51
|
Mahroum N, Alghory A, Kiyak Z, Alwani A, Seida R, Alrais M, Shoenfeld Y. Ferritin - from iron, through inflammation and autoimmunity, to COVID-19. J Autoimmun 2022; 126:102778. [PMID: 34883281 PMCID: PMC8647584 DOI: 10.1016/j.jaut.2021.102778] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023]
Abstract
While it took decades to arrive to a conclusion that ferritin is more than an indicator of iron storage level, it took a short period of time through the COVID-19 pandemic to wonder what the reason behind high levels of ferritin in patients with severe COVID-19 might be. Unsurprisingly, acute phase reactant was not a satisfactory explanation. Moreover, the behavior of ferritin in patients with severe COVID-19 and the subsequent high mortality rates in patients with high ferritin levels necessitated further investigations to understand the role of ferritin in the diseases. Ferritin was initially described to accompany various acute infections, both viral and bacterial, indicating an acute response to inflammation. However, with the introduction of the hyperferritinemic syndrome connecting four severe pathological conditions such as adult-onset Still's disease, macrophage activation syndrome, catastrophic antiphospholipid syndrome, and septic shock added another aspect of ferritin where it could have a pathogenetic role rather than an extremely elevated protein only. In fact, suggesting that COVID-19 is a new member in the spectrum of hyperferritinemic syndrome besides the four mentioned conditions could hopefully direct further search on the pathogenetic role of ferritin. Doubtlessly, improving our understanding of those aspects of ferritin would enormously contribute to better coping with severe diseases in terms of treatment and prevention of complications. The origin, history, importance, and the advances of searching the role of ferritin in various pathological and clinical processes are presented hereby in our article. In addition, the implications of ferritin in COVID-19 are addressed.
Collapse
Affiliation(s)
- Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey,Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat- Gan, Israel,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel,Corresponding author. Internal medicine “B” department, Sheba Medical Center (Affiliated to Tel-Aviv University), Tel-Hashomer, 5265601, Israel
| | - Amal Alghory
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Zeynep Kiyak
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Abdulkarim Alwani
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ravend Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mahmoud Alrais
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | | |
Collapse
|
52
|
OUP accepted manuscript. Nutr Rev 2022; 80:1974-1984. [DOI: 10.1093/nutrit/nuac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
53
|
Zurita C, Tsushima S, Solari PL, Jeanson A, Creff G, Den Auwer C. Interaction of Th(IV), Pu(IV) and Fe(III) with ferritin protein: how similar? JOURNAL OF SYNCHROTRON RADIATION 2022; 29:45-52. [PMID: 34985422 PMCID: PMC8733997 DOI: 10.1107/s1600577521012340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/21/2021] [Indexed: 05/28/2023]
Abstract
Ferritin is the main protein of Fe storage in eukaryote and prokaryote cells. It is a large multifunctional, multi-subunit protein consisting of heavy H and light L subunits. In the field of nuclear toxicology, it has been suggested that some actinide elements, such as thorium and plutonium at oxidation state +IV, have a comparable `biochemistry' to iron at oxidation state +III owing to their very high tendency for hydrolysis and somewhat comparable ionic radii. Therefore, the possible mechanisms of interaction of such actinide elements with the Fe storage protein is a fundamental question of bio-actinidic chemistry. We recently described the complexation of Pu(IV) and Th(IV) with horse spleen ferritin (composed mainly of L subunits). In this article, we bring another viewpoint to this question by further combining modeling with our previous EXAFS data for Pu(IV) and Th(IV). As a result, the interaction between the L subunits and both actinides appears to be non-specific but driven only by the density of the presence of Asp and Glu residues on the protein shell. The formation of an oxyhydroxide Th or Pu core has not been observed under the experimental conditions here, nor the interaction of Th or Pu with the ferric oxyhydroxide core.
Collapse
Affiliation(s)
- Cyril Zurita
- Université Côte d’Azur, CNRS, ICN, 06108 Nice, France
| | - Satoru Tsushima
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
- World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | | | | | - Gaëlle Creff
- Université Côte d’Azur, CNRS, ICN, 06108 Nice, France
| | | |
Collapse
|
54
|
Role of ferritin and oxidative stress index in gestational diabetes mellitus. J Diabetes Metab Disord 2021; 20:1615-1619. [PMID: 34900812 DOI: 10.1007/s40200-021-00911-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023]
Abstract
Objectives To investigate the role of serum ferritin and oxidative stress in the development of GDM and to assess their relationship with the ensuing hyperglycemia. Methods A case-control study was carried on 90 non-anemic pregnant women of 20-40 years with a gestation of 24-28 weeks. Study group (n = 65) was identified according to the Diabetes in Pregnancy Study Group India (DIPSI) criteria (2-h plasma glucose ≥ 140 mg/dl) and controls (n = 25) having 2-h plasma glucose < 120 mg/dl. DIPSI 2-h plasma glucose, HbA1c and serum ferritin were measured and oxidative stress index (OSI) was calculated. Statistical tests were performed using SPSS version 25.0. Results Pre-pregnancy BMI showed a significant difference between control and study group. DIPSI 2 h blood glucose, HbA1c, serum ferritin and OSI were significantly higher in study group compared to control group. Both 2 h blood glucose and HbA1c were positively correlated with serum ferritin and OSI, serum ferritin and OSI were also positively correlated with each other. Conclusion Higher pre-pregnancy BMI elevates serum ferritin, which in turn increases the OSI. Both ferritin and oxidative stress raises 2 h blood glucose and HbA1c in GDM patients possibly by causing in-vivo pancreatic β -cell injury and death (ferroptosis). Serum ferritin and OSI could become newer personalized theranostic and monitoring targets in overweight/obese pregnant females especially GDM patients.
Collapse
|
55
|
El-Asheer OM, Naeem MS, Abdel-Hafez FA, Abdou MAA, Mohamed KA. Iron deficiency in preschool non-anemic Egyptian children. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2021. [DOI: 10.1186/s43054-021-00081-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Iron deficiency anemia remains a common cause of anemia in young children. The term iron deficiency without anemia, or the so-called latent iron deficiency, has become increasingly significant as it is not only difficult to identify this condition in non-anemic children, but it also adversely affects neurocognitive development, and unfortunately, some of these effects may be irreversible and not respond to treatment. This cross-sectional study was conducted to evaluate iron status in 68 apparently healthy, non-anemic Egyptian children aged 1–6 years. They were subjected to detailed history-taking, physical examination, complete blood count, and tests for serum iron, total iron binding capacity, serum ferritin, and transferrin saturation.
Results
Low serum ferritin level and low transferrin saturation were detected in 41.2% and 47% of the children, respectively. Iron deficiency parameters were significantly affected among toddlers aged “1” to “3” years compared with preschool children, and boys were found to be more affected than girls of the same age group.
Conclusions
A normal hemoglobin level does not exclude iron deficiency, which should be screened in healthy children to prevent the possible long-term effects of iron deficiency on their cognition and mental development.
Collapse
|
56
|
The development of natural and designed protein nanocages for encapsulation and delivery of active compounds. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
57
|
Benevenuto RF, Zanatta CB, Guerra MP, Nodari RO, Agapito-Tenfen SZ. Proteomic Profile of Glyphosate-Resistant Soybean under Combined Herbicide and Drought Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112381. [PMID: 34834744 PMCID: PMC8622064 DOI: 10.3390/plants10112381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 05/14/2023]
Abstract
While some genetically modified (GM) plants have been targeted to confer tolerance to abiotic stressors, transgenes are impacted by abiotic stressors, causing adverse effects on plant physiology and yield. However, routine safety analyses do not assess the response of GM plants under different environmental stress conditions. In the context of climate change, the combination of abiotic stressors is a reality in agroecosystems. Therefore, the aim of this study was to analyze the metabolic cost by assessing the proteomic profiles of GM soybean varieties under glyphosate spraying and water deficit conditions compared to their non-transgenic conventional counterparts. We found evidence of cumulative adverse effects that resulted in the reduction of enzymes involved in carbohydrate metabolism, along with the expression of amino acids and nitrogen metabolic enzymes. Ribosomal metabolism was significantly enriched, particularly the protein families associated with ribosomal complexes L5 and L18. The interaction network map showed that the affected module representing the ribosome pathway interacts strongly with other important proteins, such as the chloro-plastic gamma ATP synthase subunit. Combined, these findings provide clear evidence for increasing the metabolic costs of GM soybean plants in response to the accumulation of stress factors. First, alterations in the ribosome pathway indicate that the GM plant itself carries a metabolic burden associated with the biosynthesis of proteins as effects of genetic transformation. GM plants also showed an imbalance in energy demand and production under controlled conditions, which was increased under drought conditions. Identifying the consequences of altered metabolism related to the interaction between plant transgene stress responses allows us to understand the possible effects on the ecology and evolution of plants in the medium and long term and the potential interactions with other organisms when these organisms are released in the environment.
