51
|
Golebiowski A, Townes JA, Laufersweiler MJ, Brugel TA, Clark MP, Clark CM, Djung JF, Laughlin SK, Sabat MP, Bookland RG, VanRens JC, De B, Hsieh LC, Janusz MJ, Walter RL, Webster ME, Mekel MJ. The development of monocyclic pyrazolone based cytokine synthesis inhibitors. Bioorg Med Chem Lett 2005; 15:2285-9. [PMID: 15837310 DOI: 10.1016/j.bmcl.2005.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 03/01/2005] [Accepted: 03/03/2005] [Indexed: 11/30/2022]
Abstract
4-Aryl-5-pyrimidyl based cytokine synthesis inhibitors that contain a novel monocyclic, pyrazolone heterocyclic core are described. Many of these inhibitors showed low nanomolar activity against LPS-induced TNF-alpha production. One of the compounds (6e) was found to be efficacious in the rat iodoacetate (RIA) in vivo model of osteoarthritis. The X-ray crystal structure of a pyrazolone inhibitor cocrystallized with mutated p38 (mp38) is presented.
Collapse
Affiliation(s)
- Adam Golebiowski
- Procter and Gamble Pharmaceuticals, Health Care Research Center, 8700 Mason-Montgomery Rd, Mason, OH 45040, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
|
53
|
|
54
|
|
55
|
Kling DE, Aidlen JT, Fisher JC, Kinane TB, Donahoe PK, Schnitzer JJ. Nitrofen induces a redox-dependent apoptosis associated with increased p38 activity in P19 teratocarcinoma cells. Toxicol In Vitro 2005; 19:1-10. [PMID: 15582350 DOI: 10.1016/j.tiv.2004.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 04/26/2004] [Indexed: 11/19/2022]
Abstract
Nitrofen is a diphenyl ether herbicide that produces a spectrum of fetal abnormalities in rodents. To characterize the molecular mechanisms of nitrofen-mediated birth defects at the cellular level, we explored its effects on undifferentiated P19 teratocarcinoma cells. Nitrofen induces a time-dependent cell death of P19 cells that is associated with increases in TUNEL-positivity and caspase-3 cleavage suggesting that nitrofen induces P19 cell apoptosis. In addition, the increase in TUNEL-positive cells was inhibited with zVAD-fmk, suggesting that nitrofen induces a caspase-dependent apoptosis. Nitrofen treatment was associated with increased p38 MAP kinase activity, though pretreatment of cells with multiple p38 inhibitors did not affect nitrofen-mediated caspase-3 cleavage, suggesting caspase-3 cleavage is p38-independent. Nitrofen induced a dose-dependent increase in reactive oxygen species (ROS), which was accompanied by a decrease in the ratio of reduced/oxidized glutathione, indicating that nitrofen alters the cellular redox state of these cells. Furthermore, pretreatment of cells with N-acetyl cysteine gave a dose- and time-dependent reduction of caspase-3 cleavage, supporting the observations that caspase-3 cleavage is cell-redox-dependent. Therefore, nitrofen induces P19 cell apoptosis that is cell-redox-dependent and is associated with increases in p38 activity and ROS and may play a role in nitrofen-mediated birth defects.
Collapse
Affiliation(s)
- D E Kling
- Pediatric Surgical Research Laboratories, Pediatric Surgical Services, The Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, WRN 1122, Boston, MA 02114-2696, USA.
| | | | | | | | | | | |
Collapse
|
56
|
Abstract
The recent successful introduction of the anti-cytokine biologicals Etanercept, Infliximab, Adalimumab, and Anakinra has stimulated the search for anti-cytokine small-molecules. A number of molecular targets have been identified for the development of such small molecular anti-cytokine agents. The focus of this review will be on those inhibitors of cytokine production, which target either p38 mitogen activated protein (MAP) kinase, TNF-alpha converting enzyme (TACE), or IL-1beta converting enzyme (ICE). P38 MAP kinase occupies a central role in the signaling network responsible for the upregulation of proinflammatory cytokines like interleukin 1beta (IL-1beta) and TNF-alpha, and regulates their biosynthesis at both the transcriptional and translational level. TACE and ICE are two proteases required for the processing of proTNF-alpha and proIL-1beta, respectively into their mature, proinflammatory form. Since the mid-1990s, a plethora of inhibitors of p38 MAP kinase, TACE, and ICE has been characterized in vitro, and individual representatives from all three inhibitor classes have in the meantime been advanced into clinical trials. This review will highlight the correlation between effective inhibition at the molecular target and cellular activity in functional assays of cytokine, particularly TNF-alpha and IL-1beta, production. Structure-activity relationships (SAR) will be discussed regarding activity at the respective enzyme target, but also with regard to properties required for efficient in vitro and in vivo cellular activity (e.g., oral availability, solubility, cell penetration, etc.).
Collapse
Affiliation(s)
- Gerd Wagner
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, NR4 7TJ, England
| | | |
Collapse
|
57
|
Wada Y, Nakajima-Yamada T, Yamada K, Tsuchida J, Yasumoto T, Shimozato T, Aoki K, Kimura T, Ushiyama S. R-130823, a novel inhibitor of p38 MAPK, ameliorates hyperalgesia and swelling in arthritis models. Eur J Pharmacol 2005; 506:285-95. [PMID: 15627439 DOI: 10.1016/j.ejphar.2004.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 11/10/2004] [Indexed: 12/30/2022]
Abstract
We found that a novel compound, R-130823 {2-(4-fluorophenyl)-4-(1-phenethyl-1,2,3,6-tetrahydropyridin-4-yl)-3-(pyridin-4-yl)-1H-pyrrole}, had highly selective inhibition against mitogen-activated protein kinase p38alpha (IC50=22 nM). The release of tumor necrosis factor-alpha, interleukin-1beta, -6 and -8 was inhibited in lipopolysaccharide-stimulated human blood pretreated by R-130823, with IC50 values of 0.089, 0.066, 0.95 and 0.16 microM, respectively. R-130823 reduced the established hind paw swelling in rat adjuvant-induced arthritis, while methotrexate showed no suppression. In the same model, R-130823 ameliorated adjuvant-induced hyperalgesia with rapid onset and long duration comparable to a cyclooxygenase-2 inhibitor, celecoxib. In murine collagen-induced arthritis, R-130823 blocked the progress of arthritis when administered just after the onset of the arthritis. Histological analysis of the knee joints showed that proliferation of fibroblasts and synoviocytes and infiltration of neutrophils were ameliorated. In conclusion, R-130823 is expected to be an efficacious treatment for rheumatoid arthritis by blocking the p38 pathway.
