51
|
Frohlich EM, Alonso JL, Borenstein JT, Zhang X, Arnaout MA, Charest JL. Topographically-patterned porous membranes in a microfluidic device as an in vitro model of renal reabsorptive barriers. LAB ON A CHIP 2013; 13:2311-9. [PMID: 23636129 PMCID: PMC4578304 DOI: 10.1039/c3lc50199j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Models of reabsorptive barriers require both a means to provide realistic physiologic cues to and quantify transport across a layer of cells forming the barrier. Here we have topographically-patterned porous membranes with several user-defined pattern types. To demonstrate the utility of the patterned membranes, we selected one type of pattern and applied it to a membrane to serve as a cell culture support in a microfluidic model of a renal reabsorptive barrier. The topographic cues in the model resemble physiological cues found in vivo while the porous structure allows quantification of transport across the cell layer. Sub-micron surface topography generated via hot-embossing onto a track-etched polycarbonate membrane, fully replicated topographical features and preserved porous architecture. Pore size and shape were analyzed with SEM and image analysis to determine the effect of hot embossing on pore morphology. The membrane was assembled into a bilayer microfluidic device and a human kidney proximal tubule epithelial cell line (HK-2) and primary renal proximal tubule epithelial cells (RPTEC) were cultured to confluency on the membrane. Immunofluorescent staining of both cell types revealed protein expression indicative of the formation of a reabsorptive barrier responsive to mechanical stimulation: ZO-1 (tight junction), paxillin (focal adhesions) and acetylated α-tubulin (primary cilia). HK-2 and RPTEC aligned in the direction of ridge/groove topography of the membrane in the device, evidence that the device has mechanical control over cell response. This topographically-patterned porous membrane provides an in vitro platform on which to model reabsorptive barriers with meaningful applications for understanding biological transport phenomenon, underlying disease mechanisms, and drug toxicity.
Collapse
Affiliation(s)
- Else M. Frohlich
- Boston University, Department of Mechanical Engineering, 110 Cummington Street, Boston, MA 02215, USA
- Charles Stark Draper Laboratory, Biomedical Engineering Group, 555 Technology Square, Cambridge, MA 02139, USA
| | - José Luis Alonso
- Harvard Medical School, Massachusetts General Hospital, Division of Nephrology, 149 13th Street, Charlestown, MA 02129, USA
| | - Jeffrey T. Borenstein
- Charles Stark Draper Laboratory, Biomedical Engineering Group, 555 Technology Square, Cambridge, MA 02139, USA
| | - Xin Zhang
- Boston University, Department of Mechanical Engineering, 110 Cummington Street, Boston, MA 02215, USA
| | - M. Amin Arnaout
- Harvard Medical School, Massachusetts General Hospital, Division of Nephrology, 149 13th Street, Charlestown, MA 02129, USA
| | - Joseph L. Charest
- Charles Stark Draper Laboratory, Biomedical Engineering Group, 555 Technology Square, Cambridge, MA 02139, USA
| |
Collapse
|
52
|
Shaikh FY, Crowe JE. Molecular mechanisms driving respiratory syncytial virus assembly. Future Microbiol 2013; 8:123-31. [PMID: 23252497 DOI: 10.2217/fmb.12.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Respiratory syncytial virus is a single-stranded RNA virus in the Paramyxoviridae family that preferentially assembles and buds from the apical surface of polarized epithelial cells, forming filamentous structures that contain both viral proteins and the genomic RNA. Recent studies have described both viral and host factors that are involved in ribonucleoprotein assembly and trafficking of viral proteins to the cell surface. At the cell surface, viral proteins assemble into filaments that probably require interactions between viral proteins, host proteins and the cell membrane. Finally, a membrane scission event must occur to release the free virion. This article will review the recent literature describing the mechanisms that drive respiratory syncytial virus assembly and budding.
Collapse
Affiliation(s)
- Fyza Y Shaikh
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
53
|
He B, Jia Z, Du W, Yu C, Fan Y, Dai W, Yuan L, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The transport pathways of polymer nanoparticles in MDCK epithelial cells. Biomaterials 2013; 34:4309-26. [DOI: 10.1016/j.biomaterials.2013.01.100] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/30/2013] [Indexed: 12/18/2022]
|
54
|
Kay P, Yang YC, Paraoan L. Directional protein secretion by the retinal pigment epithelium: roles in retinal health and the development of age-related macular degeneration. J Cell Mol Med 2013; 17:833-43. [PMID: 23663427 PMCID: PMC3822888 DOI: 10.1111/jcmm.12070] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/24/2013] [Indexed: 11/29/2022] Open
Abstract
The structural and functional integrity of the retinal pigment epithelium (RPE) is fundamental for maintaining the function of the neuroretina. These specialized cells form a polarized monolayer that acts as the retinal–blood barrier, separating two distinct environments with highly specialized functions: photoreceptors of the neuroretina at the apical side and Bruch's membrane/highly vascularized choriocapillaris at the basal side. The polarized nature of the RPE is essential for the health of these two regions, not only in nutrient and waste transport but also in the synthesis and directional secretion of proteins required in maintaining retinal homoeostasis and function. Although multiple malfunctions within the RPE cells have been associated with development of age-related macular degeneration (AMD), the leading cause of legal blindness, clear causative processes have not yet been conclusively characterized at the molecular and cellular level. This article focuses on the involvement of directionally secreted RPE proteins in normal functioning of the retina and on the potential association of incorrect RPE protein secretion with development of AMD. Understanding the importance of RPE polarity and the correct secretion of essential structural and regulatory components emerge as critical factors for the development of novel therapeutic strategies targeting AMD.
Collapse
Affiliation(s)
- Paul Kay
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
55
|
Rifki OF, Bodemann BO, Battiprolu PK, White MA, Hill JA. RalGDS-dependent cardiomyocyte autophagy is required for load-induced ventricular hypertrophy. J Mol Cell Cardiol 2013; 59:128-38. [PMID: 23473774 DOI: 10.1016/j.yjmcc.2013.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 02/09/2013] [Accepted: 02/26/2013] [Indexed: 01/19/2023]
Abstract
Recent work has demonstrated that autophagy, a phylogenetically conserved, lysosome-mediated pathway of protein degradation, is a key participant in pathological cardiac remodeling. One common feature of cell growth and autophagy is membrane biogenesis and processing. The exocyst, an octomeric protein complex involved in vesicle trafficking, is implicated in numerous cellular processes, yet its role in cardiomyocyte plasticity is unknown. Here, we set out to explore the role of small G protein-dependent control of exocyst function and membrane trafficking in stress-induced cardiomyocyte remodeling and autophagy. First, we tested in cultured neonatal rat cardiomyocytes (NRCMs) two isoforms of Ral (RalA, RalB) whose actions are mediated by the exocyst. In these experiments, mTOR inhibition in response to starvation or Torin1 was preserved despite RalA or RalB knockdown; however, activation of autophagy was suppressed only in NRCMs depleted of RalB, implicating RalB as being required for mTOR-dependent cardiomyocyte autophagy. To define further the role of RalB in cardiomyocyte autophagy, we analyzed hearts from mice lacking RalGDS (Ralgds(-/-)), a guanine exchange factor (GEF) for the Ral family of small GTPases. RalGDS-null hearts were similar to wild-type (WT) littermates in terms of ventricular structure, contractile performance, and gene expression. However, Ralgds(-/-) hearts manifested a blunted growth response (p<0.05) to TAC-mediated pressure-overload stress. Ventricular chamber size and contractile performance were preserved in response to TAC in Ralgds(-/-) mice, and load-induced cardiomyocyte autophagy was suppressed. Interestingly, TAC-induced activation of the fetal gene program was similar in both genotypes despite the relative lack of hypertrophic growth in mutant hearts. Together, these data implicate RalGDS-mediated induction of autophagy and exocyst function as a critical feature of load-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Oktay F Rifki
- Department of Internal Medicine, Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
56
|
Shono M, Yoshioka R, Chatani Y, Hirai Y. Ectopic Expression of Syntaxin3 Affects Behaviors of B16 Melanoma by Controlling Actin Dynamics. Cell Struct Funct 2013; 38:97-107. [DOI: 10.1247/csf.12032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Michiko Shono
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Ryosuke Yoshioka
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Yoshimitsu Chatani
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Yohei Hirai
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
57
|
Transferrin receptor specific nanocarriers conjugated with functional 7peptide for oral drug delivery. Biomaterials 2013; 34:794-806. [DOI: 10.1016/j.biomaterials.2012.10.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/03/2012] [Indexed: 12/24/2022]
|
58
|
Herpes simplex virus membrane proteins gE/gI and US9 act cooperatively to promote transport of capsids and glycoproteins from neuron cell bodies into initial axon segments. J Virol 2012; 87:403-14. [PMID: 23077321 DOI: 10.1128/jvi.02465-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Herpes simplex virus (HSV) and other alphaherpesviruses must move from sites of latency in ganglia to peripheral epithelial cells. How HSV navigates in neuronal axons is not well understood. Two HSV membrane proteins, gE/gI and US9, are key to understanding the processes by which viral glycoproteins, unenveloped capsids, and enveloped virions are transported toward axon tips. Whether gE/gI and US9 function to promote the loading of viral proteins onto microtubule motors in neuron cell bodies or to tether viral proteins onto microtubule motors within axons is not clear. One impediment to understanding how HSV gE/gI and US9 function in axonal transport relates to observations that gE(-), gI(-), or US9(-) mutants are not absolutely blocked in axonal transport. Mutants are significantly reduced in numbers of capsids and glycoproteins in distal axons, but there are less extensive effects in proximal axons. We constructed HSV recombinants lacking both gE and US9 that transported no detectable capsids and glycoproteins to distal axons and failed to spread from axon tips to adjacent cells. Live-cell imaging of a gE(-)/US9(-) double mutant that expressed fluorescent capsids and gB demonstrated >90% diminished capsids and gB in medial axons and no evidence for decreased rates of transport, stalling, or increased retrograde transport. Instead, capsids, gB, and enveloped virions failed to enter proximal axons. We concluded that gE/gI and US9 function in neuron cell bodies, in a cooperative fashion, to promote the loading of HSV capsids and vesicles containing glycoproteins and enveloped virions onto microtubule motors or their transport into proximal axons.
