51
|
Oyarzun P, Ellis JJ, Gonzalez-Galarza FF, Jones AR, Middleton D, Boden M, Kobe B. A bioinformatics tool for epitope-based vaccine design that accounts for human ethnic diversity: application to emerging infectious diseases. Vaccine 2015; 33:1267-73. [PMID: 25629524 DOI: 10.1016/j.vaccine.2015.01.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/11/2014] [Accepted: 01/14/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Peptide vaccination based on multiple T-cell epitopes can be used to target well-defined ethnic populations. Because the response to T-cell epitopes is restricted by HLA proteins, the HLA specificity of T-cell epitopes becomes a major consideration for epitope-based vaccine design. We have previously shown that CD4+ T-cell epitopes restricted by 95% of human MHC class II proteins can be predicted with high-specificity. METHODS We describe here the integration of epitope prediction with population coverage and epitope selection algorithms. The population coverage assessment makes use of the Allele Frequency Net Database. We present the computational platform Predivac-2.0 for HLA class II-restricted epitope-based vaccine design, which accounts comprehensively for human genetic diversity. RESULTS We validated the performance of the tool on the identification of promiscuous and immunodominant CD4+ T-cell epitopes from the human immunodeficiency virus (HIV) protein Gag. We further describe an application for epitope-based vaccine design in the context of emerging infectious diseases associated with Lassa, Nipah and Hendra viruses. Putative CD4+ T-cell epitopes were mapped on the surface glycoproteins of these pathogens and are good candidates to be experimentally tested, as they hold potential to provide cognate help in vaccination settings in their respective target populations. CONCLUSION Predivac-2.0 is a novel approach in epitope-based vaccine design, particularly suited to be applied to virus-related emerging infectious diseases, because the geographic distributions of the viruses are well defined and ethnic populations in need of vaccination can be determined ("ethnicity-oriented approach"). Predivac-2.0 is accessible through the website http://predivac.biosci.uq.edu.au/.
Collapse
Affiliation(s)
- Patricio Oyarzun
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Australia; Biotechnology Centre, Universidad San Sebastián, Concepción, Chile.
| | - Jonathan J Ellis
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Australia
| | | | - Andrew R Jones
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Derek Middleton
- Transplant Immunology Laboratory, Royal Liverpool University Hospital & School of Infection and Host Defence University of Liverpool, United Kingdom
| | - Mikael Boden
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Australia; School of Information Technology and Electrical Engineering, University of Queensland, Queensland 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Australia.
| |
Collapse
|
52
|
Yu Y, Jin D, Hu S, Zhang Y, Zheng X, Zheng J, Liao M, Chen X, Graner M, Liu H, Jin Q. A novel tuberculosis antigen identified from human tuberculosis granulomas. Mol Cell Proteomics 2015; 14:1093-103. [PMID: 25605460 DOI: 10.1074/mcp.m114.045237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Indexed: 12/27/2022] Open
Abstract
Tuberculosis is a global infectious disease caused by Mycobacterium tuberculosis (Mtb). Although novel Mtb biomarkers from both the pathogen and host have been studied, more breakthroughs are still needed to meet different clinic requirements. In an effort to identify Mtb antigens, chaperone-peptide complexes were purified from TB infected lungs using free-solution isoelectric focusing combined with high resolution LTQ Orbitrap Velos mass spectrometry. Antigen specific cellular immune responses in vitro were then examined. Those efforts led to the identification of six Mtb peptides only identified in Tuberculosis lung samples and that were not found in the control samples. Additionally, antigen-specific IFN-γ secretion, T-cell proliferation, cytokine expression, and a cytotoxic assay were also evaluated. Among the peptides isolated, we identified a 34 amino acid peptide named PKAp belonging to a serine/threonine-protein kinase, as being able to generate Mtb-specific cellular immune responses as noted by elevated antigen-specific cytokine secretion levels, increased CD8(+) T-cell proliferation and a strong cytotoxic lymphocyte (CTL) response. Moreover, the immune stimulating abilities of PKAp were further validated in vivo, with target peptide immunized mice showing an increased cellular IFN-γ in both the lungs and spleen without causing immunopathogenesis. In conclusion, we identified novel functional Mtb antigens directly from the granulomatous lesions of Tuberculosis patients, inducing not only significant antigen-specific IFN-γ secretion but also a marked cytotoxic lymphocyte functional response. These findings indicated that PKAp has potential as a novel antigen biomarker for vaccine development.
Collapse
Affiliation(s)
- Yang Yu
- From the ‡MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Dongdong Jin
- From the ‡MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Shizong Hu
- From the ‡MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Yan Zhang
- From the ‡MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Xiaojing Zheng
- §Beijing Tuberculosis and Thoracic Tumor Research Institute, 101149, China
| | - Jianhua Zheng
- From the ‡MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| | - Mingfeng Liao
- ¶Guangdong Key Laboratory for emerging infectious diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, 518020, China
| | - Xinchun Chen
- ¶Guangdong Key Laboratory for emerging infectious diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, 518020, China
| | - Michael Graner
- ‖Department of Neurosurgery, University of Colorado, Denver, Colorado 80045
| | - Haiying Liu
- From the ‡MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China;
| | - Qi Jin
- From the ‡MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176, China
| |
Collapse
|
53
|
Short Peptide Vaccine Design and Development: Promises and Challenges. GLOBAL VIROLOGY I - IDENTIFYING AND INVESTIGATING VIRAL DISEASES 2015. [PMCID: PMC7121995 DOI: 10.1007/978-1-4939-2410-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vaccine development for viral diseases is a challenge where subunit vaccines are often ineffective. Therefore, the need for alternative solutions is crucial. Thus, short peptide vaccine candidates promise effective answers under such circumstances. Short peptide vaccine candidates are linear T-cell epitopes (antigenic determinants that are recognized by the immune system) that specifically function by binding human leukocyte antigen (HLA) alleles of different ethnicities (including Black, Caucasian, Oriental, Hispanic, Pacific Islander, American Indian, Australian aboriginal, and mixed ethnicities). The population-specific allele-level HLA sequence data in the public IMGT/HLA database contains approximately 12542 nomenclature defined class I (9437) and class II (3105) HLA alleles as of March 2015 present in several ethnic populations. The bottleneck in short peptide vaccine design and development is HLA polymorphism on the one hand and viral diversity on the other hand. Hence, a crucial step in its design and development is HLA allele-specific binding of short antigen peptides. This is usually combinatorial and computationally labor intensive. Mathematical models utilizing structure-defined pockets are currently available for class I and class II HLA-peptide-binding peptides. Frameworks have been developed to design protocols to identify the most feasible short peptide cocktails as vaccine candidates with superantigen properties among known HLA supertypes. This approach is a promising solution to develop new viral vaccines given the current advancement in T-cell immuno-informatics, yet challenging in terms of prediction efficiency and protocol development.
Collapse
|
54
|
Olsen LR, Campos B, Barnkob MS, Winther O, Brusic V, Andersen MH. Bioinformatics for cancer immunotherapy target discovery. Cancer Immunol Immunother 2014; 63:1235-49. [PMID: 25344903 PMCID: PMC11029190 DOI: 10.1007/s00262-014-1627-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 10/08/2014] [Indexed: 12/13/2022]
Abstract
The mechanisms of immune response to cancer have been studied extensively and great effort has been invested into harnessing the therapeutic potential of the immune system. Immunotherapies have seen significant advances in the past 20 years, but the full potential of protective and therapeutic cancer immunotherapies has yet to be fulfilled. The insufficient efficacy of existing treatments can be attributed to a number of biological and technical issues. In this review, we detail the current limitations of immunotherapy target selection and design, and review computational methods to streamline therapy target discovery in a bioinformatics analysis pipeline. We describe specialized bioinformatics tools and databases for three main bottlenecks in immunotherapy target discovery: the cataloging of potentially antigenic proteins, the identification of potential HLA binders, and the selection epitopes and co-targets for single-epitope and multi-epitope strategies. We provide examples of application to the well-known tumor antigen HER2 and suggest bioinformatics methods to ameliorate therapy resistance and ensure efficient and lasting control of tumors.
Collapse
Affiliation(s)
- Lars Rønn Olsen
- Department of Biology, Bioinformatics Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark,
| | | | | | | | | | | |
Collapse
|
55
|
Terry FE, Moise L, Martin RF, Torres M, Pilotte N, Williams SA, De Groot AS. Time for T? Immunoinformatics addresses vaccine design for neglected tropical and emerging infectious diseases. Expert Rev Vaccines 2014; 14:21-35. [PMID: 25193104 PMCID: PMC4743591 DOI: 10.1586/14760584.2015.955478] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vaccines have been invaluable for global health, saving lives and reducing healthcare costs, while also raising the quality of human life. However, newly emerging infectious diseases (EID) and more well-established tropical disease pathogens present complex challenges to vaccine developers; in particular, neglected tropical diseases, which are most prevalent among the world's poorest, include many pathogens with large sizes, multistage life cycles and a variety of nonhuman vectors. EID such as MERS-CoV and H7N9 are highly pathogenic for humans. For many of these pathogens, while their genomes are available, immune correlates of protection are currently unknown. These complexities make developing vaccines for EID and neglected tropical diseases all the more difficult. In this review, we describe the implementation of an immunoinformatics-driven approach to systematically search for key determinants of immunity in newly available genome sequence data and design vaccines. This approach holds promise for the development of 21st century vaccines, improving human health everywhere.