Collapse
Affiliation(s)
- Yoshihiro Wada
- Biological Research Laboratories, Sankyo Co., Ltd. 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Park J, Ha H, Seo J, Kim MS, Kim HJ, Huh KH, Park K, Kim YS. Mycophenolic acid inhibits platelet-derived growth factor-induced reactive oxygen species and mitogen-activated protein kinase activation in rat vascular smooth muscle cells. Am J Transplant 2004; 4:1982-90. [PMID: 15575900 DOI: 10.1111/j.1600-6143.2004.00610.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Vascular smooth muscle cell (VSMC) proliferation is the major pathologic feature associated with chronic allograft nephropathy, and mycophenolic acid (MPA) inhibits VSMC proliferation. Since the role of inosine monophosphate dehydrogenase (IMPDH)-dependent de novo guanosine synthesis is limited in VSMCs, we examined the effects of MPA on platelet-derived growth factor (PDGF)-induced cellular ROS and mitogen-activated protein kinases (MAPK) activation in VSMCs. Primary cultured rat VSMCs were stimulated with PDGF-BB in the presence or absence of MPA. Cell proliferation was assessed by [3H]-thymidine incorporation, ROS by flow cytometry and MAPK activation by Western blot analysis. PDGF increased cell proliferation, cellular ROS and extracellular-regulated protein kinase (ERK) 1/2 and p38 MAPK activation by 3.4-, 1.6-, 3.3- and 3.9-fold, respectively. MPA at above 1 muM inhibited PDGF-induced cellular ROS and ERK 1/2 and p38 MAPK activation, as well as proliferation. Structurally different anti-oxidants and inhibitor of ERK or p38 MAPK blocked PDGF-induced proliferation. Anti-oxidants also inhibited ERK 1/2 and p38 MAPK activation. Exogenous guanosine partially recovered the inhibitory effect of MPA on VSMC proliferation. These results suggest that MPA may inhibit PDGF-induced VSMC proliferation partially through inhibiting cellular ROS, and subsequent ERK 1/2 and p38 MAPK activation in addition to inhibiting IMPDH.
Collapse
Affiliation(s)
- Jehyun Park
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Moh JH, Choi YH, Lim KM, Lee KW, Shin SS, Choi JK, Koh HJ, Chung S. A prodrug approach to COX-2 inhibitors with methylsulfone. Bioorg Med Chem Lett 2004; 14:1757-60. [PMID: 15026065 DOI: 10.1016/j.bmcl.2004.01.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 01/15/2004] [Indexed: 10/26/2022]
Abstract
2,2-dimethyl-4-phenyl-5-[4-(methylsulfinyl)phenyl]-3(2H)furanone derivatives, 3 and 6, were shown to be effectively transformed in vivo into the corresponding methylsulfone derivatives 1 and 4, when orally administered to rats. Pharmacological implications for use of sulfoxide analogues 3 and 6 are discussed as prodrugs to potent selective COX-2 inhibitors 1 and 4.
Collapse
Affiliation(s)
- Joo Hyun Moh
- Drug Discovery, AmorePacific R&D Center, 314-1 Bora-ri, Giheung-eup, Yongin, Gyeonggi-do 449-729, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Patten C, Bush K, Rioja I, Morgan R, Wooley P, Trill J, Life P. Characterization of pristane-induced arthritis, a murine model of chronic disease: Response to antirheumatic agents, expression of joint cytokines, and immunopathology. ACTA ACUST UNITED AC 2004; 50:3334-45. [PMID: 15476226 DOI: 10.1002/art.20507] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To characterize chronic murine pristane-induced arthritis (PIA) with regard to the response to antirheumatic agents, expression levels of proinflammatory cytokines, and immunopathologic features. METHODS Male DBA/1 mice were injected intraperitoneally with pristane oil to induce a chronic polyarthritis, which was monitored by visual scoring. Serum antibody and splenocyte responses to a panel of putative joint-derived autoantigens were measured. Whole paws were evaluated postmortem for changes in the levels of proinflammatory cytokines tumor necrosis factor alpha (TNFalpha), interleukin-1beta (IL-1beta), and IL-6 by enzyme-linked immunosorbent assay, and standard histopathology techniques were used to determine joint structural changes. Therapeutic studies were performed for up to 8 weeks of dosing with prednisolone, methotrexate, 3 nonsteroidal antiinflammatory drugs (celecoxib, diclofenac, and indomethacin), a p38 MAPK inhibitor, SB242235, and human soluble TNF receptor (sTNFR; etanercept) and murine sTNFR fusion proteins. RESULTS Antibody and cellular responses to the putative joint autoantigens revealed a broad extent of autoimmunity in PIA. TNFalpha, IL-1beta, and IL-6 were all persistently up-regulated in PIA joints. Prednisolone, methotrexate, celecoxib, indomethacin, and SB242235 all significantly reduced the arthritis scores. Etanercept was ineffective in reducing the arthritis scores, whereas murine sTNFR produced a significant, but nonsustained, benefit. Only prednisolone significantly reduced the expression of TNFalpha, IL-1beta, and IL-6 in the joints. Prednisolone and methotrexate demonstrated the most effective joint protection. CONCLUSION We have markedly extended the characterization of PIA as a murine model of chronic inflammatory arthritis by demonstrating cellular and humoral autoantigenicity, elevation of clinically precedented joint cytokines, and variation in the response to several antirheumatic therapies. PIA offers significant potential for the long-term study of immunopathologic mechanisms and novel therapies in rheumatoid arthritis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antirheumatic Agents/therapeutic use
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Autoantibodies/analysis
- Chronic Disease
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Immunohistochemistry
- Interleukin-1/analysis
- Interleukin-6/analysis
- Joints/pathology
- Male
- Methotrexate/therapeutic use
- Mice
- Mice, Inbred DBA
- Prednisolone/therapeutic use
- Terpenes
- Tumor Necrosis Factor-alpha/analysis
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
Collapse
|
61
|
