51
|
Neuronal polarization in vivo: Growing in a complex environment. Curr Opin Neurobiol 2014; 27:215-23. [DOI: 10.1016/j.conb.2014.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 01/06/2023]
|
52
|
Weinberg F, Schulze E, Fatouros C, Schmidt E, Baumeister R, Brummer T. Expression pattern and first functional characterization of riok-1 in Caenorhabditis elegans. Gene Expr Patterns 2014; 15:124-34. [PMID: 24929033 DOI: 10.1016/j.gep.2014.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 01/08/2023]
Abstract
Rio kinases are atypical serine/threonine kinases that emerge as potential cooperation partners in Ras-driven tumors. In the current study, we performed an RNAi screen in Caenorhabditis elegans to identify suppressors of oncogenic Ras signaling. Aberrant Ras/Raf signaling in C. elegans leads to the formation of a multi-vulva (Muv) phenotype. We found that depletion of riok-1, the C. elegans orthologue of the mammalian RioK1, suppressed the Muv phenotype. By using a promoter GFP construct, we could show that riok-1 is expressed in neuronal cells, the somatic gonad, the vulva, the uterus and the spermatheca. Furthermore, we observed developmental defects in the gonad upon riok-1 knockdown in a wildtype background. Our data suggest that riok-1 is a modulator of the Ras signaling pathway, suggesting implications for novel interventions in the context of Ras-driven tumors.
Collapse
Affiliation(s)
- Florian Weinberg
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; IMMZ - Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany
| | - Ekkehard Schulze
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Chronis Fatouros
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; International Max Planck Research School for Molecular and Cell Biology (IMPRS-MCB), Freiburg, Germany
| | - Enrico Schmidt
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Ralf Baumeister
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; IMMZ - Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Tilman Brummer
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; IMMZ - Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Germany.
| |
Collapse
|
53
|
Abstract
The polarity proteins LKB1 and SAD-A/B are key regulators of axon specification in the developing cerebral cortex. Recent studies now show that this mechanism cannot be generalized to other classes of neurons: instead, SAD-A/B functions downstream of neurotrophin signaling in sensory neurons to mediate a later stage of axon development - arborization in the target field.
Collapse
Affiliation(s)
- Lei Xing
- Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
54
|
SAD kinases control the maturation of nerve terminals in the mammalian peripheral and central nervous systems. Proc Natl Acad Sci U S A 2014; 111:1138-43. [PMID: 24395778 DOI: 10.1073/pnas.1321990111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Axons develop in a series of steps, beginning with specification, outgrowth, and arborization, and terminating with formation and maturation of presynaptic specializations. We found previously that the SAD-A and SAD-B kinases are required for axon specification and arborization in subsets of mouse neurons. Here, we show that following these steps, SAD kinases become localized to synaptic sites and are required within presynaptic cells for structural and functional maturation of synapses in both peripheral and central nervous systems. Deleting SADs from sensory neurons can perturb either axonal arborization or nerve terminal maturation, depending on the stage of deletion. Thus, a single pair of kinases plays multiple, sequential roles in axonal differentiation.
Collapse
|
55
|
Courchet J, Lewis TL, Lee S, Courchet V, Liou DY, Aizawa S, Polleux F. Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell 2013; 153:1510-25. [PMID: 23791179 DOI: 10.1016/j.cell.2013.05.021] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/01/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
Abstract
The molecular mechanisms underlying the axon arborization of mammalian neurons are poorly understood but are critical for the establishment of functional neural circuits. We identified a pathway defined by two kinases, LKB1 and NUAK1, required for cortical axon branching in vivo. Conditional deletion of LKB1 after axon specification or knockdown of NUAK1 drastically reduced axon branching in vivo, whereas their overexpression was sufficient to increase axon branching. The LKB1-NUAK1 pathway controls mitochondria immobilization in axons. Using manipulation of Syntaphilin, a protein necessary and sufficient to arrest mitochondrial transport specifically in the axon, we demonstrate that the LKB1-NUAK1 kinase pathway regulates axon branching by promoting mitochondria immobilization. Finally, we show that LKB1 and NUAK1 are necessary and sufficient to immobilize mitochondria specifically at nascent presynaptic sites. Our results unravel a link between presynaptic mitochondrial capture and axon branching.
Collapse
Affiliation(s)
- Julien Courchet
- Dorris Neuroscience Center and Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037-1000, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Krajniak J, Hao Y, Mak HY, Lu H. C.L.I.P.--continuous live imaging platform for direct observation of C. elegans physiological processes. LAB ON A CHIP 2013; 13:2963-71. [PMID: 23708469 DOI: 10.1039/c3lc50300c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Direct observation of developmental and physiological changes in certain model organisms over time has been technically challenging. In the model organism Caenorhabditis elegans, these studies require frequent or continuous imaging at physiologically benign conditions. However, standard methods use anaesthetics, glue, or microbeads, which prevent animals from feeding during the experiment. Thus, the animals' normal physiological function may be affected over time. Here we present a platform designed for dynamic studies of C. elegans. The system is capable of immobilizing only the animals' bodies under benign conditions and without physical deformation. Simultaneously, the animals' heads remain free to move and feed for the duration of the experiment. This allows for high-resolution and high-magnification fluorescent imaging of immobilized and feeding animals. The system is very easy to fabricate, set up, and operate, and should be widely applicable to many problems in developmental and physiological studies.
Collapse
Affiliation(s)
- Jan Krajniak
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | |
Collapse
|
57
|
SAD kinases sculpt axonal arbors of sensory neurons through long- and short-term responses to neurotrophin signals. Neuron 2013; 79:39-53. [PMID: 23790753 DOI: 10.1016/j.neuron.2013.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 11/20/2022]
Abstract
Extrinsic cues activate intrinsic signaling mechanisms to pattern neuronal shape and connectivity. We showed previously that three cytoplasmic Ser/Thr kinases, LKB1, SAD-A, and SAD-B, control early axon-dendrite polarization in forebrain neurons. Here, we assess their role in other neuronal types. We found that all three kinases are dispensable for axon formation outside of the cortex but that SAD kinases are required for formation of central axonal arbors by subsets of sensory neurons. The requirement for SAD kinases is most prominent in NT-3 dependent neurons. SAD kinases transduce NT-3 signals in two ways through distinct pathways. First, sustained NT-3/TrkC signaling increases SAD protein levels. Second, short-duration NT-3/TrkC signals transiently activate SADs by inducing dephosphorylation of C-terminal domains, thereby allowing activating phosphorylation of the kinase domain. We propose that SAD kinases integrate long- and short-duration signals from extrinsic cues to sculpt axon arbors within the CNS.
Collapse
|
58
|
Satoh D, Arber S. Carving axon arbors to fit: master directs one kinase at a time. Cell 2013; 153:1425-6. [PMID: 23791171 DOI: 10.1016/j.cell.2013.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pyramidal neurons in the cortex require the master kinase LKB1 for early axon specification. Courchet et al. now uncover a later role for LKB1 and its tango with the downstream effector kinase NUAK1 in controlling terminal axonal branching through influencing mitochondrial motility in axons.
Collapse
Affiliation(s)
- Daisuke Satoh
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
59
|
Yan X, Shen Y. Preliminary crystallographic analysis of the kinase domain of SAD-1, a protein essential for presynaptic differentiation in Caenorhabditis elegans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:449-52. [PMID: 23545657 PMCID: PMC3614176 DOI: 10.1107/s1744309113006088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/04/2013] [Indexed: 11/11/2022]
Abstract
SAD-1 is a serine/threonine kinase which plays an important role in the regulation of both neuronal polarity and synapse formation in Caenorhabditis elegans. The kinase domain of SAD-1 from C. elegans was overexpressed in Escherichia coli BL21 (DE3) cells and purified to homogeneity using nickel-nitrilotriacetic acid metal-affinity, ion-exchange and gel-filtration chromatography. Diffraction-quality crystals were grown using the sitting-drop vapour-diffusion technique from a condition consisting of 1 M CAPSO pH 9.6, 10%(w/v) polyethylene glycol 3350. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 205.4, b = 57.1, c = 71.7 Å, β = 106.1°. X-ray diffraction data were recorded to 3.0 Å resolution from a single crystal using synchrotron radiation.