Collapse
|
56
|
Abstract
Cancer cells harbor unique mutations that theoretically create corresponding unique tumor-specific antigens. This class of mutated antigens represents an attractive target for cancer immunotherapy, but their identification has been cumbersome. By combining cancer genome sequencing with computational analysis of MHC binding, it is possible to predict and rank all of the possible mutated tumor antigens. This form of antigen screen is being combined with high throughput methods to measure the immune response to each candidate mutated antigen. Using these techniques, it is possible to systematically test each mutated tumor antigens for an associated immune response. Only a small fraction of the putative mutated antigens tested in this manner have been found to elicit an immune response, yet these responses appear to be both robust and durable. It is becoming increasingly clear that these mutated tumor antigens are an important target in the antitumor response. Studies incorporating this approach promise to improve our understanding of the inherent immunogenicity of individual cancers, potentially providing an explanation for the varying clinical responses to novel immunotherapeutic agents.
Collapse
Affiliation(s)
- Michael S Khodadoust
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | | |
Collapse
|
57
|
Schussek S, Trieu A, Doolan DL. Genome- and proteome-wide screening strategies for antigen discovery and immunogen design. Biotechnol Adv 2014; 32:403-14. [DOI: 10.1016/j.biotechadv.2013.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/04/2013] [Accepted: 12/16/2013] [Indexed: 01/17/2023]
|
58
|
Karpenko LI, Bazhan SI, Antonets DV, Belyakov IM. Novel approaches in polyepitope T-cell vaccine development against HIV-1. Expert Rev Vaccines 2013; 13:155-73. [PMID: 24308576 DOI: 10.1586/14760584.2014.861748] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RV144 clinical trial was modestly effective in preventing HIV infection. New alternative approaches are needed to design improved HIV-1 vaccines and their delivery strategies. One of these approaches is construction of synthetic polyepitope HIV-1 immunogen using protective T- and B-cell epitopes that can induce broadly neutralizing antibodies and responses of cytotoxic (CD8(+) CTL) and helpers (CD4(+) Th) T-lymphocytes. This approach seems to be promising for designing of new generation of vaccines against HIV-1, enables in theory to cope with HIV-1 antigenic variability, focuses immune responses on protective determinants and enables to exclude from the vaccine compound that can induce autoantibodies or antibodies enhancing HIV-1 infectivity. Herein, the authors will focus on construction and rational design of polyepitope T-cell HIV-1 immunogens and their delivery, including: advantages and disadvantages of existing T-cell epitope prediction methods; features of organization of polyepitope immunogens, which can generate high-level CD8(+) and CD4(+) T-lymphocyte responses; the strategies to optimize efficient processing, presentation and immunogenicity of polyepitope constructs; original software to design polyepitope immunogens; and delivery vectors as well as mucosal strategies of vaccination. This new knowledge may bring us a one step closer to developing an effective T-cell vaccine against HIV-1, other chronic viral infections and cancer.
Collapse
Affiliation(s)
- Larisa I Karpenko
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, 630559, Russia
| | | | | | | |
Collapse
|
59
|
Tada Y, Yoshikawa T, Shimomura M, Sawada Y, Sakai M, Shirakawa H, Nobuoka D, Nakatsura T. Analysis of cytotoxic T lymphocytes from a patient with hepatocellular carcinoma who showed a clinical response to vaccination with a glypican‑3‑derived peptide. Int J Oncol 2013; 43:1019-26. [PMID: 23903757 PMCID: PMC3829797 DOI: 10.3892/ijo.2013.2044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/12/2013] [Indexed: 12/21/2022] Open
Abstract
Glypican-3 (GPC3), which is a carcinoembryonic antigen, is overexpressed in human hepatocellular carcinoma (HCC). Previously, we performed a phase I clinical trial of GPC3-derived peptide vaccination in patients with advanced HCC, and reported that GPC3 peptide vaccination is safe and has clinical efficacy. Moreover, we proposed that a peptide-specific CTL response is a predictive marker of overall survival in patients with HCC who receive peptide vaccination. In this study, we established GPC3-derived peptide-specific CTL clones from the PBMCs of an HLA-A
*
02:07-positive patient with HCC who was vaccinated with an HLA-A2-restricted GPC3 peptide vaccine and showed a clinical response in the phase I clinical trial. Established CTL clones were analyzed using the IFN-γ ELISPOT assay and a cytotoxicity assay. GPC3 peptide-specific CTL clones were established successfully from the PBMCs of the patient. One CTL clone showed cytotoxicity against cancer cell lines that expressed endogenously the GPC3 peptide. The results suggest that CTLs have high avidity, and that natural antigen-specific killing activity against tumor cells can be induced in a patient with HCC who shows a clinical response to vaccination with the GPC3
144–152
peptide.
Collapse
Affiliation(s)
- Yoshitaka Tada
- Division of Cancer Immunotherapy, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba 277‑8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Poland GA, Kennedy RB, McKinney BA, Ovsyannikova IG, Lambert ND, Jacobson RM, Oberg AL. Vaccinomics, adversomics, and the immune response network theory: individualized vaccinology in the 21st century. Semin Immunol 2013; 25:89-103. [PMID: 23755893 DOI: 10.1016/j.smim.2013.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/23/2013] [Accepted: 04/18/2013] [Indexed: 02/08/2023]
Abstract
Vaccines, like drugs and medical procedures, are increasingly amenable to individualization or personalization, often based on novel data resulting from high throughput "omics" technologies. As a result of these technologies, 21st century vaccinology will increasingly see the abandonment of a "one size fits all" approach to vaccine dosing and delivery, as well as the abandonment of the empiric "isolate-inactivate-inject" paradigm for vaccine development. In this review, we discuss the immune response network theory and its application to the new field of vaccinomics and adversomics, and illustrate how vaccinomics can lead to new vaccine candidates, new understandings of how vaccines stimulate immune responses, new biomarkers for vaccine response, and facilitate the understanding of what genetic and other factors might be responsible for rare side effects due to vaccines. Perhaps most exciting will be the ability, at a systems biology level, to integrate increasingly complex high throughput data into descriptive and predictive equations for immune responses to vaccines. Herein, we discuss the above with a view toward the future of vaccinology.
Collapse
|
61
|
Sedegah M, Kim Y, Ganeshan H, Huang J, Belmonte M, Abot E, Banania JG, Farooq F, McGrath S, Peters B, Sette A, Soisson L, Diggs C, Doolan DL, Tamminga C, Villasante E, Hollingdale MR, Richie TL. Identification of minimal human MHC-restricted CD8+ T-cell epitopes within the Plasmodium falciparum circumsporozoite protein (CSP). Malar J 2013; 12:185. [PMID: 23738590 PMCID: PMC3683343 DOI: 10.1186/1475-2875-12-185] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/23/2013] [Indexed: 01/14/2023] Open
Abstract
Background Plasmodium falciparum circumsporozoite protein (CSP) is a leading malaria vaccine candidate antigen, known to elicit protective antibody responses in humans (RTS,S vaccine). Recently, a DNA prime / adenovirus (Ad) vector boost vaccine encoding CSP and a second P. falciparum antigen, apical membrane antigen-1, also elicited sterile protection, but in this case associated with interferon gamma ELISpot and CD8+ T cell but not antibody responses. The finding that CSP delivered by an appropriate vaccine platform likely elicits protective cell-mediated immunity provided a rationale for identifying class I-restricted epitopes within this leading vaccine candidate antigen. Methods Limited samples of peripheral blood mononuclear cells from clinical trials of the Ad vaccine were used to identify CD8+ T cell epitopes within pools of overlapping 15mer peptides spanning portions of CSP that stimulated recall responses. Computerized algorithms (NetMHC) predicted 17 minimal class I-restricted 9-10mer epitopes within fifteen 15mers positive in ELISpot assay using PBMC from 10 HLA-matched study subjects. Four additional epitopes were subsequently predicted using NetMHC, matched to other study subjects without initial 15mer ELISpot screening. Nine of the putative epitopes were synthesized and tested by ELISpot assay, and six of these nine were further tested for CD8+ T cell responses by ELISpot CD4+ and CD8+ T cell-depletion and flow cytometry assays for evidence of CD8+ T cell dependence. Results Each of the nine putative epitopes, all sequence-conserved, recalled responses from HLA-matched CSP-immunized research subjects. Four shorter sequences contained within these sequences were identified using NetMHC predictions and may have contributed to recall responses. Five (9-10mer) epitopes were confirmed to be targets of CD8+ T cell responses using ELISpot depletion and ICS assays. Two 9mers among these nine epitopes were each restricted by two HLA supertypes (A01/B07; A01A24/A24) and one 9mer was restricted by three HLA supertypes (A01A24/A24/B27) indicating that some CSP class I-restricted epitopes, like DR epitopes, may be HLA-promiscuous. Conclusions This study identified nine and confirmed five novel class I epitopes restricted by six HLA supertypes, suggesting that an adenovirus-vectored CSP vaccine would be immunogenic and potentially protective in genetically diverse populations.