Collapse
Affiliation(s)
- Rafael Fonseca Benevenuto
- Crop Science Department, Federal University of Santa Catarina, Florianopolis 88034000, Brazil; (R.F.B.); (C.B.Z.); (M.P.G.); (R.O.N.)
| | - Caroline Bedin Zanatta
- Crop Science Department, Federal University of Santa Catarina, Florianopolis 88034000, Brazil; (R.F.B.); (C.B.Z.); (M.P.G.); (R.O.N.)
| | - Miguel Pedro Guerra
- Crop Science Department, Federal University of Santa Catarina, Florianopolis 88034000, Brazil; (R.F.B.); (C.B.Z.); (M.P.G.); (R.O.N.)
| | - Rubens Onofre Nodari
- Crop Science Department, Federal University of Santa Catarina, Florianopolis 88034000, Brazil; (R.F.B.); (C.B.Z.); (M.P.G.); (R.O.N.)
| | - Sarah Z. Agapito-Tenfen
- GenØk Centre for Biosafety, Siva Innovasjonssenter Postboks 6418, 9294 Tromsø, Norway
- Correspondence:
| |
Collapse
|
58
|
Chen S, Liu Y, Zhu L, Meng D, Zhang L, Wang Q, Hu J, Wang D, Wang Z, Zhou Z, Song H, Yang R. Chaotrope-Controlled Fabrication of Ferritin-Salvianolic Acid B- Epigallocatechin Gallate Three-Layer Nanoparticle by the Flexibility of Ferritin Channels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12314-12322. [PMID: 34612625 DOI: 10.1021/acs.jafc.1c01997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytoferritin has a natural cagelike architecture for carrying bioactive molecules, and it is uniquely suited to function as a carrier due to its multiple interfaces and channels. In this study, a novel approach was proposed to prepare ferritin-salvianolic acid B-epigallocatechin gallate (EGCG) three-layer nanoparticles (FSE) through the steric hindrance of ferritin channels. Urea (30 mM) could expand the ferritin channel size evidenced by the improved iron release rate vo and promote the EGCG penetration into the ferritin cavity without disassembly of the ferritin cage. The encapsulation ratio of EGCG was 16.0 ± 0.14% (w/w). Salvianolic acid B attached to the outer interface of ferritin through weak bonds with a binding constant of (2.91 ± 0.04) × 105 M-1. The FSE maintained a spherical structure with a diameter of 12 nm. Moreover, when subjected to heat (40-70 °C) there was a significant increase in the stability of EGCG in the FSE due to the binding of salvianolic acid B. Through this interesting approach, two molecules are simultaneously attached and encapsulated in ferritin in a multilayer form under moderate conditions, which is conducive to the protection of unstable molecules for potential encapsulation and delivery utilization.
Collapse
Affiliation(s)
- Shengnan Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yuqian Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Lei Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Demei Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Liqun Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Qiaoe Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing100048, People's Republic of China
| | - Jiangnan Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Desheng Wang
- Tianjin Goubuli Food Company, Limited, Tianjin 300380, People's Republic of China
| | - Zhiwei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Zhongkai Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Huanlu Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Rui Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| |
Collapse
|
59
|
El-Asheer O, Naeem MS, Abd El Aal FH, Abdou MAA, Mohamed KAK. Iron Status in Preschool Children with Normal Hemoglobin, Egypt. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Iron deficiency (ID) anemia remains a common cause of anemia in young children. However, the more significant than anemia itself is the ID without anemia that also adversely affect neurocognitive development and unfortunately some of these effects may be irreversible.
AIM: This study is a cross-sectional study aimed to asses iron status in preschool children with normal hemoglobin (Hgb) level attending Assiut University Children Hospital.
METHODS: The cross-sectional study including 68 apparently healthy children aged 1–6 years old during the period from January 1, 2015 to June 30, 2015, They were subjected to detailed history, physical examination, and the following laboratory investigations: Complete blood count, Serum iron, Total Iron Binding Capacity, Serum ferritin, and Transferrin saturation.
RESULTS: Low serum ferritin and low transferrin saturation were detected in 41.2% and 47% respectively of our studied children who have normal Hgb levels.
CONCLUSION: Normal Hgb doesn’t exclude ID that should be screened in healthy children to prevent the possible long-term effects of ID on their cognation and mental development.
Collapse
|
60
|
Pujol-Carrion N, Gonzalez-Alfonso A, Puig S, de la Torre-Ruiz MA. Both human and soya bean ferritins highly improve the accumulation of bioavailable iron and contribute to extend the chronological life in budding yeast. Microb Biotechnol 2021; 15:1525-1541. [PMID: 34644442 PMCID: PMC9049602 DOI: 10.1111/1751-7915.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/02/2022] Open
Abstract
Ferritin proteins have an enormous capacity to store iron in cells. In search for the best conditions to accumulate and store bioavailable iron, we made use of a double mutant null for the monothiol glutaredoxins GRX3 and GRX4. The strain grx3grx4 accumulates high iron concentrations in the cytoplasm, making the metal easily available for ferritin chelation. Here, we perform a comparative study between human (L and H) and soya bean ferritins (H1 and H2) function in the eukaryotic system Saccharomyces cerevisiae. We demonstrate that the four human and soya bean ferritin chains are successfully expressed in our model system. Upon coexpression of either both human or soya bean ferritin chains, respiratory conditions along with iron supplementation led us to obtain the maximum yields of iron stored in yeast described to date. Human and soya bean ferritin chains are functional and present equivalent properties as promoters of cell survival in iron overload conditions. The best system revealed that the four human and soya bean ferritins possess a novel function as anti‐ageing proteins in conditions of iron excess. In this respect, both ferritin chains with oxidoreductase capacity (human‐H and soya bean‐H2) bear the highest capacity to extend life suggesting the possibility of an evolutionary conservation.
Collapse
Affiliation(s)
- Nuria Pujol-Carrion
- Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, 25198, Spain
| | - Alma Gonzalez-Alfonso
- Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, 25198, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, E-46980, Spain
| | - Maria Angeles de la Torre-Ruiz
- Cell Signalling in Yeast Unit, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLleida), University of Lleida, Lleida, 25198, Spain
| |
Collapse
|
61
|
The Relationship of Glutathione- S-Transferase and Multi-Drug Resistance-Related Protein 1 in Nitric Oxide (NO) Transport and Storage. Molecules 2021; 26:molecules26195784. [PMID: 34641326 PMCID: PMC8510172 DOI: 10.3390/molecules26195784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide is a diatomic gas that has traditionally been viewed, particularly in the context of chemical fields, as a toxic, pungent gas that is the product of ammonia oxidation. However, nitric oxide has been associated with many biological roles including cell signaling, macrophage cytotoxicity, and vasodilation. More recently, a model for nitric oxide trafficking has been proposed where nitric oxide is regulated in the form of dinitrosyl-dithiol-iron-complexes, which are much less toxic and have a significantly greater half-life than free nitric oxide. Our laboratory has previously examined this hypothesis in tumor cells and has demonstrated that dinitrosyl-dithiol-iron-complexes are transported and stored by multi-drug resistance-related protein 1 and glutathione-S-transferase P1. A crystal structure of a dinitrosyl-dithiol-iron complex with glutathione-S-transferase P1 has been solved that demonstrates that a tyrosine residue in glutathione-S-transferase P1 is responsible for binding dinitrosyl-dithiol-iron-complexes. Considering the roles of nitric oxide in vasodilation and many other processes, a physiological model of nitric oxide transport and storage would be valuable in understanding nitric oxide physiology and pathophysiology.
Collapse
|
62
|
Nguyen TKM, Ki MR, Son RG, Kim KH, Hong J, Pack SP. Synthesis of sub-50 nm bio-inspired silica particles using a C-terminal-modified ferritin template with a silica-forming peptide. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
63
|
Mitochondrial Ferritin: Its Role in Physiological and Pathological Conditions. Cells 2021; 10:cells10081969. [PMID: 34440737 PMCID: PMC8393899 DOI: 10.3390/cells10081969] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
In 2001, a new type of human ferritin was identified by searching for homologous sequences to H-ferritin in the human genome. After the demonstration that this ferritin is located specifically in the mitochondrion, it was called mitochondrial ferritin. Studies on the properties of this new type of ferritin have been limited by its very high homology with the cytosolic H-ferritin, which is expressed at higher levels in cells. This great similarity made it difficult to obtain specific antibodies against the mitochondrial ferritin devoid of cross-reactivity with cytosolic ferritin. Thus, the knowledge of the physiological role of mitochondrial ferritin is still incomplete despite 20 years of research. In this review, we summarize the literature on mitochondrial ferritin expression regulation and its physical and biochemical properties, with particular attention paid to the differences with cytosolic ferritin and its role in physiological condition. Until now, there has been no evidence that the alteration of the mitochondrial ferritin gene is causative of any disorder; however, the identified association of the mitochondrial ferritin with some disorders is discussed.
Collapse
|
64
|
Ryter SW. Significance of Heme and Heme Degradation in the Pathogenesis of Acute Lung and Inflammatory Disorders. Int J Mol Sci 2021; 22:ijms22115509. [PMID: 34073678 PMCID: PMC8197128 DOI: 10.3390/ijms22115509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
The heme molecule serves as an essential prosthetic group for oxygen transport and storage proteins, as well for cellular metabolic enzyme activities, including those involved in mitochondrial respiration, xenobiotic metabolism, and antioxidant responses. Dysfunction in both heme synthesis and degradation pathways can promote human disease. Heme is a pro-oxidant via iron catalysis that can induce cytotoxicity and injury to the vascular endothelium. Additionally, heme can modulate inflammatory and immune system functions. Thus, the synthesis, utilization and turnover of heme are by necessity tightly regulated. The microsomal heme oxygenase (HO) system degrades heme to carbon monoxide (CO), iron, and biliverdin-IXα, that latter which is converted to bilirubin-IXα by biliverdin reductase. Heme degradation by heme oxygenase-1 (HO-1) is linked to cytoprotection via heme removal, as well as by activity-dependent end-product generation (i.e., bile pigments and CO), and other potential mechanisms. Therapeutic strategies targeting the heme/HO-1 pathway, including therapeutic modulation of heme levels, elevation (or inhibition) of HO-1 protein and activity, and application of CO donor compounds or gas show potential in inflammatory conditions including sepsis and pulmonary diseases.
Collapse
|
65
|
Moskvin M, Huntošová V, Herynek V, Matouš P, Michalcová A, Lobaz V, Zasońska B, Šlouf M, Seliga R, Horák D. In vitro cellular activity of maghemite/cerium oxide magnetic nanoparticles with antioxidant properties. Colloids Surf B Biointerfaces 2021; 204:111824. [PMID: 33991978 DOI: 10.1016/j.colsurfb.2021.111824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 12/24/2022]
Abstract
Magnetic γ-Fe2O3/CeO2 nanoparticles were obtained by precipitation of Ce(NO3)3 with ammonia in the presence of γ-Fe2O3 seeds. The formation of CeO2 nanoparticles on the seeds was confirmed by transmission electron microscopy linked with selected area electron diffraction, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy, and dynamic light scattering. The γ-Fe2O3/CeO2 particle surface was functionalized with PEG-neridronate to improve the colloidal stability in PBS and biocompatibility. Chemical and in vitro biological assays proved that the nanoparticles, due to the presence of cerium oxide, effectively scavenged radicals, thus decreasing oxidative stress in the model cell line. PEG functionalization of the nanoparticles diminished their in vitro aggregation and facilitated lysosomal cargo degradation in cancer cells during autophagy, which resulted in concentration-dependent cytotoxicity of the nanoparticles. Finally, the iron oxide core allowed easy magnetic separation of the particles from liquid media and may enable monitoring of nanoparticle biodistribution in organisms using magnetic resonance imaging.