See F, Thomas W, Way K, Tzanidis A, Kompa A, Lewis D, Itescu S, Krum H. p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat. J Am Coll Cardiol 2004; 44:1679-89. [PMID: 15489104 DOI: 10.1016/j.jacc.2004.07.038] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 06/23/2004] [Accepted: 07/19/2004] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The aim of this study was to examine the effect of the p38 mitogen-activated protein kinase (MAPK) inhibitor, RWJ-67657 (RWJ), on left ventricular (LV) dysfunction and remodeling post-myocardial infarction (MI) in rats. BACKGROUND p38 MAPK signaling has been implicated in the progression of chronic heart failure. METHODS From day 7 post-MI (coronary artery ligation), rats received either RWJ (50 mg/day, by gavage, n = 8, MI+RWJ) or vehicle (by gavage, n = 8, MI+V) for 21 days. Echocardiography was performed on day 6, before the commencement of treatment, and on day 27. In vivo hemodynamic measurements were made on day 28. Sham-operated rats served as controls. RESULTS The LV end-diastolic pressure and lung/body weight ratio were reduced, whereas the maximum rate of rise of LV pressure was increased towards sham levels in MI+RWJ compared with MI+V. Baseline echocardiographic studies demonstrated uniform LV remodeling and dysfunction in MI rats. Fractional shortening (FS) further deteriorated in MI+V, whereas FS was preserved in MI+RWJ. Progressive LV dilation and infarct expansion observed in MI+V were inhibited in MI+RWJ. MI+RWJ also demonstrated increased myocyte hypertrophy in the peri-infarct and non-infarct zones, and reduced myocardial collagen and alpha-smooth muscle actin (SMA) immunoreactivity compared with MI+V. The antifibrotic effects of RWJ in vivo may reflect direct effects on cardiac fibroblasts, because RWJ attenuated transforming growth factor beta-1-stimulated collagen synthesis and alpha-SMA expression in isolated cardiac fibroblasts. RWJ also protected cultured myocytes from hydrogen peroxide-induced apoptosis. CONCLUSIONS RWJ-67657 treatment post-MI had beneficial effects on LV remodeling and dysfunction, supporting a key role for p38 MAPK in pathologic cell signaling in these processes and its inhibition as a novel therapy.
Collapse
Affiliation(s)
- Fiona See
- National Health and Medical Research Council Center of Clinical Research Excellence in Therapeutics, Department of Medicine, Monash University, Alfred Hospital, Commercial Road, Prahran, Victoria 3181, Australia
| | | | | | | | | | | | | | | |
Collapse
|
62
|
|
63
|
Mikhailov A, Shinohara M, Rieder CL. Topoisomerase II and histone deacetylase inhibitors delay the G2/M transition by triggering the p38 MAPK checkpoint pathway. ACTA ACUST UNITED AC 2004; 166:517-26. [PMID: 15302851 PMCID: PMC2172207 DOI: 10.1083/jcb.200405167] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
When early prophase PtK(1) or Indian muntjac cells are exposed to topoisomerase II (topo II) inhibitors that induce little if any DNA damage, they are delayed from entering mitosis. We show that this delay is overridden by inhibiting the p38, but not the ATM, kinase. Treating early prophase cells with hyperosmotic medium or a histone deacetylase inhibitor similarly delays entry into mitosis, and this delay can also be prevented by inhibiting p38. Together, these results reveal that agents or stresses that induce global changes in chromatin topology during G2 delay entry into mitosis, independent of the ATM-mediated DNA damage checkpoint, by activating the p38 MAPK checkpoint. The presence of this pathway obviates the necessity of postulating the existence of multiple "chromatin modification" checkpoints during G2. Lastly, cells that enter mitosis in the presence of topo II inhibitors form metaphase spindles that are delayed in entering anaphase via the spindle assembly, and not the p38, checkpoint.
Collapse
Affiliation(s)
- Alexei Mikhailov
- Division of Molecular Medicine, Wadsworth Center, P.O. Box 509, Albany, NY 12201-0509, USA
| | | | | |
Collapse
|
64
|
Vieth M, Higgs RE, Robertson DH, Shapiro M, Gragg EA, Hemmerle H. Kinomics-structural biology and chemogenomics of kinase inhibitors and targets. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:243-57. [PMID: 15023365 DOI: 10.1016/j.bbapap.2003.11.028] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Accepted: 11/12/2003] [Indexed: 11/24/2022]
Abstract
Classifying kinases based entirely on small molecule selectivity data is a new approach to drug discovery that allows scientists to understand relationships between targets. This approach combines the understanding of small molecules and targets, and thereby assists the researcher in finding new targets for existing molecules or understanding selectivity and polypharmacology of molecules in related targets. Currently, structural information is available for relatively few of the protein kinases encoded in the human genome (7% of the estimated 518); however, even the current knowledge base, when paired with structure-based design techniques, can assist in the identification and optimization of novel kinase inhibitors across the entire protein class. Chemogenomics attempts to combine genomic data, structural biological data, classical dendrograms, and selectivity data to explore, define, and classify the medicinally relevant kinase space. Exploitation of this information in the discovery of kinase inhibitors defines practical kinase chemogenomics (kinomics). In this paper, we review the available information on kinase targets and their inhibitors, and present the relationships between the various classification schema for kinase space. In particular, we present the first dendrogram of kinases based entirely on small molecule selectivity data. We find that the selectivity dendrogram differs from sequence-based clustering mostly in the higher-level groupings of the smaller clusters, and remains very comparable for closely homologous targets. Highly homologous kinases are, on average, inhibited comparably by small molecules. This observation, although intuitive, is very important to the process of target selection, as one would expect difficulty in achieving inhibitor selectivity for kinases that share high sequence identity.