Collapse
Affiliation(s)
- Martha Sedegah
- US Military Malaria Vaccine Program, Naval Medical Research Center, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Niu L, Cheng H, Zhang S, Tan S, Zhang Y, Qi J, Liu J, Gao GF. Structural basis for the differential classification of HLA-A*6802 and HLA-A*6801 into the A2 and A3 supertypes. Mol Immunol 2013; 55:381-92. [PMID: 23566939 PMCID: PMC7112617 DOI: 10.1016/j.molimm.2013.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/15/2013] [Indexed: 01/01/2023]
Abstract
High polymorphism is one of the most important features of human leukocyte antigen (HLA) alleles, which were initially classified by serotyping but have recently been re-grouped into supertypes according to their peptide presentation properties. Two relatively prevalent HLA alleles HLA-A*6801 and HLA-A*6802, are classified into the same serotype HLA-A68. However, based on their distinct peptide-binding characteristics, HLA-A*6801 is grouped into A3 supertype, whereas HLA-A*6802 belongs to A2 supertype, similar to HLA-A*0201. Thusfar, the structural basis of the different supertype definitions of these serotyping-identical HLA alleles remains largely unknown. Herein, we determined the structures of HLA-A*6801 and HLA-A*6802 presenting three typical A3 and A2 supertype-restricted peptides, respectively. The binding capabilities of these peptides to HLA-A*6801, HLA-A*6802, and HLA-A*0201 were analyzed. These data indicate that the similar conformations of the residues within the F pocket contribute to close-related peptide binding features of HLA-A*6802 and HLA-A*0201. However, the overall structure and the peptide conformation of HLA-A*6802 are more similar to HLA-A*6801 rather than HLA-A*0201 which illuminates the similar serotype grouping of HLA-A*6802 and HLA-A*6801. Our findings are helpful for understanding the divergent peptide presentation and virus-specific CTL responses impacted by MHC micropolymorphisms and also elucidate the molecular basis of HLA supertype definitions.
Collapse
Affiliation(s)
- Ling Niu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Sanou MP, De Groot AS, Murphey-Corb M, Levy JA, Yamamoto JK. HIV-1 Vaccine Trials: Evolving Concepts and Designs. Open AIDS J 2012; 6:274-88. [PMID: 23289052 PMCID: PMC3534440 DOI: 10.2174/1874613601206010274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022] Open
Abstract
An effective prophylactic HIV-1 vaccine is needed to eradicate the HIV/AIDS pandemic but designing such a vaccine is a challenge. Despite many advances in vaccine technology and approaches to generate both humoral and cellular immune responses, major phase-II and -III vaccine trials against HIV/AIDS have resulted in only moderate successes. The modest achievement of the phase-III RV144 prime-boost trial in Thailand re-emphasized the importance of generating robust humoral and cellular responses against HIV. While antibody-directed approaches are being pursued by some groups, others are attempting to develop vaccines targeting cell-mediated immunity, since evidence show CTLs to be important for the control of HIV replication. Phase-I and -IIa multi-epitope vaccine trials have already been conducted with vaccine immunogens consisting of known CTL epitopes conserved across HIV subtypes, but have so far fallen short of inducing robust and consistent anti-HIV CTL responses. The concepts leading to the development of T-cell epitope-based vaccines, the outcomes of related clinical vaccine trials and efforts to enhance the immunogenicity of cell-mediated approaches are summarized in this review. Moreover, we describe a novel approach based on the identification of SIV and FIV antigens which contain conserved HIV-specific T-cell epitopes and represent an alternative method for developing an effective HIV vaccine against global HIV isolates.
Collapse
Affiliation(s)
- Missa P Sanou
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| | - Anne S De Groot
- EpiVax Inc., University of Rhode Island, Providence, RI 02903, USA
| | - Michael Murphey-Corb
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, E1252 Biomedical Science Tower 200, Lothrop Street, Pittsburgh, PA 15261, USA
| | - Jay A Levy
- Department of Medicine, University of California San Francisco, S-1280, 513 Parnassus Ave, San Francisco, CA 94143, USA
| | - Janet K Yamamoto
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611, USA
| |
Collapse
|
64
|
Gras S, Burrows SR, Turner SJ, Sewell AK, McCluskey J, Rossjohn J. A structural voyage toward an understanding of the MHC-I-restricted immune response: lessons learned and much to be learned. Immunol Rev 2012; 250:61-81. [DOI: 10.1111/j.1600-065x.2012.01159.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephanie Gras
- Department of Biochemistry and Molecular Biology; School of Biomedical Sciences; Monash University; Clayton; Australia
| | - Scott R. Burrows
- Queensland Institute of Medical Research and Australian Centre for Vaccine Development; Brisbane; Australia
| | - Stephen J. Turner
- Department of Microbiology and Immunology; University of Melbourne; Parkville; Australia
| | - Andrew K. Sewell
- Institute of Infection and Immunity; Cardiff University School of Medicine; Cardiff; UK
| | - James McCluskey
- Department of Microbiology and Immunology; University of Melbourne; Parkville; Australia
| | | |
Collapse
|
65
|
Abstract
Clonal selection theory proposed that individual T cells are specific for a single peptide-MHC antigen. However, the repertoire of αβ T cell receptors (TCRs) is dwarfed by the vast array of potential foreign peptide-MHC complexes, and a comprehensive system requires each T cell to recognize numerous peptides and thus be cross-reactive. This compromise on specificity has profound implications because the chance of any natural peptide-MHC ligand being an optimal fit for its cognate TCR is small, as there will almost always be more-potent agonists. Furthermore, any TCR raised against a specific peptide-MHC complex in vivo can only be the best available solution from the naive T cell pool and is unlikely to be the best possible solution from the substantially greater number of TCRs that could theoretically be produced. This 'systems view' of TCR recognition provides a plausible cause for autoimmune disease and substantial scope for multiple therapeutic interventions.
Collapse
Affiliation(s)
- Andrew K Sewell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
66
|
A Promiscuous Survivin-Derived T-Cell Epitope Restricted to the HLA-A3 Super-Type Alleles. J Invest Dermatol 2012; 132:2115-8. [DOI: 10.1038/jid.2012.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
67
|
Sette A, Sidney J, Southwood S, Moore C, Berry J, Dow C, Bradley K, Hoof I, Lewis MG, Hildebrand WH, McMurtrey CP, Wilson NA, Watkins DI, Mothé BR. A shared MHC supertype motif emerges by convergent evolution in macaques and mice, but is totally absent in human MHC molecules. Immunogenetics 2012; 64:421-34. [PMID: 22322672 PMCID: PMC3349854 DOI: 10.1007/s00251-011-0598-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/25/2011] [Indexed: 02/07/2023]
Abstract
The SIV-infected rhesus macaque (Macaca mulatta) is the most established model of AIDS disease systems, providing insight into pathogenesis and a model system for testing novel vaccines. The understanding of cellular immune responses based on the identification and study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide-binding motif, provides valuable information to decipher outcomes of infection and vaccine efficacy. Detailed characterization of Mamu-B*039:01, a common allele expressed in Chinese rhesus macaques, revealed a unique MHC:peptide-binding preference consisting of glycine at the second position. Peptides containing a glycine at the second position were shown to be antigenic from animals positive for Mamu-B*039:01. A similar motif was previously described for the Dd mouse MHC allele, but for none of the human HLA molecules for which a motif is known. Further investigation showed that one additional macaque allele, present in Indian rhesus macaques, Mamu-B*052:01, shares this same motif. These “G2” alleles were associated with the presence of specific residues in their B pocket. This pocket structure was found in 6% of macaque sequences but none of 950 human HLA class I alleles. Evolutionary studies using the “G2” alleles points to common ancestry for the macaque sequences, while convergent evolution is suggested when murine and macaque sequences are considered. This is the first detailed characterization of the pocket residues yielding this specific motif in nonhuman primates and mice, revealing a new supertype motif not present in humans.
