see text], compared to the electronic and physiochemical properties of the catalyst alloys. By integrating the feature deletion experiment with instance-wise variable selection (INVASE), a neural network-based explainable AI (XAI) tool, we established the best-performing feature set containing 21 intrinsic, non-DFT computed properties, achieving an MAE of 0.23 eV across a periodic table-wide chemical space involving more than 1,600 types of alloys surfaces and 8,400 chemisorption reactions. This study demonstrates the stability, consistency, and potential of AutoML-based feature deletion experiment in developing concise, predictive, and theoretically meaningful models for complex chemical problems with minimal human intervention.
Collapse
Affiliation(s)
- Zhuo Li
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Changquan Zhao
- School of Mathematical Science, Shanghai Jiao Tong University, Shanghai200240, China
| | - Haikun Wang
- Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yanqing Ding
- Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY10027
| | - Yechao Chen
- Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai200240, China
| | - Philippe Schwaller
- Laboratory of Artificial Chemical Intelligence, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
- National Centre of Competence in Research Catalysis, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
| | - Ke Yang
- Key Laboratory of Advanced Energy Materials Chemistry, Nankai University, Tianjin300071, China
| | - Cheng Hua
- Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yulian He
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
95
|
Miao L, Jia W, Cao X, Jiao L. Computational chemistry for water-splitting electrocatalysis. Chem Soc Rev 2024; 53:2771-2807. [PMID: 38344774 DOI: 10.1039/d2cs01068b] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has attracted great interest in recent years for producing hydrogen with high-purity. However, the practical applications of this technology are limited by the development of electrocatalysts with high activity, low cost, and long durability. In the search for new electrocatalysts, computational chemistry has made outstanding contributions by providing fundamental laws that govern the electron behavior and enabling predictions of electrocatalyst performance. This review delves into theoretical studies on electrochemical water-splitting processes. Firstly, we introduce the fundamentals of electrochemical water electrolysis and subsequently discuss the current advancements in computational methods and models for electrocatalytic water splitting. Additionally, a comprehensive overview of benchmark descriptors is provided to aid in understanding intrinsic catalytic performance for water-splitting electrocatalysts. Finally, we critically evaluate the remaining challenges within this field.
Collapse
Affiliation(s)
- Licheng Miao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wenqi Jia
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
96
|
Liu N, Gao D, Wang D. Theoretical study of NH 3 , H 2 S, and HCN adsorption enhancement on defective graphene-supported Cu 19 clusters. Chemphyschem 2024; 25:e202300861. [PMID: 38288557 DOI: 10.1002/cphc.202300861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/27/2024] [Indexed: 03/16/2024]
Abstract
Recent studies have shown that graphene-supported metal clusters can enhance catalytic reactivity compared with corresponding metal clusters. In this study, the adsorptions of NH3 , H2 S, and HCN on Cu19 and defective graphene-supported Cu19 clusters are investigated using plane-wave density functional theory. The results reveal the three gas molecules can be adsorbed on three types of top sites of Cu atoms, respectively. The adsorption energies of the corresponding adsorption sites on the defective graphene-supported Cu19 clusters are all increased compared with those on the Cu19 clusters. The orbital-resolved, crystal orbital Hamilton population analysis demonstrates that the larger the integrated crystal orbital Hamilton population, the stronger the adsorption between the gas molecule and the bonded Cu atom. The center of antibonding states on the defective graphene-supported Cu19 is shifted upward relative to Fermi level compared to the corresponding one on pure Cu19 , which explains the enhanced adsorption energy on defective graphene-supported Cu19. In addition, the closer d-band center to the Fermi level on the defective graphene-supported Cu19 indicates a stronger adsorption capacity than on pure Cu19 .