Collapse
Affiliation(s)
- Xiaojie Yan
- Department of BMB, Basic Medical College, Tianjin Medical University, Tianjin 300070, People's Republic of China.
| | | |
Collapse
|
60
|
Goodwin PR, Juo P. The scaffolding protein SYD-2/Liprin-α regulates the mobility and polarized distribution of dense-core vesicles in C. elegans motor neurons. PLoS One 2013; 8:e54763. [PMID: 23358451 PMCID: PMC3554613 DOI: 10.1371/journal.pone.0054763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/14/2012] [Indexed: 01/05/2023] Open
Abstract
The polarized trafficking of axonal and dendritic components is essential for the development and maintenance of neuronal structure and function. Neuropeptide-containing dense-core (DCVs) vesicles are trafficked in a polarized manner from the cell body to their sites of release; however, the molecules involved in this process are not well defined. Here we show that the scaffolding protein SYD-2/Liprin-α is required for the normal polarized localization of Venus-tagged neuropeptides to axons of cholinergic motor neurons in C. elegans. In syd-2 loss of function mutants, the normal polarized localization of INS-22 neuropeptide-containing DCVs in motor neurons is disrupted, and DCVs accumulate in the cell body and dendrites. Time-lapse microscopy and kymograph analysis of mobile DCVs revealed that syd-2 mutants exhibit decreased numbers of DCVs moving in both anterograde and retrograde directions, and a corresponding increase in stationary DCVs in both axon commissures and dendrites. In addition, DCV run lengths and velocities were decreased in both axon commissures and dendrites of syd-2 mutants. This study shows that SYD-2 promotes bi-directional mobility of DCVs and identifies SYD-2 as a novel regulator of DCV trafficking and polarized distribution.
Collapse
Affiliation(s)
- Patricia R. Goodwin
- Department of Molecular Physiology and Pharmacology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter Juo
- Department of Molecular Physiology and Pharmacology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
61
|
Caenorhabditis elegans PIG-1/MELK acts in a conserved PAR-4/LKB1 polarity pathway to promote asymmetric neuroblast divisions. Genetics 2012; 193:897-909. [PMID: 23267054 DOI: 10.1534/genetics.112.148106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Asymmetric cell divisions produce daughter cells with distinct sizes and fates, a process important for generating cell diversity during development. Many Caenorhabditis elegans neuroblasts, including the posterior daughter of the Q cell (Q.p), divide to produce a larger neuron or neuronal precursor and a smaller cell that dies. These size and fate asymmetries require the gene pig-1, which encodes a protein orthologous to vertebrate MELK and belongs to the AMPK-related family of kinases. Members of this family can be phosphorylated and activated by the tumor suppressor kinase LKB1, a conserved polarity regulator of epithelial cells and neurons. In this study, we present evidence that the C. elegans orthologs of LKB1 (PAR-4) and its partners STRAD (STRD-1) and MO25 (MOP-25.2) regulate the asymmetry of the Q.p neuroblast division. We show that PAR-4 and STRD-1 act in the Q lineage and function genetically in the same pathway as PIG-1. A conserved threonine residue (T169) in the PIG-1 activation loop is essential for PIG-1 activity, consistent with the model that PAR-4 (or another PAR-4-regulated kinase) phosphorylates and activates PIG-1. We also demonstrate that PIG-1 localizes to centrosomes during cell divisions of the Q lineage, but this localization does not depend on T169 or PAR-4. We propose that a PAR-4-STRD-1 complex stimulates PIG-1 kinase activity to promote asymmetric neuroblast divisions and the generation of daughter cells with distinct fates. Changes in cell fate may underlie many of the abnormal behaviors exhibited by cells after loss of PAR-4 or LKB1.
Collapse
|
62
|
Abstract
Cell polarization is critical for the correct functioning of many cell types, creating functional and morphological asymmetry in response to intrinsic and extrinsic cues. Neurons are a classical example of polarized cells, as they usually extend one long axon and short branched dendrites. The formation of such distinct cellular compartments (also known as neuronal polarization) ensures the proper development and physiology of the nervous system and is controlled by a complex set of signalling pathways able to integrate multiple polarity cues. Because polarization is at the basis of neuronal development, investigating the mechanisms responsible for this process is fundamental not only to understand how the nervous system develops, but also to devise therapeutic strategies for neuroregeneration. The last two decades have seen remarkable progress in understanding the molecular mechanisms responsible for mammalian neuronal polarization, primarily using cultures of rodent hippocampal neurons. More recent efforts have started to explore the role of such mechanisms in vivo. It has become clear that neuronal polarization relies on signalling networks and feedback mechanisms co-ordinating the actin and microtubule cytoskeleton and membrane traffic. The present chapter will highlight the role of key molecules involved in neuronal polarization, such as regulators of the actin/microtubule cytoskeleton and membrane traffic, polarity complexes and small GTPases.
Collapse
|
63
|
Cyclin-dependent kinase 5 regulates the polarized trafficking of neuropeptide-containing dense-core vesicles in Caenorhabditis elegans motor neurons. J Neurosci 2012; 32:8158-72. [PMID: 22699897 DOI: 10.1523/jneurosci.0251-12.2012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The polarized trafficking of axonal and dendritic proteins is essential for the structure and function of neurons. Cyclin-dependent kinase 5 (CDK-5) and its activator CDKA-1/p35 regulate diverse aspects of nervous system development and function. Here, we show that CDK-5 and CDKA-1/p35 are required for the polarized distribution of neuropeptide-containing dense-core vesicles (DCVs) in Caenorhabditis elegans cholinergic motor neurons. In cdk-5 or cdka-1/p35 mutants, the predominantly axonal localization of DCVs containing INS-22 neuropeptides was disrupted and DCVs accumulated in dendrites. Time-lapse microscopy in DB class motor neurons revealed decreased trafficking of DCVs in axons and increased trafficking and accumulation of DCVs in cdk-5 mutant dendrites. The polarized distribution of several axonal and dendritic markers, including synaptic vesicles, was unaltered in cdk-5 mutant DB neurons. We found that microtubule polarity is plus-end out in axons and predominantly minus-end out in dendrites of DB neurons. Surprisingly, cdk-5 mutants had increased amounts of plus-end-out microtubules in dendrites, suggesting that CDK-5 regulates microtubule orientation. However, these changes in microtubule polarity are not responsible for the increased trafficking of DCVs into dendrites. Genetic analysis of cdk-5 and the plus-end-directed axonal DCV motor unc-104/KIF1A suggest that increased trafficking of UNC-104 into dendrites cannot explain the dendritic DCV accumulation. Instead, we found that mutations in the minus-end-directed motor cytoplasmic dynein, completely block the increased DCVs observed in cdk-5 mutant dendrites without affecting microtubule polarity. We propose a model in which CDK-5 regulates DCV polarity by both promoting DCV trafficking in axons and preventing dynein-dependent DCV trafficking into dendrites.
Collapse
|
64
|
APC/C(Cdh1) targets brain-specific kinase 2 (BRSK2) for degradation via the ubiquitin-proteasome pathway. PLoS One 2012; 7:e45932. [PMID: 23029325 PMCID: PMC3448725 DOI: 10.1371/journal.pone.0045932] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
Studies of brain-specific kinase 2 (BRSK2), an AMP-activated protein kinase (AMPK)-related kinase, and its homologs suggest that they are multifunctional regulators of cell-cycle progression. BRSK2, which contains a ubiquitin-associated (UBA) domain, is polyubiquitinated in cells. However, the regulatory mechanisms and exact biological function of BRSK2 remain unclear. Herein, we show that BRSK2 co-localizes with the centrosomes during mitosis. We also demonstrate that BRSK2 protein levels fluctuate during the cell cycle, peaking during mitosis and declining in G1 phase. Furthermore, Cdh1, rather than Cdc20, promotes the degradation of BRSK2 in vivo. Consistent with this finding, knock-down of endogenous Cdh1 blocks BRSK2 degradation during the G1 phase. The conserved KEN box of BRSK2 is required for anaphase-promoting complex/cyclosome-Cdh1 (APC/CCdh1)-dependent degradation. Additionally, overexpression of either BRSK2(WT) or BRSK2(ΔKEN) increases the percentage of cells in G2/M. Thus, our results provide the first evidence that BRSK2 regulates cell-cycle progression controlled by APC/CCdh1 through the ubiquitin-proteasome pathway.