Collapse
Affiliation(s)
- Maksym Moskvin
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Veronika Huntošová
- Center of Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Šafárik University in Košice, Jesenná 5, 041 01, Košice, Slovak Republic
| | - Vít Herynek
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Kateřinská 32, 120 00, Prague 2, Czech Republic
| | - Petr Matouš
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Kateřinská 32, 120 00, Prague 2, Czech Republic
| | - Alena Michalcová
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Technická 5, Prague 6, 166 28, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Beata Zasońska
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic
| | - Róbert Seliga
- Center of Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Šafárik University in Košice, Jesenná 5, 041 01, Košice, Slovak Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06, Prague 6, Czech Republic.
| |
Collapse
|
66
|
Defective palmitoylation of transferrin receptor triggers iron overload in Friedreich ataxia fibroblasts. Blood 2021; 137:2090-2102. [PMID: 33529321 DOI: 10.1182/blood.2020006987] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Friedreich ataxia (FRDA) is a frequent autosomal recessive disease caused by a GAA repeat expansion in the FXN gene encoding frataxin, a mitochondrial protein involved in iron-sulfur cluster (ISC) biogenesis. Resulting frataxin deficiency affects ISC-containing proteins and causes iron to accumulate in the brain and heart of FRDA patients. Here we report on abnormal cellular iron homeostasis in FRDA fibroblasts inducing a massive iron overload in cytosol and mitochondria. We observe membrane transferrin receptor 1 (TfR1) accumulation, increased TfR1 endocytosis, and delayed Tf recycling, ascribing this to impaired TfR1 palmitoylation. Frataxin deficiency is shown to reduce coenzyme A (CoA) availability for TfR1 palmitoylation. Finally, we demonstrate that artesunate, CoA, and dichloroacetate improve TfR1 palmitoylation and decrease iron overload, paving the road for evidence-based therapeutic strategies at the actionable level of TfR1 palmitoylation in FRDA.
Collapse
|
67
|
El-Mallah CA, Beyh YS, Obeid OA. Iron Fortification and Supplementation: Fighting Anemia of Chronic Diseases or Fueling Obesity? Curr Dev Nutr 2021; 5:nzab032. [PMID: 33959691 PMCID: PMC8085477 DOI: 10.1093/cdn/nzab032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/07/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
The significant worldwide increase in obesity has become a major health problem. Excess adiposity has been extensively linked to inflammation. Recently, studies have shown that dietary intake and microbiota dysbiosis can affect the health of the gut and lead to low-grade systemic inflammation, worsening the state of obesity and further exacerbating inflammation. The latter is shown to decrease iron status and potentially increase the risk of anemia by inhibiting iron absorption. Hence, anemia of obesity is independent of iron intake and does not properly respond to increased iron ingestion. Therefore, countries with a high rate of obesity should assess the health impact of fortification and supplementation with iron due to their potential drawbacks. This review tries to elucidate the relation between inflammation and iron status to better understand the etiology of anemia of obesity and chronic diseases and wisely design any dietary or medical interventions for the management of anemia and/or obesity.
Collapse
Affiliation(s)
- Carla A El-Mallah
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Yara S Beyh
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Omar A Obeid
- Department of Nutrition and Food Science, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
68
|
Cozzi A, Santambrogio P, Ripamonti M, Rovida E, Levi S. Pathogenic mechanism and modeling of neuroferritinopathy. Cell Mol Life Sci 2021; 78:3355-3367. [PMID: 33439270 PMCID: PMC11072144 DOI: 10.1007/s00018-020-03747-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022]
Abstract
Neuroferritinopathy is a rare autosomal dominant inherited movement disorder caused by alteration of the L-ferritin gene that results in the production of a ferritin molecule that is unable to properly manage iron, leading to the presence of free redox-active iron in the cytosol. This form of iron has detrimental effects on cells, particularly severe for neuronal cells, which are highly sensitive to oxidative stress. Although very rare, the disorder is notable for two reasons. First, neuroferritinopathy displays features also found in a larger group of disorders named Neurodegeneration with Brain Iron Accumulation (NBIA), such as iron deposition in the basal ganglia and extrapyramidal symptoms; thus, the elucidation of its pathogenic mechanism may contribute to clarifying the incompletely understood aspects of NBIA. Second, neuroferritinopathy shows the characteristic signs of an accelerated process of aging; thus, it can be considered an interesting model to study the progress of aging. Here, we will review the clinical and neurological features of neuroferritinopathy and summarize biochemical studies and data from cellular and animal models to propose a pathogenic mechanism of the disorder.
Collapse
Affiliation(s)
- Anna Cozzi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Paolo Santambrogio
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Maddalena Ripamonti
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Ermanna Rovida
- Institute for Genetic and Biomedical Research, National Research Council, 20138, Milan, Italy
| | - Sonia Levi
- Proteomic of Iron Metabolism Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy.
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
69
|
Lv C, Zhang X, Liu Y, Zhang T, Chen H, Zang J, Zheng B, Zhao G. Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly. Chem Soc Rev 2021; 50:3957-3989. [PMID: 33587075 DOI: 10.1039/d0cs01349h] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Compartmentalization is a hallmark of living systems. Through compartmentalization, ubiquitous protein nanocages such as viral capsids, ferritin, small heat shock proteins, and DNA-binding proteins from starved cells fulfill a variety of functions, while their shell-like structures hold great promise for various applications in the field of nanomedicine and nanotechnology. However, the number and structure of natural protein nanocages are limited, and these natural protein nanocages may not be suited for a given application, which might impede their further application as nanovehicles, biotemplates or building blocks. To overcome these shortcomings, different strategies have been developed by scientists to construct artificial protein nanocages, and 1D, 2D and 3D protein arrays with protein nanocages as building blocks through genetic and chemical modification to rival the size and functionality of natural protein nanocages. This review outlines the recent advances in the field of the design and construction of artificial protein nanocages and their assemblies with higher order, summarizes the strategies for creating the assembly of protein nanocages from zero-dimension to three dimensions, and introduces their corresponding applications in the preparation of nanomaterials, electrochemistry, and drug delivery. The review will highlight the roles of both the inter-subunit/intermolecular interactions at the key interface and the protein symmetry in constructing and controlling protein nanocage assemblies with different dimensions.
Collapse
Affiliation(s)
- Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Heme Oxgenase-1, a Cardinal Modulator of Regulated Cell Death and Inflammation. Cells 2021; 10:cells10030515. [PMID: 33671004 PMCID: PMC7997353 DOI: 10.3390/cells10030515] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Heme oxygenase catalyzes the rate-limiting step in heme degradation in order to generate biliverdin, carbon monoxide (CO), and iron. The inducible form of the enzyme, heme oxygenase-1 (HO-1), exerts a central role in cellular protection. The substrate, heme, is a potent pro-oxidant that can accelerate inflammatory injury and promote cell death. HO-1 has been implicated as a key mediator of inflammatory cell and tissue injury, as validated in preclinical models of acute lung injury and sepsis. A large body of work has also implicated HO-1 as a cytoprotective molecule against various forms of cell death, including necrosis, apoptosis and newly recognized regulated cell death (RCD) programs such as necroptosis, pyroptosis, and ferroptosis. While the antiapoptotic potential of HO-1 and its reaction product CO in apoptosis regulation has been extensively characterized, relatively fewer studies have explored the regulatory role of HO-1 in other forms of necrotic and inflammatory RCD (i.e., pyroptosis, necroptosis and ferroptosis). HO-1 may provide anti-inflammatory protection in necroptosis or pyroptosis. In contrast, in ferroptosis, HO-1 may play a pro-death role via enhancing iron release. HO-1 has also been implicated in co-regulation of autophagy, a cellular homeostatic program for catabolic recycling of proteins and organelles. While autophagy is primarily associated with cell survival, its occurrence can coincide with RCD programs. This review will summarize the roles of HO-1 and its reaction products in co-regulating RCD and autophagy programs, with its implication for both protective and detrimental tissue responses, with emphasis on how these impact HO-1 as a candidate therapeutic target in disease.
Collapse
|
71
|
Salami A, Papenberg G, Sitnikov R, Laukka EJ, Persson J, Kalpouzos G. Elevated neuroinflammation contributes to the deleterious impact of iron overload on brain function in aging. Neuroimage 2021; 230:117792. [PMID: 33497770 DOI: 10.1016/j.neuroimage.2021.117792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 01/16/2021] [Indexed: 01/24/2023] Open
Abstract
Intracellular iron is essential for many neurobiological mechanisms. However, at high concentrations, iron may induce oxidative stress and inflammation. Brain iron overload has been shown in various neurodegenerative disorders and in normal aging. Elevated brain iron in old age may trigger brain dysfunction and concomitant cognitive decline. However, the exact mechanism underlying the deleterious impact of iron on brain function in aging is unknown. Here, we investigated the role of iron on brain function across the adult lifespan from 187 healthy participants (20-79 years old, 99 women) who underwent fMRI scanning while performing a working-memory n-back task. Iron content was quantified using R2* relaxometry, whereas neuroinflammation was estimated using myo-inositol measured by magnetic resonance spectroscopy. Striatal iron increased non-linearly with age, with linear increases at both ends of adulthood. Whereas higher frontostriatal activity was related to better memory performance independent of age, the link between brain activity and iron differed across age groups. Higher striatal iron was linked to greater frontostriatal activity in younger, but reduced activity in older adults. Further mediation analysis revealed that, after age 40, iron provided unique and shared contributions with neuroinflammation to brain activations, such that neuroinflammation partly mediated brain-iron associations. These findings promote a novel mechanistic understanding of how iron may exert deleterious effects on brain function and cognition with advancing age.
Collapse
Affiliation(s)
- Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden.