Collapse
Affiliation(s)
- Michal Vieth
- Eli Lilly and Company, Lilly Research Laboratories, Lilly Corporate Center, DC 1513, Indianapolis, IN 46285, USA.
| | | | | | | | | | | |
Collapse
|
65
|
Dombroski MA, Letavic MA, McClure KF, Barberia JT, Carty TJ, Cortina SR, Csiki C, Dipesa AJ, Elliott NC, Gabel CA, Jordan CK, Labasi JM, Martin WH, Peese KM, Stock IA, Svensson L, Sweeney FJ, Yu CH. Benzimidazolone p38 inhibitors. Bioorg Med Chem Lett 2004; 14:919-23. [PMID: 15012994 DOI: 10.1016/j.bmcl.2003.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 11/21/2003] [Accepted: 12/02/2003] [Indexed: 11/26/2022]
Abstract
The synthesis and in vitro p38 alpha activity of a novel series of benzimidazolone inhibitors is described. The p38 alpha SAR is consistent with a mode of binding wherein the benzimidazolone carbonyl serves as the H-bond acceptor to Met109 of p38 alpha in a manner analogous to the pyridine nitrogen of prototypical pyridylimidazole p38 inhibitors. Potent p38 alpha activity comparable to that of several previously reported p38 inhibitors is observed for this novel chemotype.
Collapse
Affiliation(s)
- Mark A Dombroski
- Pfizer Global Research and Development, Groton Laboratories, Eastern Point Road, Groton, CT 06340, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
With the many protein sequences coming from the genome sequencing projects, it is unlikely that we will ever have an atomic resolution structure of every relevant protein. With high throughput crystallography, however, we will soon have representative structures for the vast majority of protein families. Thus the drug discovery and design process will rely heavily on protein modeling to address issues such as designing combinatorial libraries for an entire class of targets and engineering genome-wide selectivity over a target class. In this study we assess the value of high throughput docking into homology models. To do this we dock a database of random compounds seeded with known inhibitors into homology models of six different kinases. In five of the six cases the known inhibitors were found to be enriched by factors of 4-5 in the top 5% of the overall scored and ranked compounds. Furthermore, in the same five cases the known inhibitors were found to be enriched by factors of 2-3 in the top 5% of the scored and ranked known kinase inhibitors, thus showing that the homology models can pick up some of the crucial selectivity information.
Collapse
Affiliation(s)
- David J Diller
- Pharmacopeia, Inc., CN5350, Princeton, New Jersey 08543-5350, USA.
| | | |
Collapse
|
67
|
Mavunkel BJ, Chakravarty S, Perumattam JJ, Luedtke GR, Liang X, Lim D, Xu YJ, Laney M, Liu DY, Schreiner GF, Lewicki JA, Dugar S. Indole-based heterocyclic inhibitors of p38alpha MAP kinase: designing a conformationally restricted analogue. Bioorg Med Chem Lett 2003; 13:3087-90. [PMID: 12941340 DOI: 10.1016/s0960-894x(03)00653-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
p38alpha Mitogen Activated Protein Kinase (MAP kinase) is an intracellular soluble serine threonine kinase. p38alpha kinase is activated in response to cellular stresses, growth factors and cytokines such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha). The central role of p38alpha activation in settings of both chronic and acute inflammation has led efforts to find inhibitors of this enzyme as possible therapies for diseases such as rheumatoid arthritis, where p38alpha activation is thought to play a causal role. Herein, we report structure-activity relationship studies on a series of indole-based heterocyclic inhibitors that led to the design and identification of a new class of p38alpha inhibitors.
Collapse
|
68
|
Laufer SA, Wagner GK, Kotschenreuther DA, Albrecht W. Novel substituted pyridinyl imidazoles as potent anticytokine agents with low activity against hepatic cytochrome P450 enzymes. J Med Chem 2003; 46:3230-44. [PMID: 12852754 DOI: 10.1021/jm030766k] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of polysubstituted pyridin-4-yl imidazole inhibitors of p38 MAP (mitogen-activated protein) kinase was prepared as small molecular anticytokine agents and drug candidates for the treatment of chronic inflammatory diseases. The contribution of substituents at the pyridinyl and imidazole moiety to selective inhibition of p38 without concomitant cytochrome P450 interaction was evaluated. Placement of a 1-phenylethyl (7e, p38: IC(50) 0.38 microM) or acetyl substituent at the exocyclic nitrogen of several 2-aminopyridine imidazoles led to the identification of potent p38 inhibitors which exceeded the starting lead ML 3375 (p38: IC(50) 0.63 microM) in potency. A preliminary modeling study related the enhanced bioactivity of 7e to a novel interaction between its 1-phenylethylamino side chain and a hydrophobic pocket close to the linker region of p38. The most active p38 inhibitors in this series maintained their efficacy in functional PBMC (peripheral blood mononuclear cells) and whole blood assays. Moreover, cytochrome P450 interaction, which has been linked to the liver toxicity observed for model p38 inhibitors, was very efficiently reduced through introduction of a tetramethylpiperidine substituent at the 1 position of the imidazole nucleus. Combination of both structural features provided 14c (p38: 0.34 microM, inhibition of CYP1A2 0%, 2C9 2.6%, 2C19 7.6% at 10 microM), which was selected for further development.
Collapse
Affiliation(s)
- Stefan A Laufer
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
69
|
Furtado LM, Somwar R, Sweeney G, Niu W, Klip A. Activation of the glucose transporter GLUT4 by insulin. Biochem Cell Biol 2003; 80:569-78. [PMID: 12440698 DOI: 10.1139/o02-156] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transport of glucose into cells and tissues is a highly regulated process, mediated by a family of facilitative glucose transporters (GLUTs). Insulin-stimulated glucose uptake is primarily mediated by the transporter isoform GLUT4, which is predominantly expressed in mature skeletal muscle and fat tissues. Our recent work suggests that two separate pathways are initiated in response to insulin: (i) to recruit transporters to the cell surface from intracellular pools and (ii) to increase the intrinsic activity of the transporters. These pathways are differentially inhibited by wortmannin, demonstrating that the two pathways do not operate in series. Conversely, inhibitors of p38 mitogen-activated protein kinase (MAPK) imply that p38 MAPK is involved only in the regulation of the pathway leading to the insulin-stimulated activation of GLUT4. This review discusses the evidence for the divergence of GLUT4 translocation and activity and proposed mechanisms for the regulation of GLUT4.