Collapse
|
59
|
Yui N, Lu HAJ, Chen Y, Nomura N, Bouley R, Brown D. Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel. Am J Physiol Cell Physiol 2012; 304:C38-48. [PMID: 23015545 DOI: 10.1152/ajpcell.00109.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aquaporin-2 (AQP2) water channel relocates mainly to the apical plasma membrane of collecting duct principal cells after vasopressin (VP) stimulation. AQP2 transport to this membrane domain is assumed to be a direct route involving recycling of intracellular vesicles. However, basolateral plasma membrane expression of AQP2 is observed in vivo in principal cells. Here, we asked whether there is a transcytotic pathway of AQP2 trafficking between apical and basolateral membranes. We used MDCK cells in which AQP2 normally accumulates apically after VP exposure. In contrast, both site-specific biotinylation and immunofluorescence showed that AQP2 is strongly accumulated in the basolateral membrane, along with the endocytic protein clathrin, after a brief cold shock (4°C). This suggests that AQP2 may be constitutively targeted to basolateral membranes and then retrieved by clathrin-mediated endocytosis at physiological temperatures. Rab11 does not accumulate in basolateral membranes after cold shock, suggesting that the AQP2 in this location is not associated with Rab11-positive vesicles. After rewarming (37°C), basolateral AQP2 staining is diminished and it subsequently accumulates at the apical membrane in the presence of VP/forskolin, suggesting that transcytosis can be followed by apical insertion of AQP2. This process is inhibited by treatment with colchicine. Our data suggest that the cold shock procedure reveals the presence of microtubule-dependent AQP2 transcytosis, which represents an indirect pathway of apical AQP2 delivery in these cells. Furthermore, our data indicate that protein polarity data obtained from biotinylation assays, which require cells to be cooled to 4°C during the labeling procedure, should be interpreted with caution.
Collapse
Affiliation(s)
- Naofumi Yui
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Cuartero Y, Mellado M, Capell A, Álvarez-Dolado M, Verges M. Retromer Regulates Postendocytic Sorting of β-Secretase in Polarized Madin-Darby Canine Kidney Cells. Traffic 2012; 13:1393-410. [DOI: 10.1111/j.1600-0854.2012.01392.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 01/24/2023]
Affiliation(s)
- Yasmina Cuartero
- Laboratory of Epithelial Cell Biology; Centro de Investigación Príncipe Felipe; Valencia; Spain
| | - Maravillas Mellado
- Laboratory of Epithelial Cell Biology; Centro de Investigación Príncipe Felipe; Valencia; Spain
| | - Anja Capell
- German Center for Neurodegenerative Diseases & Adolf Butenandt Institute - Biochemistry; Ludwig Maximilians University; Munich; Germany
| | - Manuel Álvarez-Dolado
- Department of Cell Therapy and Regenerative Medicine; Andalusian Center for Molecular Biology and Regenerative Medicine; Seville; Spain
| | | |
Collapse
|
61
|
Leung C, Shaheen F, Bernatchez P, Hackett TL. Expression of myoferlin in human airway epithelium and its role in cell adhesion and zonula occludens-1 expression. PLoS One 2012; 7:e40478. [PMID: 22808170 PMCID: PMC3393691 DOI: 10.1371/journal.pone.0040478] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/08/2012] [Indexed: 11/18/2022] Open
Abstract
Background Normal airway epithelial barrier function is maintained by cell-cell contacts which require the translocation of adhesion proteins at the cell surface, through membrane vesicle trafficking and fusion events. Myoferlin and dysferlin, members of the multiple-C2-domain Ferlin superfamily, have been implicated in membrane fusion processes through the induction of membrane curvature. The objectives of this study were to examine the expression of dysferlin and myoferlin within the human airway and determine the roles of these proteins in airway epithelial homeostasis. Methods The expression of dysferlin and myoferlin were evaluated in normal human airway sections by immunohistochemistry, and primary human airway epithelial cells and fibroblasts by immuno blot. Localization of dysferlin and myoferlin in epithelial cells were determined using confocal microscopy. Functional outcomes analyzed included cell adhesion, protein expression, and cell detachment following dysferlin and myoferlin siRNA knock-down, using the human bronchial epithelial cell line, 16HBE. Results Primary human airway epithelial cells express both dysferlin and myoferlin whereas fibroblasts isolated from bronchi and the parenchyma only express myoferlin. Expression of dysferlin and myoferlin was further localized within the Golgi, cell cytoplasm and plasma membrane of 16HBE cells using confocal micrscopy. Treatment of 16HBE cells with myoferlin siRNA, but not dysferlin siRNA, resulted in a rounded cell morphology and loss of cell adhesion. This cell shedding following myoferlin knockdown was associated with decreased expression of tight junction molecule, zonula occludens-1 (ZO-1) and increased number of cells positive for apoptotic markers Annexin V and propidium iodide. Cell shedding was not associated with release of the innate inflammatory cytokines IL-6 and IL-8. Conclusions/Significance This study demonstrates the heterogeneous expression of myoferlin within epithelial cells and fibroblasts of the respiratory airway. The effect of myoferlin on the expression of ZO-1 in airway epithelial cells indicates its role in membrane fusion events that regulate cell detachment and apoptosis within the airway epithelium.
Collapse
Affiliation(s)
- Cleo Leung
- The James Hogg Research Centre, Institute for Heart + Lung Health, St Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Furquan Shaheen
- The James Hogg Research Centre, Institute for Heart + Lung Health, St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Pascal Bernatchez
- The James Hogg Research Centre, Institute for Heart + Lung Health, St Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tillie-Louise Hackett
- The James Hogg Research Centre, Institute for Heart + Lung Health, St Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
62
|
Differential trafficking of transport vesicles contributes to the localization of dendritic proteins. Cell Rep 2012; 2:89-100. [PMID: 22840400 DOI: 10.1016/j.celrep.2012.05.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/04/2012] [Accepted: 05/22/2012] [Indexed: 11/21/2022] Open
Abstract
In neurons, transmembrane proteins are targeted to dendrites in vesicles that traffic solely within the somatodendritic compartment. How these vesicles are retained within the somatodendritic domain is unknown. Here, we use a novel pulse-chase system, which allows synchronous release of exogenous transmembrane proteins from the endoplasmic reticulum to follow movements of post-Golgi transport vesicles. Surprisingly, we found that post-Golgi vesicles carrying dendritic proteins were equally likely to enter axons and dendrites. However, once such vesicles entered the axon, they very rarely moved beyond the axon initial segment but instead either halted or reversed direction in an actin and Myosin Va-dependent manner. In contrast, vesicles carrying either an axonal or a nonspecifically localized protein only rarely halted or reversed and instead generally proceeded to the distal axon. Thus, our results are consistent with the axon initial segment behaving as a vesicle filter that mediates the differential trafficking of transport vesicles.