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Rouslan Sitnikov
- MRI Research Center, Karolinska University Hospital, Stockholm, Sweden
| | - Erika J Laukka
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Jonas Persson
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; School of Law, Psychology and Social Work, Örebro University, Örebro, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|
72
|
Yang R, Tian J, Liu Y, Zhu L, Sun J, Meng D, Wang Z, Wang C, Zhou Z, Chen L. Interaction mechanism of ferritin protein with chlorogenic acid and iron ion: The structure, iron redox, and polymerization evaluation. Food Chem 2021; 349:129144. [PMID: 33540218 DOI: 10.1016/j.foodchem.2021.129144] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Ferritin is an iron-containing protein and functions in the maintenance of iron balance in organisms. Currently the interaction among ferritin, ion iron, and food bioactive compounds is still unclear. In this study, the mechanism underlying the interaction of ferritin, ion iron, and chlorogenic acid was investigated, as well as the effect of chlorogenic acid on the physicochemical properties of ferritin. The results showed that chlorogenic acid could interact with Fe(III) to form chlorogenic acid-Fe(III) complexes, which then bonded with ferritin via hydrogen bonds in the ferritin-chlorogenic acid-Fe(III) complexes. The chlorogenic acid showed a high efficiency in Fe(II) chelation and hydroxyl radical (•OH) capture, and could promote iron oxidation and iron release induced by ferritin. Chlorogenic acid could also effectively reduce the polymerization extent of ferritin induced by Fe(III) and Fe(II). This study elucidates the interactions of multiple components in foodstuffs by using a protein-metal-polyphenol model.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jing Tian
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuqian Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lei Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jixuan Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhiwei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Zhongkai Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lingyun Chen
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton AB, T6G 2P5, Canada.
| |
Collapse
|
73
|
Cheng Y, Chen Y, Shang H. Aberrations of biochemical indicators in amyotrophic lateral sclerosis: a systematic review and meta-analysis. Transl Neurodegener 2021; 10:3. [PMID: 33419478 PMCID: PMC7792103 DOI: 10.1186/s40035-020-00228-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has suggested that the pathological changes in amyotrophic lateral sclerosis (ALS) are not only confined to the central nervous system but also occur in the peripheral circulating system. Here, we performed a meta-analysis based on the PubMed, EMBASE, EBSCO, and CNKI databases, to find out biochemical indicators associated with energy metabolism, iron homeostasis, and muscle injury that are altered in ALS patients and their correlations with ALS phenotypes. Forty-six studies covering 17 biochemical indicators, representing 5454 ALS patients and 7986 control subjects, were included in this meta-analysis. Four indicators, including fasting blood glucose level (weighted mean difference [WMD] = 0.13, 95% CI [0.06–0.21], p = 0.001), serum ferritin level (WMD = 63.42, 95% CI [48.12–78.73], p < 0.001), transferrin saturation coefficient level (WMD = 2.79, 95% CI [1.52–4.05], p < 0.001), and creatine kinase level (WMD = 80.29, 95% CI [32.90–127.67], p < 0.001), were significantly higher in the ALS patients, whereas the total iron-binding capacity (WMD = − 2.42, 95% CI [− 3.93, − 0.90], p = 0.002) was significantly lower in ALS patients than in the control subjects. In contrast, the other 12 candidates did not show significant differences between ALS patients and controls. Moreover, pooled hazard ratios (HR) showed significantly reduced survival (HR = 1.38, 95% CI [1.02–1.88], p = 0.039) of ALS patients with elevated serum ferritin levels. These findings suggest that abnormalities in energy metabolism and disruption of iron homeostasis are involved in the pathogenesis of ALS. In addition, the serum ferritin level is negatively associated with the overall survival of ALS patients.
Collapse
Affiliation(s)
- Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
74
|
Giacobbe C, Di Giuseppe D, Zoboli A, Lassinantti Gualtieri M, Bonasoni P, Moliterni A, Corriero N, Altomare A, Wright J, Gualtieri AF. Crystal structure determination of a lifelong biopersistent asbestos fibre using single-crystal synchrotron X-ray micro-diffraction. IUCRJ 2021; 8:76-86. [PMID: 33520244 PMCID: PMC7792997 DOI: 10.1107/s2052252520015079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/12/2020] [Indexed: 05/06/2023]
Abstract
The six natural silicates known as asbestos may induce fatal lung diseases via inhalation, with a latency period of decades. The five amphibole asbestos species are assumed to be biopersistent in the lungs, and for this reason they are considered much more toxic than serpentine asbestos (chrysotile). Here, we refined the atomic structure of an amosite amphibole asbestos fibre that had remained in a human lung for ∼40 years, in order to verify the stability in vivo. The subject was originally exposed to a blend of chrysotile, amosite and crocidolite, which remained in his parietal pleura for ∼40 years. We found a few relicts of chrysotile fibres that were amorphous and magnesium depleted. Amphibole fibres that were recovered were undamaged and suitable for synchrotron X-ray micro-diffraction experiments. Our crystal structure refinement from a recovered amosite fibre demonstrates that the original atomic distribution in the crystal is intact and, consequently, that the atomic structure of amphibole asbestos fibres remains stable in the lungs for a lifetime; during which time they can cause chronic inflammation and other adverse effects that are responsible for carcinogenesis. The amosite fibres are not iron depleted proving that the iron pool for the formation of the asbestos bodies is biological (haemoglobin/plasma derived) and that it does not come from the asbestos fibres themselves.
Collapse
Affiliation(s)
- Carlotta Giacobbe
- European Synchrotron Radiation Facility, 71 Avenue Des Martyrs, Grenoble, 38040, France
| | - Dario Di Giuseppe
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, 41121, Italy
- Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia, Via Amendola 2, Reggio Emilia, 42122, Italy
| | - Alessandro Zoboli
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, 41121, Italy
| | - Magdalena Lassinantti Gualtieri
- Department of Engineering ‘Enzo Ferrari’, Università degli Studi di Modena e Reggio Emilia, Via Università 4, Modena, 41121, Italy
| | - Paola Bonasoni
- Pathology Unit, Azienda Unità Sanitaria Locale – IRCCS, Reggio Emilia, Italy
| | - Anna Moliterni
- Institute of Crystallography, CNR, Via Amendola 122/O, Bari, 70126, Italy
| | - Nicola Corriero
- Institute of Crystallography, CNR, Via Amendola 122/O, Bari, 70126, Italy
| | - Angela Altomare
- Institute of Crystallography, CNR, Via Amendola 122/O, Bari, 70126, Italy
| | - Jonathan Wright
- European Synchrotron Radiation Facility, 71 Avenue Des Martyrs, Grenoble, 38040, France
| | - Alessandro F. Gualtieri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, 41121, Italy
| |
Collapse
|
75
|
Serpunja S, Kim I. Supplementation of a low-energy diet with recombinant ferritin fromPerinereissp. can be beneficial to finishing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2018-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A total of 90 finishing pigs [(Yorkshire × Landrace) × Duroc] with an average body weight (BW) of 50.02 ± 1.78 kg were used in a 10 wk experiment. The pigs were distributed into three dietary treatments replicated six times with five pigs (two barrows and three gilts) per pen. The treatment diets were a positive control (PC; high-energy diet), a negative control (NC; low-energy diet), and an NC + 0.05% ferritin diet (TRT1). The supplementation of ferritin in a low-energy diet tended (P = 0.06) to increase the BW at week 5 compared with pigs fed low-energy diets without ferritin. At week 5 and overall period, the gain-to-feed ratio of pigs fed high-energy diets was higher (P < 0.05) compared with pigs fed low-energy diets. The pigs receiving a ferritin-supplemented diet had a comparable growth performance to pigs fed high-energy diets. At week 10, fecal Lactobacilli counts of pigs fed high-energy diets were higher (P < 0.05) compared with pigs fed low-energy diets. The supplementation of low-energy diets with ferritin resulted in comparable growth performance to pigs fed high-energy diets and had no adverse effect on digestibility and fecal gas emissions. Thus, it seems beneficial to include ferritin in low-energy diets of finishing pigs.
Collapse
Affiliation(s)
- S. Serpunja
- Department of Animal Resource and Science, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungam 31116, South Korea
- Department of Animal Resource and Science, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungam 31116, South Korea
| | - I.H. Kim
- Department of Animal Resource and Science, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungam 31116, South Korea
- Department of Animal Resource and Science, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungam 31116, South Korea
| |
Collapse
|
76
|
Simão M, Leite RB, Cancela ML. Expression of four new ferritins from grooved carpet shell clam Ruditapes decussatus challenged with Perkinsus olseni and metals (Cd, Cu and Zn). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105675. [PMID: 33197689 DOI: 10.1016/j.aquatox.2020.105675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Iron has a fundamental role in life and in its biochemical reactions but, when in excess, it can promote the formation of free radicals which can lead to cell death. Therefore, managing the levels of iron is essential to regulate the production of oxidative stress related to iron, and ferritins are one of the main protein families involved in this process. Ferritins are ≈480 kDa multimeric proteins composed by 24 subunits, each with 19-26 kDa, which can accumulate up to 4500 iron atoms. Besides their role in managing iron bioavailability, they have also developed a role in organism immunity and defence present throughout evolution. In this work, we identified and characterized, for the first time, four different ferritin subunits in the clam Ruditapes decussatus, a bivalve commercially and ecologically important along the south Atlantic coast and in the Mediterranean basin, which is a major target of the parasitic protozoa Perkinsus olseni, considered one of the main causes of high levels of clam mortality. Following phylogenetic annotation, the four ferritins subunits identified were subdivided into two cytosolic and two secreted forms. All four subunits maintain the canonical ferritin structure with four main helices α (A-D) and a small helix (E), but the secreted ferritins present an additional helix in their N-terminal region (F), located after the signal peptide and with possible antimicrobial properties. Additionally, we identified in ferritin 4 an extra helix α (G) located between helices B and C. These alpha helix domains revealed high degree of similarity with antimicrobial peptides associated with antibacterial and antifungal activities. Analysis of the expression of these subunits showed that ferritins 1 and 2 are ubiquitously expressed while ferritins 3 and 4 are present mainly in visceral mass. Ferritin 1 lacked a putative functional iron response element (IRE) and appeared to be under a tight regulation. Ferritins 2 and 3 showed a strong response to infection by parasite Perkinsus olseni in contrast to ferritin 4, whose main response was related to exposure to a combination of metals. The synergistic effect between metals and infection promoted a general upregulation of the four ferritins. In conclusion, our results suggest that ferritins, besides their function in iron and metals detoxification, may play a determinant role in clam immune response.