Collapse
|
65
|
A genome-wide RNAi screen for enhancers of par mutants reveals new contributors to early embryonic polarity in Caenorhabditis elegans. Genetics 2012; 192:929-42. [PMID: 22887819 DOI: 10.1534/genetics.112.143727] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The par genes of Caenorhabditis elegans are essential for establishment and maintenance of early embryo polarity and their homologs in other organisms are crucial polarity regulators in diverse cell types. Forward genetic screens and simple RNAi depletion screens have identified additional conserved regulators of polarity in C. elegans; genes with redundant functions, however, will be missed by these approaches. To identify such genes, we have performed a genome-wide RNAi screen for enhancers of lethality in conditional par-1 and par-4 mutants. We have identified 18 genes for which depletion is synthetically lethal with par-1 or par-4, or both, but produces little embryo lethality in wild type. Fifteen of the 18 genes identified in our screen are not previously known to function in C. elegans embryo polarity and 11 of them also increase lethality in a par-2 mutant. Among the strongest synthetic lethal genes, polarity defects are more apparent in par-2 early embryos than in par-1 or par-4, except for strd-1(RNAi), which enhances early polarity phenotypes in all three mutants. One strong enhancer of par-1 and par-2 lethality, F25B5.2, corresponds to nop-1, a regulator of actomyosin contractility for which the molecular identity was previously unknown. Other putative polarity enhancers identified in our screen encode cytoskeletal and membrane proteins, kinases, chaperones, and sumoylation and deubiquitylation proteins. Further studies of these genes should give mechanistic insight into pathways regulating establishment and maintenance of cell polarity.
Collapse
|
66
|
Jab1 interacts with brain-specific kinase 2 (BRSK2) and promotes its degradation in the ubiquitin–proteasome pathway. Biochem Biophys Res Commun 2012; 422:647-52. [DOI: 10.1016/j.bbrc.2012.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/09/2012] [Indexed: 01/18/2023]
|
67
|
Abstract
The Peutz-Jeghers syndrome (PJS) culprit kinase LKB1 phosphorylates and activates multiple intracellular kinases regulating cell metabolism and polarity. The relevance of each of these pathways is highly variable depending on the tissue type, but typically represents functions of differentiated cells. These include formation and maintenance of specialized cell compartments in nerve axons, swift refunneling of metabolites and restructuring of cell architecture in response to environmental cues in committed lymphocytes, and ensuring energy-efficient oxygen-based energy expenditure. Such features are often lost or reduced in cancer cells, and indeed LKB1 defects in PJS-associated and sporadic cancers and even the benign PJS polyps lead to differentiation defects, including expansion of partially differentiated epithelial cells in PJS polyps and epithelial-to-mesenchymal transition in carcinomas. This review focuses on the involvement of LKB1 in the differentiation of epithelial, mesenchymal, hematopoietic and germinal lineages.
Collapse
Affiliation(s)
- Lina Udd
- Institute of Biotechnology and Genome-Scale Biology Research Program, University of Helsinki, P.O. Box 56 (Biocenter 1), 00014, Helsinki, Finland
| | | |
Collapse
|
68
|
Maniar TA, Kaplan M, Wang GJ, Shen K, Wei L, Shaw JE, Koushika SP, Bargmann CI. UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nat Neurosci 2011; 15:48-56. [PMID: 22101643 PMCID: PMC4328884 DOI: 10.1038/nn.2970] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/19/2011] [Indexed: 12/13/2022]
Abstract
The polarized distribution of neuronal proteins to axons and dendrites relies upon microtubule-binding proteins such as CRMP, directed motors such as kinesin UNC-104/Kif1A, and diffusion barriers such as ankyrin. The causative relationships between these molecules are unknown. We show here that Caenorhabditis elegans CRMP (UNC-33) acts early in neuronal development, together with ankyrin (UNC-44), to organize microtubule asymmetry and axon-dendrite sorting. In unc-33 and unc-44 mutants, axonal proteins are present in dendrites and vice versa, suggesting bidirectional failures of axon-dendrite identity. UNC-33 protein is localized to axons by unc-44, and enriched in a region that resembles the axon initial segment. unc-33 and unc-44 establish the asymmetric dynamics of axonal and dendritic microtubules; in their absence, microtubules are disorganized, the axonal kinesin UNC-104 invades dendrites, and inappropriate UNC-104 activity randomizes axonal protein sorting. We suggest that UNC-44 and UNC-33 direct polarized sorting through their global effects on neuronal microtubule organization.
Collapse
Affiliation(s)
- Tapan A Maniar
- Laboratory of Neural Circuits and Behavior, Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Rodríguez-Asiain A, Ruiz-Babot G, Romero W, Cubí R, Erazo T, Biondi RM, Bayascas JR, Aguilera J, Gómez N, Gil C, Claro E, Lizcano JM. Brain specific kinase-1 BRSK1/SAD-B associates with lipid rafts: modulation of kinase activity by lipid environment. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1124-35. [PMID: 22020259 DOI: 10.1016/j.bbalip.2011.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/29/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
Brain specific kinases 1 and 2 (BRSK1/2, also named SAD kinases) are serine-threonine kinases specifically expressed in the brain, and activated by LKB1-mediated phosphorylation of a threonine residue at their T-loop (Thr189/174 in human BRSK1/2). BRSKs are crucial for establishing neuronal polarity, and BRSK1 has also been shown to regulate neurotransmitter release presynaptically. How BRSK1 exerts this latter function is unknown, since its substrates at the synaptic terminal and the mechanisms modulating its activity remain to be described. Key regulators of neurotransmitter release, such as SNARE complex proteins, are located at membrane rafts. Therefore we initially undertook this work to check whether BRSK1 also locates at these membrane microdomains. Here we show that brain BRSK1, but not BRSK2, is palmitoylated, and provide biochemical and pharmacological evidences demonstrating that a pool of BRSK1, but not BRSK2 or LKB1, localizes at membrane lipid rafts. We also show that raft-associated BRSK1 has higher activity than BRSK1 from non-raft environment, based on a higher T-loop phosphorylation at Thr-189. Further, recombinant BRSK1 activity increased 3-fold when assayed with small multilamellar vesicles (SMV) generated with lipids extracted from synaptosomal raft fractions. A similar BRSK1-activating effect was obtained with synthetic SMV made with phosphatidylcholine, cholesterol and sphingomyelin, mixed in the same molar ratio at which these three major lipids are present in rafts. Importantly, SMV also enhanced the activity of a constitutively active BRSK1 (T189E), underpinning that interaction with lipid rafts represents a new mechanism of BRSK1 activity modulation, additional to T-loop phosphorylation.
Collapse
Affiliation(s)
- Arantza Rodríguez-Asiain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
The formation of axon/dendrite polarity is critical for the neuron to perform its signaling function in the brain. Recent advance in our understanding of cellular and molecular mechanisms underlying the development and maintenance of neuronal polarity has been greatly facilitated by the use of the culture system of dissociated hippocampal neurons. Among many polarization-related proteins, we here focus on the mammalian LKB1, the counterpart of the C. elegans Par-4, which is an upstream regulator among six Par (partitioning-defective) genes that act as master regulators of cell polarity in different cell types across evolutionary distant species. Recent studies have identified LKB1 and its downstream targets SAD/MARK kinases (mammalian homologs of Par-1) as key regulators of neuronal polarization and axon development in cultured neurons and in developing cortical neurons in vivo. We will review the properties of and interactions among proteins in this LKB1-SAD/MARK pathway, drawing upon information obtained from both neuronal and non-neuronal systems. Due to central role of the protein kinase A-dependent phosphorylation of LKB1 in the activation of this pathway, we will review recent findings on how cAMP and cGMP signaling may serve as antagonistic second messengers for axon/dendrite development, and how these cyclic nucleotides may mediate the action of extracellular polarizing factors by modulating the activity of the LKB1-SAD/MARK pathway.