Collapse
Affiliation(s)
- Alessandro Sette
- Department of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Zeng L, Sullivan LC, Vivian JP, Walpole NG, Harpur CM, Rossjohn J, Clements CS, Brooks AG. A structural basis for antigen presentation by the MHC class Ib molecule, Qa-1b. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:302-10. [PMID: 22131332 DOI: 10.4049/jimmunol.1102379] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The primary function of the monomorphic MHC class Ib molecule Qa-1(b) is to present peptides derived from the leader sequences of other MHC class I molecules for recognition by the CD94-NKG2 receptors expressed by NK and T cells. Whereas the mode of peptide presentation by its ortholog HLA-E, and subsequent recognition by CD94-NKG2A, is known, the molecular basis of Qa-1(b) function is unclear. We have assessed the interaction between Qa-1(b) and CD94-NKG2A and shown that they interact with an affinity of 17 μM. Furthermore, we have determined the structure of Qa-1(b) bound to the leader sequence peptide, Qdm (AMAPRTLLL), to a resolution of 1.9 Å and compared it with that of HLA-E. The crystal structure provided a basis for understanding the restricted peptide repertoire of Qa-1(b). Whereas the Qa-1(b-AMAPRTLLL) complex was similar to that of HLA-E, significant sequence and structural differences were observed between the respective Ag-binding clefts. However, the conformation of the Qdm peptide bound by Qa-1(b) was very similar to that of peptide bound to HLA-E. Although a number of conserved innate receptors can recognize heterologous ligands from other species, the structural differences between Qa-1(b) and HLA-E manifested in CD94-NKG2A ligand recognition being species specific despite similarities in peptide sequence and conformation. Collectively, our data illustrate the structural homology between Qa-1(b) and HLA-E and provide a structural basis for understanding peptide repertoire selection and the specificity of the interaction of Qa-1(b) with CD94-NKG2 receptors.
Collapse
Affiliation(s)
- Li Zeng
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Lundegaard C, Lund O, Nielsen M. Prediction of epitopes using neural network based methods. J Immunol Methods 2011; 374:26-34. [PMID: 21047511 PMCID: PMC3134633 DOI: 10.1016/j.jim.2010.10.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/23/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
In this paper, we describe the methodologies behind three different aspects of the NetMHC family for prediction of MHC class I binding, mainly to HLAs. We have updated the prediction servers, NetMHC-3.2, NetMHCpan-2.2, and a new consensus method, NetMHCcons, which, in their previous versions, have been evaluated to be among the very best performing MHC:peptide binding predictors available. Here we describe the background for these methods, and the rationale behind the different optimization steps implemented in the methods. We go through the practical use of the methods, which are publicly available in the form of relatively fast and simple web interfaces. Furthermore, we will review results obtained in actual epitope discovery projects where previous implementations of the described methods have been used in the initial selection of potential epitopes. Selected potential epitopes were all evaluated experimentally using ex vivo assays.
Collapse
Affiliation(s)
- Claus Lundegaard
- Center for Biological Sequence Analysis, DTU Systems Biology, Building 208, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Ole Lund
- Center for Biological Sequence Analysis, DTU Systems Biology, Building 208, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Morten Nielsen
- Center for Biological Sequence Analysis, DTU Systems Biology, Building 208, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
70
|
Abstract
Optimizing the development of modern molecular vaccines requires a complex series of interdisciplinary efforts involving basic scientists, immunologists, molecular biologists, clinical vaccinologists, bioinformaticians and epidemiologists. This review summarizes some of the major issues that must be carefully considered. The intent of the authors is to briefly describe key components of the development process to give the reader an overview of the challenges faced from vaccine concept to vaccine delivery. Every vaccine requires unique features based on the biology of the pathogen, the nature of the disease and the target population for vaccination. This review presents general concepts relevant for the design and development of ideal vaccines protective against diverse pathogens.
Collapse
Affiliation(s)
- Daniel F Hoft
- Division of Infectious Diseases, Allergy & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| | | | | |
Collapse
|
71
|
Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics 2011; 63:325-35. [PMID: 21305276 PMCID: PMC3626422 DOI: 10.1007/s00251-011-0513-0] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/06/2011] [Indexed: 01/19/2023]
Abstract
Previous studies have attempted to define human leukocyte antigen (HLA) class II supertypes, analogous to the case for class I, on the basis of shared peptide-binding motifs or structure. In the present study, we determined the binding capacity of a large panel of non-redundant peptides for a set of 27 common HLA DR, DQ, and DP molecules. The measured binding data were then used to define class II supertypes on the basis of shared binding repertoires. Seven different supertypes (main DR, DR4, DRB3, main DQ, DQ7, main DP, and DP2) were defined. The molecules associated with the respective supertypes fell largely along lines defined by MHC locus and reflect, in broad terms, commonalities in reported peptide-binding motifs. Repertoire overlaps between molecules within the same class II supertype were found to be similar in magnitude to what has been observed for HLA class I supertypes. Surprisingly, however, the degree to which repertoires between molecules in the different class II supertypes also overlapped was found to be five to tenfold higher than repertoire overlaps noted between molecules in different class I supertypes. These results highlight a high degree of repertoire overlap amongst all HLA class II molecules, perhaps reflecting binding in multiple registers, and more pronounced dependence on backbone interactions rather than peptide anchor residues. This fundamental difference between HLA class I and class II would not have been predicted on the basis of analysis of either binding motifs or the sequence/predicted structures of the HLA molecules.
Collapse
Affiliation(s)
- Jason Greenbaum
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Jolan Chung
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Christian Brander
- AIDS Research Institute, Fundacio irsiCaixa-HIVACAT, Hospital Universitari Germans Trias i Pujol, Ctra del Canyet s/n, 08916, Badalona, Barcelona, Catalonia, Spain
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| |
Collapse
|
72
|
Sette A, Rappuoli R. Reverse vaccinology: developing vaccines in the era of genomics. Immunity 2010; 33:530-41. [PMID: 21029963 PMCID: PMC3320742 DOI: 10.1016/j.immuni.2010.09.017] [Citation(s) in RCA: 359] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/20/2010] [Accepted: 09/23/2010] [Indexed: 02/08/2023]
Abstract
The sequence of microbial genomes made all potential antigens of each pathogen available for vaccine development. This increased by orders of magnitude potential vaccine targets in bacteria, parasites, and large viruses and revealed virtually all their CD4(+) and CD8(+) T cell epitopes. The genomic information was first used for the development of a vaccine against serogroup B meningococcus, and it is now being used for several other bacterial vaccines. In this review, we will first summarize the impact that genome sequencing has had on vaccine development, and then we will analyze how the genomic information can help further our understanding of immunity to infection or vaccination and lead to the design of better vaccines by diving into the world of T cell immunity.
Collapse
Affiliation(s)
- Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92130, USA
| | | |
Collapse
|
73
|
Abstract
The Plasmodium parasite, the causative agent of malaria, is an excellent model for immunomic-based approaches to vaccine development. The Plasmodium parasite has a complex life cycle with multiple stages and stage-specific expression of ∼5300 putative proteins. No malaria vaccine has yet been licensed. Many believe that an effective vaccine will need to target several antigens and multiple stages, and will require the generation of both antibody and cellular immune responses. Vaccine efforts to date have been stage-specific and based on only a very limited number of proteins representing <0.5% of the genome. The recent availability of comprehensive genomic, proteomic and transcriptomic datasets from human and selected non-human primate and rodent malarias provide a foundation to exploit for vaccine development. This information can be mined to identify promising vaccine candidate antigens, by proteome-wide screening of antibody and T cell reactivity using specimens from individuals exposed to malaria and technology platforms such as protein arrays, high throughput protein production and epitope prediction algorithms. Such antigens could be incorporated into a rational vaccine development process that targets specific stages of the Plasmodium parasite life cycle with immune responses implicated in parasite elimination and control. Immunomic approaches which enable the selection of the best possible targets by prioritising antigens according to clinically relevant criteria may overcome the problem of poorly immunogenic, poorly protective vaccines that has plagued malaria vaccine developers for the past 25 years. Herein, current progress and perspectives regarding Plasmodium immunomics are reviewed.
Collapse
Affiliation(s)
- Denise L Doolan
- Division of Immunology, Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, P.O. Royal Brisbane Hospital, Brisbane, QLD 4029, Australia.
| |
Collapse
|
74
|
Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B, Sette A. Divergent motifs but overlapping binding repertoires of six HLA-DQ molecules frequently expressed in the worldwide human population. THE JOURNAL OF IMMUNOLOGY 2010; 185:4189-98. [PMID: 20810981 DOI: 10.4049/jimmunol.1001006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Knowledge of the binding repertoires and specificities of HLA-DQ molecules is somewhat limited and contradictory, partly because of the scarcity of reports addressing some of the most common molecules and possibly because of the diversity of the techniques used. In this paper, we report the development of high-throughput binding assays for the six most common DQ molecules in the general worldwide population. Using comprehensive panels of single substitution analogs of specific ligands, we derived detailed binding motifs for DQA1*0501/DQB1*0301, DQA1*0401/DQB1*0402, and DQA1*0101/DQB1*0501 and more detailed motifs for DQA1*0501/DQB1*0201, DQA1*0301/DQB1*0302, and DQA1*0102/DQB1*0602, previously characterized on the basis of sets of eluted ligands and/or limited sets of substituted peptides. In contrast to what has previously been observed for DR and DP molecules, DQ motifs were generally less clearly defined in terms of chemical specificity and, strikingly, had little overlap with each other. However, testing a panel of peptides spanning a set of Phleum pratense Ags, and panels of known DQ epitopes, revealed a surprisingly significant and substantial overlap in the repertoire of peptides bound by these DQ molecules. Although the mechanism underlying these apparently contradictory findings is not clear, it likely reflects the peculiar mode of interaction between DQ (and not DR or DP) molecules and their peptide ligands. Because the DQ molecules studied are found in >85% of the general human population, these findings have important implications for epitope identification studies and monitoring of DQ-restricted immune responses.