Collapse
|
63
|
Fry AC, Su Y, Yiu V, Cuthbert AW, Trachtman H, Karet Frankl FE. Mutation conferring apical-targeting motif on AE1 exchanger causes autosomal dominant distal RTA. J Am Soc Nephrol 2012; 23:1238-49. [PMID: 22518001 DOI: 10.1681/asn.2012020112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in SLC4A1 that mislocalize its product, the chloride/bicarbonate exchanger AE1, away from its normal position on the basolateral membrane of the α-intercalated cell cause autosomal dominant distal renal tubular acidosis (dRTA). We studied a family exhibiting dominant inheritance and defined a mutation (AE1-M909T) that affects the C terminus of AE1, a region rich in potential targeting motifs that are incompletely characterized. Expression of AE1-M909T in Xenopus oocytes confirmed preservation of its anion exchange function. Wild-type GFP-tagged AE1 localized to the basolateral membrane of polarized MDCK cells, but AE1-M909T localized to both the apical and basolateral membranes. Wild-type AE1 trafficked directly to the basolateral membrane without apical passage, whereas AE1-M909T trafficked to both cell surfaces, implying the gain of an apical-targeting signal. We found that AE1-M909T acquired class 1 PDZ ligand activity that the wild type did not possess. In summary, the AE1-M909T mutation illustrates the role of abnormal targeting in dRTA and provides insight into C-terminal motifs that govern normal trafficking of AE1.
Collapse
Affiliation(s)
- Andrew C Fry
- Department of Medical Genetics, University of Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
64
|
Effects of naturally occurring G103D point mutation of AQP5 on its water permeability, trafficking and cellular localization in the submandibular gland of rats. Biol Cell 2012; 103:69-86. [DOI: 10.1042/bc20100086] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
65
|
|
66
|
Abstract
The surface of mucosal sites, such as the intestinal tract, are covered by epithelial cells. To protect the intestinal environment from invading pathogens and maintain homeostasis, the human body developed an exquisite acquired immune system, referred to as the mucosal immune system, in which epithelial cells and lymphocytes function cooperatively. The main player in this immune system is the polymeric immunoglobulins (pIgs), in particular dimeric IgA (dIgA). To exert its protective effect, dIgA produced in the lamina propria must be transported to the intestinal lumen across epithelial cells. This process is called transcytosis and is mediated by polymeric immunoglobulin receptor (pIgR), which is exclusively produced by intestinal epithelial cells (IECs). DIgA is captured by pIgR on the basolateral surface of IECs and transcytosed to the opposite side of IECs. The dIgA-pIgR complex is expressed on the apical surface of IECs and proteolytically cleaved to generate secretory IgA (SIgA). This review describes the current understanding and recent progress in this research field.
Collapse
Affiliation(s)
- Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.
| | | |
Collapse
|
67
|
Johansen FE, Kaetzel C. Regulation of the polymeric immunoglobulin receptor and IgA transport: new advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol 2011; 4:598-602. [PMID: 21956244 PMCID: PMC3196803 DOI: 10.1038/mi.2011.37] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Secretory IgA (SIgA) antibodies represent the first line of antigen-specific immune defense protecting the mucosal surfaces against environmental pathogens and antigens, and maintaining homeostasis with the commensal microbiota. The polymeric immunoglobulin receptor (pIgR) has the dual role of transporting locally produced dimeric IgA across mucosal epithelia, and serving as the precursor of secretory component, a glycoprotein that enhances the immune functions of SIgA. The complex regulation of pIgR expression and transcytosis by host and microbial factors is finely tuned to optimize the role of SIgA in mucosal immunity. Disruption of this regulatory network in disease states similar to inflammatory bowel disease can result in profound consequences for mucosal homeostasis and systemic sequelae. Future research into the function and regulation of pIgR and SIgA may offer new insights into the prevention and treatment of infectious and inflammatory diseases that originate at mucosal surfaces.
Collapse
Affiliation(s)
- Finn-Eirik Johansen
- Department of Pathology and Department of Molecular Biosciences, Centre for Immune Regulation, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Charlotte Kaetzel
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
68
|
Apical protein transport and lumen morphogenesis in polarized epithelial cells. Biosci Rep 2011; 31:245-56. [PMID: 21366541 DOI: 10.1042/bsr20100119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Segregation of the apical and basolateral plasma membrane domains is the key distinguishing feature of epithelial cells. A series of interrelated cues and processes follow this primary polarization event, resulting in the morphogenesis of the mammalian epithelium. This review focuses on the role of the interactions between the extracellular matrix and neighbouring cells during the initiation and establishment of epithelial polarity, and the role that membrane transport and polarity complexes play in this process. An overview of the formation of the apical junctional complexes is given in relation to the generation of distinct membrane domains characterized by the asymmetric distribution of phosphoinositides and proteins. The mechanisms and machinery utilized by the trafficking pathways involved in the generation and maintenance of this apical-basolateral polarization are expounded, highlighting processes of apical-directed transport. Furthermore, the current proposed mechanisms for the organization of entire networks of cells into a structured, polarized three-dimensional structure are described, with an emphasis on the proposed mechanisms for the formation and expansion of the apical lumen.
Collapse
|
69
|
Papanikolaou A, Papafotika A, Christoforidis S. CD39 Reveals Novel Insights into the Role of Transmembrane Domains in Protein Processing, Apical Targeting and Activity. Traffic 2011; 12:1148-65. [DOI: 10.1111/j.1600-0854.2011.01224.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
70
|
El-Hashash AHK, Turcatel G, Al Alam D, Buckley S, Tokumitsu H, Bellusci S, Warburton D. Eya1 controls cell polarity, spindle orientation, cell fate and Notch signaling in distal embryonic lung epithelium. Development 2011; 138:1395-407. [PMID: 21385765 DOI: 10.1242/dev.058479] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell polarity, mitotic spindle orientation and asymmetric division play a crucial role in the self-renewal/differentiation of epithelial cells, yet little is known about these processes and the molecular programs that control them in embryonic lung distal epithelium. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized with characteristic perpendicular cell divisions. Consistent with these findings, spindle orientation-regulatory proteins Insc, LGN (Gpsm2) and NuMA, and the cell fate determinant Numb are asymmetrically localized in embryonic lung distal epithelium. Interfering with the function of these proteins in vitro randomizes spindle orientation and changes cell fate. We further show that Eya1 protein regulates cell polarity, spindle orientation and the localization of Numb, which inhibits Notch signaling. Hence, Eya1 promotes both perpendicular division as well as Numb asymmetric segregation to one daughter in mitotic distal lung epithelium, probably by controlling aPKCζ phosphorylation. Thus, epithelial cell polarity and mitotic spindle orientation are defective after interfering with Eya1 function in vivo or in vitro. In addition, in Eya1(-/-) lungs, perpendicular division is not maintained and Numb is segregated to both daughter cells in mitotic epithelial cells, leading to inactivation of Notch signaling. As Notch signaling promotes progenitor cell identity at the expense of differentiated cell phenotypes, we test whether genetic activation of Notch could rescue the Eya1(-/-) lung phenotype, which is characterized by loss of epithelial progenitors, increased epithelial differentiation but reduced branching. Indeed, genetic activation of Notch partially rescues Eya1(-/-) lung epithelial defects. These findings uncover novel functions for Eya1 as a crucial regulator of the complex behavior of distal embryonic lung epithelium.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4661 Sunset Boulevard, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
A proper balance between self-renewal and differentiation of lung-specific progenitors at the distal epithelial tips is absolutely required for normal lung morphogenesis. Cell polarity and mitotic spindle orientation play a critical role in the self-renewal/differentiation of epithelial cells and can impact normal physiological processes, including epithelial tissue branching and differentiation. Therefore, understanding the behavior of lung distal epithelial progenitors could identify innovative solutions to restoring normal lung morphogenesis. Yet little is known about cell polarity, spindle orientation, and segregation of cell fate determinant in the embryonic lung epithelium, which contains progenitor cells. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized and highly mitotic with characteristic perpendicular cell divisions. Consistent with these findings, mInsc, LGN, and NuMA polarity proteins, which control spindle orientation, are asymmetrically localized in mitotic distal epithelial progenitors of embryonic lungs. Furthermore, the cell fate determinant Numb is asymmetrically distributed at the apical side of distal epithelial progenitors and segregated to one daughter cell in most mitotic cells. These findings provide evidence for polarity in distal epithelial progenitors of embryonic lungs and provide a framework for future translationally oriented studies in this area.
