51
|
Bandyopadhyay S, Tfelt-Hansen J, Chattopadhyay N. Diverse roles of extracellular calcium-sensing receptor in the central nervous system. J Neurosci Res 2010; 88:2073-82. [PMID: 20336672 DOI: 10.1002/jnr.22391] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The G-protein-coupled calcium-sensing receptor (CaSR), upon activation by Ca(2+) or other physiologically relevant polycationic molecules, performs diverse functions in the brain. The CaSR is widely expressed in the central nervous system (CNS) and is characterized by a robust increase in its expression during postnatal brain development over adult levels throughout the CNS. Developmental increases in CaSR levels in brain correlate with myelinogenesis. Indeed, neural stem cells differentiating to the oligodendrocyte lineage exhibit the highest CaSR expression compared with those differentiating to astrocytic or neuronal lineages. In adult CNS, CaSR has broad relevance in maintaining local ionic homeostasis. CaSR shares an evolutionary relationship with the metabotropic glutamate receptor and forms heteromeric complexes with the type B-aminobutyric acid receptor subunits that affects its cell surface expression, activation, signaling, and functions. In normal physiology as well as in pathologic conditions, CaSR is activated by signals arising from mineral ions, amino acids, polyamines, glutathione, and amyloid-beta in conjunction with Ca(2+) and other divalent cationic ligands. CaSR activation regulates membrane excitability of neurons and glia and affects myelination, olfactory and gustatory signal integration, axonal and dendritic growth, and gonadotrophin-releasing hormonal-neuronal migration. Insofar as the CaSR is a clinically important therapeutic target for parathyroid disorders, development of its agonists or antagonists as therapeutics for CNS disorder could be a major breakthrough.
Collapse
Affiliation(s)
- Sanghamitra Bandyopadhyay
- Developmental Toxicology, Indian Institute of Toxicology Research (Council of Scientific and Industrial Rsearch; CSIR), Lucknow, India
| | | | | |
Collapse
|
52
|
Lukasiewicz S, Polit A, Kędracka-Krok S, Wędzony K, Maćkowiak M, Dziedzicka-Wasylewska M. Hetero-dimerization of serotonin 5-HT(2A) and dopamine D(2) receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1347-58. [PMID: 20831885 DOI: 10.1016/j.bbamcr.2010.08.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 08/11/2010] [Accepted: 08/25/2010] [Indexed: 12/29/2022]
Abstract
In the present study, detailed information is presented on the hetero-dimerization of the serotonin 5-HT(2A) receptor and the dopamine D(2) receptor. Biophysical approaches (fluorescence spectroscopy as well as fluorescence lifetime microscopy) were used to determine the degree of fluorescence resonance energy transfer (FRET) between cyan and yellow fluorescent protein labeled receptor variants co-expressed in human embryonic kidney 293 cells (HEK293). Recorded data demonstrate the existence of energy transfer between the wild-type forms of 5-HT(2A)R and D(2)R, pointing toward the formation of hetero-5-HT(2A)R/D(2)R dimers and homo-5-HT(2A)R/5-HT(2A)R dimers. Moreover, the present study investigates the role of specific motifs (one containing adjacent arginine residues (217RRRRKR222) in the third intracellular loop (ic3) of D(2)R, and the other consisting of acidic glutamate residues (454EE455) in the C-tail of (5-HT(2A)R) in the formation of noncovalent complexes between these receptors. Our results suggest that these regions of 5-HT(2A)R and D(2)R may be involved in the interaction between these two proteins. On the other hand, the above-mentioned motifs do not play an important role in the homo-dimerization of these receptors. Furthermore, we estimated the influence of specific receptor ligands on the dimerization processes. Agonists (DOI and quinpirole) and antagonists (ketanserin and butaclamol) cause different effects on FRET efficiency depending on whether homo- or hetero-complexes are present. These data may have therapeutic implications, since (using the immunofluorescence double labeling protocols) the co-localization of these two receptors was demonstrated in the medial prefrontal cortex and pars reticulate of the substantia nigra of the rat brain.
Collapse
Affiliation(s)
- Sylwia Lukasiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
53
|
Hipser C, Bushlin I, Gupta A, Gomes I, Devi LA. Role of antibodies in developing drugs that target G-protein-coupled receptor dimers. THE MOUNT SINAI JOURNAL OF MEDICINE, NEW YORK 2010; 77:374-80. [PMID: 20687183 PMCID: PMC2917817 DOI: 10.1002/msj.20199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
G-protein-coupled receptors are important molecular targets in drug discovery. These receptors play a pivotal role in physiological signaling pathways and are targeted by nearly 50% of currently available drugs. Mounting evidence suggests that G-protein-coupled receptors form dimers, and various studies have shown that dimerization is necessary for receptor maturation, signaling, and trafficking. However, the physiological implications of dimerization in vivo have not been well explored because detection of GPCR dimers in endogenous systems has been a challenging task. One exciting new approach to this challenge is the generation of antibodies against specific G-protein-coupled receptor dimers. Such antibodies could be used as tools for characterization of heteromer-specific function; as reagents for their purification, tissue localization, and regulation in vivo; and as probes for mapping their functional domains. In addition, such antibodies could serve as alternative ligands for G-protein-coupled receptor heteromers. Thus, heteromer-specific antibodies represent novel tools for the exploration and manipulation of G-protein-coupled receptor-dimer pharmacology.
Collapse
Affiliation(s)
- Chris Hipser
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
54
|
Chen Y, Yao Y, Sumi Y, Li A, To UK, Elkhal A, Inoue Y, Woehrle T, Zhang Q, Hauser C, Junger WG. Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci Signal 2010; 3:ra45. [PMID: 20530802 DOI: 10.1126/scisignal.2000549] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Efficient activation of neutrophils is a key requirement for effective immune responses. We found that neutrophils released cellular adenosine triphosphate (ATP) in response to exogenous stimuli such as formylated bacterial peptides and inflammatory mediators that activated Fcgamma, interleukin-8, C5a complement, and leukotriene B(4) receptors. Stimulation of the formyl peptide receptor (FPR) led to ATP release through pannexin-1 (panx1) hemichannels, and FPRs colocalized with P2Y2 nucleotide receptors on the cell surface to form a purinergic signaling system that facilitated neutrophil activation. Disruption of this purinergic signaling system by inhibiting or silencing panx1 hemichannels or P2Y2 receptors blocked neutrophil activation and impaired innate host responses to bacterial infection. Thus, purinergic signaling is a fundamental mechanism required for neutrophil activation and immune defense.
Collapse
Affiliation(s)
- Yu Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Pisterzi LF, Jansma DB, Georgiou J, Woodside MJ, Chou JTC, Angers S, Raicu V, Wells JW. Oligomeric size of the m2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer. J Biol Chem 2010; 285:16723-38. [PMID: 20304928 PMCID: PMC2878013 DOI: 10.1074/jbc.m109.069443] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 03/07/2010] [Indexed: 11/06/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET), measured by fluorescence intensity-based microscopy and fluorescence lifetime imaging, has been used to estimate the size of oligomers formed by the M(2) muscarinic cholinergic receptor. The approach is based on the relationship between the apparent FRET efficiency within an oligomer of specified size (n) and the pairwise FRET efficiency between a single donor and a single acceptor (E). The M(2) receptor was fused at the N terminus to enhanced green or yellow fluorescent protein and expressed in Chinese hamster ovary cells. Emission spectra were analyzed by spectral deconvolution, and apparent efficiencies were estimated by donor-dequenching and acceptor-sensitized emission at different ratios of enhanced yellow fluorescent protein-M(2) receptor to enhanced green fluorescent protein-M(2) receptor. The data were interpreted in terms of a model that considers all combinations of donor and acceptor within a specified oligomer to obtain fitted values of E as follows: n = 2, 0.495 +/- 0.019; n = 4, 0.202 +/- 0.010; n = 6, 0.128 +/- 0.006; n = 8, 0.093 +/- 0.005. The pairwise FRET efficiency determined independently by fluorescence lifetime imaging was 0.20-0.24, identifying the M(2) receptor as a tetramer. The strategy described here yields an explicit estimate of oligomeric size on the basis of fluorescence properties alone. Its broader application could resolve the general question of whether G protein-coupled receptors exist as dimers or larger oligomers. The size of an oligomer has functional implications, and such information can be expected to contribute to an understanding of the signaling process.
Collapse
Affiliation(s)
- Luca F. Pisterzi
- From The Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - David B. Jansma
- the Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - John Georgiou
- The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Michael J. Woodside
- the Imaging Facility, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, and
| | - Judy Tai-Chieh Chou
- From The Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Stéphane Angers
- From The Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Valerică Raicu
- the Departments of Physics and Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin 53211
| | - James W. Wells
- From The Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
56
|
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | | |
Collapse
|
57
|
Krishnan B, Centeno M, Pollandt S, Fu Y, Genzer K, Liu J, Gallagher JP, Shinnick-Gallagher P. Dopamine receptor mechanisms mediate corticotropin-releasing factor-induced long-term potentiation in the rat amygdala following cocaine withdrawal. Eur J Neurosci 2010; 31:1027-42. [PMID: 20377617 PMCID: PMC3118420 DOI: 10.1111/j.1460-9568.2010.07148.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Corticotropin-releasing factor (CRF) in the amygdala is involved in stress responses. Moreover, dopaminergic neurotransmission in the brain reward system including the amygdala plays a significant role in the pathology of cocaine addiction. The present study analysed CRF-induced synaptic plasticity, its pharmacological sensitivity and interactions with the dopamine (DA) system in the basolateral to lateral capsula central amygdala (lcCeA) pathway after a 2-week withdrawal from repeated cocaine administration. A physiologically relevant CRF concentration (25 nm) induced long-term potentiation (LTP) that was enhanced after cocaine withdrawal. In saline-treated rats, CRF-induced LTP was mediated through N-methyl-d-aspartate (NMDA) receptors, L-type voltage-gated calcium channels (L-VGCCs) and CRF(1) receptors. However, in cocaine-withdrawn animals, activation of CRF(1) and CRF(2) receptors was found to enhance LTP. This enhanced CRF-induced LTP after cocaine withdrawal was mediated through endogenous activation of both D1- and D2-like receptors. Furthermore, expression of the D1 receptor (D1R) but not the D2R, D3R, D4R or D5R was significantly increased after cocaine withdrawal. CRF(1) but not CRF(2) protein expression was increased, suggesting that elevated levels of these proteins contributed to the enhancement of CRF-induced LTP during cocaine withdrawal. CRF interactions with the DA system in the amygdala may represent a fundamental neurochemical and cellular mechanism linking stress to cocaine-induced neuronal plasticity.