Collapse
Affiliation(s)
- John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Irvine K, Bennink J. Factors influencing immunodominance hierarchies in TCD8+ -mediated antiviral responses. Expert Rev Clin Immunol 2010; 2:135-47. [PMID: 20477094 DOI: 10.1586/1744666x.2.1.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CD8(+) T-lymphocytes (T(CD8+)) perform a critical role in immunity against tumors and virus infections. A central feature of T(CD8+) immune responses is immunodominance: the observation that T(CD8+) responses consist of a limited collection of specificities with a structured hierarchy. These immunodominance hierarchies result from a complex combination of factors. Major roles are played by peptide binding affinity, T-cell repertoire, and antigen processing and presentation. While the bulk of our information comes from mouse model systems, an increasing number of human studies suggest that immunodominance will be even more complicated. This review outlines current knowledge of T(CD8+ )immunodominance to viral antigens and discusses the relevance and importance of a thorough understanding for the rational design of vaccines that elicit effective T(CD8+) responses.
Collapse
Affiliation(s)
- Kari Irvine
- National Institute for Allergy & Infectious Diseases, Cell Biology Section/Viral Immunology Section, Laboratory of Viral Diseases, Room 209, Building 44 Center Drive, Bethesda, MD 20892-0440, USA.
| | | |
Collapse
|
76
|
Huchard E, Knapp LA, Wang J, Raymond M, Cowlishaw G. MHC, mate choice and heterozygote advantage in a wild social primate. Mol Ecol 2010; 19:2545-61. [PMID: 20492522 DOI: 10.1111/j.1365-294x.2010.04644.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Preferences for mates carrying dissimilar genes at the major histocompatibility complex (MHC) may help animals increase offspring pathogen resistance or avoid inbreeding. Such preferences have been reported across a range of vertebrates, but have rarely been investigated in social species other than humans. We investigated mate choice and MHC dynamics in wild baboons (Papio ursinus). MHC Class II DRB genes and 16 microsatellite loci were genotyped across six groups (199 individuals). Based on the survey of a key segment of the gene-rich MHC, we found no evidence of mate choice for MHC dissimilarity, diversity or rare MHC genotypes. First, MHC dissimilarity did not differ from random expectation either between parents of the same offspring or between immigrant males and females from the same troop. Second, female reproductive success was not influenced by MHC diversity or genotype frequency. Third, population genetic structure analysis revealed equally high genotypic differentiation among troops, and comparable excess heterozygosity within troops for juveniles, at both Mhc-DRB and neutral loci. Nevertheless, the age structure of Mhc-DRB heterozygosity suggested higher longevity for heterozygotes, which should favour preferences for MHC dissimilarity. We propose that high levels of within-group outbreeding, resulting from group-living and sex-biased dispersal, might weaken selection for MHC-disassortative mate choice.
Collapse
Affiliation(s)
- Elise Huchard
- CNRS-UMR5554, Place Eugène Bataillon, CC 065, 34 095 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
77
|
Abstract
SUMMARY Major histocompatibility complex class II (MHC-II) molecules sample peptides from the extracellular space, allowing the immune system to detect the presence of foreign microbes from this compartment. To be able to predict the immune response to given pathogens, a number of methods have been developed to predict peptide-MHC binding. However, few methods other than the pioneering TEPITOPE/ProPred method have been developed for MHC-II. Despite recent progress in method development, the predictive performance for MHC-II remains significantly lower than what can be obtained for MHC-I. One reason for this is that the MHC-II molecule is open at both ends allowing binding of peptides extending out of the groove. The binding core of MHC-II-bound peptides is therefore not known a priori and the binding motif is hence not readily discernible. Recent progress has been obtained by including the flanking residues in the predictions. All attempts to make ab initio predictions based on protein structure have failed to reach predictive performances similar to those that can be obtained by data-driven methods. Thousands of different MHC-II alleles exist in humans. Recently developed pan-specific methods have been able to make reasonably accurate predictions for alleles that were not included in the training data. These methods can be used to define supertypes (clusters) of MHC-II alleles where alleles within each supertype have similar binding specificities. Furthermore, the pan-specific methods have been used to make a graphical atlas such as the MHCMotifviewer, which allows for visual comparison of specificities of different alleles.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Systems Biology, Technical University of Denmark, Centre for Biological Sequence Analysis, Lyngby, Denmark.
| | | | | | | |
Collapse
|
78
|
Huchard E, Raymond M, Benavides J, Marshall H, Knapp LA, Cowlishaw G. A female signal reflects MHC genotype in a social primate. BMC Evol Biol 2010; 10:96. [PMID: 20374634 PMCID: PMC2858743 DOI: 10.1186/1471-2148-10-96] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 04/07/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Males from many species are believed to advertise their genetic quality through striking ornaments that attract mates. Yet the connections between signal expression, body condition and the genes associated with individual quality are rarely elucidated. This is particularly problematic for the signals of females in species with conventional sex roles, whose evolutionary significance has received little attention and is poorly understood. Here we explore these questions in the sexual swellings of female primates, which are among the most conspicuous of mammalian sexual signals and highly variable in size, shape and colour. We investigated the relationships between two components of sexual swellings (size and shape), body condition, and genes of the Major Histocompatibility Complex (MHC) in a wild baboon population (Papio ursinus) where males prefer large swellings. RESULTS Although there was no effect of MHC diversity on the sexual swelling components, one specific MHC supertype (S1) was associated with poor body condition together with swellings of small size and a particular shape. The variation in swelling characteristics linked with the possession of supertype S1 appeared to be partially mediated by body condition and remained detectable when taking into account the possession of other supertypes. CONCLUSIONS These findings suggest a pathway from immunity genes to sexual signals via physical condition for the first time in females. They further indicate that mechanisms of sexual selection traditionally assigned to males can also operate in females.
Collapse
Affiliation(s)
- Elise Huchard
- Institut des Sciences de l'Evolution, Université Montpellier 2, Place Eugène Bataillon, CC 065, 34 095 Montpellier cedex 05, France
- CNRS-UMR5554, Place Eugène Bataillon, CC 065, 34 095 Montpellier cedex 05, France
- Department of Behavioural Ecology and Sociobiology, Deutsches Primatenzentrum, Kellnerweg 4, 37077 Göttingen, Germany
| | - Michel Raymond
- Institut des Sciences de l'Evolution, Université Montpellier 2, Place Eugène Bataillon, CC 065, 34 095 Montpellier cedex 05, France
- CNRS-UMR5554, Place Eugène Bataillon, CC 065, 34 095 Montpellier cedex 05, France
| | - Julio Benavides
- Institut des Sciences de l'Evolution, Université Montpellier 2, Place Eugène Bataillon, CC 065, 34 095 Montpellier cedex 05, France
- CNRS-UMR5554, Place Eugène Bataillon, CC 065, 34 095 Montpellier cedex 05, France
| | - Harry Marshall
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Leslie A Knapp
- Department of Biological Anthropology, University of Cambridge, Downing Street, Cambridge CB2 3DZ, UK
| | - Guy Cowlishaw
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| |
Collapse
|
79
|
Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B, Sette A. Five HLA-DP molecules frequently expressed in the worldwide human population share a common HLA supertypic binding specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:2492-503. [PMID: 20139279 PMCID: PMC2935290 DOI: 10.4049/jimmunol.0903655] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Compared with DR and DQ, knowledge of the binding repertoires and specificities of HLA-DP alleles is somewhat limited. However, a growing body of literature has indicated the importance of DP-restricted responses in the context of cancer, allergy, and infectious disease. In the current study, we developed high-throughput binding assays for the five most common HLA-DPB1 alleles in the general worldwide population. Using these assays on a comprehensive panel of single-substitution analogs and large peptide libraries, we derived novel detailed binding motifs for DPB1*0101 and DPB1*0501. We also derived more detailed quantitative motifs for DPB1*0201, DPB1*0401, and DPB1*0402, which were previously characterized on the basis of sets of eluted ligands and/or limited sets of substituted peptides. Unexpectedly, all five DP molecules, originally selected only on the basis of their frequency in human populations, were found to share largely overlapping peptide motifs. Testing panels of known DP epitopes and a panel of peptides spanning a set of Phleum pratense Ags revealed that these molecules also share largely overlapping peptide-binding repertoires. This demonstrates that a previously hypothesized DP supertype extends far beyond what was originally envisioned and includes at least three additional very common DP specificities. Taken together, these DP supertype molecules are found in >90% of the human population. Thus, these findings have important implications for epitope-identification studies and monitoring of human class II-restricted immune responses.