Collapse
Affiliation(s)
- Márcio Simão
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), Universidade do Algarve, Faro, Portugal.
| | - Ricardo B Leite
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC) and Center for Biomedical Research (CBMR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
77
|
Zhang J, Cao J, Xu H, Dong G, Huang K, Wu W, Ye J, Fu J. Ferritin as a key risk factor for nonalcoholic fatty liver disease in children with obesity. J Clin Lab Anal 2020; 35:e23602. [PMID: 33249617 PMCID: PMC7891541 DOI: 10.1002/jcla.23602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Background The association between serum ferritin and nonalcoholic fatty liver disease (NAFLD) in children with obesity is not clear. This study was designed to investigate whether serum ferritin can be an independent predictor for NAFLD. Methods According to the hepatic ultrasound results, a total of 347 children with obesity were enrolled in this study. Among them, 95 patients with NAFLD and 95 without NAFLD were matched for gender, age, blood pressure and body mass index, the odds ratios (OR) and 95% confidence intervals (CI) for the association of ferritin and the risk of NAFLD were analyzed. Results After propensity score matching, ferritin values of the patients with NAFLD were significantly higher than those without NAFLD group. Alanine aminotransferase and ferritin were strongly associated with NAFLD in multivariate stepwise logistic regression analysis. The medium and high levels of ferritin increased risk of NAFLD, and the adjusted ORs were 3.298 (95% CI:1.326‐8.204), 7.322 (95% CI:2.725‐19.574) across the ferritin concentration tertiles after adjustment for confounders. Ferritin was shown to be the best predictor for NAFLD with sensitivity and specificity of 60.0% and 77.9%, respectively, area under the curve was 0.733. Conclusion The results show that serum ferritin can usefully be considered as a predictor of NAFLD in children with obesity.
Collapse
Affiliation(s)
- Junfeng Zhang
- Department of Clinical Laboratory, School of Medicine, The Children's Hospital, Zhejiang University, Zhejiang, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiajia Cao
- Department of Clinical Laboratory, School of Medicine, The Children's Hospital, Zhejiang University, Zhejiang, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Hui Xu
- Department of Clinical Laboratory, School of Medicine, The Children's Hospital, Zhejiang University, Zhejiang, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Guanping Dong
- National Clinical Research Center for Child Health, Hangzhou, China.,Department of Endocrinology, School of Medicine, The Children's Hospital, Zhejiang University, Zhejiang, China
| | - Ke Huang
- National Clinical Research Center for Child Health, Hangzhou, China.,Department of Endocrinology, School of Medicine, The Children's Hospital, Zhejiang University, Zhejiang, China
| | - Wei Wu
- National Clinical Research Center for Child Health, Hangzhou, China.,Department of Endocrinology, School of Medicine, The Children's Hospital, Zhejiang University, Zhejiang, China
| | - Jingjing Ye
- National Clinical Research Center for Child Health, Hangzhou, China.,Department of Ultrasound, School of Medicine, The Children's Hospital, Zhejiang University, Zhejiang, China
| | - Junfen Fu
- National Clinical Research Center for Child Health, Hangzhou, China.,Department of Endocrinology, School of Medicine, The Children's Hospital, Zhejiang University, Zhejiang, China
| |
Collapse
|
78
|
Di Sanzo M, Quaresima B, Biamonte F, Palmieri C, Faniello MC. FTH1 Pseudogenes in Cancer and Cell Metabolism. Cells 2020; 9:E2554. [PMID: 33260500 PMCID: PMC7760355 DOI: 10.3390/cells9122554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Ferritin, the principal intracellular iron-storage protein localized in the cytoplasm, nucleus, and mitochondria, plays a major role in iron metabolism. The encoding ferritin genes are members of a multigene family that includes some pseudogenes. Even though pseudogenes have been initially considered as relics of ancient genes or junk DNA devoid of function, their role in controlling gene expression in normal and transformed cells has recently been re-evaluated. Numerous studies have revealed that some pseudogenes compete with their parental gene for binding to the microRNAs (miRNAs), while others generate small interference RNAs (siRNAs) to decrease functional gene expression, and still others encode functional mutated proteins. Consequently, pseudogenes can be considered as actual master regulators of numerous biological processes. Here, we provide a detailed classification and description of the structural features of the ferritin pseudogenes known to date and review the recent evidence on their mutual interrelation within the complex regulatory network of the ferritin gene family.
Collapse
Affiliation(s)
- Maddalena Di Sanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Barbara Quaresima
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
| | - Maria Concetta Faniello
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy; (M.D.S.); (B.Q.); (F.B.)
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
79
|
Hong X, Roh W, Sullivan RJ, Wong KHK, Wittner BS, Guo H, Dubash TD, Sade-Feldman M, Wesley B, Horwitz E, Boland GM, Marvin DL, Bonesteel T, Lu C, Aguet F, Burr R, Freeman SS, Parida L, Calhoun K, Jewett MK, Nieman LT, Hacohen N, Näär AM, Ting DT, Toner M, Stott SL, Getz G, Maheswaran S, Haber DA. The Lipogenic Regulator SREBP2 Induces Transferrin in Circulating Melanoma Cells and Suppresses Ferroptosis. Cancer Discov 2020; 11:678-695. [PMID: 33203734 DOI: 10.1158/2159-8290.cd-19-1500] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 09/22/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Circulating tumor cells (CTC) are shed by cancer into the bloodstream, where a viable subset overcomes oxidative stress to initiate metastasis. We show that single CTCs from patients with melanoma coordinately upregulate lipogenesis and iron homeostasis pathways. These are correlated with both intrinsic and acquired resistance to BRAF inhibitors across clonal cultures of BRAF-mutant CTCs. The lipogenesis regulator SREBP2 directly induces transcription of the iron carrier Transferrin (TF), reducing intracellular iron pools, reactive oxygen species, and lipid peroxidation, thereby conferring resistance to inducers of ferroptosis. Knockdown of endogenous TF impairs tumor formation by melanoma CTCs, and their tumorigenic defects are partially rescued by the lipophilic antioxidants ferrostatin-1 and vitamin E. In a prospective melanoma cohort, presence of CTCs with high lipogenic and iron metabolic RNA signatures is correlated with adverse clinical outcome, irrespective of treatment regimen. Thus, SREBP2-driven iron homeostatic pathways contribute to cancer progression, drug resistance, and metastasis. SIGNIFICANCE: Through single-cell analysis of primary and cultured melanoma CTCs, we have uncovered intrinsic cancer cell heterogeneity within lipogenic and iron homeostatic pathways that modulates resistance to BRAF inhibitors and to ferroptosis inducers. Activation of these pathways within CTCs is correlated with adverse clinical outcome, pointing to therapeutic opportunities.This article is highlighted in the In This Issue feature, p. 521.
Collapse
Affiliation(s)
- Xin Hong
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Whijae Roh
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keith H K Wong
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Shriners Hospitals for Children, Boston, Massachusetts
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Hongshan Guo
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Taronish D Dubash
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Moshe Sade-Feldman
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Benjamin Wesley
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Elad Horwitz
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Genevieve M Boland
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dieuwke L Marvin
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Todd Bonesteel
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Chenyue Lu
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - François Aguet
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Risa Burr
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | | | - Laxmi Parida
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Katherine Calhoun
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michelle K Jewett
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Linda T Nieman
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Anders M Näär
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - David T Ting
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mehmet Toner
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Shriners Hospitals for Children, Boston, Massachusetts
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shannon L Stott
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gad Getz
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Bethesda, Maryland
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts.
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- IBM Research, Yorktown Heights, New York
| |
Collapse
|
80
|
López-Pedrouso M, Borrajo P, Amarowicz R, Lorenzo JM, Franco D. Peptidomic analysis of antioxidant peptides from porcine liver hydrolysates using SWATH-MS. J Proteomics 2020; 232:104037. [PMID: 33152503 DOI: 10.1016/j.jprot.2020.104037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/20/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022]
Abstract
There is a growing interest in the production and identification of bioactive peptides as health-promoting agents. A relevant method to produce biopeptides is enzymatic hydrolysis from protein-rich meat by-products. Pork liver proved to be a good source of protein (18.54%) with a low-fat content (3.38%). After hydrolysis at different times (4,6,8 and 10 h) with Alcalase, relevant amino acids such as hydrophobic (leucine, valine and isoleucine) and aromatic (tyrosine and phenylalanine) involved in antioxidant capacity were strongly increased. For the peptidomic analysis, a novel technique called sequential window acquisition of all theoretical mass spectra (SWATH-MS) was used. Regarding the effect of hydrolysis time, PCA demonstrated a great differentiation among the peptidomic pattern. Fifty-one peptides were correlated with antioxidant activity measured by DPPH, ABTS, FRAP and ORAC assays. SWATH-MS allowed the identification and quantification of six peptides from trypsinogen, ferritin, keratin, carboxylic ester hydrolase and globin domain-containing protein as potential antioxidant compounds. SIGNIFICANCE: The pork liver tissue contains a substantial amount of proteins whose enzymatic hydrolysis might generate antioxidant peptides. The bioactive peptides from pork liver would contribute to harnessing by-products of the swine industry as well as added-value products will be produced. The antioxidant activity of the mixtures revealed potential antioxidant peptides which could be used in the development of nutraceutical and functional food products.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Santiago de Compostela 15872, Spain
| | - Paula Borrajo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn 10-468, Poland
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain.