Collapse
Affiliation(s)
- Maya Shelly
- Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY 11794-5230, USA.
| | | |
Collapse
|
71
|
Abstract
Neuronal polarity sets the foundation for information processing and signal transmission within neural networks. However, fundamental question of how a neuron develops and maintains structurally and functionally distinct processes, axons and dendrites, is still an unclear. The simplicity and availability of practical genetic tools makes C. elegans as an ideal model to study neuronal polarity in vivo. In recent years, new studies have identified critical polarity molecules that function at different stages of neuronal polarization in C. elegans. This review focuses on how neurons guided by extrinsic cues, break symmetry, and subsequently recruit intracellular molecules to establish and maintain axon-dendrite polarity in vivo.
Collapse
Affiliation(s)
- Chan-Yen Ou
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, CA 94305, USA
| | | |
Collapse
|
72
|
Kim JSM, Hung W, Zhen M. The long and the short of SAD-1 kinase. Commun Integr Biol 2011; 3:251-5. [PMID: 20714407 DOI: 10.4161/cib.3.3.11455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/09/2010] [Indexed: 11/19/2022] Open
Abstract
The Ser/Thr SAD kinases are evolutionarily conserved, critical regulators of neural development. Exciting findings in recent years have significantly advanced our understanding of the mechanism through which SAD kinases regulate neural development. Mammalian SAD-A and SAD-B, activated by a master kinase LKB1, regulate microtubule dynamics and polarize neurons. In C. elegans, the sad-1 gene encodes two isoforms, namely the long and the short, which exhibit overlapping and yet distinct functions in neuronal polarity and synaptic organization. Surprisingly, our most recent findings in C. elegans revealed a SAD-1-independent LKB1 activity in neuronal polarity. We also found that the long SAD-1 isoform directly interacts with a STRADalpha pseudokinase, STRD-1, to regulate neuronal polarity and synaptic organization. We elaborate here a working model of SAD-1 in which the two isoforms dimer/oligomerize to form a functional complex, and STRD-1 clusters and localizes the SAD-1 complex to synapses. While the mechanistic difference between the vertebrate and invertebrate SAD kinases may be puzzling, a recent discovery of the functionally distinct SAD-B isoforms predicts that the difference likely arises from our incomplete understanding of the SAD kinase mechanism and may eventually be reconciled as the revelation continues.
Collapse
Affiliation(s)
- Joanne S M Kim
- Department of Molecular Genetics; University of Toronto; Toronto, ON Canada
| | | | | |
Collapse
|
73
|
Abstract
A hallmark of neurons is their ability to polarize with dendrite and axon specification to allow the proper flow of information through the nervous system. Over the past decade, extensive research has been performed in an attempt to understand the molecular and cellular machinery mediating this neuronal polarization process. It has become evident that many of the critical regulators involved in establishing neuronal polarity are evolutionarily conserved proteins that had previously been implicated in controlling the polarization of other cell types. At the forefront of this research are the partition defective (Par) proteins. In this review,we will provide a commentary on the progress of work regarding the central importance of Parproteins in the establishment of neuronal polarity.
Collapse
Affiliation(s)
- Ryan Insolera
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
74
|
Baas S, Sharrow M, Kotu V, Middleton M, Nguyen K, Flanagan-Steet H, Aoki K, Tiemeyer M. Sugar-free frosting, a homolog of SAD kinase, drives neural-specific glycan expression in the Drosophila embryo. Development 2011; 138:553-63. [PMID: 21205799 PMCID: PMC3014640 DOI: 10.1242/dev.055376] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2010] [Indexed: 01/10/2023]
Abstract
Precise glycan structures on specific glycoproteins impart functionalities essential for neural development. However, mechanisms controlling embryonic neural-specific glycosylation are unknown. A genetic screen for relevant mutations in Drosophila generated the sugar-free frosting (sff) mutant that reveals a new function for protein kinases in regulating substrate flux through specific Golgi processing pathways. Sff is the Drosophila homolog of SAD kinase, which regulates synaptic vesicle tethering and neuronal polarity in nematodes and vertebrates. Our Drosophila sff mutant phenotype has features in common with SAD kinase mutant phenotypes in these other organisms, but we detect altered neural glycosylation well before the initiation of embryonic synaptogenesis. Characterization of Golgi compartmentation markers indicates altered colocalization that is consistent with the detected shift in glycan complexity in sff mutant embryos. Therefore, in analogy to synaptic vesicle tethering, we propose that Sff regulates vesicle tethering at Golgi membranes in the developing Drosophila embryo. Furthermore, neuronal sff expression is dependent on transcellular signaling through a non-neural toll-like receptor, linking neural-specific glycan expression to a kinase activity that is induced in response to environmental cues.
Collapse
Affiliation(s)
- Sarah Baas
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, B122 Life Sciences Building, Green Street, Athens, GA, 30602-4712, USA
| | - Mary Sharrow
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
| | - Varshika Kotu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, B122 Life Sciences Building, Green Street, Athens, GA, 30602-4712, USA
| | - Meg Middleton
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
| | - Khoi Nguyen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
| | - Heather Flanagan-Steet
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602-4712, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, B122 Life Sciences Building, Green Street, Athens, GA, 30602-4712, USA
| |
Collapse
|
75
|
Abstract
The ability of neurons to form a single axon and multiple dendrites underlies the directional flow of information transfer in the central nervous system. Dendrites and axons are molecularly and functionally distinct domains. Dendrites integrate synaptic inputs, triggering the generation of action potentials at the level of the soma. Action potentials then propagate along the axon, which makes presynaptic contacts onto target cells. This article reviews what is known about the cellular and molecular mechanisms underlying the ability of neurons to initiate and extend a single axon during development. Remarkably, neurons can polarize to form a single axon, multiple dendrites, and later establish functional synaptic contacts in reductionist in vitro conditions. This approach became, and remains, the dominant model to study axon initiation and growth and has yielded the identification of many molecules that regulate axon formation in vitro (Dotti et al. 1988). At present, only a few of the genes identified using in vitro approaches have been shown to be required for axon initiation and outgrowth in vivo. In vitro, axon initiation and elongation are largely intrinsic properties of neurons that are established in the absence of relevant extracellular cues. However, the importance of extracellular cues to axon initiation and outgrowth in vivo is emerging as a major theme in neural development (Barnes and Polleux 2009). In this article, we focus our attention on the extracellular cues and signaling pathways required in vivo for axon initiation and axon extension.
Collapse
|
76
|
Van Epps H, Dai Y, Qi Y, Goncharov A, Jin Y. Nuclear pre-mRNA 3'-end processing regulates synapse and axon development in C. elegans. Development 2010; 137:2237-50. [PMID: 20530551 PMCID: PMC2882140 DOI: 10.1242/dev.049692] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2010] [Indexed: 12/27/2022]
Abstract
Nuclear pre-mRNA 3'-end processing is vital for the production of mature mRNA and the generation of the 3' untranslated region (UTR). However, the roles and regulation of this event in cellular development remain poorly understood. Here, we report the function of a nuclear pre-mRNA 3'-end processing pathway in synapse and axon formation in C. elegans. In a genetic enhancer screen for synaptogenesis mutants, we identified a novel polyproline-rich protein, Synaptic defective enhancer-1 (SYDN-1). Loss of function of sydn-1 causes abnormal synapse and axon development, and displays striking synergistic interactions with several genes that regulate specific aspects of synapses. SYDN-1 is required in neurons and localizes to distinct regions of the nucleus. Through a genetic suppressor screen, we found that the neuronal defects of sydn-1 mutants are suppressed by loss of function in Polyadenylation factor subunit-2 (PFS-2), a conserved WD40-repeat protein that interacts with multiple subcomplexes of the pre-mRNA 3'-end processing machinery. PFS-2 partially colocalizes with SYDN-1, and SYDN-1 influences the nuclear abundance of PFS-2. Inactivation of several members of the nuclear 3'-end processing complex suppresses sydn-1 mutants. Furthermore, lack of sydn-1 can increase the activity of 3'-end processing. Our studies provide in vivo evidence for pre-mRNA 3'-end processing in synapse and axon development and identify SYDN-1 as a negative regulator of this cellular event in neurons.