Collapse
Affiliation(s)
- Balaji Krishnan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Beaumont KA, Liu YY, Sturm RA. The melanocortin-1 receptor gene polymorphism and association with human skin cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:85-153. [PMID: 20374726 DOI: 10.1016/s1877-1173(09)88004-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a key gene involved in the regulation of melanin synthesis and encodes a G-protein coupled receptor expressed on the surface of the melanocyte in the skin and hair follicles. MC1R activation after ultraviolet radiation exposure results in the production of the dark eumelanin pigment and the tanning process in humans, providing physical protection against DNA damage. The MC1R gene is highly polymorphic in Caucasian populations with a number of MC1R variant alleles associated with red hair, fair skin, freckling, poor tanning, and increased risk of melanoma and nonmelanoma skin cancer. Variant receptors have shown alterations in biochemical function, largely due to intracellular retention or impaired G-protein coupling, but retain some signaling ability. The association of MC1R variant alleles with skin cancer risk remains after correction for pigmentation phenotype, indicating regulation of nonpigmentary pathways. Notably, MC1R activation has been linked to DNA repair and may also contribute to the regulation of immune responses.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
59
|
Abstract
Heterotrimeric G proteins (Galpha, Gbeta/Ggamma subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane alpha-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Galpha subunit. This leads to the dissociation of Gbeta/Ggamma dimer from Galpha. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Galpha-GTP is hydrolyzed to GDP and Galpha becomes inactive (Galpha-GDP), which leads to its re-association with the Gbeta/Ggamma dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role.
Collapse
Affiliation(s)
- Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
60
|
Guan R, Wu X, Feng X, Zhang M, Hébert TE, Segaloff DL. Structural determinants underlying constitutive dimerization of unoccupied human follitropin receptors. Cell Signal 2009; 22:247-56. [PMID: 19800402 DOI: 10.1016/j.cellsig.2009.09.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/14/2009] [Indexed: 01/07/2023]
Abstract
The human follitropin receptor (hFSHR) is a G protein-coupled receptor (GPCR) central to reproductive physiology that is composed of an extracellular domain (ECD) fused to a serpentine region. Using bioluminescence resonance energy transfer (BRET) in living cells, we show that hFSHR dimers form constitutively during their biosynthesis. Mutations in TM1 and TM4 had no effect on hFSHR dimerization, alone or when combined with mutation of Tyr(110) in the ECD, a residue predicted to mediate dimerization of the soluble hormone-binding portion of the ECD complexed with FSH (Q. Fan and W. Hendrickson, Nature 433:269-277, 2005). Expressed individually, the serpentine region and a membrane-anchored form of the hFSHR ECD each exhibited homodimerization, suggesting that both domains contribute to dimerization of the full-length receptor. However, even in the context of only the membrane-anchored ECD, mutation of Tyr(110) to alanine did not inhibit dimerization. The full-length hFSHR and the membrane-anchored ECD were then each engineered to introduce a consensus site for N-linked glycosylation at residue 110. Despite experimental validation of the presence of carbohydrate on residue 110, we failed to observe disruption of dimerization of either the full-length hFSHR or membrane-anchored ECD containing the inserted glycan wedge. Taken altogether, our data suggest that both the serpentine region and the ECD contribute to hFSHR dimerization and that the dimerization interface of the unoccupied hFSHR does not involve Tyr(110) of the ECD.
Collapse
Affiliation(s)
- Rongbin Guan
- Department of Molecular Physiology and Biophysics, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, United States
| | | | | | | | | | | |
Collapse
|
61
|
Clozapine administration modifies neurotensin effect on synaptosomal membrane Na+, K+ -ATPase activity. Neurochem Res 2009; 34:2226-32. [PMID: 19562485 DOI: 10.1007/s11064-009-0018-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
Na+, K+-ATPase is inhibited by neurotensin, an effect which involves the peptide high affinity receptor (NTS1). Neurotensin effect on cerebral cortex synaptosomal membrane Na+, K+-ATPase activity of rats injected i.p. with antipsychotic clozapine was studied. Whereas 3.5 x 10(-6) M neurotensin decreased 44% Na+, K+-ATPase activity in the controls, the peptide failed to modify enzyme activity 30 min after a single 3.0, 10.0 and 30.0 mg/kg clozapine dose. Neurotensin decreased Na+, K+-ATPase activity 40 or 20% 18 h after 3.0 or 5.6 mg/kg clozapine administration, respectively, and lacked inhibitory effect 18 h after 17.8 and 30.0 mg/kg clozapine doses. Results indicated that the clozapine treatment differentially modifies the further effect of neurotensin on synaptosomal membrane Na+, K+-ATPase activity according to time and dose conditions employed. Taken into account that clozapine blocks the dopaminergic D2 receptor, findings obtained favor the view of an interplay among neurotensinergic receptor, dopaminergic D2 receptor and Na+, K+-ATPase at synaptic membranes.
Collapse
|
62
|
Kuszak AJ, Pitchiaya S, Anand JP, Mosberg HI, Walter NG, Sunahara RK. Purification and functional reconstitution of monomeric mu-opioid receptors: allosteric modulation of agonist binding by Gi2. J Biol Chem 2009; 284:26732-41. [PMID: 19542234 DOI: 10.1074/jbc.m109.026922] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite extensive characterization of the mu-opioid receptor (MOR), the biochemical properties of the isolated receptor remain unclear. In light of recent reports, we proposed that the monomeric form of MOR can activate G proteins and be subject to allosteric regulation. A mu-opioid receptor fused to yellow fluorescent protein (YMOR) was constructed and expressed in insect cells. YMOR binds ligands with high affinity, displays agonist-stimulated [(35)S]guanosine 5'-(gamma-thio)triphosphate binding to Galpha(i), and is allosterically regulated by coupled G(i) protein heterotrimer both in insect cell membranes and as purified protein reconstituted into a phospholipid bilayer in the form of high density lipoprotein particles. Single-particle imaging of fluorescently labeled receptor indicates that the reconstituted YMOR is monomeric. Moreover, single-molecule imaging of a Cy3-labeled agonist, [Lys(7), Cys(8)]dermorphin, illustrates a novel method for studying G protein-coupled receptor-ligand binding and suggests that one molecule of agonist binds per monomeric YMOR. Together these data support the notion that oligomerization of the mu-opioid receptor is not required for agonist and antagonist binding and that the monomeric receptor is the minimal functional unit in regard to G protein activation and strong allosteric regulation of agonist binding by G proteins.
Collapse
Affiliation(s)
- Adam J Kuszak
- Departments of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
63
|
Harikumar KG, Miller LJ. Monitoring the state of cholecystokinin receptor oligomerization after ligand binding using decay of time-resolved fluorescence anisotropy. Ann N Y Acad Sci 2009; 1144:21-7. [PMID: 19076359 DOI: 10.1196/annals.1418.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oligomeric complexes of G protein-coupled receptors (GPCRs) are now commonly recognized and can provide a mechanism for regulation of signaling systems. Receptor oligomerization has been most extensively studied using coimmunoprecipitation and bioluminescence or fluorescence resonance energy-transfer techniques. Here, we have utilized decay of time-resolved fluorescence anisotropy of yellow fluorescent protein-labeled cholecystokinin receptor constructs to examine the state of oligomerization of this receptor in living cells. The rotational correlation times established that the cholecystokinin receptor is constitutively present in an oligomeric state that is dissociated in response to agonist occupation. In contrast, antagonist occupation failed to modify this signal, leaving the oligomeric structure intact. This dynamic technique complements the other biochemical and steady-state fluorescence techniques to establish the presence of oligomeric receptor complexes in living cells.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | |
Collapse
|
64
|
Łukasiewicz S, Faron-Górecka A, Dobrucki J, Polit A, Dziedzicka-Wasylewska M. Studies on the role of the receptor protein motifs possibly involved in electrostatic interactions on the dopamine D1 and D2 receptor oligomerization. FEBS J 2009; 276:760-75. [PMID: 19143836 DOI: 10.1111/j.1742-4658.2008.06822.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the influence of an epitope from the third intracellular loop (ic3) of the dopamine D(2) receptor, which contains adjacent arginine residues (217RRRRKR222), and an acidic epitope from the C-terminus of the dopamine D(1) receptor (404EE405) on the receptors' localization and their interaction. We studied receptor dimer formation using fluorescence resonance energy transfer. Receptor proteins were tagged with fluorescence proteins and expressed in HEK293 cells. The degree of D(1)-D(2) receptor heterodimerization strongly depended on the number of Arg residues replaced by Ala in the ic3 of D(2)R, which may suggest that the indicated region of ic3 in D(2)R might be involved in interactions between two dopamine receptors. In addition, the subcellular localization of these receptors in cells expressing both receptors D(1)-cyan fluorescent protein, D(2)-yellow fluorescent protein, and various mutants was examined by confocal microscopy. Genetic manipulations of the Arg-rich epitope induced alterations in the localization of the resulting receptor proteins, leading to the conclusion that this epitope is responsible for the cellular localization of the receptor. The lack of energy transfer between the genetic variants of yellow fluorescent protein-tagged D(2)R and cyan fluorescent protein-tagged D(1)R may result from differing localization of these proteins in the cell rather than from the possible role of the D(2)R basic domain in the mechanism of D(1)-D(2) receptor heterodimerization. However, we find that the acidic epitope from the C-terminus of the dopamine D(1) receptor is engaged in the heterodimerization process.