| |
Collapse
|
81
|
Ferroptosis Mediates Cuprizone-Induced Loss of Oligodendrocytes and Demyelination. J Neurosci 2020; 40:9327-9341. [PMID: 33106352 DOI: 10.1523/jneurosci.1749-20.2020] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS. Cuprizone (CZ), a copper chelator, is widely used to study demyelination and remyelination in the CNS, in the context of MS. However, the mechanisms underlying oligodendrocyte (OL) cell loss and demyelination are not known. As copper-containing enzymes play important roles in iron homeostasis and controlling oxidative stress, we examined whether chelating copper leads to disruption of molecules involved in iron homeostasis that can trigger iron-mediated OL loss. We show that giving mice (male) CZ in the diet induces rapid loss of OL in the corpus callosum by 2 d, accompanied by expression of several markers for ferroptosis, a relatively newly described form of iron-mediated cell death. In ferroptosis, iron-mediated free radicals trigger lipid peroxidation under conditions of glutathione insufficiency, and a reduced capacity to repair lipid damage. This was further confirmed using a small-molecule inhibitor of ferroptosis that prevents CZ-induced loss of OL and demyelination, providing clear evidence of a copper-iron connection in CZ-induced neurotoxicity. This work has wider implications for disorders, such as multiple sclerosis and CNS injury.SIGNIFICANCE STATEMENT Cuprizone (CZ) is a copper chelator that induces demyelination. Although it is a widely used model to study demyelination and remyelination in the context of multiple sclerosis, the mechanisms mediating demyelination is not fully understood. This study shows, for the first time, that CZ induces demyelination via ferroptosis-mediated rapid loss of oligodendrocytes. This work shows that chelating copper with CZ leads to the expression of molecules that rapidly mobilize iron from ferritin (an iron storage protein), that triggers iron-mediated lipid peroxidation and oligodendrocyte loss (via ferroptosis). Such rapid mobilization of iron from cellular stores may also play a role in cell death in other neurologic conditions.
Collapse
|
82
|
Kim T, Choi H, Kang J. Association of serum ferritin and lung function in tobacco-naïve postmenopausal women: Analysis of population-based nationally representative data. THE CLINICAL RESPIRATORY JOURNAL 2020; 14:908-917. [PMID: 32460410 DOI: 10.1111/crj.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/05/2020] [Accepted: 05/20/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Ferritin regulates iron homeostasis, and is involved in the inflammation in the lung, especially in smokers; however, its associations on pulmonary function in nonsmokers remain unclear. OBJECTIVES The present study aimed to evaluate the association between serum ferritin and lung function in a tobacco-naïve postmenopausal women. METHODS In this study, 25 534 individuals were enrolled, among who 5338 tobacco-naïve individuals were identified; of those, 342 men and 2879 women (742 pre- and 2137 postmenopausal) with data of serum ferritin, lung function and covariates were included. To evaluate the association of ferritin and lung function, multivariable-adjusted linear regression analyses was used including the factors of predicted value of forced expiratory volume in 1 second (FEV1 %) and forced vital capacity (FVC%). Logistic regression analyses were used to measure the relationship between ferritin and restrictive and obstructive lung disease. RESULTS In premenopausal women, FEV1 %/FVC was weakly but positively associated with serum ferritin, and after adjusting for covariates, the association was without statistical significance. No significant association between ferritin and obstructive lung disease was observed. In postmenopausal women, predicted FVC% was negatively associated with serum ferritin, and ferritin was dose-dependently related with risk for restrictive lung disease. The odds ratio for restrictive lung disease in postmenopausal women was 2.285 at T3 and 1.560 at T2 relative to that at T1. CONCLUSIONS High serum ferritin level was significantly associated with lower FVC% and increased risk of restrictive lung disease in tobacco-naïve postmenopausal women. Further study is needed to determine the mechanism underlying the current findings.
Collapse
Affiliation(s)
- Taeyun Kim
- Division of Pulmonology, Department of Internal Medicine, The Armed Forces Goyang Hospital, Goyang-si, South Korea
| | - Hyunji Choi
- Department of Laboratory Medicine, Kosin University Gospel Hospital, Busan, South Korea
| | - Jihun Kang
- Department of Family Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, South Korea
| |
Collapse
|
83
|
Zhang C, Zhang X, Zhao G. Ferritin Nanocage: A Versatile Nanocarrier Utilized in the Field of Food, Nutrition, and Medicine. NANOMATERIALS 2020; 10:nano10091894. [PMID: 32971961 PMCID: PMC7557750 DOI: 10.3390/nano10091894] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Compared with other nanocarriers such as liposomes, mesoporous silica, and cyclodextrin, ferritin as a typical protein nanocage has received considerable attention in the field of food, nutrition, and medicine owing to its inherent cavity size, excellent water solubility, and biocompatibility. Additionally, ferritin nanocage also serves as a versatile bio-template for the synthesis of a variety of nanoparticles. Recently, scientists have explored the ferritin nanocage structure for encapsulation and delivery of guest molecules such as nutrients, bioactive molecules, anticancer drugs, and mineral metal ions by taking advantage of its unique reversible disassembly and reassembly property and biomineralization. In this review, we mainly focus on the preparation and structure of ferritin-based nanocarriers, and regulation of their self-assembly. Moreover, the recent advances of their applications in food nutrient delivery and medical diagnostics are highlighted. Finally, the main challenges and future development in ferritin-directed nanoparticles’ synthesis and multifunctional applications are discussed.
Collapse
|
84
|
Klouda CB, Stone WL. Oxidative Stress, Proton Fluxes, and Chloroquine/Hydroxychloroquine Treatment for COVID-19. Antioxidants (Basel) 2020; 9:E894. [PMID: 32967165 PMCID: PMC7555760 DOI: 10.3390/antiox9090894] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) have been proposed as treatments for COVID-19. These drugs have been studied for many decades, primarily in the context of their use as antimalarials, where they induce oxidative stress-killing of the malarial parasite. Less appreciated, however, is evidence showing that CQ/HCQ causes systemic oxidative stress. In vitro and observational data suggest that CQ/HCQ can be repurposed as potential antiviral medications. This review focuses on the potential health concerns of CQ/HCQ induced by oxidative stress, particularly in the hyperinflammatory stage of COVID-19 disease. The pathophysiological role of oxidative stress in acute respiratory distress syndrome (ARDS) has been well-documented. Additional oxidative stress caused by CQ/HCQ during ARDS could be problematic. In vitro data showing that CQ forms a complex with free-heme that promotes lipid peroxidation of phospholipid bilayers are also relevant to COVID-19. Free-heme induced oxidative stress is implicated as a systemic activator of coagulation, which is increasingly recognized as a contributor to COVID-19 morbidity. This review will also provide a brief overview of CQ/HCQ pharmacology with an emphasis on how these drugs alter proton fluxes in subcellular organelles. CQ/HCQ-induced alterations in proton fluxes influence the type and chemical reactivity of reactive oxygen species (ROS).
Collapse
Affiliation(s)
| | - William L. Stone
- Department of Pediatrics, East Tennessee State University, Johnson City, TN 37614, USA;
| |
Collapse
|
85
|
Fuhrmann DC, Mondorf A, Beifuß J, Jung M, Brüne B. Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol 2020; 36:101670. [PMID: 32810738 PMCID: PMC7452134 DOI: 10.1016/j.redox.2020.101670] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular iron, at the physiological level, is essential to maintain several metabolic pathways, while an excess of free iron may cause oxidative damage and/or provoke cell death. Consequently, iron homeostasis has to be tightly controlled. Under hypoxia these regulatory mechanisms for human macrophages are not well understood. Hypoxic primary human macrophages reduced intracellular free iron and increased ferritin expression, including mitochondrial ferritin (FTMT), to store iron. In parallel, nuclear receptor coactivator 4 (NCOA4), a master regulator of ferritinophagy, decreased and was proven to directly regulate FTMT expression. Reduced NCOA4 expression resulted from a lower rate of hypoxic NCOA4 transcription combined with a micro RNA 6862-5p-dependent degradation of NCOA4 mRNA, the latter being regulated by c-jun N-terminal kinase (JNK). Pharmacological inhibition of JNK under hypoxia increased NCOA4 and prevented FTMT induction. FTMT and ferritin heavy chain (FTH) cooperated to protect macrophages from RSL-3-induced ferroptosis under hypoxia as this form of cell death is linked to iron metabolism. In contrast, in HT1080 fibrosarcome cells, which are sensitive to ferroptosis, NCOA4 and FTMT are not regulated. Our study helps to understand mechanisms of hypoxic FTMT regulation and to link ferritinophagy and macrophage sensitivity to ferroptosis. Hypoxia decreases NCOA4 transcription in primary human macrophages. NCOA4 mRNA is a target of miR-6862-5p. Lowering NCOA4 increases FTMT abundance under hypoxia. FTMT and FTH protect from ferroptosis. Tumor cells lack the hypoxic decrease of NCOA4 and fail to stabilize FTMT.
Collapse
Affiliation(s)
- Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Antonia Mondorf
- Department of Internal Medicine 1, University Hospital Frankfurt, Germany
| | - Josefine Beifuß
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; Branch for Translational Medicine and Pharmacology TMP of the Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt, Germany.
| |
Collapse
|
86
|
Wang L, Li C, Chen X, Li S, Shang H. Abnormal Serum Iron-Status Indicator Changes in Amyotrophic Lateral Sclerosis (ALS) Patients: A Meta-Analysis. Front Neurol 2020; 11:380. [PMID: 32508736 PMCID: PMC7251146 DOI: 10.3389/fneur.2020.00380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Background: In recent years, the role of iron metabolism in amyotrophic lateral sclerosis (ALS) attracts more and more attention, and some studies have focused on the link between abnormal serum iron indicators and ALS. However, there are still big conflicts and inconsistency among different studies. To study the possible relationship between ALS and disturbed iron metabolism, we conducted this meta-analysis to conclude characteristics of abnormal serum iron-status indicator changes in ALS patients. Methods: We searched and screened main databases, including the PubMed, Embase, and Cochrane Library, to find studies related to the association between iron metabolism and ALS. The Revman 5.3 software was used to conduct meta-analysis. Results: Eleven studies were finally included in our analysis, composed of 1,599 ALS patients and 1,255 controls in total. The results showed that the ferritin level was much higher in ALS patients compared with controls (MD = 70.48, 95% CI [51.41, 89.55], p < 0.00001), and the transferrin level was decreased in ALS patients compared with controls (SMD = −0.28, 95% CI [−0.38, −0.18], p < 0.00001), while there was no statistical difference in iron levels (SMD = 0.48, 95% CI [−0.07, 1.03], p = 0.09) between ALS patients and controls. Conclusions: Our research finds unusual changes in several indicators representing iron status, which suggest possible iron metabolism abnormalities in ALS patients. That may provide evidence for the link between iron metabolism and the pathogenesis of ALS.