Collapse
Affiliation(s)
- L Michelle Furtado
- Programme in Cell Biology, Hospital for Sick Children, University of Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
70
|
Larsen KI, Falany ML, Ponomareva LV, Wang W, Williams JP. Glucose-dependent regulation of osteoclast H(+)-ATPase expression: potential role of p38 MAP-kinase. J Cell Biochem 2003; 87:75-84. [PMID: 12210724 DOI: 10.1002/jcb.10252] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bone resorption is glucose concentration dependent. Mechanisms regulating glucose-dependent increases in bone resorption have not been identified. Glucose activates p38 MAP-kinase in other cells and since MAP kinases activate transcription factors, we hypothesized that glucose-stimulated bone resorption may be modulated by increased expression of the vacuolar H(+)-ATPase. Glucose activates osteoclast p38 MAP-kinase in a time and concentration-dependent manner as determined by Western analysis with phospho-specific p38 antibody while total p38 levels are unchanged. The K0.5 for glucose-dependent activation of p38 MAP-kinase is approximately 7 mM, activation is maximal at 30 min and is elevated but returning to basal levels by 60 min. The concentration-dependent increase in H(+)-ATPase expression was confirmed by Northern analysis. The specific inhibitor of p38 MAP-kinase, SB203580, inhibited glucose transport in osteoclasts, as well as glucose concentration-dependent increases in bone resorption and expression of H(+)-ATPase A and B subunits. Glucose had no effect on calmodulin expression levels that are regulated in response to other environmental changes. The glucose-stimulated increase in H(+)-ATPase mRNA expression is a specific response to glucose since glucose has little effect on G3PDH mRNA levels. We conclude that glucose regulates osteoclast H(+)-ATPase expression by a mechanism likely to involve p38 MAP-kinase.
Collapse
Affiliation(s)
- Kirsten I Larsen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | |
Collapse
|
71
|
Jarvis BW, Harris TH, Qureshi N, Splitter GA. Rough lipopolysaccharide from Brucella abortus and Escherichia coli differentially activates the same mitogen-activated protein kinase signaling pathways for tumor necrosis factor alpha in RAW 264.7 macrophage-like cells. Infect Immun 2002; 70:7165-8. [PMID: 12438403 PMCID: PMC132973 DOI: 10.1128/iai.70.12.7165-7168.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The intracellular, gram-negative pathogen Brucella abortus establishes chronic infections in host macrophages while downregulating cytokines such as tumor necrosis factor alpha (TNF-alpha). When producing TNF-alpha, Brucella abortus rough lipopolysaccharide (LPS) activates the same mitogen-activated protein kinase signaling pathways (ERK and JNK) as Escherichia coli LPS, but Brucella LPS is a much less potent agonist.
Collapse
Affiliation(s)
- Bruce W Jarvis
- Animal Health and Biomedical Sciences Department, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
72
|
Shi Y, Gaestel M. In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance. Biol Chem 2002; 383:1519-36. [PMID: 12452429 DOI: 10.1515/bc.2002.173] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes which connect cell-surface receptors to regulatory targets within cells and convert receptor signals into various outputs. In mammalian cells, four distinct MAPKs have been identified: the extracellular signal-related kinases (ERK)-1/2, the c-jun N-terminal kinases or stress-activated protein kinases 1 (JNK1/2/3, or SAPK1s), the p38 MAPKs (p38 alpha/beta/gamma/delta, or SAPK2s), and the ERK5 or big MAP kinase 1 (BMK1). The p38 MAPK cascade is activated by stress or cytokines and leads to phosphorylation of its central elements, the p38 MAPKs. Downstream of p38 MAPKs there is a diversification and extensive branching of signalling pathways. For that reason, we will focus in this review on the different signalling events that are triggered by p38 activity, and analyse how these events contribute to specific gene expression and cellular responses.
Collapse
Affiliation(s)
- Yu Shi
- Hannover Medical School, Institute of Biochemistry, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | |
Collapse
|
73
|
Regan J, Breitfelder S, Cirillo P, Gilmore T, Graham AG, Hickey E, Klaus B, Madwed J, Moriak M, Moss N, Pargellis C, Pav S, Proto A, Swinamer A, Tong L, Torcellini C. Pyrazole urea-based inhibitors of p38 MAP kinase: from lead compound to clinical candidate. J Med Chem 2002; 45:2994-3008. [PMID: 12086485 DOI: 10.1021/jm020057r] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on a series of N-pyrazole, N'-aryl ureas and their mode of binding to p38 mitogen activated protein kinase. Importantly, a key binding domain that is distinct from the adenosine 5'-triphoshate (ATP) binding site is exposed when the conserved activation loop, consisting in part of Asp168-Phe169-Gly170, adopts a conformation permitting lipophilic and hydrogen bonding interactions between this class of inhibitors and the protein. We describe the correlation of the structure-activity relationships and crystallographic structures of these inhibitors with p38. In addition, we incorporated another binding pharmacophore that forms a hydrogen bond at the ATP binding site. This modification affords significant improvements in binding, cellular, and in vivo potencies resulting in the selection of 45 (BIRB 796) as a clinical candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- John Regan
- Department of Medicinal Chemistry, Research and Development Center, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Road, Ridgefield, CT 06877, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
On the basis of model imidazole inhibitors of cytokine release, a series of novel pyridinyl pyrimidine derivatives was prepared and tested on their ability to inhibit the release of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) from peripheral blood mononuclear cells (PBMC) and human whole blood. In the pyrimidine series, structure-activity relationships (SARs) similar to those of the imidazole series were found, although generally pyrimidine compounds were less potent. Modification of the substituent at the 2 position of the pyrimidine led to the most active compound 14 which inhibited release of TNF-alpha (IC(50) = 3.2 microM) and IL-1beta (IC(50) = 2.3 microM) from PBMC as effectively as the model imidazole inhibitor ML 3163 (TNF-alpha, IC(50) = 3.7 microM; IL-1beta, IC(50) = 0.9 microM). Screening in an isolated enzyme assay revealed both imidazole and pyrimidine compounds as inhibitors of p38 MAP (mitogen-activated protein) kinase.