Collapse
Affiliation(s)
- Sylwia Łukasiewicz
- Department of Physical Biochemistry, Jagiellonian University, Kraków, Poland
| | | | | | | | | |
Collapse
|
65
|
Guan R, Feng X, Wu X, Zhang M, Zhang X, Hébert TE, Segaloff DL. Bioluminescence resonance energy transfer studies reveal constitutive dimerization of the human lutropin receptor and a lack of correlation between receptor activation and the propensity for dimerization. J Biol Chem 2009; 284:7483-94. [PMID: 19147490 DOI: 10.1074/jbc.m809150200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies from our laboratory using co-immunoprecipitation techniques suggested that the human lutropin receptor (hLHR) constitutively self-associates into dimers/oligomers and that agonist treatment of cells either increased hLHR dimerization/oligomerization and/or stabilized hLHR dimers/oligomers to detergent solubilization (Tao, Y. X., Johnson, N. B., and Segaloff, D. L. (2004) J. Biol. Chem. 279, 5904-5914). In this study, bioluminescence resonance energy transfer (BRET(2)) analyses confirmed that the hLHR constitutively self-associates in living cells. After subcellular fractionation, hLHR dimers/oligomers were detected in both the plasma membrane and endoplasmic reticulum (ER). Further evidence supporting the constitutive formation of hLHR dimer/oligomers in the ER is provided by data showing homodimerization of misfolded hLHR mutants that are retained in the ER. These mutants, when co-expressed with wild-type receptor, are shown by BRET(2) to heterodimerize, accounting for their dominant-negative effects on cell surface receptor expression. Hormone desorption assays using intact cells demonstrate allosterism between hLHR protomers, indicating functional cell surface hLHR dimers. However, quantitative BRET(2) analyses in intact cells indicate a lack of effect of agonist on the propensity of the hLHR to dimerize. Using purified plasma membranes, human chorionic gonadotropin was similarly observed to have no effect on the BRET(2) signal. An examination of the propensity for constitutively active and signaling inactive hLHR mutants to dimerize further showed no correlation between dimerization and the activation state of the hLHR. Taken altogether, our data suggest that hLHR dimers/oligomers are formed early in the biosynthetic pathway in the ER, are constitutively expressed on the plasma membrane, and are not affected by the activation state of the hLHR.
Collapse
Affiliation(s)
- Rongbin Guan
- Department of Molecular Biophysics and Physiology, The Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Xue C, Hsueh YP, Heitman J. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 2008; 32:1010-32. [PMID: 18811658 PMCID: PMC2998294 DOI: 10.1111/j.1574-6976.2008.00131.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors and are responsible for transducing extracellular signals into intracellular responses that involve complex intracellular-signaling networks. This review highlights recent research advances in fungal GPCRs, including classification, extracellular sensing, and G protein-signaling regulation. The involvement of GPCRs in pheromone and nutrient sensing has been studied extensively over the past decade. Following recent advances in fungal genome sequencing projects, a panoply of GPCR candidates has been revealed and some have been documented to play key roles sensing diverse extracellular signals, such as pheromones, sugars, amino acids, nitrogen sources, and even photons. Identification and deorphanization of additional putative GPCRs may require the development of new research tools. Here, we compare research on GPCRs in fungi with information derived from mammalian systems to provide a useful road map on how to better understand ligand-GPCR-G protein interactions in general. We also emphasize the utility of yeast as a discovery tool for systemic studies of GPCRs from other organisms.
Collapse
Affiliation(s)
- Chaoyang Xue
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Yen-Ping Hsueh
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
67
|
In vitro characterization of ligand-induced oligomerization of the S. cerevisiae G-protein coupled receptor, Ste2p. Biochim Biophys Acta Gen Subj 2008; 1790:1-7. [PMID: 18996443 DOI: 10.1016/j.bbagen.2008.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 10/10/2008] [Accepted: 10/10/2008] [Indexed: 01/17/2023]
Abstract
BACKGROUND The S. cerevisiae alpha-factor receptor, Ste2p, is a G-protein coupled receptor that plays key roles in yeast signaling and mating. Oligomerization of Ste2p has previously been shown to be important for intracellular trafficking, receptor processing and endocytosis. However the role of ligand in receptor oligomerization remains enigmatic. METHODS Using functional recombinant forms of purified Ste2p, atomic force microscopy, dynamic light scattering and chemical crosslinking are applied to investigate the role of ligand in Ste2p oligomerization. RESULTS Atomic force microscopy images indicate a molecular height for recombinant Ste2p in the presence of alpha-factor nearly double that of Ste2p alone. This observation is supported by complementary dynamic light scattering measurements which indicate a ligand-induced increase in the polydispersity of the Ste2p hydrodynamic radius. Finally, chemical cross-linking of HEK293 plasma membranes presenting recombinant Ste2p indicates alpha-factor induced stabilization of the dimeric form and higher order oligomeric forms of the receptor upon SDS-PAGE analysis. CONCLUSIONS alpha-factor induces oligomerization of Ste2p in vitro and in membrane. GENERAL SIGNIFICANCE These results provide additional evidence of a possible role for ligand in mediation of Ste2p oligomerization in vivo.
Collapse
|
68
|
Rabiet MJ, Huet E, Boulay F. Complement component 5a receptor oligomerization and homologous receptor down-regulation. J Biol Chem 2008; 283:31038-46. [PMID: 18772131 DOI: 10.1074/jbc.m805260200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most G-protein-coupled receptors (GPCRs) form di(oligo)-meric structures that constitute signaling and trafficking units and might be essential for receptor functions. Cell responses to complement C5a receptor (C5aR) are tightly controlled by receptor desensitization and internalization. To examine the implication of dimerization in C5aR regulation, we generated an NH(2)-terminally modified C5aR mutant, unable to bind C5a, and a phosphorylation-deficient mutant. Neither an intact NH(2) terminus nor the presence of COOH-terminal phosphorylation sites appeared to be required for the formation of C5aR dimers. Upon C5a stimulation, mutant receptors did not internalize when individually expressed. C5a stimulation of cells that co-expressed wild type C5aR together with either unliganded or phosphorylation-deficient mutant resulted in co-internalization of mutant receptors with C5aR. Unliganded GPCRs can be cross-phosphorylated within a heterologous receptor dimer or by second messenger-activated kinases. C5a stimulation of (32)P-labeled cells that co-expressed the unliganded mutant with either C5aR or the phosphorylation-deficient mutant did not induce phosphorylation of the unliganded mutant. We can thus postulate that, in the case of C5aR, the stimulation and phosphorylation of one monomer is enough to lead to dimer internalization. The existence and functional implication of di(oligo)mer formation may be important for an accurate C5aR down-regulation in pathological conditions.
Collapse
Affiliation(s)
- Marie-Josèphe Rabiet
- Laboratoire Biochimie et Biophysique des Systèmes Intégrés, Grenoble F-38054, France.
| | | | | |
Collapse
|
69
|
Pereyra-Alfonso S, Del Valle Armanino M, Vázquez C, Peña C, Rodríguez de Lores Arnaiz G. High-affinity neurotensin receptor is involved in phosphoinositide turnover increase by inhibition of sodium pump in neonatal rat brain. Neurochem Res 2008; 33:2206-13. [PMID: 18758956 DOI: 10.1007/s11064-008-9672-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Accepted: 03/13/2008] [Indexed: 10/21/2022]
Abstract
Phosphoinositide (PI) metabolism is enhanced in neonatal brain by activation of neurotransmitter receptors and by inhibition of the sodium pump with ouabain or endogenous inhibitor termed endobain E. Peptide neurotensin inhibits synaptosomal membrane Na(+), K(+)-ATPase activity, an effect blocked by SR 48692, a selective antagonist for high-affinity neurotensin receptor (NTS1). The purpose of this study was to evaluate potential participation of NTS1 receptor on PI hydrolysis enhancement by sodium pump inhibition. Cerebral cortex miniprisms from neonatal Wistar rats were preloaded with [(3)H]myoinositol in buffer during 60 min and further preincubated for 0 min or 30 min in the absence or presence of SR 48692. Then, ouabain or endobain E were added and incubation proceeded during 20 or 60 min. Reaction was stopped with chloroform/methanol and [(3)H]inositol-phosphates (IPs) accumulation was quantified in the water phase. After 60-min incubation with ouabain, IPs accumulation values reached roughly 500% or 860% in comparison with basal values (100%), if the preincubation was omitted or lasted 30 min, respectively. Values were reduced 50% in the presence of SR 48692. In 20-min incubation experiments, IPs accumulation by ouabain versus basal was 300% or 410% if preincubation was 0 min or 30 min, respectively, an effect blocked 23% or 32% with SR 48692. PI hydrolysis enhancement by endobain E was similarly blocked by SR 48692, being this effect higher when sample incubation with the endogenous inhibitor lasted 60 min versus 20 min. Present results indicate that PI hydrolysis increase by sodium pump inhibition with ouabain or endobain E is partially diminished by SR 48692. It is therefore suggested that NTS1 receptor may be involved in cell signaling system mediated by PI turnover.