Collapse
Affiliation(s)
- Ahmed H El-Hashash
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and Ostrow School of Dentistry, University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and Ostrow School of Dentistry, University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| |
Collapse
|
72
|
Huang W, Gu H, Li R, Lou T, Zhang J, Shi W, Ye Z, Zhou Y, Li C, Xiong S, Li L, Wu C, Leung JCK, Lam MF, Lai KN, Wang Y. Association of -27T>C and its haplotype at the putative promoter for IgA-specific receptor gene with IgA nephropathy among the Chinese Han population. Nephrol Dial Transplant 2011; 26:2537-44. [PMID: 21273231 DOI: 10.1093/ndt/gfq765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND One-third to half of IgA nephropathy (IgAN) patients have raised serum IgA levels. Decreased clearance of IgA/IgA complex has been observed in IgAN patients. FCAR codes for IgA-specific receptor and plays an important role in IgA metabolism. Previous small sample-sized studies reported controversial findings in its association with IgAN. METHODS We re-sequenced the FCAR in 107 IgAN patients and 112 controls. Association of -27T/C and their haplotypes were performed in 606 patients versus 606 controls, its two independent subsets: 293 single patients with family members and 313 cases versus 606 controls. Functional impact of -27T>C and their haplotypes were analyzed by bioinformatics, allelic differential expression and luciferase activity assays. Cell surface FCAR density between -27T/C heterozygous patients and -27T/T homozygous controls was assessed by flow cytometry. RESULTS -27T>C, on the consensus TATA box of transcription factor-binding motif in the putative promoter of the gene was the only variation identified in all coding, splice-site and known protein-binding sequence in re-sequencing. -27C and its haplotype were associated with IgAN (P = 0.0034/0.0013, 0.0099/0.0054, 0.0129/0.0076 and 0.00039/0.00014 in 606 cases versus 606 controls, family-based study, 313 cases versus 606 controls and meta-analysis, respectively). Bioinformatics predicted 2 bp binding changes by -27C. Allelic differential expression and luciferase activity assays showed a reduced expression/activity by the associated haplotype/allele (P < 0.001). -27T/C heterozygous patients had a lower receptor density on cell surface compared to -27T/T homozygous controls (P < 0.001). CONCLUSIONS Our results provide evidence for genetic variation at the putative promoter region of FCAR conferring susceptibility to IgAN, suggesting -27C and its haplotype may be causative for the susceptibility among the Chinese Han population.
Collapse
Affiliation(s)
- Weijun Huang
- Department of Medical Genetics and Center for Genome Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Akiyama M, Zhou M, Sugimoto R, Hongu T, Furuya M, Funakoshi Y, Kato M, Hasegawa H, Kanaho Y. Tissue- and development-dependent expression of the small GTPase Arf6 in mice. Dev Dyn 2010; 239:3416-35. [DOI: 10.1002/dvdy.22481] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
74
|
Draheim V, Reichel A, Weitschies W, Moenning U. N-glycosylation of ABC transporters is associated with functional activity in sandwich-cultured rat hepatocytes. Eur J Pharm Sci 2010; 41:201-9. [PMID: 20558284 DOI: 10.1016/j.ejps.2010.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 05/30/2010] [Accepted: 06/08/2010] [Indexed: 02/08/2023]
Abstract
Hepatobiliary elimination via canalicular efflux transport proteins plays a key role in the clearance of endo- and xenobiotics. Correct membrane localization and coordinated action of the transport systems are essential for vectorial transport of drugs from blood into the bile. While basolaterally localized uptake transporters are responsible for the inward transport of substances from the blood into the hepatocyte, apically expressed ATP-dependent transport proteins such as P-glycoprotein (P-gp), multidrug resistance-associated protein (Mrp2) and breast cancer resistance protein (Bcrp) mediate the outward efflux into the bile canaliculus. Using sandwich-cultured rat hepatocytes we have characterized the expression and maturation of P-gp, Mrp2 and Bcrp transport proteins as well as their transport function over several days. The re-differentiation of the hepatocytes, which only occurs in sandwich configuration involves de novo synthesis and subsequent posttranslational N-glycosylation of all three transport proteins. Only fully N-glycosylated isoforms of the transporters were associated with functional activity as visualized by excretion of specific fluorescent substrates into the canalicular network. However, in what way N-glycosylation affects the functional activity of the ABC transporters investigated remains to be determined.
Collapse
Affiliation(s)
- Viola Draheim
- Research Pharmacokinetics, Bayer Schering Pharma AG, Berlin, Germany
| | | | | | | |
Collapse
|
75
|
Daher Z, Boulay PL, Desjardins F, Gratton JP, Claing A. Vascular endothelial growth factor receptor-2 activates ADP-ribosylation factor 1 to promote endothelial nitric-oxide synthase activation and nitric oxide release from endothelial cells. J Biol Chem 2010; 285:24591-9. [PMID: 20529868 DOI: 10.1074/jbc.m110.115311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) induces angiogenesis and regulates endothelial function via production and release of nitric oxide (NO), an important signaling molecule. The molecular basis leading to NO production involves phosphatidylinositiol-3 kinase (PI3K), Akt, and endothelial nitric-oxide synthase (eNOS) activation. In this study, we have examined whether small GTP-binding proteins of the ADP-ribosylation factor (ARF) family act as molecular switches to regulate signaling cascades activated by VEGF in endothelial cells. Our results show that this growth factor can promote the rapid and transient activation of ARF1. In endothelial cells, this GTPase is present on dynamic plasma membrane ruffles. Inhibition of ARF1 expression, using RNA interference, markedly impaired VEGF-dependent eNOS phosphorylation and NO production by preventing the activation of the PI3K/Akt signaling axis. Furthermore, our data indicate that phosphorylation of Tyr(801), on VEGF receptor 2, is essential for activating Src- and ARF1-dependent signaling events leading to NO release from endothelial cells. Lastly, this mediator is known to regulate a broad variety of endothelial cell functions. Depletion of ARF1 markedly inhibits VEGF-dependent increase of vascular permeability as well as capillary tubule formation, a process important for angiogenesis. Taken together, our data indicate that ARF1 is a novel modulator of VEGF-stimulated NO release and signaling in endothelial cells.
Collapse
Affiliation(s)
- Zeinab Daher
- Department of Biochemistry, Faculty of Medicine, University of Montréal, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
76
|
Godde NJ, Galea RC, Elsum IA, Humbert PO. Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia 2010; 15:149-68. [PMID: 20461450 DOI: 10.1007/s10911-010-9180-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/27/2010] [Indexed: 02/04/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) and its reversion via mesenchymal to epithelial transition (MET), represent a stepwise cycle of epithelial plasticity that allows for normal tissue remodelling and diversification during development. In particular, epithelial-mesenchymal plasticity is central to many aspects of mammary development and has been proposed to be a key process in breast cancer progression. Such epithelial-mesenchymal plasticity requires complex cellular reprogramming to orchestrate a change in cell shape to an alternate morphology more conducive to migration. During this process, epithelial characteristics, including apical-basal polarity and specialised cell-cell junctions are lost and mesenchymal properties, such as a front-rear polarity associated with weak cell-cell contacts, increased motility, resistance to apoptosis and invasiveness are gained. The ability of epithelial cells to undergo transitions through cell polarity states is a central feature of epithelial-mesenchymal plasticity. These cell polarity states comprise a set of distinct asymmetric distributions of cellular constituents that are fashioned to allow specialized cellular functions, such as the regulated homeostasis of molecules across epithelial barriers, cell migration or cell diversification via asymmetric cell divisions. Each polarity state is engineered using a molecular toolbox that is highly conserved between organisms and cell types which can direct the initiation, establishment and continued maintenance of each asymmetry. Here we discuss how EMT pathways target cell polarity mediators, and how this EMT-dependent change in polarity states impact on the various stages of breast cancer. Emerging evidence places cell polarity at the interface of proliferation and morphology control and as such the changing dynamics within polarity networks play a critical role in normal mammary gland development and breast cancer progression.
Collapse
Affiliation(s)
- Nathan J Godde
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Center, East Melbourne, VIC 3002, Australia
| | | | | | | |
Collapse
|
77
|
Osman M. An emerging role for IQGAP1 in regulating protein traffic. ScientificWorldJournal 2010; 10:944-53. [PMID: 20495773 PMCID: PMC3217317 DOI: 10.1100/tsw.2010.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 02/07/2023] Open
Abstract
IQGAP1, an effector of CDC42p GTPase, is a widely conserved, multifunctional protein that bundles F-actin through its N-terminus and binds microtubules through its C-terminus to modulate the cell architecture. It has emerged as a potential oncogene associated with diverse human cancers. Therefore, IQGAP1 has been heavily investigated; regardless, its precise cellular function remains unclear. Work from yeast suggests that IQGAP1 plays an important role in directed cell growth, which is a conserved feature crucial to morphogenesis, division axis, and body plan determination. New evidence suggests a conserved role for IQGAP1 in protein synthesis and membrane traffic, which may help to explain the diversity of its cellular functions. Membrane traffic mediates infections by intracellular pathogens and a range of degenerative human diseases arise from dysfunctions in intracellular traffic; thus, elucidating the mechanisms of cellular traffic will be important in order to understand the basis of a wide range of inherited and acquired human diseases. Recent evidence suggests that IQGAP1 plays its role in cell growth through regulating the conserved mTOR pathway. The mTOR signaling cascade has been implicated in membrane traffic and is activated in nearly all human cancers, but clinical response to the mTOR-specific inhibitor rapamycin has been disappointing. Thus, understanding the regulators of this pathway will be crucial in order to identify predictors of rapamycin sensitivity. In this review, I discuss emerging evidence that supports a potential role of IQGAP1 in regulating membrane traffic via regulating the mTOR pathway.