Collapse
Affiliation(s)
- John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Virus-specific CD8+ T-cell responses better define HIV disease progression than HLA genotype. J Virol 2010; 84:4461-8. [PMID: 20147397 DOI: 10.1128/jvi.02438-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HLA alleles B57/58, B27, and B35 have the strongest genetic associations with HIV-1 disease progression. The mechanisms of these relationships may be host control of HIV-1 infection via CD8(+) T-cell responses. We examined these immune responses in subjects from the Seattle Primary Infection Cohort with these alleles. CD8(+) T-cell responses to conserved HIV epitopes within B57/58 alleles (TW10 and KF11) and B27 alleles (KK10 and FY10) delayed declines in CD4(+) T-cell counts (4 to 8 times longer), while responses to variable epitopes presented by B35 alleles (DL9 and IL9) resulted in more rapid progression. The plasma viral load was higher in B57/58(+) and B27(+) subjects lacking the conserved B57/58- and B27-restricted responses. The presence of certain B57/58-, B27-, and B35-restricted HIV-specific CD8(+) T-cell responses after primary HIV-1 infection better defined disease progression than the HLA genotype alone, suggesting that it is the HIV-specific CD8(+) T cells and not the presence of a particular HLA allele that determine disease progression. Further, the most effective host CD8(+) T-cell responses to HIV-1 were prevalent within an HLA allele, represented a high total allele fraction of the host CD8(+) T-cell response, and targeted conserved regions of HIV-1. These data suggest that vaccine immunogens should contain only conserved regions of HIV-1.
Collapse
|
81
|
Groot AS, Cohen T, Ardito M, Moise L, Martin B, Berzofsky JA. Use of Bioinformatics to Predict MHC Ligands and T-Cell Epitopes. IMMUNOLOGY OF INFECTION 2010. [DOI: 10.1016/s0580-9517(10)37003-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
82
|
Abstract
The role of human leukocyte antigen (HLA) class I supertypes in controlling human immunodeficiency virus type 1 (HIV-1) infection in African Americans has not been established. We examined the effects of the HLA-A and HLA-B alleles and supertypes on the outcomes of HIV-1 clade B infection among 338 African American women and adolescents. HLA-B58 and -B62 supertypes (B58s and B62s) were associated with favorable HIV-1 disease control (proportional odds ratio [POR] of 0.33 and 95% confidence interval [95% CI] of 0.21 to 0.52 for the former and POR of 0.26 and 95% CI of 0.09 to 0.73 for the latter); B7s and B44s were associated with unfavorable disease control (POR of 2.39 and 95% CI of 1.54 to 3.73 for the former and POR of 1.63 and 95% CI of 1.08 to 2.47 for the latter). In general, individual alleles within specific B supertypes exerted relatively homogeneous effects. A notable exception was B27s, whose protective influence (POR, 0.58; 95% CI, 0.35 to 0.94) was masked by the opposing effect of its member allele B*1510. The associations of most B supertypes (e.g., B58s and B7s) were largely explained either by well-known effects of constituent B alleles or by effects of previously unimplicated B alleles aggregated into a particular supertype (e.g., B44s and B62s). A higher frequency of HLA-B genotypic supertypes correlated with a higher mean viral load (VL) and lower mean CD4 count (Pearson's r = 0.63 and 0.62, respectively; P = 0.03). Among the genotypic supertypes, B58s and its member allele B*57 contributed disproportionately to the explainable VL variation. The study demonstrated the dominant role of HLA-B supertypes in HIV-1 clade B-infected African Americans and further dissected the contributions of individual class I alleles and their population frequencies to the supertype effects.
Collapse
|
83
|
Insights into the Role of GILT in HLA Class II Antigen Processing and Presentation by Melanoma. JOURNAL OF ONCOLOGY 2009; 2009:142959. [PMID: 20016802 PMCID: PMC2792950 DOI: 10.1155/2009/142959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/12/2009] [Indexed: 01/05/2023]
Abstract
Metastatic melanoma is one of the deadliest of skin cancers and is increasing in incidence. Since current treatment regimens are ineffective at controlling and/or curing the disease, novel approaches, such as immunotherapy, for treating this malignant disease are being explored. In this review, we discuss potential melanoma antigens (Ags) and their role in utilizing the HLA class II pathway to elicit tumor Ag-specific CD4+ T cell responses in order to effectively induce long-lasting CD8+ antitumor memory. We also discuss the role of endolysosomal cathepsins and Gamma-Interferon-inducible Lysosomal Thiol reductase (GILT) in Ag processing and presentation, and at enhancing CD4+ T cell recognition of melanoma cells. This review also summarizes our current knowledge on GILT and highlights a novel mechanism of GILT-mediated immune responses against melanoma cells. At the end, we propose a strategy employing GILT in the development of a potential whole cell vaccine for combating metastatic melanoma.
Collapse
|
84
|
Lenz TL, Wells K, Pfeiffer M, Sommer S. Diverse MHC IIB allele repertoire increases parasite resistance and body condition in the Long-tailed giant rat (Leopoldamys sabanus). BMC Evol Biol 2009; 9:269. [PMID: 19930637 PMCID: PMC2788554 DOI: 10.1186/1471-2148-9-269] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 11/23/2009] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Genes of the major histocompatibility complex (MHC) code for key functions in the adaptive immune response of vertebrates and most of them show exceptionally high polymorphism. This polymorphism has been associated with the selection by diverse and changing parasite communities. We analysed MHC class IIB diversity, gastrointestinal parasite load and body condition in the wild ranging tropical rat Leopoldamys sabanus (Thomas, 1887) under natural selection conditions in a highly variable rainforest environment in Borneo to explore the mechanisms that maintain these high levels of genetic polymorphism. RESULTS Allelic diversity was determined via SSCP and sequencing, and parasite screening was done through non-invasive faecal egg count. The detected alleles showed expected high levels of polymorphism and balancing selection. Besides a clear advantage for more diverse MHC genotypes in terms of number of alleles, reflected in better body condition and resistance against helminth infection, our data also suggested a positive effect of MHC allele divergence within an individual on these parameters. CONCLUSION In accordance with the heterozygote advantage hypothesis, this study provides evidence for an advantage of more diverse MHC genotypes. More specifically, the potential negative relation between individual allele divergence and number of parasite species is in line with the 'divergent allele advantage' hypothesis.
Collapse
Affiliation(s)
- Tobias L Lenz
- Department of Animal Ecology and Animal Conservation, University of Hamburg, 20146 Hamburg, Germany
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Konstans Wells
- Institute of Experimental Ecology, University of Ulm, 89069 Ulm, Germany
| | - Martin Pfeiffer
- Institute of Experimental Ecology, University of Ulm, 89069 Ulm, Germany
| | - Simone Sommer
- Department of Animal Ecology and Animal Conservation, University of Hamburg, 20146 Hamburg, Germany
- Evolutionary Genetics, Leibniz-Institute for Zoo and Wildlife Research (IZW), Postfach 601103, D-10252 Berlin, Germany
| |
Collapse
|
85
|
Ng WC, Gilbertson B, Lim B, Zeng W, Jackson DC, Brown LE. Lipopeptide vaccines illustrate the potential role of subtype-crossreactive T cells in the control of highly virulent influenza. Influenza Other Respir Viruses 2009; 3:177-82. [PMID: 19627375 PMCID: PMC4634688 DOI: 10.1111/j.1750-2659.2009.00087.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background The best form of protection against influenza is high‐titred virus‐neutralizing antibody specific for the challenge strain. However, this is not always possible to achieve by vaccination due to the need for predicting the emerging virus, whether it be a drift variant of existing human endemic influenza type A subtypes or the next pandemic virus, for incorporation into the vaccine. By activating additional arms of the immune system to provide heterosubtypic immunity, that is immunity active against all viruses of type A influenza regardless of subtype or strain, it should be possible to provide significant benefit in situations where appropriate antibody responses are not achieved. Although current inactivated vaccines are unable to induce heterosubtypic CD8+ T cell immunity, we have shown that lipopeptides are particularly efficient in this regard. Objectives To examine the role of vaccine‐induced CD8+ T cells in altering the course of disease due to highly virulent H1N1 influenza virus in the mouse model. Methods The induction of influenza‐specific CD8+ T cells following intranasal inoculation with lipopeptide vaccine was assessed by intracellular cytokine staining (ICS) and the capacity of these cells to reduce viral loads in the lungs and to protect against death after viral challenge was determined. Results and conclusions We show that CD8+ T cells are induced by a single intranasal vaccination with lipopeptide, they remain at substantial levels in the lungs and are efficiently boosted upon challenge with virulent virus to provide late control of pulmonary viral loads. Vaccinated mice are not only protected from death but remain active, indicative of less severe disease despite significant weight loss.