Collapse
Affiliation(s)
- Susana Pereyra-Alfonso
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
70
|
Gookin TE, Kim J, Assmann SM. Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: computational prediction and in-vivo protein coupling. Genome Biol 2008; 9:R120. [PMID: 18671868 PMCID: PMC2530877 DOI: 10.1186/gb-2008-9-7-r120] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 04/19/2008] [Accepted: 07/31/2008] [Indexed: 11/10/2022] Open
Abstract
Computational prediction and in vivo protein coupling experiments identify candidate plant G-protein coupled receptors in Arabidopsis, rice and poplar. Background The classic paradigm of heterotrimeric G-protein signaling describes a heptahelical, membrane-spanning G-protein coupled receptor that physically interacts with an intracellular Gα subunit of the G-protein heterotrimer to transduce signals. G-protein coupled receptors comprise the largest protein superfamily in metazoa and are physiologically important as they sense highly diverse stimuli and play key roles in human disease. The heterotrimeric G-protein signaling mechanism is conserved across metazoa, and also readily identifiable in plants, but the low sequence conservation of G-protein coupled receptors hampers the identification of novel ones. Using diverse computational methods, we performed whole-proteome analyses of the three dominant model plant species, the herbaceous dicot Arabidopsis thaliana (mouse-eared cress), the monocot Oryza sativa (rice), and the woody dicot Populus trichocarpa (poplar), to identify plant protein sequences most likely to be GPCRs. Results Our stringent bioinformatic pipeline allowed the high confidence identification of candidate G-protein coupled receptors within the Arabidopsis, Oryza, and Populus proteomes. We extended these computational results through actual wet-bench experiments where we tested over half of our highest ranking Arabidopsis candidate G-protein coupled receptors for the ability to physically couple with GPA1, the sole Gα in Arabidopsis. We found that seven out of eight tested candidate G-protein coupled receptors do in fact interact with GPA1. We show through G-protein coupled receptor classification and molecular evolutionary analyses that both individual G-protein coupled receptor candidates and candidate G-protein coupled receptor families are conserved across plant species and that, in some cases, this conservation extends to metazoans. Conclusion Our computational and wet-bench results provide the first step toward understanding the diversity, conservation, and functional roles of plant candidate G-protein coupled receptors.
Collapse
Affiliation(s)
- Timothy E Gookin
- Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA.
| | | | | |
Collapse
|
71
|
Witt M, Ślusarz M, Ciarkowski J. Molecular Modeling of Vasopressin V2 Receptor Tetramer in Hydrated Lipid Membrane. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/qsar.200730082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
72
|
Durán-Prado M, Malagón MM, Gracia-Navarro F, Castaño JP. Dimerization of G protein-coupled receptors: new avenues for somatostatin receptor signalling, control and functioning. Mol Cell Endocrinol 2008; 286:63-8. [PMID: 18242821 DOI: 10.1016/j.mce.2007.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/11/2007] [Indexed: 12/24/2022]
Abstract
Somatostatin acts through binding and activation of five G protein-coupled receptors (GPCRs) termed somatostatin receptors or ssts (sst1-sst5). These receptors, as many other GPCRs are not just monomers but display a differential tendency to homodimerize, which varies depending on the sst subtype. Moreover, there is evidence that pairs of distinct receptors such as ssst2-sst3 and sst1-sst5 crosstalk by establishing a physical interaction, which results in altered pharmacological or/and functional properties. In addition, ssts can also heterodimerize with other families of GPCRs, as opioid and dopamine receptors, originating heterodimers which properties are different to those of their separated receptors. The present review summarizes the current knowledge on ssts homodimerization, heterodimerization, and interaction with other GPCRs, as well as how interactions affect different aspects of the normal functioning of these receptors.
Collapse
Affiliation(s)
- Mario Durán-Prado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | | | | | | |
Collapse
|
73
|
Desrues L, Lefebvre T, Diallo M, Gandolfo P, Leprince J, Chatenet D, Vaudry H, Tonon MC, Castel H. Effect of GABA A receptor activation on UT-coupled signaling pathways in rat cortical astrocytes. Peptides 2008; 29:727-34. [PMID: 18355946 DOI: 10.1016/j.peptides.2008.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/21/2008] [Accepted: 01/25/2008] [Indexed: 02/07/2023]
Abstract
Cultured rat cortical astrocytes express two types of urotensin II (UII) binding sites: a high affinity site corresponding to the UT (GPR14) receptor and a low affinity site that has not been fully characterized. Activation of the high affinity site in astroglial cells stimulates polyphosphoinositide (PIP) turnover and provokes an increase in intracellular calcium concentration. We have hypothesized that the existence of distinct affinity sites for UII in rat cortical astrocytes could be accounted for by a possible cross-talk between UT and the ligand-gated ion channel GABA(A) receptor (GABA A R). Exposure of cultured astrocytes to UII provoked a bell-shaped increase in cAMP production, with an EC50 stimulating value of 0.83+/-0.04 pM, that was totally blocked in the presence of the adenylyl cyclase inhibitor SQ 22,536. In contrast, UII was found to inhibit forskolin-induced cAMP formation. In the presence of the specific PKA inhibitor H89, UII provoked a sustained stimulation of cAMP formation. Inhibition of PKA by H89 strongly reduced the stimulatory effect of UII on PIP metabolism. GABA and the GABA A R agonist isoguvacine provoked a marked inhibition of UII-induced cAMP synthesis and a significant reduction of UII-evoked PIP turnover. These data suggest that functional interaction between UT and GABA(A)R negatively regulates coupling of UT to the classical PLC/IP(3) signaling cascade as well as to the adenylyl cyclase/PKA pathway.
Collapse
Affiliation(s)
- Laurence Desrues
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Weng J, Luo J, Cheng X, Jin C, Zhou X, Qu J, Tu L, Ai D, Li D, Wang J, Martin JF, Amendt BA, Liu M. Deletion of G protein-coupled receptor 48 leads to ocular anterior segment dysgenesis (ASD) through down-regulation of Pitx2. Proc Natl Acad Sci U S A 2008; 105:6081-6. [PMID: 18424556 PMCID: PMC2329706 DOI: 10.1073/pnas.0708257105] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Indexed: 11/18/2022] Open
Abstract
The development of the anterior segment of the mammalian eye is critical for normal ocular function, whereas abnormal development can cause glaucoma, a leading cause of blindness in the world. We report that orphan G protein-coupled receptor 48 (Gpr48/LGR4) plays an important role in the development of the anterior segment structure. Disruption of Gpr48 causes a wide spectrum of anterior segment dysgenesis (ASD), including microphthalmia, iris hypoplasia, irdiocorneal angle malformation, cornea dysgenesis, and cataract. Detailed analyses reveal that defective iris myogenesis and ocular extracellular matrix homeostasis are detected at early postnatal stages of eye development, whereas ganglion cell loss, inner nuclear layer thinness, and early onset of glaucoma were detected in 6-month-old Gpr48(-/-) mice. To determine the molecular mechanism of ASD caused by the deletion of Gpr48, we performed gene expression analyses and revealed dramatic down-regulation of Pitx2 in homozygous knockout mice. In vitro studies with the constitutively active Gpr48 mutant receptor demonstrate that Pitx2 is a direct target of the Gpr48-mediated cAMP-CREB signaling pathway in regulating anterior segment development, suggesting a role of Gpr48 as a potential therapeutic target of ASD.
Collapse
Affiliation(s)
- Jinsheng Weng
- *Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | - Jian Luo
- *Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; and
| | - Xuhong Cheng
- *Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | - Chang Jin
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College; Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P.R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College; Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P.R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College; Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P.R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
| | - LiLi Tu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College; Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P.R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
| | - Di Ai
- *Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | - Dali Li
- *Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; and
| | - Jun Wang
- *Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | - James F. Martin
- *Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | - Brad A. Amendt
- *Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | - Mingyao Liu
- *Institute of Biosciences and Technology and Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; and
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College; Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P.R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
| |
Collapse
|
75
|
Dalrymple MB, Pfleger KDG, Eidne KA. G protein-coupled receptor dimers: functional consequences, disease states and drug targets. Pharmacol Ther 2008; 118:359-71. [PMID: 18486226 DOI: 10.1016/j.pharmthera.2008.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
With an ever-expanding need for reliable therapeutic agents that are highly effective and exhibit minimal deleterious side effects, a greater understanding of the mechanisms underlying G protein-coupled receptor (GPCR) regulation is fundamental. GPCRs comprise more than 30% of all therapeutic drug targets and it is likely that this will only increase as more orphan GPCRs are identified. The past decade has seen a dramatic shift in the prevailing concept of how GPCRs function, in particular the growing acceptance that GPCRs are capable of interacting with one another at a molecular level to form complexes, with significantly different pharmacological properties to their monomeric selves. While the ability of like-receptors to associate and form homodimers raises some interesting mechanistic issues, the possibility that unlike-receptors could heterodimerise in certain tissue types, producing a functionally unique signalling complex that binds specific ligands, provides an invaluable opportunity to refine and redefine pharmacological interventions with greater specificity and efficacy.