Collapse
Affiliation(s)
- Lan Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyu Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuying Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
87
|
Li F, Wang D, Zhou J, Men D, Zhan XE. Design and biosynthesis of functional protein nanostructures. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1142-1158. [PMID: 32253589 DOI: 10.1007/s11427-019-1641-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
Proteins are one of the major classes of biomolecules that execute biological functions for maintenance of life. Various kinds of nanostructures self-assembled from proteins have been created in nature over millions of years of evolution, including protein nanowires, layers and nanocages. These protein nanostructures can be reconstructed and equipped with desired new functions. Learning from and manipulating the self-assembly of protein nanostructures not only help to deepen our understanding of the nature of life but also offer new routes to fabricate novel nanomaterials for diverse applications. This review summarizes the recent research progress in this field, focusing on the characteristics, functionalization strategies, and applications of protein nanostructures.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xian-En Zhan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
88
|
Lee J, Park HK, Kwon MJ, Ham SY, Kim JM, Lim SY, Song JU. Decreased lung function is associated with elevated ferritin but not iron or transferrin saturation in 42,927 healthy Korean men: A cross-sectional study. PLoS One 2020; 15:e0231057. [PMID: 32240239 PMCID: PMC7117746 DOI: 10.1371/journal.pone.0231057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/14/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives Though elevated ferritin level and decreased lung function both predispose people to cardio-metabolic disease, few reports have investigated the association between them. Furthermore, it remains unclear whether the association reflects a change in iron stores or an epiphenomenon reflecting metabolic stress. Therefore, we looked for possible associations between ferritin, iron, and transferrin saturation (TSAT) and lung function to clarify the role of iron-related parameters in healthy men. Methods We conducted a cohort study of 42,927 healthy Korean men (mean age: 38.6 years). Percent predicted forced expiratory volume in one second (FEV1%) and forced vital capacity (FVC%) were categorized into quartiles. Adjusted odds ratios (aORs) and 95% confidence intervals (using the highest quartile as reference) were calculated for hyperferritinemia, high iron, and high TSAT after controlling for potential confounders. Results The median ferritin level was 199.8 (141.5–275.6) ng/mL. The prevalence of hyperferritinemia (defined as >300 ng/mL) was 19.3%. Subjects with hyperferritinemia had lower FEV1% and FVC% than those with normal ferritin level with a slight difference, but those were statistically significant (99.22% vs.99.61% for FEV1%, p = 0.015 and 98.43% vs. 98.87% for FVC, p = 0.001). However, FEV1/FVC ratio was not significantly different between groups (P = 0.797). Compared with the highest quartile, the aORs for hyperferritinemia across decreasing quartiles were 1.081 (1.005–1.163), 1.100 (1.007–1.200), and 1.140 (1.053–1.233) for FEV1% (p for trend = 0.007) and 1.094 (1.018–1.176), 1.101 (1.021–1.188), and 1.150 (1.056–1.252) for FVC% (p for trend = 0.001). However, neither FEV1% nor FVC% was associated with iron or TSAT. Conclusions Hyperferritinemia was associated with decreased lung function in healthy Korean men, but iron and TSAT were not. Longitudinal follow-up studies are required to validate our findings.
Collapse
Affiliation(s)
- Jonghoo Lee
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Hye kyeong Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Ilsan, Republic of Korea
| | - Min-Jung Kwon
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soo-Youn Ham
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Mo Kim
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Si-Young Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae-Uk Song
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
89
|
Chen P, De Meulenaere E, Deheyn DD, Bandaru PR. Iron redox pathway revealed in ferritin via electron transfer analysis. Sci Rep 2020; 10:4033. [PMID: 32132578 PMCID: PMC7055317 DOI: 10.1038/s41598-020-60640-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/13/2020] [Indexed: 01/16/2023] Open
Abstract
Ferritin protein is involved in biological tissues in the storage and management of iron - an essential micro-nutrient in the majority of living systems. While there are extensive studies on iron-loaded ferritin, its functionality in iron delivery is not completely clear. Here, for the first time, differential pulse voltammetry (DPV) has been successfully adapted to address the challenge of resolving a cascade of fast and co-occurring redox steps in enzymatic systems such as ferritin. Using DPV, comparative analysis of ferritins from two evolutionary-distant organisms has allowed us to propose a stepwise resolution for the complex mix of concurrent redox steps that is inherent to ferritins and to fine-tune the structure-function relationship of each redox step. Indeed, the cyclic conversion between Fe3+ and Fe2+ as well as the different oxidative steps of the various ferroxidase centers already known in ferritins were successfully discriminated, bringing new evidence that both the 3-fold and 4-fold channels can be functional in ferritin.
Collapse
Affiliation(s)
- Peng Chen
- Department of Mechanical Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Evelien De Meulenaere
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA.
| | - Prabhakar R Bandaru
- Department of Mechanical Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
90
|
Abstract
Ferritins are evolutionarily conserved proteins that regulate cellular iron metabolism. It is the only intracellular protein that is capable of storing large quantities of iron. Although the ratio of different subunits determines the iron content of each ferritin molecule, the exact mechanism that dictates organization of these subunits still is unclear. In this review, we address renal ferritin expression and its implication in kidney disease. Specifically, we address the role of ferritin subunits in preventing kidney injury and also promoting tolerance against infection-associated kidney injury. We describe functions for ferritin that are independent of its ability to ferroxidize and store iron. We further discuss the implications of ferritin in body fluids, including blood and urine, during inflammation and kidney disease. Although there are several in-depth review articles on ferritin in the context of iron metabolism, we chose to focus on the role of ferritin particularly in kidney health and disease and highlight unanswered questions in the field.
Collapse
Affiliation(s)
- Kayla McCullough
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Subhashini Bolisetty
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
91
|
Finoshin AD, Adameyko KI, Mikhailov KV, Kravchuk OI, Georgiev AA, Gornostaev NG, Kosevich IA, Mikhailov VS, Gazizova GR, Shagimardanova EI, Gusev OA, Lyupina YV. Iron metabolic pathways in the processes of sponge plasticity. PLoS One 2020; 15:e0228722. [PMID: 32084159 PMCID: PMC7034838 DOI: 10.1371/journal.pone.0228722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to regulate oxygen consumption evolved in ancestral animals and is intrinsically linked to iron metabolism. The iron pathways have been intensively studied in mammals, whereas data on distant invertebrates are limited. Sea sponges represent the oldest animal phylum and have unique structural plasticity and capacity to reaggregate after complete dissociation. We studied iron metabolic factors and their expression during reaggregation in the White Sea cold-water sponges Halichondria panicea and Halisarca dujardini. De novo transcriptomes were assembled using RNA-Seq data, and evolutionary trends were analyzed with bioinformatic tools. Differential expression during reaggregation was studied for H. dujardini. Enzymes of the heme biosynthesis pathway and transport globins, neuroglobin (NGB) and androglobin (ADGB), were identified in sponges. The globins mutate at higher evolutionary rates than the heme synthesis enzymes. Highly conserved iron-regulatory protein 1 (IRP1) presumably interacts with the iron-responsive elements (IREs) found in mRNAs of ferritin (FTH1) and a putative transferrin receptor NAALAD2. The reaggregation process is accompanied by increased expression of IRP1, the antiapoptotic factor BCL2, the inflammation factor NFκB (p65), FTH1 and NGB, as well as by an increase in mitochondrial density. Our data indicate a complex mechanism of iron regulation in sponge structural plasticity and help to better understand general mechanisms of morphogenetic processes in multicellular species.
Collapse
Affiliation(s)
- Alexander D. Finoshin
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kim I. Adameyko
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V. Mikhailov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oksana I. Kravchuk
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nicolay G. Gornostaev
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Victor S. Mikhailov
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Oleg A. Gusev
- Kazan Federal University, Kazan, Russia
- KFU-RIKEN Translational Genomics Unit, RIKEN National Science Institute, Yokohama, Japan
| | - Yulia V. Lyupina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
92
|
Mieloch AA, Żurawek M, Giersig M, Rozwadowska N, Rybka JD. Bioevaluation of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with dihexadecyl phosphate (DHP). Sci Rep 2020; 10:2725. [PMID: 32066785 PMCID: PMC7026144 DOI: 10.1038/s41598-020-59478-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated for wide variety of applications. Their unique properties render them highly applicable as MRI contrast agents, in magnetic hyperthermia or targeted drug delivery. SPIONs surface properties affect a whole array of parameters such as: solubility, toxicity, stability, biodistribution etc. Therefore, progress in the field of SPIONs surface functionalization is crucial for further development of therapeutic or diagnostic agents. In this study, SPIONs were synthesized by thermal decomposition of iron (III) acetylacetonate Fe(acac)3 and functionalized with dihexadecyl phosphate (DHP) via phase transfer. Bioactivity of the SPION-DHP was assessed on SW1353 and TCam-2 cancer derived cell lines. The following test were conducted: cytotoxicity and proliferation assay, reactive oxygen species (ROS) assay, SPIONs uptake (via Iron Staining and ICP-MS), expression analysis of the following genes: alkaline phosphatase (ALPL); ferritin light chain (FTL); serine/threonine protein phosphatase 2A (PP2A); protein tyrosine phosphatase non-receptor type 11 (PTPN11); transferrin receptor 1 (TFRC) via RT-qPCR. SPION-DHP nanoparticles were successfully obtained and did not reveal significant cytotoxicity in the range of tested concentrations. ROS generation was elevated, however not correlated with the concentrations. Gene expression profile was slightly altered only in SW1353 cells.