Collapse
Affiliation(s)
- Wy Ching Ng
- The Department of Microbiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
86
|
Gil L, López C, Lazo L, Valdés I, Marcos E, Alonso R, Gambe A, Martín J, Romero Y, Guzmán MG, Guillén G, Hermida L. Recombinant nucleocapsid-like particles from dengue-2 virus induce protective CD4+ and CD8+ cells against viral encephalitis in mice. Int Immunol 2009; 21:1175-83. [PMID: 19692540 DOI: 10.1093/intimm/dxp082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Virus-like particles are a highly effective type of subunit vaccine that mimics the overall structure of virus particles without containing infectious genetic material. In this work, a particulate form of the recombinant capsid protein from dengue-2 was evaluated in mice to determine the level of protection against viral challenge and to measure the antigen-induced cell-mediated immunity (CMI). The nucleocapsid-like particles (NLPs) adjuvanted with alum did not induce antiviral antibodies. However, splenocytes from the immunized animals secreted high levels of IFN-gamma upon virus stimulation, and a significant protection rate was achieved after challenge with lethal dengue-2 virus. Finally, both IFN-gamma secretion and protection against viral encephalitis were demonstrated to be dependent on CD4(+) and CD8(+) cells. This study provides new evidences regarding the protective role of the CMI in the mouse model without the induction of neutralizing antibodies. Further studies in non-human primates or humanized mice should be carried out to elucidate the usefulness of the NLPs as a potential vaccine candidate against dengue disease.
Collapse
Affiliation(s)
- Lázaro Gil
- Vaccines Division, Center for Genetic Engineering and Biotechnology, Playa, Havana, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
De Groot AS, Ardito M, McClaine EM, Moise L, Martin WD. Immunoinformatic comparison of T-cell epitopes contained in novel swine-origin influenza A (H1N1) virus with epitopes in 2008-2009 conventional influenza vaccine. Vaccine 2009; 27:5740-7. [PMID: 19660593 DOI: 10.1016/j.vaccine.2009.07.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 07/06/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
Abstract
In March 2009 a novel swine-origin influenza A (H1N1) virus (S-OIV) emerged in Mexico and the Western United States. Vaccination with conventional influenza vaccine (CIV) does not result in cross-reactive antibodies, however, the disproportionate number of cases (37%) occurring among persons younger than 50 years old suggested that adaptive immune memory might be responsible for the relative lack of virulence in older, healthy adults. Using EpiMatrix, a T-cell epitope prediction and comparison tool, we compared the sequences of the three hemagglutinin (HA) and neuraminidase (NA) proteins contained in 2008-2009 CIV to their counterparts in A/California/04/2009 (H1N1) looking for cross-conserved T-cell epitope sequences. We found greater than 50% conservation of T helper and CTL epitopes between novel S-OIV and CIV HA for selected HLA. Conservation was lower among NA epitopes. Sixteen promiscuous helper T-cell epitopes are contained in the S-OIV H1N1 HA sequence, of which nine (56%) were 100% conserved in the 2008-2009 influenza vaccine strain; 81% were either identical or had one conservative amino acid substitution. Fifty percent of predicted CTL epitopes found in S-OIV H1N1 HA were also found in CIV HA sequences. Based on historical performance, we expect these epitope predictions to be 93-99% accurate. This in silico analysis supports the proposition that T-cell response to cross-reactive T-cell epitopes, due to vaccination or exposure, may have the capacity to attenuate the course of S-OIV H1N1 induced disease-in the absence of cross-reactive antibody response. The value of the CIV or live-attenuated influenza vaccine containing the 2008-2009 vaccine strains, as defense against H1N1, could be further tested by evaluating human immune responses to the conserved T-cell epitopes using PBMC from individuals infected with H1N1 and from CIV vaccinees.
Collapse
|
88
|
Prospects for an influenza vaccine that induces cross-protective cytotoxic T lymphocytes. Immunol Cell Biol 2009; 87:300-8. [PMID: 19308073 DOI: 10.1038/icb.2009.16] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Our approach to vaccination against influenza is unique. For no other pathogen do we construct and produce a new vaccine every year in the face of uncertainty about the strains that will be circulating when it is used. The huge global cooperative effort that underpins this process reflects our awareness of the need to control this major pathogen. Moreover, the threat of devastation by a pandemic due to a newly emerging viral subtype has triggered an intense effort to improve and accelerate the production of vaccines for use if a pandemic arises. However, type A influenza viruses responsible for seasonal epidemics and those with the potential to cause a pandemic share amino acid sequences that form the targets of cytotoxic T lymphocytes (CTL). CTL activated by currently circulating viruses, therefore, offer a possible means to limit the impact of infection with future variant seasonal strains and even new subtypes. This review examines how cross-protective CTL can be exploited to improve influenza vaccination and issues that need to be considered when attempting to induce this type of immunity. We discuss the role of CTL responses in viral control and review the current knowledge relating to specificity and longevity of memory CD8(+) T cells, how vaccine antigen can be loaded into antigen-presenting cells to prime these responses and factors influencing the class of response induced. Application of these principles to the next generation of influenza vaccines should lead to much greater control of infection.
Collapse
|
89
|
Taylor M, Hussain A, Urayama K, Chokkalingam A, Thompson P, Trachtenberg E, Buffler P. The human major histocompatibility complex and childhood leukemia: An etiological hypothesis based on molecular mimicry. Blood Cells Mol Dis 2009; 42:129-35. [DOI: 10.1016/j.bcmd.2008.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
|
90
|
Antal Z, Jarchum I, DiLorenzo TP. HLA class I supertypes in type 1 diabetic children in an urban children's hospital. Ann N Y Acad Sci 2009; 1150:86-9. [PMID: 19120273 DOI: 10.1196/annals.1447.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes is an autoimmune disorder characterized by progressive destruction of insulin-secreting beta cells of the pancreas, in which CD8(+) T cells play a critical role. The diversity in the HLA alleles expressed among various racial and ethnic groups leads to great variability in antigen presentation and recognition by CD8(+) T cells in the context of MHC class I molecules. To date, studies aimed at identifying disease-relevant antigenic epitopes have focused on using mice transgenic for HLA-A*0201, a common allele, particularly among Caucasians. We present HLA class I typing data from 88 children with type 1 diabetes at the Children's Hospital at Montefiore, where the patient population is ethnically diverse, but largely minority. When categorized into the HLA supertypes A2, A3, B7, and C1, 77% of those studied have alleles belonging to at least one supertype, and of these patients, 65% do not belong to the A2 supertype, which is the supertype represented by the HLA-A*0201 allele. These results support the need for studies using HLA transgenic mice expressing MHC molecules representative of a variety of HLA supertypes, particularly when searching for antigenic epitopes applicable for study among largely urban, minority pediatric populations.
Collapse
Affiliation(s)
- Zoltan Antal
- Department of Pediatric Endocrinology, Children's Hospital at Montefiore, Bronx, New York, USA
| | | | | |
Collapse
|
91
|
Ovsyannikova IG, Vierkant RA, Pankratz VS, O'Byrne MM, Jacobson RM, Poland GA. HLA haplotype and supertype associations with cellular immune responses and cytokine production in healthy children after rubella vaccine. Vaccine 2009; 27:3349-58. [PMID: 19200828 DOI: 10.1016/j.vaccine.2009.01.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Secreted rubella virus-specific cytokines reflect the immunologic mechanisms underlying adoptive immune responses and are significant markers of immunity to rubella. We studied the association between measures of cellular (cytokine and frequency of cytokine-secreted cells) immune responses and HLA haplotypes (with frequencies of > or =1%) and supertypes among 738 healthy children following two doses of rubella vaccine. Haplotype effects were estimated while accounting for linkage phase ambiguity via an expectation maximization algorithm. Importantly, the majority of HLA class I and class II haplotype associations with different cytokines were consistent between Th1, Th2 and/or innate/proinflammatory cytokine groups. We found few class I supertypes (A1, A2, A3, and B7) with potential associations with IL-10 ELISPOT counts and rubella-specific IL-2, IL-10, TNF-alpha, and IL-6 cytokine secretion levels. Our data indicate that the presence or absence of certain HLA haplotypes and/or supertypes may influence the cytokine immune response to rubella vaccine, and represents a more advanced analysis compared to individual candidate gene association studies.