Collapse
Affiliation(s)
- Heather Van Epps
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, CA 92093, USA
| | - Ya Dai
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| | - Yingchuan Qi
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, CA 92093, USA
| | - Alexandr Goncharov
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, CA 92093, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| | - Yishi Jin
- Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, CA 92093, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA
| |
Collapse
|
77
|
Klassen MP, Wu YE, Maeder CI, Nakae I, Cueva JG, Lehrman EK, Tada M, Gengyo-Ando K, Wang GJ, Goodman M, Mitani S, Kontani K, Katada T, Shen K. An Arf-like small G protein, ARL-8, promotes the axonal transport of presynaptic cargoes by suppressing vesicle aggregation. Neuron 2010; 66:710-23. [PMID: 20547129 PMCID: PMC3168544 DOI: 10.1016/j.neuron.2010.04.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2010] [Indexed: 12/24/2022]
Abstract
Presynaptic assembly requires the packaging of requisite proteins into vesicular cargoes in the cell soma, their long-distance microtubule-dependent transport down the axon, and, finally, their reconstitution into functional complexes at prespecified sites. Despite the identification of several molecules that contribute to these events, the regulatory mechanisms defining such discrete states remain elusive. We report the characterization of an Arf-like small G protein, ARL-8, required during this process. arl-8 mutants prematurely accumulate presynaptic cargoes within the proximal axon of several neuronal classes, with a corresponding failure to assemble presynapses distally. This proximal accumulation requires the activity of several molecules known to catalyze presynaptic assembly. Dynamic imaging studies reveal that arl-8 mutant vesicles exhibit an increased tendency to form immotile aggregates during transport. Together, these results suggest that arl-8 promotes a trafficking identity for presynaptic cargoes, facilitating their efficient transport by repressing premature self-association.
Collapse
Affiliation(s)
- Matthew P. Klassen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
- Neurosciences Program, Stanford University School of Medicine, 385 Serra Mall, Stanford, California 94305, USA
| | - Ye E. Wu
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
| | - Celine I. Maeder
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
| | - Isei Nakae
- Department of Physiological Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Juan G. Cueva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Emily K. Lehrman
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
| | - Minoru Tada
- Department of Physiological Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiko Gengyo-Ando
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo
| | - George J. Wang
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
| | - Miriam Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo
| | - Kenji Kontani
- Department of Physiological Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiaki Katada
- Department of Physiological Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, California 94305, USA
| |
Collapse
|
78
|
Mittelstaedt T, Alvaréz-Baron E, Schoch S. RIM proteins and their role in synapse function. Biol Chem 2010; 391:599-606. [DOI: 10.1515/bc.2010.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Active zones are specialized areas of the plasma membrane in the presynaptic nerve terminal that mediate neurotransmitter release and synaptic plasticity. The multidomain proteins RIM1 and RIM2 are integral components of the cytomatrix at the active zone, interacting with most other active zone-enriched proteins as well as synaptic vesicle proteins. In the brain, RIMs are present in multiple isoforms (α, β, γ) diverging in their structural composition, which mediate overlapping and distinct functions. Here, we summarize recent findings about the specific roles of the various RIM isoforms in basic synaptic vesicle release as well as long- and short-term presynaptic plasticity.
Collapse
|
79
|
Baran R, Castelblanco L, Tang G, Shapiro I, Goncharov A, Jin Y. Motor neuron synapse and axon defects in a C. elegans alpha-tubulin mutant. PLoS One 2010; 5:e9655. [PMID: 20300184 PMCID: PMC2836382 DOI: 10.1371/journal.pone.0009655] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 02/02/2010] [Indexed: 12/03/2022] Open
Abstract
Regulation of microtubule dynamics underlies many fundamental cellular mechanisms including cell division, cell motility, and transport. In neurons, microtubules play key roles in cell migration, axon outgrowth, control of axon and synapse growth, and the regulated transport of vesicles and structural components of synapses. Loss of synapse and axon integrity and disruption of axon transport characterize many neurodegenerative diseases. Recently, mutations that specifically alter the assembly or stability of microtubules have been found to directly cause neurodevelopmental defects or neurodegeneration in vertebrates. We report here the characterization of a missense mutation in the C-terminal domain of C. elegans alpha-tubulin, tba-1(ju89), that disrupts motor neuron synapse and axon development. Mutant ju89 animals exhibit reduction in the number and size of neuromuscular synapses, altered locomotion, and defects in axon extension. Although null mutations of tba-1 show a nearly wild-type pattern, similar axon outgrowth defects were observed in animals lacking the beta-tubulin TBB-2. Genetic analysis reveals that tba-1(ju89) affects synapse development independent of its role in axon outgrowth. tba-1(ju89) is an altered function allele that most likely perturbs interactions between TBA-1 and specific microtubule-associated proteins that control microtubule dynamics and transport of components needed for synapse and axon growth.
Collapse
Affiliation(s)
- Renee Baran
- Biology Department, Occidental College, Los Angeles, California, United States of America
| | - Liliana Castelblanco
- Biology Department, Occidental College, Los Angeles, California, United States of America
| | - Garland Tang
- Biology Department, Occidental College, Los Angeles, California, United States of America
| | - Ian Shapiro
- Biology Department, Occidental College, Los Angeles, California, United States of America
| | - Alexandr Goncharov
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego, San Diego, California, United States of America
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
80
|
Kim JSM, Hung W, Narbonne P, Roy R, Zhen M. C. elegans STRADalpha and SAD cooperatively regulate neuronal polarity and synaptic organization. Development 2010; 137:93-102. [PMID: 20023164 DOI: 10.1242/dev.041459] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurons are polarized cells with morphologically and functionally distinct axons and dendrites. The SAD kinases are crucial for establishing the axon-dendrite identity across species. Previous studies suggest that a tumour suppressor kinase, LKB1, in the presence of a pseudokinase, STRADalpha, initiates axonal differentiation and growth through activating the SAD kinases in vertebrate neurons. STRADalpha was implicated in the localization, stabilization and activation of LKB1 in various cell culture studies. Its in vivo functions, however, have not been examined. In our present study, we analyzed the neuronal phenotypes of the first loss-of-function mutants for STRADalpha and examined their genetic interactions with LKB1 and SAD in C. elegans. Unexpectedly, only the C. elegans STRADalpha, STRD-1, functions exclusively through the SAD kinase, SAD-1, to regulate neuronal polarity and synaptic organization. Moreover, STRD-1 tightly associates with SAD-1 to coordinate its synaptic localizations. By contrast, the C. elegans LKB1, PAR-4, also functions in an additional genetic pathway independently of SAD-1 and STRD-1 to regulate neuronal polarity. We propose that STRD-1 establishes neuronal polarity and organizes synaptic proteins in a complex with the SAD-1 kinase. Our findings suggest that instead of a single, linear genetic pathway, STRADalpha and LKB1 regulate neuronal development through multiple effectors that are shared in some cellular contexts but distinct in others.
Collapse
Affiliation(s)
- Joanne S M Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
81
|
Cerpa W, Farías GG, Godoy JA, Fuenzalida M, Bonansco C, Inestrosa NC. Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol Neurodegener 2010; 5:3. [PMID: 20205789 PMCID: PMC2823745 DOI: 10.1186/1750-1326-5-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Accepted: 01/18/2010] [Indexed: 01/08/2023] Open
Abstract
Background Soluble amyloid-β (Aβ;) oligomers have been recognized to be early and key intermediates in Alzheimer's disease (AD)-related synaptic dysfunction. Aβ oligomers block hippocampal long-term potentiation (LTP) and impair rodent spatial memory. Wnt signaling plays an important role in neural development, including synaptic differentiation. Results We report here that the Wnt signaling activation prevents the synaptic damage triggered by Aβ oligomers. Electrophysiological analysis of Schaffer collaterals-CA1 glutamatergic synaptic transmission in hippocampal slices indicates that Wnt-5a increases the amplitude of field excitatory postsynaptic potentials (fEPSP) and both AMPA and NMDA components of the excitatory postsynaptic currents (EPSCs), without modifying the paired pulse facilitation (PPF). Conversely, in the presence of Aβ oligomers the fEPSP and EPSCs amplitude decreased without modification of the PPF, while the postsynaptic scaffold protein (PSD-95) decreased as well. Co-perfusion of hippocampal slices with Wnt-5a and Aβ oligomers occludes against the synaptic depression of EPSCs as well as the reduction of PSD-95 clusters induced by Aβ oligomers in neuronal cultures. Taken together these results indicate that Wnt-5a and Aβ oligomers inversely modulate postsynaptic components. Conclusion These results indicate that post-synaptic damage induced by Aβ oligomers in hippocampal neurons is prevented by non-canonical Wnt pathway activation.