Collapse
Affiliation(s)
- Matthew B Dalrymple
- Laboratory for Molecular Endocrinology - GPCRs, Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | | | | |
Collapse
|
76
|
Taylor MS, Fung HK, Rajgaria R, Filizola M, Weinstein H, Floudas CA. Mutations affecting the oligomerization interface of G-protein-coupled receptors revealed by a novel de novo protein design framework. Biophys J 2008; 94:2470-81. [PMID: 18178645 PMCID: PMC2267121 DOI: 10.1529/biophysj.107.117622] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 11/01/2007] [Indexed: 11/18/2022] Open
Abstract
Specific functional and pharmacological properties have recently been ascribed to G-protein-coupled receptor (GPCR) dimers/oligomers. Because the association of two identical or two distinct GPCR monomers seems to be required to elicit receptor function, it is necessary to understand the exact nature of this interaction. We present here a novel method for de novo protein design and its application to the prediction of mutations that can stabilize or destabilize a GPCR dimer while maintaining the monomer's native fold. To test the efficacy of this new method, the dimer of the single-spanned transmembrane domain of glycophorin A was used as a model system. Experimental data from mutagenesis of the helix-helix interface are compared with computational predictions at that interface, and the model's results are found to be consistent with the experimental findings. A flexible template was developed for the rhodopsin homodimer at atomic resolution and used to predict sets of three and five mutations. The results are found to be consistent across eight case studies, with favored mutations at each position. Mutation sets predicted to be the most disruptive at the dimerization interface are found to be less specific to the flexible template than sets predicted to be less disruptive.
Collapse
Affiliation(s)
- Martin S Taylor
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | |
Collapse
|
77
|
Hendriks-Balk MC, Peters SLM, Michel MC, Alewijnse AE. Regulation of G protein-coupled receptor signalling: focus on the cardiovascular system and regulator of G protein signalling proteins. Eur J Pharmacol 2008; 585:278-91. [PMID: 18410914 DOI: 10.1016/j.ejphar.2008.02.088] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 01/18/2008] [Accepted: 02/06/2008] [Indexed: 11/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are involved in many biological processes. Therefore, GPCR function is tightly controlled both at receptor level and at the level of signalling components. Well-known mechanisms by which GPCR function can be regulated comprise desensitization/resensitization processes and GPCR up- and downregulation. GPCR function can also be regulated by several proteins that directly interact with the receptor and thereby modulate receptor activity. An additional mechanism by which receptor signalling is regulated involves an emerging class of proteins, the so-called regulators of G protein signalling (RGS). In this review we will describe some of these control mechanisms in more detail with some specific examples in the cardiovascular system. In addition, we will provide an overview on RGS proteins and the involvement of RGS proteins in cardiovascular function.
Collapse
Affiliation(s)
- Mariëlle C Hendriks-Balk
- Department Pharmacology and Pharmacotherapy, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
78
|
Abstract
Acromegaly is a chronic, debilitating disease caused by chronic growth hormone (GH) hypersecretion which results in chronic medical comorbidities, poor quality of life and high mortality rates. Successful treatment can improve clinical signs and symptoms and normalize mortality rates. Over 95% of acromegaly is caused by a somatotroph adenoma of the pituitary, and the first-line treatment is generally transsphenoidal surgery, which can be curative in 50-60% of patients. Nonetheless, high rates of persistent acromegaly following surgery and the limited efficacy of radiation therapy necessitate chronic medical treatment for many patients. Somatostatin analogues have become the preferred first-line medical therapy for many practitioners, as they achieve better biochemical and direct tumor control than the dopamine agonists, and long-acting preparations make once monthly administration possible. Cabergoline, a dopamine agonist, offers a lower-cost option and may be effective in patients with a pituitary tumor that co-secretes GH and prolactin. Pegvisomant is a GH receptor antagonist that produces exceptional biochemical response rates but lacks any direct effects on the tumor, which may limit its effectiveness as life-long monotherapy. Combinations of these three drug classes have not been rigorously studied, and preliminary trials do not suggest improved clinical outcomes. While medical treatment options for acromegaly have significantly improved over the last 30 years, limitations remain, and a multi-specialty team approach is necessary for the effective long-term management of patients with acromegaly.
Collapse
Affiliation(s)
- Zachary M Bush
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA.
| | | |
Collapse
|
79
|
Cheng Z, Tu C, Rodriguez L, Chen TH, Dvorak MM, Margeta M, Gassmann M, Bettler B, Shoback D, Chang W. Type B gamma-aminobutyric acid receptors modulate the function of the extracellular Ca2+-sensing receptor and cell differentiation in murine growth plate chondrocytes. Endocrinology 2007; 148:4984-92. [PMID: 17615148 DOI: 10.1210/en.2007-0653] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular calcium-sensing receptors (CaRs) and metabotropic or type B gamma-aminobutyric acid receptors (GABA-B-Rs), two closely related members of family C of the G protein-coupled receptor superfamily, dimerize in the formation of signaling and membrane-anchored receptor complexes. We tested whether CaRs and two GABA-B-R subunits (R1 and R2) are expressed in mouse growth plate chondrocytes (GPCs) by PCR and immunocytochemistry and whether interactions between these receptors influence the expression and function of the CaR and extracellular Ca(2+)-mediated cell differentiation. Both CaRs and the GABA-B-R1 and -R2 were expressed in the same zones of the growth plate and extensively colocalized in intracellular compartments and on the membranes of cultured GPCs. The GABA-B-R1 co-immunoprecipitated with the CaR, confirming a physical interaction between the two receptors in GPCs. In vitro knockout of GABA-B-R1 genes, using a Cre-lox recombination strategy, blunted the ability of high extracellular Ca(2+) concentration to activate phospholipase C and ERK1/2, suppressed cell proliferation, and enhanced apoptosis in cultured GPCs. In GPCs, in which the GABA-B-R1 was acutely knocked down, there was reduced expression of early chondrocyte markers, aggrecan and type II collagen, and increased expression of the late differentiation markers, type X collagen and osteopontin. These results support the idea that physical interactions between CaRs and GABA-B-R1s modulate the growth and differentiation of GPCs, potentially by altering the function of CaRs.
Collapse
Affiliation(s)
- Zhiqiang Cheng
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Xia Y, Zhou CC, Ramin SM, Kellems RE. Angiotensin receptors, autoimmunity, and preeclampsia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:3391-5. [PMID: 17785770 PMCID: PMC3262172 DOI: 10.4049/jimmunol.179.6.3391] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Preeclampsia is a pregnancy-induced hypertensive disorder that causes substantial maternal and fetal morbidity and mortality. Despite being a leading cause of maternal death and a major contributor to maternal and perinatal morbidity, the mechanisms responsible for the pathogenesis of preeclampsia are poorly understood. Recent studies indicate that women with preeclampsia have autoantibodies that activate the angiotensin receptor, AT1, and that autoantibody-mediated receptor activation contributes to pathophysiology associated with preeclampsia. The research reviewed here raises the intriguing possibility that preeclampsia may be a pregnancy-induced autoimmune disease.
Collapse
Affiliation(s)
- Yang Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
81
|
Gehlert DR, Schober DA, Morin M, Berglund MM. Co-expression of neuropeptide Y Y1 and Y5 receptors results in heterodimerization and altered functional properties. Biochem Pharmacol 2007; 74:1652-64. [PMID: 17897631 DOI: 10.1016/j.bcp.2007.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 12/01/2022]
Abstract
Centrally administered neuropeptide Y (NPY) produces anxiolytic and orexigenic effects by interacting with Y1 and Y5 receptors that are colocalized in many brain regions. Therefore, we tested the hypothesis that co-expression of Y1 and Y5 receptors results in heterodimerization, altered pharmacological properties and altered desensitization. To accomplish this, the carboxyl-termini of Y1 and Y5 receptors were fused with Renilla luciferase and green fluorescent protein and the proximity of the tagged receptors assessed using bioluminescent resonance energy transfer. Under basal conditions, cotransfection of tagged Y1 receptor and Y5 produced a substantial dimerization signal that was unaffected by the endogenous, nonselective agonists, NPY and peptide YY (PYY). Selective Y5 agonists produced an increase in the dimerization signal while Y5 antagonists also produced a slight but significant increase. In the absence of agonists, selective antagonists decreased dimerization. In functional studies, Y5 agonists produced a greater inhibition of adenylyl cyclase activity in Y1/Y5 cells than cells expressing Y5 alone while NPY and PYY exhibited no difference. With PYY stimulation, the Y1 antagonist became inactive and the Y5 antagonist exhibited uncompetitive kinetics in the Y1/Y5 cell line. In confocal microscopy studies, Y1/Y5 co-expression resulted in increased Y5 signaling following PYY stimulation. Addition of both Y1 and Y5 receptor antagonists was required to significantly decrease PYY-induced internalization. Therefore, Y1/Y5 co-expression results in heterodimerization, altered agonist and antagonist responses and reduced internalization rate. These results may account for the complex pharmacology observed when assessing the responses to NPY and analogs in vivo.