Collapse
|
92
|
Assarsson E, Bui HH, Sidney J, Zhang Q, Glenn J, Oseroff C, Mbawuike IN, Alexander J, Newman MJ, Grey H, Sette A. Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. J Virol 2008; 82:12241-51. [PMID: 18842709 PMCID: PMC2593359 DOI: 10.1128/jvi.01563-08] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 09/22/2008] [Indexed: 02/06/2023] Open
Abstract
Continuing antigenic drift allows influenza viruses to escape antibody-mediated recognition, and as a consequence, the vaccine currently in use needs to be altered annually. Highly conserved epitopes recognized by effector T cells may represent an alternative approach for the generation of a more universal influenza virus vaccine. Relatively few highly conserved epitopes are currently known in humans, and relatively few epitopes have been identified from proteins other than hemagglutinin and nucleoprotein. This prompted us to perform a study aimed at identifying a set of human T-cell epitopes that would provide broad coverage against different virus strains and subtypes. To provide coverage across different ethnicities, seven different HLA supertypes were considered. More than 4,000 peptides were selected from a panel of 23 influenza A virus strains based on predicted high-affinity binding to HLA class I or class II and high conservancy levels. Peripheral blood mononuclear cells from 44 healthy human blood donors were tested for reactivity against HLA-matched peptides by using gamma interferon enzyme-linked immunospot assays. Interestingly, we found that PB1 was the major target for both CD4(+) and CD8(+) T-cell responses. The 54 nonredundant epitopes (38 class I and 16 class II) identified herein provided high coverage among different ethnicities, were conserved in the majority of the strains analyzed, and were consistently recognized in multiple individuals. These results enable further functional studies of T-cell responses during influenza virus infection and provide a potential base for the development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Erika Assarsson
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Terajima M, Orphin L, Leporati AM, Pazoles P, Cruz J, Rothman AL, Ennis FA. Vaccinia virus-specific CD8(+) T-cell responses target a group of epitopes without a strong immunodominance hierarchy in humans. Hum Immunol 2008; 69:815-25. [PMID: 18955096 DOI: 10.1016/j.humimm.2008.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
Abstract
Immunization with vaccinia virus (VACV) resulted in long-lasting protection against smallpox and successful global eradication of the disease. VACV elicits strong cellular and humoral immune responses. Although neutralizing antibody is essential for protection, cellular immunity seems to be more important for recovery from infection in humans. We analyzed the immunodominance hierarchy of 73 previously identified VACV human CD8(+) T-cell epitopes restricted by HLA-A1, -A2, -A3, -A24, -B7, or -B44 alleles or the alleles belonging to one of these supertypes in 56 donors after primary VACV immunization. With the exception of the responses to HLA-A24 supertype-restricted epitopes, there were no consistent patterns of epitope immunodominance among donors sharing the same HLA alleles or supertypes, which is in sharp contrast with the mouse studies. However, we identified 12 epitopes that were recognized by >or=20% of donors sharing the same HLA allele; 6 of these epitopes contributed >or=20% of the total VACV-specific T-cell response in at least one individual. VACV-specific CD8(+) T-cell responses targeted a group of epitopes, "relatively dominant" epitopes, without a strong immunodominance hierarchy in humans, which may be advantageous to humans to prevent the emergence of T-cell escape mutants.
Collapse
Affiliation(s)
- Masanori Terajima
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
94
|
Escobar H, Crockett DK, Reyes-Vargas E, Baena A, Rockwood AL, Jensen PE, Delgado JC. Large Scale Mass Spectrometric Profiling of Peptides Eluted from HLA Molecules Reveals N-Terminal-Extended Peptide Motifs. THE JOURNAL OF IMMUNOLOGY 2008; 181:4874-82. [DOI: 10.4049/jimmunol.181.7.4874] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
95
|
Huchard E, Weill M, Cowlishaw G, Raymond M, Knapp LA. Polymorphism, haplotype composition, and selection in the Mhc-DRB of wild baboons. Immunogenetics 2008; 60:585-98. [DOI: 10.1007/s00251-008-0319-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 06/30/2008] [Indexed: 11/25/2022]
|
96
|
Epitope-Based Immunome-Derived Vaccines: A Strategy for Improved Design and Safety. CLINICAL APPLICATIONS OF IMMUNOMICS 2008. [PMCID: PMC7122239 DOI: 10.1007/978-0-387-79208-8_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vaccine science has extended beyond genomics to proteomics and has come to also encompass ‘immunomics,’ the study of the universe of pathogen-derived or neoplasm-derived peptides that interface with B and T cells of the host immune system. It has been theorized that effective vaccines can be developed using the minimum essential subset of T cell and B cell epitopes that comprise the ‘immunome.’ Researchers are therefore using bioinformatics sequence analysis tools, epitope-mapping tools, microarrays, and high-throughput immunology assays to discover the minimal essential components of the immunome. When these minimal components, or epitopes, are packaged with adjuvants in an appropriate delivery vehicle, the complete package comprises an epitope-based immunome-derived vaccine. Such vaccines may have a significant advantage over conventional vaccines, as the careful selection of the components may diminish undesired side effects such as have been observed with whole pathogen and protein subunit vaccines. This chapter will review the pre-clinical and anticipated clinical development of computer-driven vaccine design and the validation of epitope-based immunome-derived vaccines in animal models; it will also include an overview of heterologous immunity and other emerging issues that will need to be addressed by vaccines of all types in the future.
Collapse
|
97
|
Gender-dependent HLA-DR-restricted epitopes identified from herpes simplex virus type 1 glycoprotein D. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1436-49. [PMID: 18667634 DOI: 10.1128/cvi.00123-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent clinical trials, a herpes simplex virus (HSV) recombinant glycoprotein D (gD) vaccine was more efficacious in woman than in men. Here we report six HLA-DR-restricted T-cell gD epitope peptides that bind to multiple HLA-DR (DR1, DR4, DR7, DR13, DR15, and DRB5) molecules that represent a large proportion of the human population. Four of these peptides recalled naturally primed CD4(+) T cells in up to 45% of the 46 HSV-seropositive, asymptomatic individuals studied. For the gD(49-82), gD(77-104), and gD(121-152) peptides, the CD4(+) T-cell responses detected in HSV-seropositive, asymptomatic women were higher and more frequent than the responses detected in men. Immunization of susceptible DRB1*0101 transgenic mice with a mixture of three newly identified, gender-dependent, immunodominant epitope peptides (gD(49-82), gD(77-104), and gD(121-152)) induced a gender- and CD4(+) T-cell-dependent immunity against ocular HSV type 1 challenge. These results revealed a gender-dependent T-cell response to a discrete set of gD epitopes and suggest that while a T-cell epitope-based HSV vaccine that targets a large percentage of the human population may be feasible with a limited number of immunodominant promiscuous HLA-DR-restricted epitopes, gender should be taken into account during evaluations of such vaccines.
Collapse
|
98
|
Aidoo M, Sawadogo S, Bile EC, Yang C, Nkengasong JN, McNicholl JM. Viral, HLA and T cell elements in cross-reactive immune responses to HIV-1 subtype A, CRF01_AE and CRF02_AG vaccine sequence in Ivorian blood donors. Vaccine 2008; 26:4830-9. [PMID: 18640166 DOI: 10.1016/j.vaccine.2008.06.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 06/21/2008] [Accepted: 06/30/2008] [Indexed: 10/21/2022]
Abstract
Comprehensive understanding of the determinants of cross-subtype immune responses in HIV infection is critical to developing efficacious HIV vaccines against multiple viral subtypes. Because HIV-1 subtype A or recombinants comprising subtype A are prevalent in Africa and parts of Asia where HIV is spreading, we assessed the determinants of cross-subtype immune responses in HIV-infected blood donors from Cote d'Ivoire to peptides from a candidate CRF02_AG vaccine sequence, a subtype A sequence from western Kenya and a CRF01_AE sequence from Thailand. We present evidence that immune recognition of multiple viral subtypes is maintained by recognition of multiple epitopes. Our data suggest that complete escape of HIV from immune recognition is uncommon. Evaluation of these frequently generated cross-reactive responses should be included in immunogenicity trials of HIV vaccines.
Collapse
Affiliation(s)
- M Aidoo
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | |
Collapse
|
99
|
Tian F, Yang L, Lv F, Yang Q, Zhou P. In silico quantitative prediction of peptides binding affinity to human MHC molecule: an intuitive quantitative structure-activity relationship approach. Amino Acids 2008; 36:535-54. [PMID: 18575802 DOI: 10.1007/s00726-008-0116-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
Abstract
In this paper, we have handpicked 23 kinds of electronic properties, 37 kinds of steric properties, 54 kinds of hydrophobic properties and 5 kinds of hydrogen bond properties from thousands of amino acid structural and property parameters. Principal component analysis (PCA) was applied on these parameters and thus ten score vectors involving significant nonbonding properties of 20 coded amino acids were yielded, called the divided physicochemical property scores (DPPS) of amino acids. The DPPS descriptor was then used to characterize the structures of 152 HLA-A*0201-restricted CTL epitopes, and significant variables being responsible for the binding affinities were selected by genetic algorithm, and a quantitative structure-activity relationship (QSAR) model by partial least square was established to predict the peptide-HLA-A*0201 molecule interactions. Statistical analysis on the resulted DPPS-based QSAR models were consistent well with experimental exhibits and molecular graphics display. Diversified properties of the different residues in binding peptides may contribute remarkable effect to the interactions between the HLA-A*0201 molecule and its peptide ligands. Particularly, hydrophobicity and hydrogen bond of anchor residues of peptides may have a significant contribution to the interactions. The results showed that DPPS can well represent the structural characteristics of the antigenic peptides and is a promising approach to predict the affinities of peptide binding to HLA-A*0201 in a efficient and intuitive way. We expect that this physical-principle based method can be applied to other protein-peptide interactions as well.
Collapse
Affiliation(s)
- F Tian
- Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
100
|
Abstract
The human leukocyte antigen (HLA) alleles are extremely polymorphic among ethnic population, and the peptide-binding specificity varies for different alleles in a combinatorial manner. However, it has been suggested that majority of alleles can be covered within few HLA supertypes, where different members of a supertype bind similar peptides, yet exhibiting distinct repertoires. Nonetheless, the structural basis for HLA supertype-like function is not clearly known. Here, we use structural data to explain the molecular basis for HLA-A2 supertypes.
Collapse
|