Collapse
Affiliation(s)
- Mahasin Osman
- Department of Molecular Pharmacology, Physiology and Biotechnology, Division of Biology and Medicine, Alpert School of Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
78
|
Haddad N, Marce C, Magras C, Cappelier JM. An overview of methods used to clarify pathogenesis mechanisms of Campylobacter jejuni. J Food Prot 2010; 73:786-802. [PMID: 20377972 DOI: 10.4315/0362-028x-73.4.786] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thermotolerant campylobacters are the most frequent cause of bacterial infection of the lower intestine worldwide. The mechanism of pathogenesis of Campylobacter jejuni comprises four main stages: adhesion to intestinal cells, colonization of the digestive tract, invasion of targeted cells, and toxin production. In response to the high number of cases of human campylobacteriosis, various virulence study models are available according to the virulence stage being analyzed. The aim of this review is to compare the different study models used to look at human disease. Molecular biology tools used to identify genes or proteins involved in virulence mechanisms are also summarized. Despite high cost and limited availability, animal models are frequently used to study digestive disease, in particular to analyze the colonization stage. Eukaryotic cell cultures have been developed because of fewer restrictions on their use and the lower cost of these cultures compared with animal models, and this ex vivo approach makes it possible to mimic the bacterial cell-host interactions observed in natural disease cases. Models are complemented by molecular biology tools, especially mutagenesis and DNA microarray methods to identify putative virulence genes or proteins and permit their characterization. No current model seems to be ideal for studying the complete range of C. jejuni virulence. However, the models available deal with different aspects of the complex pathogenic mechanisms particular to this bacterium.
Collapse
Affiliation(s)
- N Haddad
- Unit INRA 1014 SECALIM, National Veterinary School of Nantes, Route de Gachet, Nantes cedex 3, France
| | | | | | | |
Collapse
|
79
|
Fan J, Sammalkorpi M, Haataja M. Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:011908. [PMID: 20365400 DOI: 10.1103/physreve.81.011908] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/16/2009] [Indexed: 05/16/2023]
Abstract
Compositional lipid domains (lipid rafts) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes, lifetimes, and spatial localization of these domains are rather poorly understood at the moment. We propose a robust mechanism for the formation of finite-sized lipid raft domains in plasma membranes, the competition between phase separation in an immiscible lipid system and active cellular lipid transport processes naturally leads to the formation of such domains. Simulations of a continuum model reveal that the raft size distribution is broad and the average raft size is strongly dependent on the rates of cellular and interlayer lipid transport processes. We demonstrate that spatiotemporal variations in the recycling may enable the cell to localize larger raft aggregates at specific parts along the membrane. Moreover, we show that membrane compartmentalization may further facilitate spatial localization of the raft domains. Finally, we demonstrate that local interactions with immobile membrane proteins can spatially localize the rafts and lead to further clustering.
Collapse
Affiliation(s)
- Jun Fan
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
80
|
Abstract
The versatility of Ca(2+) as an intracellular messenger derives largely from the spatial organization of cytosolic Ca(2+) signals, most of which are generated by regulated openings of Ca(2+)-permeable channels. Most Ca(2+) channels are expressed in the plasma membrane (PM). Others, including the almost ubiquitous inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, the ryanodine receptors (RyR), are predominantly expressed in membranes of the sarcoplasmic or endoplasmic reticulum (ER). Targeting of these channels to appropriate destinations underpins their ability to generate spatially organized Ca(2+) signals. All Ca(2+) channels begin life in the cytosol, and the vast majority are then functionally assembled in the ER, where they may either remain or be dispatched to other membranes. Here, by means of selective examples, we review two issues related to this trafficking of Ca(2+) channels via the ER. How do cells avoid wayward activity of Ca(2+) channels in transit as they pass from the ER via other membranes to their final destination? How and why do some cells express small numbers of the archetypal intracellular Ca(2+) channels, IP(3)R and RyR, in the PM?
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | | | | |
Collapse
|
81
|
Balasubramanian N, Meier JA, Scott DW, Norambuena A, White MA, Schwartz MA. RalA-exocyst complex regulates integrin-dependent membrane raft exocytosis and growth signaling. Curr Biol 2009; 20:75-9. [PMID: 20005108 DOI: 10.1016/j.cub.2009.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 01/03/2023]
Abstract
Anchorage dependence of cell growth is a key metastasis-suppression mechanism that is mediated by effects of integrins on growth signaling pathways. The small GTPase RalA is activated in metastatic cancers through multiple mechanisms and specifically induces anchorage independence. Loss of integrin-mediated adhesion triggers caveolin-dependent internalization of cholesterol- and sphingolipid-rich lipid raft microdomains to the recycling endosomes; these domains serve as platforms for many signaling pathways, and their clearance from the plasma membrane (PM) after cell detachment suppresses growth signaling. Conversely, readhesion triggers their return to the PM and restores growth signaling. Activation of Arf6 by integrins mediates exit of raft markers from the recycling endosomes but is not sufficient for return to the PM. We now show that RalA but not RalB mediates integrin-dependent membrane raft exocytosis through the exocyst complex. Constitutively active RalA restores membrane raft targeting to promote anchorage-independent growth signaling. Ras-transformed pancreatic cancer cells also show RalA-dependent constitutive PM raft targeting. These results identify RalA as a key determinant of integrin-dependent membrane raft trafficking and regulation of growth signaling. They therefore define a mechanism by which RalA regulates anchorage dependence and provide a new link between integrin signaling and cancer.
Collapse
Affiliation(s)
- Nagaraj Balasubramanian
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Tight junctions: a barrier to the initiation and progression of breast cancer? J Biomed Biotechnol 2009; 2010:460607. [PMID: 19920867 PMCID: PMC2777242 DOI: 10.1155/2010/460607] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 08/27/2009] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a complex and heterogeneous disease that arises from epithelial cells lining the breast ducts and lobules. Correct adhesion between adjacent epithelial cells is important in determining the normal structure and function of epithelial tissues, and there is accumulating evidence that dysregulated cell-cell adhesion is associated with many cancers. This review will focus on one cell-cell adhesion complex, the tight junction (TJ), and summarize recent evidence that TJs may participate in breast cancer development or progression. We will first outline the protein composition of TJs and discuss the functions of the TJ complex. Secondly we will examine how alterations in these functions might facilitate breast cancer initiation or progression; by focussing on the regulatory influence of TJs on cell polarity, cell fate and cell migration. Finally we will outline how pharmacological targeting of TJ proteins may be useful in limiting breast cancer progression. Overall we hope to illustrate that the relationship between TJ alterations and breast cancer is a complex one; but that this area offers promise in uncovering fundamental mechanisms linked to breast cancer progression.
Collapse
|
83
|
<I>Sec-10</I> Knockout Increases The Neuroactive-drug Responses Without Affecting Function of The Postsynaptic Ionotropic Receptors in Neuromuscular Junctions*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2009.00100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
84
|
Morelle W, Stechly L, André S, Van Seuningen I, Porchet N, Gabius HJ, Michalski JC, Huet G. Glycosylation pattern of brush border-associated glycoproteins in enterocyte-like cells: involvement of complex-type N-glycans in apical trafficking. Biol Chem 2009; 390:529-44. [PMID: 19426135 DOI: 10.1515/bc.2009.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously reported that galectin-4, a tandem repeat-type galectin, regulates the raft-dependent delivery of glycoproteins to the apical brush border membrane of enterocyte-like HT-29 cells. N-Acetyllactos-amine-containing glycans, known as galectin ligands, were found enriched in detergent-resistant membranes. Here, we analyzed the potential contribution of N- and/or O-glycans in this mechanism. Structural studies were carried out on the brush border membrane-enriched fraction using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and nano-ESI-QTOF-MS/MS. The pattern of N-glycans was very heterogeneous, with the presence of high mannose- and hybrid-type glycans as well as a multitude of complex-type glycans. In contrast, the pattern of O-glycans was very simple with the presence of two major core type 1 O-glycans, sialylated and bisialylated T-antigen structures [Neu5Acalpha2-3Galbeta1-3GalNAc-ol and Neu5Acalpha2- 3Galbeta1-3(Neu5Acalpha2-6)GalNAc-ol]. Thus, N-glycans rather than O-glycans contain the N-acetyllactosamine recognition signals for the lipid raft-based galectin-4-dependent apical delivery. In the presence of 1-deoxymannojirimycin, a drug which inhibits the generation of hybrid-type or complex type N-glycans, the extensively O-glycosylated mucin-like MUC1 glycoprotein was not delivered to the apical brush border but accumulated inside the cells. Altogether, our data demonstrate the crucial role of complex N-glycans in the galectin-4-dependent delivery of glycoproteins to the apical brush border membrane of enterocytic HT-29 cells.