Collapse
Affiliation(s)
- Waldo Cerpa
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V, Luco" (CRCP), MIFAB, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
82
|
Abstract
Neuronal synapses are important microstructures that underlie complex cognitive capacities. Recent studies, primarily in Caenorhabditis elegans and Drosophila melanogaster, have revealed surprising parallels between these synapses and the 'chemosensory synapses' that reside at the tips of chemosensory cells that respond to environmental stimuli. Similarities in the structures, mechanisms of action and specific molecules found at these sites extend to the presynaptic, postsynaptic and glial entities composing both synapse types. In this article I propose that chemosensory synapses may serve as useful models of neuronal synapses, and consider the possibility that the two synapse types derive from a common ancestral structure.
Collapse
Affiliation(s)
- Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
83
|
Saheki Y, Bargmann CI. Presynaptic CaV2 calcium channel traffic requires CALF-1 and the alpha(2)delta subunit UNC-36. Nat Neurosci 2009; 12:1257-65. [PMID: 19718034 PMCID: PMC2805665 DOI: 10.1038/nn.2383] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 07/09/2009] [Indexed: 12/18/2022]
Abstract
Presynaptic voltage-gated calcium channels provide calcium for synaptic vesicle exocytosis. We show here that a green fluorescent protein-tagged alpha(1) subunit of the Caenorhabditis elegans CaV2 channel, UNC-2, is localized to presynaptic active zones of sensory and motor neurons. Synaptic localization of CaV2 requires the alpha(2)delta subunit UNC-36 and CALF-1 (Calcium Channel Localization Factor-1), a neuronal transmembrane protein that localizes to the endoplasmic reticulum. In calf-1 mutants, UNC-2 is retained in the endoplasmic reticulum, but other active-zone components and synaptic vesicles are delivered to synapses. Acute induction of calf-1 mobilizes preexisting UNC-2 for delivery to synapses, consistent with a direct trafficking role. The alpha(2)delta subunit UNC-36 is likewise required for exit of UNC-2 from endoplasmic reticulum but has additional functions. Genetic and cell biological interactions suggest that CALF-1 couples intracellular traffic to functional maturation of CaV2 presynaptic calcium channels.
Collapse
Affiliation(s)
- Yasunori Saheki
- Howard Hughes Medical Institute and Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York, USA
| | | |
Collapse
|
84
|
Sann S, Wang Z, Brown H, Jin Y. Roles of endosomal trafficking in neurite outgrowth and guidance. Trends Cell Biol 2009; 19:317-24. [PMID: 19540123 DOI: 10.1016/j.tcb.2009.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 02/06/2023]
Abstract
Membrane trafficking and cargo delivery are essential for axonal and dendritic growth and guidance. Neurons have numerous diverse post-Golgi vesicles and recent advances have clarified their identity and regulation. Combinatorial approaches using in vivo imaging of 'intracellular cargo address labels' and functional perturbation have provided insight into these processes. In particular, the UNC-51 kinase regulates the trafficking of early endosomes and their axon guidance molecular cargos in several types of neurons in multiple organisms. Vesicular compartments bearing features of recycling endosomes, late endosomes or lysosomes also contribute to membrane addition and protein trafficking during neurite outgrowth and extension. New work shows that ubiquitylation of cargos and Rab effectors further specifies the trafficking routes of post-Golgi vesicles. These findings have begun to provide a more detailed view of the molecular mechanisms involved in neurite outgrowth and guidance. Additionally, high-resolution light microscopy imaging promises greater temporal and spatial understanding of vesicular exchange and maturation in neurons in the near future.
Collapse
Affiliation(s)
- Sharon Sann
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA.
| | | | | | | |
Collapse
|
85
|
He C, Kraft P, Chen C, Buring JE, Paré G, Hankinson SE, Chanock SJ, Ridker PM, Hunter DJ, Chasman DI. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat Genet 2009; 41:724-8. [PMID: 19448621 PMCID: PMC2888798 DOI: 10.1038/ng.385] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 04/21/2009] [Indexed: 02/05/2023]
Abstract
Age at menarche and age at natural menopause are associated with causes of substantial morbidity and mortality such as breast cancer and cardiovascular disease. We conducted a joint analysis of two genome-wide association studies of these two traits in a total of 17,438 women from the Nurses' Health Study (NHS, N = 2,287) and the Women's Genome Health Study (WGHS, N = 15,151). For age at menarche, we identified ten associated SNPs (P = 1 × 10(-7)-3 × 10(-13)) clustered at 6q21 (in or near the gene LIN28B) and 9q31.2 (in an intergenic region). For age at natural menopause, we identified 13 associated SNPs (P = 1 × 10(-7)-1 × 10(-21)) clustered at 20p12.3 (in the gene MCM8), 19q13.42 (in or near the gene BRSK1), 5q35.2 (in or near genes UIMC1 and HK3) and 6p24.2 (in the gene SYCP2L). These newly identified loci might expand understanding of the biological pathways regulating these two traits.
Collapse
MESH Headings
- Age Factors
- Chromosome Mapping/methods
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 20/genetics
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 6/genetics
- Chromosomes, Human, Pair 9/genetics
- Cohort Studies
- Female
- Genome-Wide Association Study/methods
- Humans
- Menarche/genetics
- Menopause/genetics
- Polymorphism, Single Nucleotide
Collapse
Affiliation(s)
- Chunyan He
- Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis. Recently, 12 AMPK-related kinases (BRSK1, BRSK2, NUAK1, NUAK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4 and MELK) were identified that are closely related by sequence homology to the catalytic domain of AMPK. The protein kinase LKB1 acts as a master upstream kinase activating AMPK and 11 of the AMPK-related kinases by phosphorylation of a conserved threonine residue in their T-loop region. Further sequence analyses have identified the eight-member SNRK kinase family as distant relatives of AMPK. However, only one of these is phosphorylated and activated by LKB1. Although much is known about AMPK, many of the AMPK-related kinases remain largely uncharacterized. This review outlines the general similarities in structure and function of the AMPK-related kinases before examining the specific characteristics of each, including a brief discussion of the SNRK family.
Collapse
Affiliation(s)
- N J Bright
- Cellular Stress Group, MRC Clinical Sciences Centre, London, UK
| | | | | |
Collapse
|
87
|
Dittman J. Chapter 2 Worm Watching: Imaging Nervous System Structure and Function in Caenorhabditis elegans. ADVANCES IN GENETICS 2009; 65:39-78. [DOI: 10.1016/s0065-2660(09)65002-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
88
|
Abstract
Neurons are among the most highly polarized cell types in the body, and the polarization of axon and dendrites underlies the ability of neurons to integrate and transmit information in the brain. Significant progress has been made in the identification of the cellular and molecular mechanisms underlying the establishment of neuronal polarity using primarily in vitro approaches such as dissociated culture of rodent hippocampal and cortical neurons. This model has led to the predominant view suggesting that neuronal polarization is specified largely by stochastic, asymmetric activation of intracellular signaling pathways. Recent evidence shows that extracellular cues can play an instructive role during neuronal polarization in vitro and in vivo. In this review, we synthesize the recent data supporting an integrative model whereby extracellular cues orchestrate the intracellular signaling underlying the initial break of neuronal symmetry leading to axon-dendrite polarization.
Collapse
Affiliation(s)
- Anthony P Barnes
- Pediatric Neuroscience Research Program, Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97239-3098, USA.
| | | |
Collapse
|
89
|
Ch'ng Q, Sieburth D, Kaplan JM. Profiling synaptic proteins identifies regulators of insulin secretion and lifespan. PLoS Genet 2008; 4:e1000283. [PMID: 19043554 PMCID: PMC2582949 DOI: 10.1371/journal.pgen.1000283] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 10/28/2008] [Indexed: 12/25/2022] Open
Abstract
Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling.