Collapse
Affiliation(s)
- Donald R Gehlert
- Lilly Neuroscience, Lilly Research Laboratories, Eli Lilly and Co., Lilly Corporate Center, Indianapolis, IN 46285, United States.
| | | | | | | |
Collapse
|
82
|
Chang W, Tu C, Cheng Z, Rodriguez L, Chen TH, Gassmann M, Bettler B, Margeta M, Jan LY, Shoback D. Complex Formation with the Type B γ-Aminobutyric Acid Receptor Affects the Expression and Signal Transduction of the Extracellular Calcium-sensing Receptor. J Biol Chem 2007; 282:25030-40. [PMID: 17591780 DOI: 10.1074/jbc.m700924200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We co-immunoprecipitated the Ca(2+)-sensing receptor (CaR) and type B gamma-aminobutyric acid receptor (GABA-B-R) from human embryonic kidney (HEK)-293 cells expressing these receptors and from brain lysates where both receptors are present. CaRs extensively co-localized with the two subunits of the GABA-B-R (R1 and R2) in HEK-293 cell membranes and intracellular organelles. Coexpressing CaRs and GABA-B-R1s in HEK-293 cells suppressed the total cellular and cell surface expression of CaRs and inhibited phospholipase C activation in response to high extracellular [Ca(2+)] ([Ca(2+)](e)). In contrast, coexpressing CaRs and GABA-B-R2s enhanced CaR expression and signaling responses to raising [Ca(2+)](e). The latter effects of the GABA-B-R2 on the CaR were blunted by coexpressing the GABA-B-R1. Coexpressing the CaR with GABA-B-R1 or R2 enhanced the total cellular and cell surface expression of the GABA-B-R1 or R2, respectively. Studies with truncated CaRs indicated that the N-terminal extracellular domain of the CaR participated in the interaction of the CaR with the GABA-B-R1 and R2. In cultured mouse hippocampal neurons, CaRs co-localized with the GABA-B-R1 and R2. CaRs and GABA-B-R1s also co-immunoprecipitated from brain lysates. The expression of the CaR was increased in lysates from GABA-B-R1 knock-out mouse brains and in cultured hippocampal neurons with their GABA-B-R1 genes deleted in vitro. Thus, CaRs and GABA-B-R subunits can form heteromeric complexes in cells, and their interactions affect cell surface expression and signaling of CaR, which may contribute to extracellular Ca(2+)-dependent receptor activation in target tissues.
Collapse
Affiliation(s)
- Wenhan Chang
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, California 94121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Eglen RM. Assessing GPCR activation using protein complementation: a novel technique for HTS. Biochem Soc Trans 2007; 35:746-8. [PMID: 17635139 DOI: 10.1042/bst0350746] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GPCRs (G-protein-coupled receptors) are critical targets in drug discovery. Although most HTS (high-throughput screening) assays are routinely used to identify functional agonism or antagonism, they are suboptimal as methods to screen for modulators of other, novel, aspects of GPCR function. Indeed, it is now evident that GPCRs are highly complex proteins that interact with RAMPs (receptor-activity-modifying partners), β-arrestins, G-proteins, as well as functioning in potential homo- or hetero-meric complexes. Consequently, novel HTS technologies are now required that would facilitate interrogation of GPCRs in terms of their cellular protein–protein interactions. One approach is oligomerization-assisted complementation of monomeric protein fragments and detection of fragment reassembly. Notably, the use of enzymes has advantages in this regard, since complementation results in catalytically competent protein. The assay signal generated in this fashion results in assays of high sensitivity, thereby enabling protocols to be developed in HTS systems that require extremely low fluid volumes. The use of complementing proteins that generate a luminescent signal also provides assays that are markedly free from artefactual interferences.
Collapse
Affiliation(s)
- R M Eglen
- Discovery and Research Reagents, PerkinElmer Life and Analytical Sciences, 940 Winter Street, Waltham, MA 02451-1457, USA.
| |
Collapse
|
84
|
Suga H, Haga T. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits. Neurochem Int 2007; 51:140-64. [PMID: 17659814 DOI: 10.1016/j.neuint.2007.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute one of the largest families of genes in the human genome, and are the largest targets for drug development. Although a large number of GPCR genes have recently been identified, ligands have not yet been identified for many of them. Various assay systems have been employed to identify ligands for orphan GPCRs, but there is still no simple and general method to screen for ligands of such GPCRs, particularly of G(i)-coupled receptors. We have examined whether fusion proteins of GPCRs with G protein alpha subunit (Galpha) could be utilized for ligand screening and showed that the fusion proteins provide an effective method for the purpose. This article focuses on the followings: (1) characterization of GPCR genes and GPCRs, (2) identification of ligands for orphan GPCRs, (3) characterization of GPCR-Galpha fusion proteins, and (4) identification of ligands for orphan GPCRs using GPCR-Galpha fusion proteins.
Collapse
Affiliation(s)
- Hinako Suga
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
85
|
Klammt C, Schwarz D, Eifler N, Engel A, Piehler J, Haase W, Hahn S, Dötsch V, Bernhard F. Cell-free production of G protein-coupled receptors for functional and structural studies. J Struct Biol 2007; 158:482-93. [PMID: 17350285 DOI: 10.1016/j.jsb.2007.01.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/12/2007] [Accepted: 01/16/2007] [Indexed: 11/25/2022]
Abstract
G-protein coupled receptors (GPCRs) are key elements in signal transduction pathways of eukaryotic cells and they play central roles in many human diseases. So far, most structural and functional approaches have been limited by the immense difficulties in the production of sufficient amounts of protein samples in conventional expression systems based on living cells. We report the high level production of six different GPCRs in an individual cell-free expression system based on Escherichia coli extracts. The open nature of cell-free systems allows the addition of detergents in order to provide an artificial hydrophobic environment for the reaction. This strategy defines a completely new technique for the production of membrane proteins that can directly associate with detergent micelles upon translation. We demonstrate the efficient overproduction of the human melatonin 1B receptor, the human endothelin B receptor, the human and porcine vasopressin type 2 receptors, the human neuropeptide Y4 receptor and the rat corticotropin releasing factor receptor by cell-free expression. In all cases, the long chain polyoxyethylene detergent Brij78 was found to be highly effective for solubilization and milligram amounts of soluble protein could be generated in less than 24 h. Single particle analysis indicated a homogenous distribution of predominantly protein dimers of the cell-free expressed GPCR samples, with dimensions similar to the related rhodopsin. Ligand interaction studies with the endothelin B receptor and a derivative of its peptide ligand ET-1 gave further evidence of a functional folding of the cell-free produced protein.
Collapse
Affiliation(s)
- Christian Klammt
- Centre for Biomolecular Magnetic Resonance, University of Frankfurt/Main, Institute for Biophysical Chemistry, Max-von-Laue-Str. 9, D-60438 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Fedorov IV, Rogachevskaja OA, Kolesnikov SS. Modeling P2Y receptor-Ca2+ response coupling in taste cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1727-40. [PMID: 17512897 DOI: 10.1016/j.bbamem.2007.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 03/31/2007] [Accepted: 04/03/2007] [Indexed: 12/11/2022]
Abstract
Here we elaborated an analytical approach for the simulation of dose-response curves mediated by cellular receptors coupled to PLC and Ca(2+) mobilization. Based on a mathematical model of purinergic Ca(2+) signaling in taste cells, the analysis of taste cells responsiveness to nucleotides was carried out. Consistently with the expression of P2Y(2) and P2Y(4) receptors in taste cells, saturating ATP and UTP equipotently mobilized intracellular Ca(2+). Cellular responses versus concentration of BzATP, a P2Y(2) agonist and a P2Y(4) antagonist, implicated high and low affinity BzATP receptors. Suramin modified the BzATP dose-response curve in a manner that suggested the low affinity receptor to be weakly sensitive to this P2Y antagonist. Given that solely P2Y(2) and P2Y(11) are BzATP receptors, their high sensitivity to suramin is poorly consistent with the suramin effects on BzATP responses. We simulated a variety of dose-response curves for different P2Y receptor sets and found that the appropriate fit of the overall pharmacological data was achievable only with dimeric receptors modeled as P2Y(2)/P2Y(4) homo- and heterodimers. Our computations and analytical analysis of experimental dose-response curves raise the possibility that ATP responsiveness of mouse taste cells is mediated by P2Y(2) and P2Y(4) receptors operative mostly in the dimeric form.
Collapse
Affiliation(s)
- Ilya V Fedorov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | |
Collapse
|
87
|
Di Scala E, Rose S, Hérault O, Argibay J, Cosnay P, Bozon V. Conformational state of human cardiac 5-HT(4(g)) receptors influences the functional effects of polyclonal anti-5-HT(4) receptor antibodies. Biochem Pharmacol 2007; 73:964-71. [PMID: 17222392 DOI: 10.1016/j.bcp.2006.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 12/05/2006] [Accepted: 12/07/2006] [Indexed: 11/26/2022]
Abstract
The functional effects of the anti-G21V antibody directed against the second extracellular loop of human heart 5-HT(4) receptors can differ when the receptors are expressed in different cell lines. Here, we extend these studies to show variation in the responses of 5-HT(4(g)) receptors to the antibody within the same expression system. In a previous report no effect of the anti-G21V antibodies had been shown upon 5-HT(4(g)) receptors expressed in CHO cells. Here the same antibodies alone or when added before 5-HT had a functional "inverse-agonist like" effect upon 5-HT(4(g)) receptors expressed in a separate line of CHO cells. Although these CHO cells showed a lower efficacy of cAMP production evoked by 5-HT than the previous report they express a similar h5-HT(4(g)) receptor density. Inhibition of either phosphodiesterases or Gi proteins had no effect upon the action of the antibody. Conformational states of the 5-HT(4) receptor and/or equilibrium between different states of receptors may then determine the functional effect of antibodies against this receptor.