Collapse
Affiliation(s)
- Willy Morelle
- UMR CNRS 8576, Unité de Glycobiologie Structurale et Fonctionnelle, IFR 147, F-59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Neuronal proteins are transported to either the axon or dendrites through the action of kinesin motors; however, understanding of how cytoskeletal elements steer these cargo-motor complexes to one compartment or the other has remained elusive. Three recent developments-the discovery of an actin-based filter within the axon initial segment, the identification of the pivotal role played by myosin motors in dendritic targeting, and the determination of the properties of a kinesin motor that cause it to prefer axonal to dendritic microtubules-have now provided a structural framework for understanding polarized targeting in neurons.
Collapse
Affiliation(s)
- Don B Arnold
- Department of Biology and Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
86
|
Aframian DJ, Palmon A. Current status of the development of an artificial salivary gland. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:187-98. [PMID: 18471085 DOI: 10.1089/ten.teb.2008.0044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Salivary glands (SGs) secrete more than half a liter of saliva daily. Saliva has many functions in maintaining the normal homeostasis of the oral cavity. Several causes underlie salivary impairment, where irradiation therapy to head and neck cancer patients is one of the most debilitating causes leading to considerable decrease in the patients' quality of life. In the last decade, others and we have focused on implementing tissue engineering principles combined with gene transfer and stem cell methodologies to develop an artificial SG device. This manuscript provides an overview of the current status of engineering an artificial SG.
Collapse
Affiliation(s)
- Doron J Aframian
- Department of Oral Medicine, Salivary Gland Clinic, Hebrew University, Jerusalem, Israel.
| | | |
Collapse
|
87
|
Zaarour N, Demaretz S, Defontaine N, Mordasini D, Laghmani K. A highly conserved motif at the COOH terminus dictates endoplasmic reticulum exit and cell surface expression of NKCC2. J Biol Chem 2009; 284:21752-21764. [PMID: 19535327 PMCID: PMC2755897 DOI: 10.1074/jbc.m109.000679] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/14/2009] [Indexed: 02/01/2023] Open
Abstract
Mutations in the apically located Na(+)-K(+)-2Cl(-) co-transporter, NKCC2, lead to type I Bartter syndrome, a life-threatening kidney disorder, yet the mechanisms underlying the regulation of mutated NKCC2 proteins in renal cells have not been investigated. Here, we identified a trihydrophobic motif in the distal COOH terminus of NKCC2 that was required for endoplasmic reticulum (ER) exit and surface expression of the co-transporter. Indeed, microscopic confocal imaging showed that a naturally occurring mutation depriving NKCC2 of its distal COOH-terminal region results in the absence of cell surface expression. Biotinylation assays revealed that lack of cell surface expression was associated with abolition of mature complex-glycosylated NKCC2. Pulse-chase analysis demonstrated that the absence of mature protein was not caused by reduced synthesis or increased rates of degradation of mutant co-transporters. Co-immunolocalization experiments revealed that these mutants co-localized with the ER marker protein-disulfide isomerase, demonstrating that they are retained in the ER. Cell treatment with proteasome or lysosome inhibitors failed to restore the loss of complex-glycosylated NKCC2, further eliminating the possibility that mutant co-transporters were processed by the Golgi apparatus. Serial truncation of the NKCC2 COOH terminus, followed by site-directed mutagenesis, identified hydrophobic residues (1081)LLV(1083) as an ER exit signal necessary for maturation of NKCC2. Mutation of (1081)LLV(1083) to AAA within the context of the full-length protein prevented NKCC2 ER exit independently of the expression system. This trihydrophobic motif is highly conserved in the COOH-terminal tails of all members of the cation-chloride co-transporter family, and thus may function as a common motif mediating their transport from the ER to the cell surface. Taken together, these data are consistent with a model whereby naturally occurring premature terminations that interfere with the LLV motif compromise co-transporter surface delivery through defective trafficking.
Collapse
Affiliation(s)
- Nancy Zaarour
- From INSERM, UMRS 872-Equipe 3-ERL7226, 75006 Paris
- IFR58, Institut des Cordeliers, 75006 Paris
- Universite Paris-Descartes, 75005 Paris, and
- Universite Pierre et Marie Curie, 75006 Paris, France
| | - Sylvie Demaretz
- From INSERM, UMRS 872-Equipe 3-ERL7226, 75006 Paris
- IFR58, Institut des Cordeliers, 75006 Paris
- Universite Paris-Descartes, 75005 Paris, and
- Universite Pierre et Marie Curie, 75006 Paris, France
| | - Nadia Defontaine
- From INSERM, UMRS 872-Equipe 3-ERL7226, 75006 Paris
- IFR58, Institut des Cordeliers, 75006 Paris
- Universite Paris-Descartes, 75005 Paris, and
- Universite Pierre et Marie Curie, 75006 Paris, France
| | - David Mordasini
- From INSERM, UMRS 872-Equipe 3-ERL7226, 75006 Paris
- IFR58, Institut des Cordeliers, 75006 Paris
- Universite Paris-Descartes, 75005 Paris, and
- Universite Pierre et Marie Curie, 75006 Paris, France
| | - Kamel Laghmani
- From INSERM, UMRS 872-Equipe 3-ERL7226, 75006 Paris
- IFR58, Institut des Cordeliers, 75006 Paris
- Universite Paris-Descartes, 75005 Paris, and
- Universite Pierre et Marie Curie, 75006 Paris, France
| |
Collapse
|
88
|
Aït-Slimane T, Galmes R, Trugnan G, Maurice M. Basolateral internalization of GPI-anchored proteins occurs via a clathrin-independent flotillin-dependent pathway in polarized hepatic cells. Mol Biol Cell 2009; 20:3792-800. [PMID: 19605558 DOI: 10.1091/mbc.e09-04-0275] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In polarized hepatocytes, the predominant route for apical resident proteins to reach the apical bile canalicular membrane is transcytosis. Apical proteins are first sorted to the basolateral membrane from which they are internalized and transported to the opposite surface. We have noted previously that transmembrane proteins and GPI-anchored proteins reach the apical bile canaliculi at very different rates. Here, we investigated whether these differences may be explained by the use of distinct endocytic mechanisms. We show that endocytosis of both classes of proteins at the basolateral membrane of polarized hepatic cells is dynamin dependent. However, internalization of transmembrane proteins is clathrin mediated, whereas endocytosis of GPI-anchored proteins does not require clathrin. Further analysis of basolateral endocytosis of GPI-anchored proteins showed that caveolin, as well as the small GTPase cdc42 were dispensable. Alternatively, internalized GPI-anchored proteins colocalized with flotillin-2-positive vesicles, and down-expression of flotillin-2 inhibited endocytosis of GPI-anchored proteins. These results show that basolateral endocytosis of GPI-anchored proteins in hepatic cells occurs via a clathrin-independent flotillin-dependent pathway. The use of distinct endocytic pathways may explain, at least in part, the different rates of transcytosis between transmembrane and GPI-anchored proteins.
Collapse
Affiliation(s)
- Tounsia Aït-Slimane
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 938, Centre de Recherche Saint-Antoine, 75571 Paris Cedex 12, France.
| | | | | | | |
Collapse
|
89
|
Karabasil MR, Hasegawa T, Azlina A, Purwanti N, Purevjav J, Yao C, Akamatsu T, Hosoi K. Trafficking of GFP-AQP5 chimeric proteins conferred with unphosphorylated amino acids at their PKA-target motif ((152)SRRTS) in MDCK-II cells. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 56:55-63. [PMID: 19262015 DOI: 10.2152/jmi.56.55] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Three constructs having mutated PKA-target motif at (152)SRRTS of AQP5, an exocrine type water channel, were prepared and fused to C-terminus of green fluorescence protein cDNA to examine the effects of blocking of phosphorylation at (152)SRRTS (a consensus PKA-target motif of AQP5) on translocation or trafficking of the chimeric proteins expressed in the Madin-Darby canine kidney-II (MDCK-II) cells. H-89 treatment increased translocation of wild-type GFP-AQP5 to the apical membrane. All 3 mutant molecules translocated 1.5 to 2 times more than the control wild-type GFP-AQP5. Colchicine but not cytochalasin B inhibited the translocation of wild-type GFP-AQP5. Present results suggest dephosphorylation of this consensus sequence increase GFP-AQP5 translocation, and that microtubules but not microfilaments are involved in this event.