Collapse
Affiliation(s)
- QueeLim Ch'ng
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Derek Sieburth
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Joshua M. Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
90
|
Senti G, Swoboda P. Distinct isoforms of the RFX transcription factor DAF-19 regulate ciliogenesis and maintenance of synaptic activity. Mol Biol Cell 2008; 19:5517-28. [PMID: 18843046 DOI: 10.1091/mbc.e08-04-0416] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Neurons form elaborate subcellular structures such as dendrites, axons, cilia, and synapses to receive signals from their environment and to transmit them to the respective target cells. In the worm Caenorhabditis elegans, lack of the RFX transcription factor DAF-19 leads to the absence of cilia normally found on 60 sensory neurons. We now describe and functionally characterize three different isoforms of DAF-19. The short isoform DAF-19C is specifically expressed in ciliated sensory neurons and sufficient to rescue all cilia-related phenotypes of daf-19 mutants. In contrast, the long isoforms DAF-19A/B function in basically all nonciliated neurons. We discovered behavioral and cellular phenotypes in daf-19 mutants that depend on the isoforms daf-19a/b. These novel synaptic maintenance phenotypes are reminiscent of synaptic decline seen in many human neurodegenerative disorders. The C. elegans daf-19 mutant worms can thus serve as a molecular model for the mechanisms of functional neuronal decline.
Collapse
Affiliation(s)
- Gabriele Senti
- Department of Biosciences and Nutrition, Karolinska Institute, S-14157 Huddinge, Sweden
| | | |
Collapse
|
91
|
Kim JSM, Lilley BN, Zhang C, Shokat KM, Sanes JR, Zhen M. A chemical-genetic strategy reveals distinct temporal requirements for SAD-1 kinase in neuronal polarization and synapse formation. Neural Dev 2008; 3:23. [PMID: 18808695 PMCID: PMC2564922 DOI: 10.1186/1749-8104-3-23] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 09/22/2008] [Indexed: 12/03/2022] Open
Abstract
Background Neurons assemble into a functional network through a sequence of developmental processes including neuronal polarization and synapse formation. In Caenorhabditis elegans, the serine/threonine SAD-1 kinase is essential for proper neuronal polarity and synaptic organization. To determine if SAD-1 activity regulates the establishment or maintenance of these neuronal structures, we examined its temporal requirements using a chemical-genetic method that allows for selective and reversible inactivation of its kinase activity in vivo. Results We generated a PP1 analog-sensitive variant of SAD-1. Through temporal inhibition of SAD-1 kinase activity we show that its activity is required for the establishment of both neuronal polarity and synaptic organization. However, while SAD-1 activity is needed strictly when neurons are polarizing, the temporal requirement for SAD-1 is less stringent in synaptic organization, which can also be re-established during maintenance. Conclusion This study reports the first temporal analysis of a neural kinase activity using the chemical-genetic system. It reveals that neuronal polarity and synaptic organization have distinct temporal requirements for SAD-1.
Collapse
Affiliation(s)
- Joanne S M Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
92
|
Wildonger J, Jan LY, Jan YN. The Tsc1-Tsc2 complex influences neuronal polarity by modulating TORC1 activity and SAD levels. Genes Dev 2008; 22:2447-53. [PMID: 18794342 PMCID: PMC2749676 DOI: 10.1101/gad.1724108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuronal function depends on the specification of neuronal processes as axons or dendrites. In this issue of Genes & Development Choi and colleagues (2485-2495) show that without Tuberous Sclerosis Complex 1 (Tsc1) or Tsc2, molecules linked to the autosomal dominant disease tuberous sclerosis, an increase in the activity of the translational regulator Target of Rapamycin 1 (TORC1) causes neurons to have multiple axons and the translation of SAD kinase increases as well. Thus, in addition to the kinase LKB1, the Tsc1-Tsc2 complex, acting through TORC1, also modulates SAD to regulate axon formation.
Collapse
Affiliation(s)
- Jill Wildonger
- Department of Physiology and Department of Biochemistry, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94143, USA
| | - Lily Yeh Jan
- Department of Physiology and Department of Biochemistry, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94143, USA
| | - Yuh Nung Jan
- Department of Physiology and Department of Biochemistry, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
93
|
Margeta MA, Shen K, Grill B. Building a synapse: lessons on synaptic specificity and presynaptic assembly from the nematode C. elegans. Curr Opin Neurobiol 2008; 18:69-76. [PMID: 18538560 DOI: 10.1016/j.conb.2008.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/24/2008] [Accepted: 04/26/2008] [Indexed: 10/22/2022]
Abstract
Synapses are specialized sites of cell contact that mediate information flow between neurons and their targets. Genetic screens in the nematode C. elegans have led to the discovery of a number of molecules required for synapse patterning and assembly. Recent studies have demonstrated the importance of guidepost cells in the positioning of presynaptic sites at specific locations along the axon. Interestingly, these guideposts can promote or inhibit synapse formation, and do so by utilizing transmembrane adhesion molecules or secreted factors that act over relatively larger distances. Once the decision of where to build a presynaptic terminal has been made, key molecules are recruited to assemble synaptic vesicles and active zone proteins at that site. Multiple steps of this process are regulated by ubiquitin ligase complexes. Interestingly, some of the molecules involved in presynaptic assembly also play roles in regulating axon polarity and outgrowth, suggesting that different neurodevelopmental processes are molecularly integrated.
Collapse
Affiliation(s)
- Milica A Margeta
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | | | | |
Collapse
|
94
|
Bright NJ, Carling D, Thornton C. Investigating the regulation of brain-specific kinases 1 and 2 by phosphorylation. J Biol Chem 2008; 283:14946-54. [PMID: 18339622 PMCID: PMC3258900 DOI: 10.1074/jbc.m710381200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/13/2008] [Indexed: 11/06/2022] Open
Abstract
Brain-specific kinases 1 and 2 (BRSK1/2) are AMP-activated protein kinase (AMPK)-related kinases that are highly expressed in mammalian forebrain. Studies using transgenic animal models have implicated a role for these kinases in the establishment of neuronal polarity. BRSK1 and BRSK2 are activated by phosphorylation of a threonine residue in the T-loop activation segment of the kinase domain. In vitro studies have demonstrated that LKB1, an upstream kinase in the AMPK cascade, can catalyze this phosphorylation. However, to date, a detailed comparative analysis of the molecular regulation of BRSK1/2 has not been undertaken. Here we present evidence that excludes another upstream kinase in the AMPK cascade, Ca(2+)/calmodulin-dependent protein kinase kinase beta, from a role in activating BRSK1/2. We show that equivalent mutations in the ubiquitin-associated domains of the BRSK isoforms produce differential effects on the activation of BRSK1 and BRSK2. Contrary to previous reports, activation of cAMP-dependent protein kinase does not affect BRSK1 or BRSK2 activity in mammalian cells. Furthermore, stimuli that activate AMPK had no effect on BRSK1/2. Finally, we provide evidence suggesting that protein phosphatase 2C is a likely candidate for catalyzing the dephosphorylation and inactivation of BRSK1/2.
Collapse
Affiliation(s)
| | - David Carling
- Medical Research Council (MRC) Cellular Stress Group, MRC Clinical Sciences Centre, Du Cane Road, London W12 0NN, United Kingdom
| | - Claire Thornton
- Medical Research Council (MRC) Cellular Stress Group, MRC Clinical Sciences Centre, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
95
|
Witte H, Neukirchen D, Bradke F. Microtubule stabilization specifies initial neuronal polarization. ACTA ACUST UNITED AC 2008; 180:619-32. [PMID: 18268107 PMCID: PMC2234250 DOI: 10.1083/jcb.200707042] [Citation(s) in RCA: 426] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Axon formation is the initial step in establishing neuronal polarity. We examine here the role of microtubule dynamics in neuronal polarization using hippocampal neurons in culture. We see increased microtubule stability along the shaft in a single neurite before axon formation and in the axon of morphologically polarized cells. Loss of polarity or formation of multiple axons after manipulation of neuronal polarity regulators, synapses of amphids defective (SAD) kinases, and glycogen synthase kinase-3β correlates with characteristic changes in microtubule turnover. Consistently, changing the microtubule dynamics is sufficient to alter neuronal polarization. Application of low doses of the microtubule-destabilizing drug nocodazole selectively reduces the formation of future dendrites. Conversely, low doses of the microtubule-stabilizing drug taxol shift polymerizing microtubules from neurite shafts to process tips and lead to the formation of multiple axons. Finally, local stabilization of microtubules using a photoactivatable analogue of taxol induces axon formation from the activated area. Thus, local microtubule stabilization in one neurite is a physiological signal specifying neuronal polarization.