Collapse
Affiliation(s)
- Adam Aron Mieloch
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10, 61-614, Poznan, Poland
| | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-470, Poznan, Poland
| | - Michael Giersig
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10, 61-614, Poznan, Poland.,Department of Physics, Institute of Experimental Physics, Freie Universität, Arnimallee 14, 14195, Berlin, Germany
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-470, Poznan, Poland
| | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
93
|
Bradley JM, Pullin J, Moore GR, Svistunenko DA, Hemmings AM, Le Brun NE. Routes of iron entry into, and exit from, the catalytic ferroxidase sites of the prokaryotic ferritin SynFtn. Dalton Trans 2020; 49:1545-1554. [DOI: 10.1039/c9dt03570b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This work describes the identification of two residues, D137 and E62, that are critical for, respectively, the transport of Fe2+ into, and Fe3+ out of, the catalytic sites of a prokaryotic ferritin.
Collapse
Affiliation(s)
- Justin M. Bradley
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | - Jacob Pullin
- School of Biological Sciences
- University of Essex
- Colchester CO4 3SQ
- UK
| | - Geoffrey R. Moore
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | | | - Andrew M. Hemmings
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich
- UK
| |
Collapse
|
94
|
Liu J, Tian Y, Zhao Y, Zeng R, Chen B, Hu B, Walcott RR. Ferric Uptake Regulator (FurA) is Required for Acidovorax citrulli Virulence on Watermelon. PHYTOPATHOLOGY 2019; 109:1997-2008. [PMID: 31454303 DOI: 10.1094/phyto-05-19-0172-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Acidovorax citrulli is the causal agent of bacterial fruit blotch, a serious threat to commercial watermelon and melon crop production worldwide. Ferric uptake regulator (Fur) is a global transcription factor that affects a number of virulence-related functions in phytopathogenic bacteria; however, the role of furA has not been determined for A. citrulli. Hence, we constructed an furA deletion mutant and a corresponding complement in the background of A. citrulli strain xlj12 to investigate the role of the gene in siderophore production, concentration of intracellular Fe2+, bacterial sensitivity to hydrogen peroxide, biofilm formation, swimming motility, hypersensitive response induction, and virulence on melon seedlings. The A. citrulli furA deletion mutant displayed increased siderophore production, intracellular Fe2+ concentration, and increased sensitivity to hydrogen peroxide. In contrast, biofilm formation, swimming motility, and virulence on melon seedlings were significantly reduced in the furA mutant. As expected, complementation of the furA deletion mutant restored all phenotypes to wild-type levels. In accordance with the phenotypic results, the expression levels of bfrA and bfrB that encode bacterioferritin, sodB that encodes iron/manganese superoxide dismutase, fliS that encodes a flagellar protein, hrcN that encodes the type III secretion system (T3SS) ATPase, and hrcC that encodes the T3SS outer membrane ring protein were significantly downregulated in the A. citrulli furA deletion mutant. In addition, the expression of feo-related genes and feoA and feoB was significantly upregulated in the furA mutant. Overall, these results indicated that, in A. citrulli, FurA contributes to the regulation of the iron balance system, and affects a variety of virulence-related traits.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Rong Zeng
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Baohui Chen
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Ron R Walcott
- Department of Plant Pathology, 4315 Miller Plant Sciences, the University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
95
|
Liu Y, Yang R, Liu J, Meng D, Zhou Z, Zhang Y, Blanchard C. Fabrication, structure, and function evaluation of the ferritin based nano-carrier for food bioactive compounds. Food Chem 2019; 299:125097. [DOI: 10.1016/j.foodchem.2019.125097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
|
96
|
H-Ferritin Affects Cisplatin-Induced Cytotoxicity in Ovarian Cancer Cells through the Modulation of ROS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3461251. [PMID: 31781333 PMCID: PMC6875340 DOI: 10.1155/2019/3461251] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) mediates cisplatin-induced cytotoxicity in tumor cells. However, when cisplatin-induced ROS do not reach cytotoxic levels, cancer cells may develop chemoresistance. This phenomenon can be attributed to the inherited high expression of antioxidant protein network. H-Ferritin is an important member of the antioxidant system due to its ability to store iron in a nontoxic form. Altered expression of H-Ferritin has been described in ovarian cancers; however, its functional role in cisplatin-based chemoresistance of this cancer type has never been explored. Here, we investigated whether the modulation of H-Ferritin might affect cisplatin-induced cytotoxicity in ovarian cancer cells. First, we characterized OVCAR3 and OVCAR8 cells for their relative ROS and H-Ferritin baseline amounts. OVCAR3 exhibited lower ROS levels compared to OVCAR8 and greater expression of H-Ferritin. In addition, OVCAR3 showed pronounced growth potential and survival accompanied by the strong activation of pERK/pAKT and overexpression of c-Myc and cyclin E1. When exposed to different concentrations of cisplatin, OVCAR3 were less sensitive than OVCAR8. At the lowest concentration of cisplatin (6 μM), OVCAR8 underwent a consistent apoptosis along with a downregulation of H-Ferritin and a consistent increase of ROS levels; on the other hand, OVCAR3 cells were totally unresponsive, H-Ferritin was almost unaffected, and ROS amounts met a slight increase. Thus, we assessed whether the modulation of H-Ferritin levels was able to affect the cisplatin-mediated cytotoxicity in both the cell lines. H-Ferritin knockdown strengthened cisplatin-mediated ROS increase and significantly restored sensitivity to 6 μM cisplatin in resistant OVCAR3 cells. Conversely, forced overexpression of H-Ferritin significantly suppressed the cisplatin-mediated elevation of intracellular ROS subsequently leading to a reduced responsiveness in OVCAR8 cells. Overall, our findings suggest that H-Ferritin might be a key protein in cisplatin-based chemoresistance and that its inhibition may represent a potential approach for enhancing cisplatin sensitivity of resistant ovarian cancer cells.
Collapse
|
97
|
Abstract
One of the open questions regarding the asbestos problem is the fate of the mineral fibres in the body once inhaled and deposited in the deep respiratory system. In this context, the present paper reports the results of an electron microscopy study of both mineral fibres and asbestos bodies found in the lung tissue of a patient who died of malignant mesothelioma due to past occupational exposure. In concert with previous in vivo animal studies, our data provide evidence that amphibole asbestos fibres are durable in the lungs, whereas chrysotile fibres are transformed into a silica‐rich product, which can be easily cleared. Amphibole fibres recovered from samples of tissue of the deceased display a high degree of crystallinity but also show a very thin amorphous layer on their surface; 31% of the fibres are coated with asbestos bodies consisting of a mixture of ferroproteins (mainly ferritin). Here, we propose an improved model for the coating process. Formation of a coating on the fibres is a defence mechanism against fibres that are longer than 10 µm and thinner than 0.5 µm, which macrophages cannot engulf. The mature asbestos bodies show signs of degradation, and the iron stored in ferritin may be released and potentially increase oxidative stress in the lung tissue.
Collapse
|
98
|
Ren X, Zhang Y, Liu P, Li J. Comparative proteomic investigation of Marsupenaeus japonicus hepatopancreas challenged with Vibrio parahaemolyticus and white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:851-862. [PMID: 31430561 DOI: 10.1016/j.fsi.2019.08.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to use isobaric tags (IBTs) to investigate the immune response of the hepatopancreas of Marsupenaeus japonicas infected with Vibrio parahaemolyticus or white spot syndrome virus (WSSV). Liquid chromatography-tandem mass spectrometry and protein sequencing identified 1005 proteins. Among them, 109 proteins were upregulated and 94 were downregulated after V. parahaemolyticus infection. After WSSV infection, 130 proteins were identified as differentially abundant, including 88 that were upregulated and 42 were downregulated. Fifty-four proteins were identified as differentially abundant after both V. parahaemolyticus and WSSV infection. A number of proteins related to cytoskeletal processes, including actin and myosin, and apoptosis-related proteins were upregulated in shrimp after V. parahaemolyticus and WSSV infection, indicating that phagocytosis and apoptosis may be involved in the response to in V. parahaemolyticus or WSSV infection. Quantitative real-time PCR was carried out to verify the reliability of the proteomic data. These data provide a basis to characterize the immunity-related processes of shrimp in response to infection with WSSV or V. parahaemolyticus.
Collapse
Affiliation(s)
- Xianyun Ren
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Yunbin Zhang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ping Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
99
|
Patel M, Lee HJ, Son S, Kim H, Kim J, Jeong B. Iron Ion-Releasing Polypeptide Thermogel for Neuronal Differentiation of Mesenchymal Stem Cells. Biomacromolecules 2019; 21:143-151. [DOI: 10.1021/acs.biomac.9b01096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Seungyi Son
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Heeju Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Jinheung Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
100
|
Balla J, Balla G, Zarjou A. Ferritin in Kidney and Vascular Related Diseases: Novel Roles for an Old Player. Pharmaceuticals (Basel) 2019; 12:E96. [PMID: 31234273 PMCID: PMC6630272 DOI: 10.3390/ph12020096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is at the forefront of a number of pivotal biological processes due to its ability to readily accept and donate electrons. However, this property may also catalyze the generation of free radicals with ensuing cellular and tissue toxicity. Accordingly, throughout evolution numerous pathways and proteins have evolved to minimize the potential hazardous effects of iron cations and yet allow for readily available iron cations in a wide variety of fundamental metabolic processes. One of the extensively studied proteins in the context of systemic and cellular iron metabolisms is ferritin. While clinicians utilize serum ferritin to monitor body iron stores and inflammation, it is important to note that the vast majority of ferritin is located intracellularly. Intracellular ferritin is made of two different subunits (heavy and light chain) and plays an imperative role as a safe iron depot. In the past couple of decades our understanding of ferritin biology has remarkably improved. Additionally, a significant body of evidence has emerged describing the significance of the kidney in iron trafficking and homeostasis. Here, we briefly discuss some of the most important findings that relate to the role of iron and ferritin heavy chain in the context of kidney-related diseases and, in particular, vascular calcification, which is a frequent complication of chronic kidney disease.
Collapse
Affiliation(s)
- József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, H-4032 Debrecen, Hungary.
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, H-4032 Debrecen, Hungary.
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|