Collapse
Affiliation(s)
- Emmanuella Di Scala
- UMR CNRS 6542, Physiologie des Cellules Cardiaques et Vasculaires, Faculté des Sciences et Techniques, Université François-Rabelais, Tours 37200, France
| | | | | | | | | | | |
Collapse
|
88
|
Ferone D, Saveanu A, Culler MD, Arvigo M, Rebora A, Gatto F, Minuto F, Jaquet P. Novel chimeric somatostatin analogs: facts and perspectives. Eur J Endocrinol 2007; 156 Suppl 1:S23-S28. [PMID: 17413184 DOI: 10.1530/eje.1.02356] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dopamine and somatostatin receptor agonists inhibit hormone secretion by normal pituitary cells and pituitary adenomas. Indeed, initially several dopaminergic drugs, and lately somatostatin analogs, have been developed for the treatment of pituitary adenomas. Recently, it has been demonstrated that subtypes of somatostatin and dopamine receptors may form homo- and hetero-dimers at the membrane level, as part of their normal trafficking and function. Interestingly, a specific ligand for a given receptor may influence the activity of an apparently unrelated receptor, and the association between the two different receptors could be induced by addition of either dopamine or somatostatin. The new properties of these families of G-protein coupled receptors (GPCRs) offer a potential explanation for the apparent conflicting results observed both in vivo and in vitro in human cell systems treated with the presently available analogs. Moreover, this observation not only increases the possibilities of modulating the activities of these receptors, but also raises new questions on the role of associations of specific receptors in the control of cell functions. In fact, results from preclinical studies have shown that receptor activation may not only trigger different intracellular signaling pathways, but also induce a distinct response depending upon the specific cell type. Recently, a number of new interesting compounds (subtype selective analogs and antagonists, as well as bi-specific and hybrid somatostatin/dopamine compounds) have been developed. The effects of these new molecules have been explored in few animal and human cell lines and primary cultures from human tumors, revealing a heterogeneous, but broader, profile of activities. Further studies are certainly needed to fully elucidate the complex interplay between the GPCRs and consequent biological effects, to identify suitable therapies for controlling hormonal secretion of pituitary tumors. However, these recent observations form the basis for the application of new interesting strategies for the treatment of not only pituitary tumors but also other human malignancies.
Collapse
|
89
|
Di Giacomo B, Bedini A, Spadoni G, Tarzia G, Fraschini F, Pannacci M, Lucini V. Synthesis and biological activity of new melatonin dimeric derivatives. Bioorg Med Chem 2007; 15:4643-50. [PMID: 17481904 DOI: 10.1016/j.bmc.2007.03.080] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/21/2007] [Accepted: 03/27/2007] [Indexed: 11/29/2022]
Abstract
A new series of melatonin (MLT) dimers were obtained by linking together two melatonin units with a linear alkyl chain through the MLT acetamido group or through a C-2 carboxyalkyl function. The binding properties of these ligands were evaluated in in vivo experiments on cloned human MT(1) and MT(2) receptors expressed in NIH3T3 rat fibroblast cells. The class of 2-carboxyalkyl dimers was the most interesting one with compounds having good MT(1)/MT(2) nanomolar affinity. The data obtained suggest that the spacer length is crucial for optimal interaction at both receptor subtypes as well as to determine functional activity of the resulting dimers.
Collapse
Affiliation(s)
- Barbara Di Giacomo
- Istituto di Chimica Farmaceutica, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy.
| | | | | | | | | | | | | |
Collapse
|
90
|
Rabiet MJ, Huet E, Boulay F. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Biochimie 2007; 89:1089-106. [PMID: 17428601 PMCID: PMC7115771 DOI: 10.1016/j.biochi.2007.02.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/23/2007] [Indexed: 12/31/2022]
Abstract
Leukocyte recruitment to sites of inflammation and infection is dependent on the presence of a gradient of locally produced chemotactic factors. This review is focused on current knowledge about the activation and regulation of chemoattractant receptors. Emphasis is placed on the members of the N-formyl peptide receptor family, namely FPR (N-formyl peptide receptor), FPRL1 (FPR like-1) and FPRL2 (FPR like-2), and the complement fragment C5a receptors (C5aR and C5L2). Upon chemoattractant binding, the receptors transduce an activation signal through a G protein-dependent pathway, leading to biochemical responses that contribute to physiological defense against bacterial infection and tissue damage. C5aR, and the members of the FPR family that were previously thought to be restricted to phagocytes proved to have a much broader spectrum of cell expression. In addition to N-formylated peptides, numerous unrelated ligands were recently found to interact with FPR and FPRL1. Novel agonists include both pathogen- and host-derived components, and synthetic peptides. Antagonistic molecules have been identified that exhibit limited receptor specificity. How distinct ligands can both induce different biological responses and produce different modes of receptor activation and unique sets of cellular responses are discussed. Cell responses to chemoattractants are tightly regulated at the level of the receptors. This review describes in detail the regulation of receptor signalling and the multi-step process of receptor inactivation. New concepts, such as receptor oligomerization and receptor clustering, are considered. Although FPR, FPRL1 and C5aR trigger similar biological functions and undergo a rapid chemoattractant-mediated phosphorylation, they appear to be differentially regulated and experience different intracellular fates.
Collapse
Affiliation(s)
| | | | - François Boulay
- Corresponding author. Tel.: +33 438 78 31 38; fax: +33 438 78 51 85.
| |
Collapse
|
91
|
Knudsen LB, Kiel D, Teng M, Behrens C, Bhumralkar D, Kodra JT, Holst JJ, Jeppesen CB, Johnson MD, de Jong JC, Jorgensen AS, Kercher T, Kostrowicki J, Madsen P, Olesen PH, Petersen JS, Poulsen F, Sidelmann UG, Sturis J, Truesdale L, May J, Lau J. Small-molecule agonists for the glucagon-like peptide 1 receptor. Proc Natl Acad Sci U S A 2007; 104:937-42. [PMID: 17213325 PMCID: PMC1783418 DOI: 10.1073/pnas.0605701104] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The peptide hormone glucagon-like peptide (GLP)-1 has important actions resulting in glucose lowering along with weight loss in patients with type 2 diabetes. As a peptide hormone, GLP-1 has to be administered by injection. Only a few small-molecule agonists to peptide hormone receptors have been described and none in the B family of the G protein coupled receptors to which the GLP-1 receptor belongs. We have discovered a series of small molecules known as ago-allosteric modulators selective for the human GLP-1 receptor. These compounds act as both allosteric activators of the receptor and independent agonists. Potency of GLP-1 was not changed by the allosteric agonists, but affinity of GLP-1 for the receptor was increased. The most potent compound identified stimulates glucose-dependent insulin release from normal mouse islets but, importantly, not from GLP-1 receptor knockout mice. Also, the compound stimulates insulin release from perfused rat pancreas in a manner additive with GLP-1 itself. These compounds may lead to the identification or design of orally active GLP-1 agonists.
Collapse
Affiliation(s)
- Lotte Bjerre Knudsen
- Department of Discovery Biology, Novo Nordisk Als, Novo Nordisk Park, DK-2760 Maaloev, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Minegishi T, Nakamura K, Yamashita S, Omori Y. The effect of splice variant of the human luteinizing hormone (LH) receptor on the expression of gonadotropin receptor. Mol Cell Endocrinol 2007; 260-262:117-25. [PMID: 17092637 DOI: 10.1016/j.mce.2005.11.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 11/27/2005] [Indexed: 10/23/2022]
Abstract
A splice variant of human lutropin/choriogonadotropin-receptor [hLHR (exon 9)] that lacks exon 9 was previously cloned in the corpus luteum of a woman with a regular menstrual-cycle. Supported by detergent soluble binding assay and receptor biotinylation experiment, the receptor binding assay shows hLHR (exon 9) is neither expressed at the cell surface nor have the capability of binding to hCG. Interactions between hLHR (exon 9) with the immature bands of gonadotropin receptors not with the mature bands were seen. This phenomenon is specific among gonadotropin receptors since human thyrotropin-receptor (hTSHR) failed to be coimmunoprecipitated. Furthermore, this receptor complex attenuated the receptor protein level within the cells. To elucidate the mechanism underlying the decrease in receptor protein by this receptor complex, we performed a Percoll-fractionation experiment, which indicated the receptor complex drove hLHR to the lysosome instead of the plasma-membrane. Moreover, the expression of hLHR (exon 9) mRNA was seen at all phases of the menstrual cycle and relatively increased as the luteal phase progressed. These results reveal a novel mechanism of regulation for gonadotropin receptor expression.
Collapse
Affiliation(s)
- Takashi Minegishi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan.
| | | | | | | |
Collapse
|
93
|
Jeoung M, Lee C, Ji I, Ji TH. Trans-activation, cis-activation and signal selection of gonadotropin receptors. Mol Cell Endocrinol 2007; 260-262:137-43. [PMID: 17055146 PMCID: PMC1831837 DOI: 10.1016/j.mce.2005.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 09/13/2005] [Indexed: 10/24/2022]
Abstract
It has been thought that when a hormone binds to a receptor, the liganded receptor activates itself and generates hormone signals, such as the cAMP signal and the inositol phosphate signal (cis-activation). We describe that a liganded LH receptor or FSH receptor molecule is capable of intermolecularly activating nonliganded receptors (trans-activation). Particularly, intriguing is the possibility that a pair of compound heterozygous mutants, one defective in binding and the other defective in signaling, may cooperate and rescue signaling. Furthermore, trans-activation of the binding deficient receptors examined in our studies generates either the cAMP signal or the IP signal, but not both. Trans-activation and selective signal generation have broad implications on signal generation mechanisms, and suggest new therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Tae H. Ji
- *Correspondence should be sent to Tae H, Ji, Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055. , Tel: 859-257-3163, Fax:859-257-3229
| |
Collapse
|
94
|
Perron A, Sharif N, Sarret P, Stroh T, Beaudet A. NTS2 modulates the intracellular distribution and trafficking of NTS1 via heterodimerization. Biochem Biophys Res Commun 2006; 353:582-90. [PMID: 17188644 DOI: 10.1016/j.bbrc.2006.12.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 11/19/2022]
Abstract
Neurotensin (NT) receptors NTS1 and NTS2 are known to display considerable distributional overlap in mammalian central nervous system (CNS). Using co-immunoprecipitation approaches, we demonstrated here that NTS1 forms constitutive heterodimers with NTS2 in transfected COS-7 cells. We also showed that co-expression of NTS2 with NTS1 markedly decreases the cell surface density of NTS1 without affecting ERK1/2 MAPK activity or NT-induced NTS1 internalization. However, radioligand-binding studies indicated that upon prolonged NT stimulation, cell surface NTS1 receptors are more resistant to down-regulation in cells co-expressing NTS1 and NTS2 than in cells expressing NTS1 alone. Taken together, these data suggest that NTS1/NTS2 heterodimerization affects the intracellular distribution and trafficking of NTS1 by making it more similar to that of NTS2 as witnessed in cells expressing NTS2 alone. NTS1/NTS2 heterodimerization might therefore represent an additional mechanism in the regulation of NT-triggered responses mediated by NTS1 and NTS2 receptors.