Collapse
Affiliation(s)
- Harald Witte
- Axonal Growth and Regeneration, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | | | | |
Collapse
|
96
|
Williams T, Brenman JE. LKB1 and AMPK in cell polarity and division. Trends Cell Biol 2008; 18:193-8. [PMID: 18314332 DOI: 10.1016/j.tcb.2008.01.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/28/2008] [Accepted: 01/30/2008] [Indexed: 11/16/2022]
Abstract
LKB1 and AMP-activated protein kinase (AMPK) are serine-threonine kinases implicated in key cellular pathways, including polarity establishment and energy sensing, respectively. Recent in vivo analyses in Drosophila have demonstrated vital roles for both AMPK and LKB1--in part through the myosin regulatory light chain--in cell polarity and cell division. Evidence from mammalian experiments also supports non-metabolic functions for LKB1 and AMPK. This review examines unanticipated AMPK functions for initiating and maintaining cell polarity and completing normal cell division. The ability of AMPK to sense energy status might be coupled with fundamental cell biological functions.
Collapse
Affiliation(s)
- Tyisha Williams
- Department of Cell and Developmental Biology and Neuroscience Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599-7250, USA
| | | |
Collapse
|
97
|
Abrams B, Grill B, Huang X, Jin Y. Cellular and molecular determinants targeting the Caenorhabditis elegans PHR protein RPM-1 to perisynaptic regions. Dev Dyn 2008; 237:630-9. [PMID: 18224716 PMCID: PMC2657606 DOI: 10.1002/dvdy.21446] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Caenorhabditis elegans RPM-1 is a member of a conserved protein family, the PHR proteins, that includes human Pam, mouse Phr1, zebrafish Esrom, and Drosophila Highwire. PHR proteins play important roles in the development of the nervous system. In particular, mutations in rpm-1 cause a disruption of synaptic architecture, affecting the distribution of synaptic vesicles and the number of presynaptic densities. Using antibodies against RPM-1, we determined the localization of the endogenous RPM-1 protein in wild-type and in several mutants that affect synaptic development. Our analyses show that, in mature neurons, RPM-1 resides in a distinct region that is close to, but does not overlap with, the synaptic exo- and endocytosis domains. The localization of RPM-1 occurs independently of several proteins that function in the transport or assembly of synapse components, and its abundance is partially dependent on its binding partner the F-box protein FSN-1. RPM-1 has been shown to target the MAPKKK DLK-1 for degradation. We show that activated DLK-1 may be preferentially targeted for degradation. Furthermore, using transgene analysis, we identified a critical role of the conserved PHR domain of RPM-1 in its subcellular localization.
Collapse
Affiliation(s)
- Benjamin Abrams
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California Santa Cruz, CA 95064, USA
| | - Brock Grill
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California Santa Cruz, CA 95064, USA
| | - Xun Huang
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California Santa Cruz, CA 95064, USA
| | - Yishi Jin
- Department of Molecular, Cell and Developmental Biology, Sinsheimer Laboratories, University of California Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California San Diego, CA 92093, USA
- Division of Biological Sciences, Section of Neurobiology, University of California San Diego, CA 92093, USA
| |
Collapse
|
98
|
Barnes AP, Solecki D, Polleux F. New insights into the molecular mechanisms specifying neuronal polarity in vivo. Curr Opin Neurobiol 2008; 18:44-52. [PMID: 18514505 PMCID: PMC2488405 DOI: 10.1016/j.conb.2008.05.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/02/2008] [Accepted: 05/08/2008] [Indexed: 01/20/2023]
Abstract
The polarization of axon and dendrites underlies the ability of neurons to integrate and transmit information in the brain. Important progress has been made toward the identification of the molecular mechanisms regulating neuronal polarization using primarily in vitro approaches such as dissociated culture of rodent hippocampal neurons. The predominant view emerging from this paradigm is that neuronal polarization is initiated by intrinsic activation of signaling pathways underlying the initial break in neuronal symmetry that precedes the future asymmetric growth of the axon. Recent evidence shows that (i) axon-dendrite polarization is specified when neurons engage migration in vivo, (ii) that a kinase pathway defined by LKB1and SAD-kinases (Par4/Par1 dyad) is required for proper neuronal polarization in vivo and that (iii) extracellular cues can play an instructive role during neuronal polarization. Here, we review some of these recent results and highlight future challenges in the field including the determination of how extracellular cues control intracellular responses underlying neuronal polarization in vivo.
Collapse
Affiliation(s)
- Anthony P. Barnes
- Neuroscience Center- Department of Pharmacology - University of North Carolina - Chapel Hill, NC 27599-7250, USA
| | - David Solecki
- Department of Developmental Neurobiology - St. Jude Children’s Research Hospital - Memphis, TN 38105
| | - Franck Polleux
- Neuroscience Center- Department of Pharmacology - University of North Carolina - Chapel Hill, NC 27599-7250, USA
| |
Collapse
|
99
|
Kishi M. Axon or dendrite? cell biology and molecular pathways for neuronal cell asymmetry. J Neurosci Res 2008; 86:490-5. [PMID: 17680674 DOI: 10.1002/jnr.21457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Young neurons polarize by specializing axons and dendrites from immature neurites. After synapse formations, they transmit electrical activity along the axon-dendrite axis, thereby working as functional units of the neural circuits. This axon-dendrite asymmetry is referred to as neuronal polarity. Although a great number of cell biological studies in vitro had been performed, little was known about the molecular events that establish the polarity. In the last several years, rapid advancement in molecular and genetic studies has unraveled the multiple signaling pathways. This paper summarizes current perspectives on the cell and molecular biological mechanisms of the neuronal polarization, to clarify future directions in this growing research field.
Collapse
Affiliation(s)
- Masashi Kishi
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
100
|
Kaufman A, Dror G, Meilijson I, Ruppin E. Gene expression of Caenorhabditis elegans neurons carries information on their synaptic connectivity. PLoS Comput Biol 2007; 2:e167. [PMID: 17154715 PMCID: PMC1676027 DOI: 10.1371/journal.pcbi.0020167] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/26/2006] [Indexed: 01/28/2023] Open
Abstract
The claim that genetic properties of neurons significantly influence their synaptic network structure is a common notion in neuroscience. The nematode Caenorhabditis elegans provides an exciting opportunity to approach this question in a large-scale quantitative manner. Its synaptic connectivity network has been identified, and, combined with cellular studies, we currently have characteristic connectivity and gene expression signatures for most of its neurons. By using two complementary analysis assays we show that the expression signature of a neuron carries significant information about its synaptic connectivity signature, and identify a list of putative genes predicting neural connectivity. The current study rigorously quantifies the relation between gene expression and synaptic connectivity signatures in the C. elegans nervous system and identifies subsets of neurons where this relation is highly marked. The results presented and the genes identified provide a promising starting point for further, more detailed computational and experimental investigations. The study of the genetic basis of the formation of neural connections in the nervous system (synaptogenesis) has been at the forefront of recent investigations in neuroscience. With the advancement of molecular biology research, many small-scale studies have identified specific genes and mechanisms involved in axon guidance and synaptogenesis. The nematode C. elegans provides an exciting opportunity to approach these issues in a computational large-scale manner. Its synaptic connectivity network has been identified, and, combined with information from gene expression studies, we now have neuronal connectivity and gene expression signatures for most of its neurons. Analyzing this data, Kaufman and colleagues show that the expression signature of a neuron carries significant information about its synaptic connectivity and can predict its neural targets in a statistically significant manner. The current study is the first, to our knowledge, to rigorously quantify and measure this relation. It identifies a putative list of genes that specify the neurons' connections which nicely conforms with the existing literature and leads to interesting new predictions.
Collapse
Affiliation(s)
- Alon Kaufman
- Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem, Israel
- * To whom correspondence should be addressed. E-mail: (AK); (ER)
| | - Gideon Dror
- School of Computer Science, The Academic College of Tel Aviv–Yaffo, Tel Aviv, Israel
| | - Isaac Meilijson
- School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Ruppin
- School of Computer Science and School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * To whom correspondence should be addressed. E-mail: (AK); (ER)
| |
Collapse
|