Collapse
Affiliation(s)
- Naigui Liu
- Qingdao Huanghai University, 266400, Qingdao, Shandong, China
| | - Delu Gao
- College of Physics and Electronics, Shandong Normal University, 250014, Jinan, Shandong, China
| | - Dunyou Wang
- College of Physics and Electronics, Shandong Normal University, 250014, Jinan, Shandong, China
| |
Collapse
|
97
|
Zhang Z, Li M, Gao R, Yang S, Ma Q, Feng R, Dou H, Dang J, Wen G, Bai Z, Liu D, Feng M, Chen Z. Selective and Scalable CO 2 Electrolysis Enabled by Conductive Zinc Ion-Implanted Zeolite-Supported Cadmium Oxide Nanoclusters. J Am Chem Soc 2024; 146:6397-6407. [PMID: 38394777 DOI: 10.1021/jacs.4c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Catalyst supports play an essential role in catalytic reactions, hinting at pronounced metal-support effects. Zeolites are a propitious support in heterogeneous catalysts, while their use in the electrocatalytic CO2 reduction reaction has been limited as yet because of their electrically insulating nature and serious competing hydrogen evolution reaction (HER). Enlightened by theoretical prediction, herein, we implant zinc ions into the structural skeleton of a zeolite Y to strategically tailor a favorable electrocatalytic platform with remarkably enhanced electronic conduction and strong HER inhibition capability, which incorporates ultrafine cadmium oxide nanoclusters as guest species into the supercages of the tailored 12-ring window framework. The metal d-bandwidth tuning of cadmium by skeletal zinc steers the extent of substrate-molecule orbital mixing, enhancing the stabilization of the key intermediate *COOH while weakening the CO poisoning effect. Furthermore, the strong cadmium-zinc interplay causes a considerable thermodynamic barrier for water dissociation in the conversion of H+ to *H, potently suppressing the competing HER. Therefore, we achieve an industrial-level partial current density of 335 mA cm-2 and remarkable Faradaic efficiency of 97.1% for CO production and stably maintain Faradaic efficiency above 90% at the industrially relevant current density for over 120 h. This work provides a proof of concept of tailored conductive zeolite as a favorable electrocatalytic support for industrial-level CO2 electrolysis and will significantly enhance the adaptability of conductive zeolite-based electrocatalysts in a variety of electrocatalysis and energy conversion applications.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Minzhe Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Shuwen Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
- Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qianyi Ma
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Renfei Feng
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Haozhen Dou
- Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianan Dang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
- Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guobin Wen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dianhua Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Power Battery & Systems Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
98
|
Niu B, Wang Y, Zhao T, Duan X, Xu W, Zhao Z, Yang Z, Li G, Li J, Cheng J, Hao Z. Modulating the Electronic States of Pt Nanoparticles on Reducible Metal-Organic Frameworks for Boosting the Oxidation of Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4428-4437. [PMID: 38400916 DOI: 10.1021/acs.est.3c09422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
The adsorption and activation of pollutant molecules and oxygen play a critical role in the oxidation reaction of volatile organic compounds (VOCs). In this study, superior adsorption and activation ability was achieved by modulating the interaction between Pt nanoparticles (NPs) and UiO-66 (U6) through the spatial position effect. Pt@U6 exhibits excellent activity in toluene, acetone, propane, and aldehyde oxidation reactions. Spectroscopic studies, 16O2/18O2 kinetic isotopic experiments, and density functional theory (DFT) results jointly reveal that the encapsulated Pt NPs of Pt@U6 possess higher electron density and d-band center, which is conducive for the adsorption and dissociation of oxygen. The toluene oxidation reaction and DFT results indicate that Pt@U6 is more favorable to activate the C-H of toluene and the C═C of maleic anhydride, while Pt/U6 with lower electron density and d-band center exhibits a higher oxygen dissociation temperature and higher reactant activation energy barriers. This study provides a deep insight into the architecture-performance relation of Pt-based catalysts for the catalytic oxidation of VOCs.