Collapse
Affiliation(s)
- Stefan A Laufer
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| | | |
Collapse
|
75
|
Klappa JJ, Rich AE, McNeill K. One-step synthesis of 3,5-disubstituted-2-pyridylpyrroles from the condensation of 1,3-diones and 2-(aminomethyl)pyridine. Org Lett 2002; 4:435-7. [PMID: 11820898 DOI: 10.1021/ol017147v] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,5-Disubstituted- and 3,4,5-trisubstituted-2-(2-pyridyl)pyrroles may be synthesized efficiently from the novel condensation of 2-(aminomethyl)pyridine and 1,3-diones. The cyclization reaction was found to proceed through the intermediacy of a (2-pyridyl)methylimine. A marked dependence of the regioselectivity in the reaction of unsymmetrical diones on the presence of additional aminomethylpyridine suggests that two pathways to the product pyrroles are available.
Collapse
Affiliation(s)
- Jamie J Klappa
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
76
|
Adams JL, Badger AM, Kumar S, Lee JC. p38 MAP kinase: molecular target for the inhibition of pro-inflammatory cytokines. PROGRESS IN MEDICINAL CHEMISTRY 2002; 38:1-60. [PMID: 11774793 DOI: 10.1016/s0079-6468(08)70091-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- J L Adams
- Smith Kline Beecham Pharmaceuticals, 709 Swedeland Road, King of Prussia, PA 19406, USA
| | | | | | | |
Collapse
|
77
|
|
78
|
Ferreira VF, de Souza MCBV, Cunha AC, Pereira LOR, Ferreira MLG. RECENT ADVANCES IN THE SYNTHESIS OF PYRROLES. ORG PREP PROCED INT 2001. [DOI: 10.1080/00304940109356613] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
79
|
Kumar S, Votta BJ, Rieman DJ, Badger AM, Gowen M, Lee JC. IL-1- and TNF-induced bone resorption is mediated by p38 mitogen activated protein kinase. J Cell Physiol 2001; 187:294-303. [PMID: 11319753 DOI: 10.1002/jcp.1082] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously shown that p38 mitogen-activated protein kinase (MAPK) inhibitors, which block the production and action of inflammatory cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1), are effective in models of bone and cartilage degradation. To further investigate the role of p38 MAPK, we have studied its activation in osteoblasts and chondrocytes, following treatment with a panel of proinflammatory and osteotropic agents. In osteoblasts, significant activation of p38 MAPK was observed following treatment with IL-1 and TNF, but not parathyroid hormone, transforming growth factor-beta (TGF-beta), 1,25(OH)(2)D(3), insulin-like growth factor-1 (IGF-1), or IGF-II. Similar results were obtained using primary bovine chondrocytes and an SV40-immortalized human chondrocyte cell line, T/C28A4. SB 203580, a selective inhibitor of p38 MAPK, inhibited IL-1 and TNF-induced p38 MAPK activity and IL-6 production (IC(50)s 0.3--0.5 microM) in osteoblasts and chondrocytes. In addition, IL-1 and TNF also activated p38 MAPK in fetal rat long bones and p38 MAPK inhibitors inhibited IL-1- and TNF-stimulated bone resorption in vitro in a dose-dependent manner (IC(50)s 0.3--1 microM). These data support the contention that p38 MAPK plays a central role in regulating the production of, and responsiveness to, proinflammatory cytokines in bone and cartilage. Furthermore, the strong correlation between inhibition of kinase activity and IL-1 and TNF-stimulated biological responses indicates that selective inhibition of the p38 MAPK pathway may have therapeutic utility in joint diseases such as rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- S Kumar
- Department of Musculoskeletal Diseases, Glaxo SmithKline, King of Prussia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Mclay LM, Halley F, Souness JE, McKenna J, Benning V, Birrell M, Burton B, Belvisi M, Collis A, Constan A, Foster M, Hele D, Jayyosi Z, Kelley M, Maslen C, Miller G, Ouldelhkim MC, Page K, Phipps S, Pollock K, Porter B, Ratcliffe AJ, Redford EJ, Webber S, Slater B, Thybaud V, Wilsher N. The discovery of RPR 200765A, a p38 MAP kinase inhibitor displaying a good oral anti-arthritic efficacy. Bioorg Med Chem 2001; 9:537-54. [PMID: 11249145 DOI: 10.1016/s0968-0896(00)00331-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RPR132331, a 2-(2-dioxanyl)imidazole, was identified as an inhibitor of tumour necrosis factor (TNF)alpha release from lipopolysaccharide (LPS)-stimulated human monocytes. An intensive programme of work exploring the biology, toxicity and physical chemistry of a novel series of inhibitors, derived from RPR132331, has led to the identification of RPR200765A, a development candidate for the treatment of rheumatoid arthritis (RA). RPR200765A is a potent and selective inhibitor of p38 MAP kinase (IC50 = 50 nM). It inhibits LPS-stimulated TNFalpha release both in vitro, from human monocytes (EC50 = 110 nM), and in vivo in Balb/c mice (ED50 = 6 mg/kg). At oral doses between 10 and 30 mg/kg/day it reduces the incidence and progression in the rat streptococcal cell wall (SCW) arthritis model when administered in either prophylactic or therapeutic dosing regimens. The compound, which is a mesylate salt and exists as a stable monohydrate, shows good oral bioavailabiltiy (F = 50% in the rat) and excellent chemical stability. The data from the SCW disease model suggests that RPR200765A could exhibit a profile of disease modifying activity in rheumatoid arthritis (RA) patients which is not observed with current drug therapies.