Collapse
Affiliation(s)
- Mileva Ratko Karabasil
- Department of Molecular Oral Physiology, Institute of Health Biosciences, the University of Tokushima Graduate School, Japan
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Heidrych P, Zimmermann U, Kuhn S, Franz C, Engel J, Duncker SV, Hirt B, Pusch CM, Ruth P, Pfister M, Marcotti W, Blin N, Knipper M. Otoferlin interacts with myosin VI: implications for maintenance of the basolateral synaptic structure of the inner hair cell. Hum Mol Genet 2009; 18:2779-90. [PMID: 19417007 DOI: 10.1093/hmg/ddp213] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Otoferlin has been proposed to be the Ca(2+) sensor in hair cell exocytosis, compensating for the classical synaptic fusion proteins synaptotagmin-1 and synaptotagmin-2. In the present study, yeast two-hybrid assays reveal myosin VI as a novel otoferlin binding partner. Co-immunoprecipitation assay and co-expression suggest an interaction of both proteins within the basolateral part of inner hair cells (IHCs). Comparison of otoferlin mutants and myosin VI mutant mice indicates non-complementary and complementary roles of myosin VI and otoferlin for synaptic maturation: (i) IHCs from otoferlin mutant mice exhibited a decoupling of CtBP2/RIBEYE and Ca(V)1.3 and severe reduction of exocytosis. (ii) Myosin VI mutant IHCs failed to transport BK channels to the membrane of the apical cell regions, and the exocytotic Ca(2+) efficiency did not mature. (iii) Otoferlin and myosin VI mutant IHCs showed a reduced basolateral synaptic surface area and altered active zone topography. Membrane infoldings in otoferlin mutant IHCs indicated disturbed transport of endocytotic membranes and link the above morphological changes to a complementary role of otoferlin and myosin VI in transport of intracellular compartments to the basolateral IHC membrane.
Collapse
Affiliation(s)
- Paulina Heidrych
- University of Tübingen, Institute of Human Genetics, Wilhelmstr. 27, 72074 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
The formation of axons and dendrites and maintenance of the neuron's vastly expanded surface require the continuous addition of new membrane. This is achieved by membrane synthesis through the secretory pathway followed by regulated vesicle fusion with the plasma membrane, typically in the distal neurite. However, it is far from simple: multiple distinct membrane carriers are used to target specific membrane domains, dendrites seem to operate semi-autonomously from the rest of the neuron, and exocytosis for membrane expansion is different from that for release of synaptic vesicles. Current knowledge of this process and its implications for neuronal development, function and repair are reviewed.
Collapse
|
92
|
Underwood RA, Carter WG, Usui ML, Olerud JE. Ultrastructural localization of integrin subunits beta4 and alpha3 within the migrating epithelial tongue of in vivo human wounds. J Histochem Cytochem 2008; 57:123-42. [PMID: 18824633 DOI: 10.1369/jhc.2008.952176] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Subsequent to wounding, keratinocytes must quickly restore barrier function. In vitro wound models have served to elucidate mechanisms of epithelial closure and key roles for integrins alpha6beta4 and alpha3beta1. To extrapolate in vitro data to in vivo human tissues, we used ultrathin cryomicrotomy to simultaneously observe tissue ultrastructure and immunogold localization in unwounded skin and acute human cutaneous wounds. Localization of the beta4 integrin subunit in unwounded skin shows dominant hemidesmosomal association and minor basal keratinocyte lateral filopodic cell-cell expression. After wounding, beta4 dominantly localized to cytokeratin-rich regions (trailing edge hemidesmosomes) and minor association with lamellipodia (leading edge). beta4 colocalizes with alpha3 within filopodia juxtaposed to wound matrix, and increased concentrations of beta4 were found in cytoplasmic vesicles within basal keratinocytes of the migrating tongue. alpha3 integrin subunit dominantly localized to filopodia within basal keratinocyte lateral cell-cell interfaces in unwounded skin and both cell-cell and cell-matrix filopodic interactions in wounded skin. This study indicates that beta4 interacts with the extracellular environment through both stable and transient interactions and may be managed through a different endosomal trafficking pathway than alpha3. alpha3 integrin, despite its ability to respond to alternate ligands after wounding, does so through a single structure, the filopodia.
Collapse
Affiliation(s)
- Robert A Underwood
- University of Washington, Department of Medicine (Dermatology), Seattle, WA 98195-6524, USA.
| | | | | | | |
Collapse
|
93
|
Maria OM, Kim JWM, Gerstenhaber JA, Baum BJ, Tran SD. Distribution of tight junction proteins in adult human salivary glands. J Histochem Cytochem 2008; 56:1093-8. [PMID: 18765838 DOI: 10.1369/jhc.2008.951780] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tight junctions (TJs) are an essential structure of fluid-secreting cells, such as those in salivary glands. Three major families of integral membrane proteins have been identified as components of the TJ: claudins, occludin, and junctional adhesion molecules (JAMs), plus the cytosolic protein zonula occludens (ZO). We have been working to develop an orally implantable artificial salivary gland that would be suitable for treating patients lacking salivary parenchymal tissue. To date, little is known about the distribution of TJ proteins in adult human salivary cells and thus what key molecular components might be desirable for the cellular component of an artificial salivary gland device. Therefore, the aim of this study was to determine the distribution of TJ proteins in human salivary glands. Salivary gland samples were obtained from 10 patients. Frozen and formalin-fixed paraffin-embedded sections were stained using IHC methods. Claudin-1 was expressed in ductal, endothelial, and approximately 25% of serous cells. Claudins-2, -3, and -4 and JAM-A were expressed in both ductal and acinar cells, whereas claudin-5 was expressed only in endothelial cells. Occludin and ZO-1 were expressed in acinar, ductal, and endothelial cells. These results provide new information on TJ proteins in two major human salivary glands and should serve as a reference for future studies to assess the presence of appropriate TJ proteins in a tissue-engineered human salivary gland.
Collapse
Affiliation(s)
- Ola M Maria
- Faculty of Dentistry, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
94
|
Batonick M, Oomens AGP, Wertz GW. Human respiratory syncytial virus glycoproteins are not required for apical targeting and release from polarized epithelial cells. J Virol 2008; 82:8664-72. [PMID: 18562526 PMCID: PMC2519684 DOI: 10.1128/jvi.00827-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/10/2008] [Indexed: 12/11/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is released from the apical membrane of polarized epithelial cells. However, little is known about the processes of assembly and release of HRSV and which viral gene products are involved in the directional maturation of the virus. Based on previous studies showing that the fusion (F) glycoprotein contained an intrinsic apical sorting signal and that N- and O-linked glycans can act as apical targeting signals, we investigated whether the glycoproteins of HRSV were involved in its directional targeting and release. We generated recombinant viruses with each of the three glycoprotein genes deleted individually or in groups. Each deleted gene was replaced with a reporter gene to maintain wild-type levels of gene expression. The effects of deleting the glycoprotein genes on apical maturation and on targeting of individual proteins in polarized epithelial cells were examined by using biological, biochemical, and microscopic assays. The results of these studies showed that the HRSV glycoproteins are not required for apical maturation or release of the virus. Further, deletion of one or more of the glycoprotein genes did not affect the intracellular targeting of the remaining viral glycoproteins or the nucleocapsid protein to the apical membrane.
Collapse
Affiliation(s)
- Melissa Batonick
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908-0904, USA
| | | | | |
Collapse
|
95
|
Host-pathogen interactions in Campylobacter infections: the host perspective. Clin Microbiol Rev 2008; 21:505-18. [PMID: 18625685 DOI: 10.1128/cmr.00055-07] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Campylobacter is a major cause of acute bacterial diarrhea in humans worldwide. This study was aimed at summarizing the current understanding of host mechanisms involved in the defense against Campylobacter by evaluating data available from three sources: (i) epidemiological observations, (ii) observations of patients, and (iii) experimental observations including observations of animal models and human volunteer studies. Analysis of available data clearly indicates that an effective immune system is crucial for the host defense against Campylobacter infection. Innate, cell-mediated, and humoral immune responses are induced during Campylobacter infection, but the relative importance of these mechanisms in conferring protective immunity against reinfection is unclear. Frequent exposure to Campylobacter does lead to the induction of short-term protection against disease but most probably not against colonization. Recent progress in the development of more suitable animal models for studying Campylobacter infection has opened up possibilities to study the importance of innate and adaptive immunity during infection and in protection against reinfection. In addition, advances in genomics and proteomics technologies will enable more detailed molecular studies. Such studies combined with better integration of host and pathogen research driven by epidemiological findings may truly advance our understanding of Campylobacter infection in humans.