Collapse
Affiliation(s)
- Ben Niu
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Yang Wang
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
| | - Ting Zhao
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Xiaoxiao Duan
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Wei Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing 100049, People's Republic of China
| | - Zeyu Zhao
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Zhenwen Yang
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Ganggang Li
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Jianfeng Li
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
| | - Jie Cheng
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| |
Collapse
|
99
|
Feng R, Li D, Yang H, Li C, Zhao Y, Waterhouse GIN, Shang L, Zhang T. Epitaxial Ultrathin Pt Atomic Layers on CrN Nanoparticle Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309251. [PMID: 37897297 DOI: 10.1002/adma.202309251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Indexed: 10/30/2023]
Abstract
The construction of platinum (Pt) atomic layers is an effective strategy to improve the utilization efficiency of Pt atoms in electrocatalysis, thus is important for reducing the capital costs of a wide range of energy storage and conversion devices. However, the substrates used to grow Pt atomic layers are largely limited to noble metals and their alloys, which is not conducive to reducing catalyst costs. Herein, low-cost chromium nitride (CrN) is utilized as a support for the loading of epitaxial ultrathin Pt atomic layers via a simple thermal ammonolysis method. Owing to the strong anchoring and electronic regulation of Pt atomic layers by CrN, the obtained Pt atomic layers catalyst (containing electron-deficient Pt sites) exhibits excellent activity and endurance for the formic acid oxidation reaction, with a mass activity of 5.17 A mgPt -1 that is 13.6 times higher than that of commercial Pt/C catalyst. This novel strategy demonstrates that CrN can replace noble metals as a low-cost substrate for constructing Pt atomic layers catalysts.
Collapse
Affiliation(s)
- Ruixue Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongzhou Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengyu Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
100
|
Karimadom BR, Sermiagin A, Meyerstein D, Zidki T, Mizrahi A, Bar-Ziv R, Kornweitz H. Hydrogen adsorption on various transition metal (111) surfaces in water: a DFT forecast. Phys Chem Chem Phys 2024; 26:7647-7657. [PMID: 38369914 DOI: 10.1039/d3cp05884k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The hydrogen adsorption and hydrogen evolution at the M(111), (M = Ag, Au Cu, Pt, Pd, Ni & Co) surfaces of various transition metals in aqueous suspensions were studied computationally using the DFT methods. The hydrogens are adsorbed dissociatively on all surfaces except on Ag(111) and Au(111) surfaces. The results are validated by reported experimental and computational studies. Hydrogen atoms have large mobility on M(111) surfaces due to the small energy barriers for diffusion on the surface. The hydrogen evolution via the Tafel mechanism is considered at different surface coverage ratios of hydrogen atoms and is used as a descriptor for the hydrogen adsorption capacity on M(111) surfaces. All calculations are performed without considering how the hydrogen atoms are formed on the surface. The hydrogen adsorption energies decrease with the increase in the surface coverage of hydrogen atoms. The surface coverage for the H2 evolution depends on each M(111) surface. Among the considered M(111) surfaces, Au(111) has the least hydrogen adsorption capacity and Ni, Co and Pd have the highest. Furthermore, experiments proving that after the H2 evolution reaction (HER) on Au0-NPs, and Ag0-NPs surfaces some reducing capacity remains on the M0-NPs is presented.
Collapse
Affiliation(s)
- Basil Raju Karimadom
- Chemical Sciences Department and The Radical Reactions Research Center, Ariel University, Ariel, Israel.
| | - Alina Sermiagin
- Chemical Sciences Department and The Radical Reactions Research Center, Ariel University, Ariel, Israel.
| | - Dan Meyerstein
- Chemical Sciences Department and The Radical Reactions Research Center, Ariel University, Ariel, Israel.
- Chemistry Department, Ben-Gurion University, Beer-Sheva, Israel
| | - Tomer Zidki
- Chemical Sciences Department and The Radical Reactions Research Center, Ariel University, Ariel, Israel.
| | - Amir Mizrahi
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Ronen Bar-Ziv
- Chemistry Department, Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Haya Kornweitz
- Chemical Sciences Department and The Radical Reactions Research Center, Ariel University, Ariel, Israel.
| |
Collapse
|