Collapse
Affiliation(s)
- L M Mclay
- Aventis, Dagenham Research Centre, Essex, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Badger AM, Roshak AK, Cook MN, Newman-Tarr TM, Swift BA, Carlson K, Connor JR, Lee JC, Gowen M, Lark MW, Kumar S. Differential effects of SB 242235, a selective p38 mitogen-activated protein kinase inhibitor, on IL-1 treated bovine and human cartilage/chondrocyte cultures. Osteoarthritis Cartilage 2000; 8:434-43. [PMID: 11069728 DOI: 10.1053/joca.1999.0319] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The p38 MAP kinase inhibitor, SB 242235, was evaluated for its effects on the metabolism of bovine and human cartilage and primary chondrocyte cultures. SB 242235 had no effect on proteoglycan synthesis (PG) in bovine articular cartilage explants (BAC), as measured by [(35)S]-sulfate incorporation into glycosaminoglycans (GAGs). In addition, the compound had no effect on IL-1 alpha-induced GAG release from these cultures. However, there was a potent, dose-dependent inhibition of nitric oxide (NO) release from IL-1 alpha-stimulated BAC with an IC(50)of approximately 0.6 microM, with similar effects observed in primary chondrocytes. The effect on BAC was time dependent, and mechanistically did not appear to be the result of inhibition of protein kinase C (PKC), protein kinase A (PKA) or MEK-1. The effect on NO release in bovine chondrocytes was at the level of inducible nitric oxide synthase (iNOS) gene expression, which was inhibited at similar concentrations as nitrite production. In primary human chondrocytes, IL-1 beta induction of p38 MAP kinase was inhibited by SB 242235 with an IC(50)of approximately 1 microM. Surprisingly, however, treatment of IL-beta-stimulated human cartilage or chondrocytes with SB 242235 did not inhibit either NO production or the induction of iNOS. On the other hand, the natural product hymenialdisine (HYM), a protein tyrosine kinase (PTK) inhibitor, inhibited NO production and iNOS in both species. In contrast to the differential control of iNOS, PGE(2)was inhibited by SB 242235 in both IL-1-stimulated bovine and human chondrocyte cultures. These studies indicate that there are species differences in the control of iNOS by p38 inhibitors and also that different pathways may control IL-1-induced proteoglycan breakdown and NO production.
Collapse
Affiliation(s)
- A M Badger
- Department of Bone and Cartilage Biology, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Pirard B, Pickett SD. Classification of kinase inhibitors using BCUT descriptors. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 2000; 40:1431-40. [PMID: 11128102 DOI: 10.1021/ci000386x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BCUTs are an interesting class of molecular descriptor which have been proposed for a number of design and QSAR type tasks. It is important to understand what kind of information any particular descriptor encodes and to be able to relate this to the biological properties of the molecules. In this paper we present studies with BCUTs for the classification of ATP site directed kinase inhibitors active against five different protein kinases: three from the serine/threonine family and two from the tyrosine kinase family. In combination with a chemometric method, PLS discriminant analysis, the BCUTs are able to correctly classify the ligands according to their target. A novel class of kinase inhibitors is correctly predicted as inhibitors of the EGFR tyrosine kinase. Comparison with other descriptor types such as two-dimensional fingerprints and three-dimensional pharmacophore-based descriptors allows us to gain an insight into the level of information contained within the BCUTs.
Collapse
Affiliation(s)
- B Pirard
- Aventis Pharma, Dagenham Research Centre, Essex, UK.
| | | |
Collapse
|
83
|
|
84
|
Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL. Inhibition of p38 MAP kinase as a therapeutic strategy. IMMUNOPHARMACOLOGY 2000; 47:185-201. [PMID: 10878289 DOI: 10.1016/s0162-3109(00)00206-x] [Citation(s) in RCA: 350] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Since the discovery of p38 MAP kinase in 1994, our understanding of its biology has progressed dramatically. The key advances include (1) identification of p38 MAP kinase homologs and protein kinases that act upstream and downstream from p38 MAP kinase, (2) identification of interesting and potentially important substrates, (3) elucidation of the role of p38 MAP kinase in cellular processes and (4) the establishment of the mechanism by which the pyridinylimidazole p38 MAP kinase inhibitors inhibit enzyme activity. It is now known that there are four members of the p38 MAP kinase family. They differ in their tissue distribution, regulation of kinase activation and subsequent phosphorylation of downstream substrates. They also differ in terms of their sensitivities toward the p38 MAP kinase inhibitors. The best-studied isoform is p38 alpha, whose activation has been observed in many hematopoietic and non-hematopoietic cell types upon treatment with appropriate stimuli. The pyridinylimidazole compounds, exemplified by SB 203580, were originally prepared as inflammatory cytokine synthesis inhibitors that subsequently were found to be selective inhibitors of p38 MAP kinase. SB 203580 inhibits the catalytic activity of p38 MAP kinase by competitive binding in the ATP pocket. X-ray crystallographic studies of the target enzyme complexed with inhibitor reinforce the observations made from site-directed mutagenesis studies, thereby providing a molecular basis for understanding the kinase selectivity of these inhibitors. The p38 MAP kinase inhibitors are efficacious in several disease models, including inflammation, arthritis and other joint diseases, septic shock, and myocardial injury. In all cases, p38 activation in key cell types correlated with disease initiation and progression. Treatment with p38 MAP kinase inhibitors attenuated both p38 activation and disease severity. Structurally diverse p38 MAP kinase inhibitors have been tested extensively in preclinical studies.
Collapse
Affiliation(s)
- J C Lee
- SmithKline Beecham Pharmaceuticals, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | | | | | | | | | |
Collapse
|
85
|
Abstract
Several tyrosine and serine/threonine protein kinases have emerged in the last few years as attractive targets in the search for new therapeutic agents being applicable in many different disease indications. Initially, inhibition of these protein kinases by ATP site-directed inhibitors was considered less prone to success, but medicinal chemists from both academia and industry have been able to impart potency and selectivity to a limited number of scaffolds by modulating and fine-tuning the interactions of the modified template with the ATP binding site of the selected kinase. The chemical templates that have been used in the synthesis of ATP site-directed protein kinase inhibitors are reviewed with emphasis on the kinase inhibitors that have entered or are about to enter clinical trials. Examples have been selected to illustrate how structure-based design approaches and new methods to increase compound diversity have had an impact on this area of research.