Collapse
|
96
|
Abstract
Hepatitis A virus (HAV) is an enterically transmitted virus that replicates predominantly in hepatocytes within the liver before excretion via bile through feces. Hepatocytes are polarized epithelial cells, and it has been assumed that the virus load in bile results from direct export of HAV via the apical domain of polarized hepatocytes. We have developed a subclone of hepatocyte-derived HepG2 cells (clone N6) that maintains functional characteristics of polarized hepatocytes but displays morphology typical of columnar epithelial cells, rather than the complex morphology that is typical of hepatocytes. N6 cells form microcolonies of polarized cells when grown on glass and confluent monolayers of polarized cells on semipermeable membranes. When N6 microcolonies were exposed to HAV, infection was restricted to peripheral cells of polarized colonies, whereas all cells could be infected in colonies of nonpolarized HepG2 cells (clone C11) or following disruption of tight junctions in N6 colonies with EGTA. This suggests that viral entry occurs predominantly via the basolateral plasma membrane, consistent with uptake of virus from the bloodstream after enteric exposure, as expected. Viral export was also found to be markedly vectorial in N6 but not C11 cells. However, rather than being exported from the apical domain as expected, more than 95% of HAV was exported via the basolateral domain of N6 cells, suggesting that virus is first excreted from infected hepatocytes into the bloodstream rather than to the biliary tree. Enteric excretion of HAV may therefore rely on reuptake and transcytosis of progeny HAV across hepatocytes into the bile. These studies provide the first example of the interactions between viruses and polarized hepatocytes.
Collapse
|
97
|
Host-cell-dependent role of actin cytoskeleton during the replication of a human strain of influenza A virus. Arch Virol 2008; 153:1209-21. [PMID: 18488136 DOI: 10.1007/s00705-008-0103-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Accepted: 03/25/2008] [Indexed: 12/14/2022]
Abstract
This study was aimed at investigating the possible involvement of the actin cytoskeleton in the modulation of host permissiveness to A/NWS/33 human influenza virus infection in two mammalian (MDCK and LLC-MK2) cell lines in vitro. During the early stages of infection, no appreciable association between incoming NWS/33 virions and cortical actin was detectable in the permissive MDCK model by confocal microscopy, while extensive colocalization and a slower infection progression were observed in LLC-MK2 cells. In the latter model, we also demonstrated the inability of the virus to carry out multiple replication cycles, irrespective of the presence of cleaved HA subunits in the released virions. Treatment with the actin-depolymerizing agent cytochalasin D significantly increased the infection efficiency in LLC-MK2 cells, while a detrimental effect was observed in the MDCK cell line. Our data suggest a selective role of the actin network in inducing a restriction to influenza virus replication, mostly depending on its molecular organization, the host cell type and virus replication phase.
Collapse
|
98
|
Henry L, Sheff DR. Rab8 regulates basolateral secretory, but not recycling, traffic at the recycling endosome. Mol Biol Cell 2008; 19:2059-68. [PMID: 18287531 PMCID: PMC2366880 DOI: 10.1091/mbc.e07-09-0902] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 02/05/2008] [Accepted: 02/11/2008] [Indexed: 12/27/2022] Open
Abstract
Rab8 is a monomeric GTPase that regulates the delivery of newly synthesized proteins to the basolateral surface in polarized epithelial cells. Recent publications have demonstrated that basolateral proteins interacting with the mu1-B clathrin adapter subunit pass through the recycling endosome (RE) en route from the TGN to the plasma membrane. Because Rab8 interacts with these basolateral proteins, these findings raise the question of whether Rab8 acts before, at, or after the RE. We find that Rab8 overexpression during the formation of polarity in MDCK cells, disrupts polarization of the cell, explaining how Rab8 mutants can disrupt basolateral endocytic and secretory traffic. However, once cells are polarized, Rab8 mutants cause mis-sorting of newly synthesized basolateral proteins such as VSV-G to the apical surface, but do not cause mis-sorting of membrane proteins already at the cell surface or in the endocytic recycling pathway. Enzymatic ablation of the RE also prevents traffic from the TGN from reaching the RE and similarly results in mis-sorting of newly synthesized VSV-G. We conclude that Rab8 regulates biosynthetic traffic through REs to the plasma membrane, but not trafficking of endocytic cargo through the RE. The data are consistent with a model in which Rab8 functions in regulating the delivery of TGN-derived cargo to REs.
Collapse
Affiliation(s)
- Lauren Henry
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - David R. Sheff
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
99
|
Buss F, Kendrick-Jones J. How are the cellular functions of myosin VI regulated within the cell? Biochem Biophys Res Commun 2008; 369:165-75. [PMID: 18068125 PMCID: PMC2635068 DOI: 10.1016/j.bbrc.2007.11.150] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 11/22/2007] [Indexed: 12/31/2022]
Abstract
This review, dedicated to the memory of Professor Setsuro Ebashi, focuses on our current work investigating the cellular functions and regulation of the unique unconventional motor, myosin VI. This myosin, unlike all the other myosins so far studied, moves towards the minus end of actin filaments and has been implicated in a wide range of cellular processes such as endocytosis, exocytosis, cell migration, cell division and cytokinesis. Myosin VI's involvement in these cellular pathways is mediated by its interaction with specific adaptor proteins and is regulated by multiple regulatory signals and modifications such as calcium ions, PtdIns(4,5)P(2) (PIP(2)) and phosphorylation. Understanding the functions of myosin VI within the cell and how it is regulated is now of utmost importance given the recent observations that it is associated with a number of human disorders such as deafness and cancers.
Collapse
Affiliation(s)
- Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK
| | | |
Collapse
|
100
|
Guo Q, Xia B, Moshiach S, Xu C, Jiang Y, Chen Y, Sun Y, Lahti JM, Zhang XA. The microenvironmental determinants for kidney epithelial cyst morphogenesis. Eur J Cell Biol 2008; 87:251-66. [PMID: 18191498 PMCID: PMC4141498 DOI: 10.1016/j.ejcb.2007.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 11/12/2007] [Accepted: 11/12/2007] [Indexed: 11/24/2022] Open
Abstract
Although epithelial morphogenesis is tightly controlled by intrinsic genetic programs, the microenvironment in which epithelial cells proliferate and differentiate also contributes to the morphogenetic process. The roles of the physical microenvironment in epithelial morphogenesis, however, have not been well dissected. In this study, we assessed the impact of the microenvironment on epithelial cyst formation, which often marks the beginning or end step of morphogenesis of epithelial tissues and the pathological characteristic of some diseases. Previous studies have demonstrated that Madin-Darby canine kidney (MDCK) epithelial cells form cysts when grown in a three-dimensional (3D) extracellullar matrix (ECM) environment. We have now further demonstrated that the presence of ECM in the 3D scaffold is required for the formation of properly polarized cysts. Also, we have found that the full interface of epithelial cells with the ECM environment (in-3D) is not essential for cyst formation, since partial contact (on-3D) is sufficient to induce cystogenesis. In addition, we have defined the minimal ECM environment or the physical threshold for cystogenesis under the on-3D condition. Only above the threshold can the morphological cues from the ECM environment induce cyst formation. Moreover, cyst formation under the on-3D condition described in this study defines a novel and more feasible model to analyze in vitro morphogenesis. Finally, we have found that, during cystogenesis, MDCK cells generate basal microprotrusions and produce vesicle-like structures to the basal extracellular space, which are specific to and correlated with cyst formation. For the first time, we have systematically and quantitatively elucidated the microenvironmental determinants for epithelial cystogenesis.
Collapse
Affiliation(s)
- Qiusha Guo
- Vascular Biology Center, Cancer Center, and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Coleman H300, 956 Court Ave., Memphis, TN 38163, USA
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University Medical School, Wuhan, China
| | - Bing Xia
- Department of Gastroenterology, Zhongnan Hospital, Wuhan University Medical School, Wuhan, China
| | - Simon Moshiach
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Congfeng Xu
- Vascular Biology Center, Cancer Center, and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Coleman H300, 956 Court Ave., Memphis, TN 38163, USA
| | - Yongde Jiang
- Division of Cardiology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yuanjian Chen
- Division of Cardiology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yao Sun
- Division of Cardiology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jill M. Lahti
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Xin A. Zhang
- Vascular Biology Center, Cancer Center, and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Coleman H300, 956 Court Ave., Memphis, TN 38163, USA
| |
Collapse
|