Collapse
Affiliation(s)
- Amélie Perron
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Que., Canada H3A 2B4
| | | | | | | | | |
Collapse
|
95
|
Harikumar KG, Dong M, Cheng Z, Pinon DI, Lybrand TP, Miller LJ. Transmembrane segment peptides can disrupt cholecystokinin receptor oligomerization without affecting receptor function. Biochemistry 2006; 45:14706-16. [PMID: 17144663 PMCID: PMC2585497 DOI: 10.1021/bi061107n] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oligomerization of the G protein-coupled cholecystokinin (CCK) receptor has been demonstrated, but its molecular basis and functional importance are not clear. We now examine contributions of transmembrane (TM) segments to oligomerization of this receptor using a peptide competitive inhibition strategy. Oligomerization of CCK receptors tagged at the carboxyl terminus with Renilla luciferase or yellow fluorescent protein was quantified using bioluminescence resonance energy transfer (BRET). Synthetic peptides representing TM I, II, V, VI, and VII of the CCK receptor were utilized as competitors. Of these, only TM VI and VII peptides disrupted receptor BRET. Control studies established that the beta2-adrenergic receptor TM VI peptide that disrupts oligomerization of that receptor had no effect on CCK receptor BRET. Notably, disruption of CCK receptor oligomerization had no effect on agonist binding, biological activity, or receptor internalization. To gain insight into the face of TM VI contributing to oligomerization, we utilized analogous peptides with alanines in positions 315, 319, and 323 (interhelical face) or 317, 321, and 325 (external lipid-exposed face). The Ala317,321,325 peptide eliminated the disruptive effect on CCK receptor BRET, whereas the other mutant peptide behaved like wild-type TM VI. This suggests that the lipid-exposed face of the CCK receptor TM VI most contributes to oligomerization and supports external contact dimerization of helical bundles, rather than domain-swapped dimerization. Fluorescent CCK receptor mutants with residues 317, 321, and 325 replaced with alanines were also prepared and failed to yield significant resonance transfer signals using either BRET or a morphological FRET assay, further supporting this interpretation.
Collapse
Affiliation(s)
- Kaleeckal G Harikumar
- Cancer Center and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | |
Collapse
|
96
|
Tilakaratne N, Sexton PM. G-Protein-coupled receptor-protein interactions: basis for new concepts on receptor structure and function. Clin Exp Pharmacol Physiol 2006; 32:979-87. [PMID: 16405456 DOI: 10.1111/j.1440-1681.2005.04295.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. G-Protein-coupled receptors (GPCRs) constitute a large family of cell surface proteins. Their primary function is to transmit extracellular stimuli to intracellular signals. It is estimated that the human genome contains more than 1000 genes that code for proteins of the GPCR structure. These receptors also comprise the most important class of therapeutic drug targets. 2. The mechanism of GPCR signalling was initially envisioned as involving coupling to the heterotrimeric G-proteins only. However, recent developments in the field suggest that such a simplistic model cannot be sustained any longer. The emerging view is that a wide range of accessory proteins are involved in the regulation of every aspect of GPCR activity. 3. G-Protein-coupled receptor-interacting proteins are implicated in the regulation of several aspects of GPCR biology, including receptor targeting to the respective sites of action, receptor anchoring, signalling and receptor desensitization. In some cases (e.g. receptor activity modifying proteins), they may contribute to the receptor structure and form a part of the ligand-binding domain. 4. These findings have contributed to new concepts of cellular organization in which modular protein-protein interactions provide a network through which signalling pathways are assembled and controlled.
Collapse
Affiliation(s)
- Nanda Tilakaratne
- Howard Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
97
|
Castel H, Diallo M, Chatenet D, Leprince J, Desrues L, Schouft MT, Fontaine M, Dubessy C, Lihrmann I, Scalbert E, Malagon M, Vaudry H, Tonon MC, Gandolfo P. Biochemical and functional characterization of high-affinity urotensin II receptors in rat cortical astrocytes. J Neurochem 2006; 99:582-95. [PMID: 16942596 DOI: 10.1111/j.1471-4159.2006.04130.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The urotensin II (UII) gene is primarily expressed in the central nervous system, but the functions of UII in the brain remain elusive. Here, we show that cultured rat astrocytes constitutively express the UII receptor (UT). Saturation and competition experiments performed with iodinated rat UII ([(125)I]rUII) revealed the presence of high- and low-affinity binding sites on astrocytes. Human UII (hUII) and the two highly active agonists hUII(4-11) and [3-iodo-Tyr9]hUII(4-11) were also very potent in displacing [(125)I]rUII from its binding sites, whereas the non-cyclic analogue [Ser5,10]hUII(4-11) and somatostatin-14 could only displace [(125)I]rUII binding at micromolar concentrations. Reciprocally, rUII failed to compete with [(125)I-Tyr0,D-Trp8]somatostatin-14 binding on astrocytes. Exposure of cultured astrocytes to rUII stimulated [(3)H]inositol incorporation and increased intracellular Ca(2+) concentration in a dose-dependent manner. The stimulatory effect of rUII on polyphosphoinositide turnover was abolished by the phospholipase C inhibitor U73122, but only reduced by 56% by pertussis toxin. The GTP analogue Gpp(NH)p caused its own biphasic displacement of [(125)I]rUII binding and provoked an affinity shift of the competition curve of rUII. Pertussis toxin shifted the competition curve towards a single lower affinity state. Taken together, these data demonstrate that rat astrocytes express high- and low-affinity UII binding sites coupled to G proteins, the high-affinity receptor exhibiting the same pharmacological and functional characteristics as UT.
Collapse
Affiliation(s)
- Hélène Castel
- INSERM, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Filizola M, Wang SX, Weinstein H. Dynamic models of G-protein coupled receptor dimers: indications of asymmetry in the rhodopsin dimer from molecular dynamics simulations in a POPC bilayer. J Comput Aided Mol Des 2006; 20:405-16. [PMID: 17089205 PMCID: PMC4076291 DOI: 10.1007/s10822-006-9053-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Based on the growing evidence that G-protein coupled receptors (GPCRs) form homo- and hetero-oligomers, models of GPCR signaling are now considering macromolecular assemblies rather than monomers, with the homo-dimer regarded as the minimal oligomeric arrangement required for functional coupling to the G-protein. The dynamic mechanisms of such signaling assemblies are unknown. To gain some insight into properties of GPCR dimers that may be relevant to functional mechanisms, we study their current structural prototype, rhodopsin. We have carried out nanosecond time-scale molecular dynamics (MD) simulations of a rhodopsin dimer and compared the results to the monomer simulated in the same type of bilayer membrane model composed of an equilibrated unit cell of hydrated palmitoyl-oleoyl-phosphatidyl choline (POPC). The dynamic representation of the homo-dimer reveals the location of structural changes in several regions of the monomeric subunits. These changes appear to be more pronounced at the dimerization interface that had been shown to be involved in the activation process [Proc Natl Acad Sci USA 102:17495, 2005]. The results are consistent with a model of GPCR activation that involves allosteric modulation through a single GPCR subunit per dimer.
Collapse
Affiliation(s)
- Marta Filizola
- Department of Physiology & Biophysics, Weill Medical College of Cornell University, 1300 York Ave, New York, NY 10021, USA
| | - Simon X. Wang
- Department of Physiology & Biophysics, Weill Medical College of Cornell University, 1300 York Ave, New York, NY 10021, USA
| | - Harel Weinstein
- Department of Physiology & Biophysics, Weill Medical College of Cornell University, 1300 York Ave, New York, NY 10021, USA. HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, 1300 York Ave, New York, NY 10021, USA
| |
Collapse
|
99
|
Milligan G. G-protein-coupled receptor heterodimers: pharmacology, function and relevance to drug discovery. Drug Discov Today 2006; 11:541-9. [PMID: 16713906 DOI: 10.1016/j.drudis.2006.04.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/08/2006] [Accepted: 04/04/2006] [Indexed: 11/16/2022]
Abstract
The growing recognition that members of the rhodopsin-like family A G-protein-coupled receptors (GPCRs) exist and function as dimers or higher-order oligomers, and that GPCR hetero-dimers and -oligomers are present in physiological tissues, offers novel opportunities for drug discovery. Differential pharmacology, function and regulation of GPCR hetero-dimers and -oligomers suggest means to selectively target GPCRs in different tissues and hint that the mechanism of function of several pharmacological agents might be different in vivo than anticipated from simple ligand-screening programmes that rely on heterologous expression of a single GPCR.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
100
|
Franco R, Casadó V, Mallol J, Ferrada C, Ferré S, Fuxe K, Cortés A, Ciruela F, Lluis C, Canela EI. The two-state dimer receptor model: a general model for receptor dimers. Mol Pharmacol 2006; 69:1905-12. [PMID: 16501032 DOI: 10.1124/mol.105.020685] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.
Collapse
Affiliation(s)
- Rafael Franco
- Dept. Bioquimica i Biologia Molecular, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|