Collapse
|
86
|
Badger AM, Griswold DE, Kapadia R, Blake S, Swift BA, Hoffman SJ, Stroup GB, Webb E, Rieman DJ, Gowen M, Boehm JC, Adams JL, Lee JC. Disease-modifying activity of SB 242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-induced arthritis. ARTHRITIS AND RHEUMATISM 2000; 43:175-83. [PMID: 10643714 DOI: 10.1002/1529-0131(200001)43:1<175::aid-anr22>3.0.co;2-s] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To evaluate the effects of SB 242235, a potent and selective inhibitor of p38 mitogen-activated protein (MAP) kinase, on joint integrity in rats with adjuvant-induced arthritis (AIA). METHODS Male Lewis rats with AIA were orally treated either prophylactically (days 0-20) or therapeutically (days 10-20) with SB 242235. Efficacy was determined by measurements of paw inflammation, dual-energy x-ray absorptiometry for bone-mineral density (BMD), magnetic resonance imaging (MRI), microcomputed tomography (CT), and histologic evaluation. Serum tumor necrosis factor alpha (TNFalpha) in normal (non-AIA) rats and serum interleukin-6 (IL-6) levels in rats with AIA were measured as markers of the antiinflammatory effects of the compound. RESULTS SB 242235 inhibited lipopolysaccharide-stimulated serum levels of TNFalpha in normal rats, with a median effective dose of 3.99 mg/kg. When SB 242235 was administered to AIA rats prophylactically on days 0-20, it inhibited paw edema at 30 mg/kg and 10 mg/kg per day by 56% and 33%, respectively. Therapeutic administration on days 10-20 was also effective, and inhibition of paw edema was observed at 60, 30, and 10 mg/kg (73%, 51%, and 19%, respectively). Significant improvement in joint integrity was demonstrated by showing normalization of BMD and also by MRI and micro-CT analysis. Protection of bone, cartilage, and soft tissues was also shown histologically. Serum IL-6 levels were decreased in AIA rats treated with the 60 mg/kg dose of compound. CONCLUSION Symptoms of AIA in rats were significantly reduced by both prophylactic and therapeutic treatment with the p38 MAP kinase inhibitor, SB 242235. Results from measurements of paw inflammation, assessment of BMD, MRI, and micro-CT indicate that this compound exerts a protective effect on joint integrity, and thus appears to have disease-modifying properties.
Collapse
Affiliation(s)
- A M Badger
- SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
The p38 signalling transduction pathway, a Mitogen-activated protein (MAP) kinase pathway, plays an essential role in regulating many cellular processes including inflammation, cell differentiation, cell growth and death. Activation of p38 often through extracellular stimuli such as bacterial pathogens and cytokines, mediates signal transduction into the nucleus to turn on the responsive genes. p38 also transduces signals to other cellular components to execute different cellular responses. In this review, we summarize the characteristics of the major components of the p38 signalling transduction pathway and highlight the targets of this pathway and the physiological function of the p38 activation.
Collapse
Affiliation(s)
- K Ono
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
88
|
Abstract
Protein phosphorylation is a key cellular regulatory mechanism. Protein kinases and phosphatases regulate cell-cycle progression, transcription, translation, protein sorting and cell adhesion events that are critical to the inflammatory process. Two of the best- characterized immunosuppressants, cyclosporin and rapamycin, are also effective anti-inflammatory drugs. They act directly on protein phosphorylation and, as such, validate the concept that small-molecule modulators of phosphorylation cascades possess anti- inflammatory properties. The authors describe studies that outline progress in defining specific protein kinase signal-transduction cascades, the key drug discovery targets in these cascades and progress towards developing selective agents that have potential in treating numerous inflammatory diseases.
Collapse
|
89
|
Abstract
Inflammatory and autoimmune diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, psoriasis and asthma, provide drug discoverers with a tremendous challenge. The precise causes of these diseases are not known, but our understanding of the molecular and cellular mechanisms associated with inflammatory diseases has increased dramatically. As a consequence, a wide array of gene targets have emerged that control cell influx and activation, inflammatory mediator release and activity, and tissue proliferation and degradation. Since multiple gene products have been identified at the sites of inflammation, there has been a surge of interest in identifying intracellular signaling targets, including transcription factors that control inflammatory gene expression and which are amenable to drug discovery.
Collapse
Affiliation(s)
- A J Lewis
- Signal Pharmaceuticals Inc., 5555 Oberlin Drive, San Diego, CA 92121, USA.
| | | |
Collapse
|
90
|
Lee JC, Kassis S, Kumar S, Badger A, Adams JL. p38 mitogen-activated protein kinase inhibitors--mechanisms and therapeutic potentials. Pharmacol Ther 1999; 82:389-97. [PMID: 10454214 DOI: 10.1016/s0163-7258(99)00008-x] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pyridinylimidazole compounds, exemplified by SB 203580, originally were prepared as inflammatory cytokine synthesis inhibitors. Subsequently, the compounds were found to be selective inhibitors for p38 mitogen-activated protein kinase (MAPK), a member of the MAPK family. SB 203580 inhibits the catalytic activity of p38 MAPK by competitive binding in the ATP pocket. Four homologues of p38 MAPK have been identified to date, and interestingly, their biochemical properties and their respective sensitivities to the inhibitors are distinct. X-ray crystallographic analysis of p38-inhibitor complexes reinforces the observations made from site-directed mutagenesis studies, thereby providing a molecular basis for understanding the kinase selectivity of these inhibitors. The p38 MAPK inhibitors are efficacious in several disease models, including inflammation, arthritis and other joint diseases, septic shock, and myocardial injury.
Collapse
Affiliation(s)
- J C Lee
- Smithkline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA
| | | | | | | | | |
Collapse
|
91
|
de Laszlo SE, Hacker C, Li B, Kim D, MacCoss M, Mantlo N, Pivnichny JV, Colwell L, Koch GE, Cascieri MA, Hagmann WK. Potent, orally absorbed glucagon receptor antagonists. Bioorg Med Chem Lett 1999; 9:641-6. [PMID: 10201821 DOI: 10.1016/s0960-894x(99)00081-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The SAR of 2-pyridyl-3,5-diaryl pyrroles, ligands of the human glucagon receptor and inhibitors of p38 kinase, were investigated. This effort resulted in the identification of 2-(4-pyridyl)-5-(4-chlorophenyl)-3-(5-bromo-2-propyloxyphenyl)pyrr ole 49 (L-168,049), a potent (Kb = 25 nM), selective antagonist of glucagon.
Collapse
Affiliation(s)
- S E de Laszlo
- Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|