51
|
Zhai Z, Wang H, Wei B, Yu P, Xu C, He L, Zhang J, Xu Y. Effect of Ionic Liquids on the Fibril-Formation and Gel Properties of Grass Carp (Ctenopharyngodon idellus) Skin Collagen. Macromol Res 2018. [DOI: 10.1007/s13233-018-6081-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
52
|
Jaafar H, Tuan Sharif SE, Das Murtey M. Pattern of Collagen Fibers and Localization of Matrix Metalloproteinase 2 and 9 during Breast Cancer Invasion. TUMORI JOURNAL 2018. [DOI: 10.1177/1660.18194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Health Campus, UniversitiSains Malaysia, KubangKerian, KelantanDarulNaim, Malaysia
| | - Sharifah Emilia Tuan Sharif
- Department of Pathology, School of Medical Sciences, Health Campus, UniversitiSains Malaysia, KubangKerian, KelantanDarulNaim, Malaysia
| | - Mogana Das Murtey
- Department of Pathology, School of Medical Sciences, Health Campus, UniversitiSains Malaysia, KubangKerian, KelantanDarulNaim, Malaysia
| |
Collapse
|
53
|
Takahashi N, Hirose T, Minaguchi JA, Ueda H, Tangkawattana P, Takehana K. Fibrillar architecture at three different sites of the bovine superficial digital flexor tendon. J Vet Med Sci 2018; 80:405-412. [PMID: 29332865 PMCID: PMC5880818 DOI: 10.1292/jvms.17-0562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Superficial digital flexor tendon (SDFT) of the bovine hindlimb originates from the caudolateral aspect of the distal femur and finally inserts onto the plantar aspect of the middle phalanges. In the present study,
morphology and morphometry of the bovine SDFT at the muscle-tendon junction (MTJ), middle metatarsus (mM) and tendon-bone interface (TBI) were investigated. Cross-sectional morphology at the three regions of SDFT were
oval, semioval and ring-formed, respectively. Significant difference in cross-sectional area was found only between MTJ-mM and mM-TBI (P<0.05). Functional compression and friction from the adjacent
structures could be the most potential interactions affecting such appearances. Morphometric data of tenocyte number, water content, and glycosaminoglycan (GAG) length and angle were found increasing in the proximodistal
direction, except the fibril diameter and collagen fibril index (CFI). Statistical analyzes could reveal significant differences in average number of tenocytes (P<0.0001), CFI (between MTJ-mM and
MTJ-TBI, P<0.05), water content (between MTJ-TBI, P<0.05), length of GAG chains (between MTJ-TBI, P<0.05), and angle of GAG chains
(P<0.0001), respectively. The fibrillar characteristics at the three different areas, including fibril diameter distribution and interfibrillar distance, existed in conforming to the tensional axes in
situ. In addition, length and angle of GAG chains were relevant to moving directions of the collagen fibrils.
Collapse
Affiliation(s)
- Naoki Takahashi
- Laboratory of Veterinary Microanatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Takuya Hirose
- Laboratory of Veterinary Microanatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Jun A Minaguchi
- Laboratory of Veterinary Microanatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Hiromi Ueda
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Prasarn Tangkawattana
- Laboratory of Veterinary Microanatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.,Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kazushige Takehana
- Laboratory of Veterinary Microanatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
54
|
Shen G, Huang Y, Dong J, Wang X, Cheng KK, Feng J, Xu J, Ye J. Metabolic Effect of Dietary Taurine Supplementation on Nile Tilapia (Oreochromis nilotictus) Evaluated by NMR-Based Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:368-377. [PMID: 29215281 DOI: 10.1021/acs.jafc.7b03182] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Taurine is indispensable in aquatic diets that are based solely on plant protein, and it promotes growth of many fish species. However, the physiological and metabolome effects of taurine on fish have not been well described. In this study, 1H NMR-based metabolomics approaches were applied to investigate the metabolite variations in Nile tilapia (Oreochromis nilotictus) muscle in order to visualize the metabolic trajectory and reveal the possible mechanisms of metabolic effects of dietary taurine supplementation on tilapia growth. After extraction using aqueous and organic solvents, 19 taurine-induced metabolic changes were evaluated in our study. The metabolic changes were characterized by differences in carbohydrate, amino acid, lipid, and nucleotide contents. The results indicate that taurine supplementation could significantly regulate the physiological state of fish and promote growth and development. These results provide a basis for understanding the mechanism of dietary taurine supplementation in fish feeding. 1H NMR spectroscopy, coupled with multivariate pattern recognition technologies, is an efficient and useful tool to map the fish metabolome and identify metabolic responses to different dietary nutrients in aquaculture.
Collapse
Affiliation(s)
- Guiping Shen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University , Xiamen 361005, China
| | - Ying Huang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University , Xiamen 361005, China
| | - Jiyang Dong
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University , Xiamen 361005, China
| | - Xuexi Wang
- Fisheries College, Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Jimei University , Xiamen 361021, China
| | - Kian-Kai Cheng
- Department of Bioprocess and Polymer Engineering, Innovation Centre in Agritechnology, University Teknologi Malaysia , Johor Bahru, Johor 81310, Malaysia
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University , Xiamen 361005, China
| | - Jingjing Xu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University , Xiamen 361005, China
| | - Jidan Ye
- Fisheries College, Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Jimei University , Xiamen 361021, China
| |
Collapse
|
55
|
The hierarchical response of human corneal collagen to load. Acta Biomater 2018; 65:216-225. [PMID: 29128531 PMCID: PMC5729024 DOI: 10.1016/j.actbio.2017.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 02/04/2023]
Abstract
Fibrillar collagen in the human cornea is integral to its function as a transparent lens of precise curvature, and its arrangement is now well-characterised in the literature. While there has been considerable effort to incorporate fibrillar architecture into mechanical models of the cornea, the mechanical response of corneal collagen to small applied loads is not well understood. In this study the fibrillar and molecular response to tensile load was quantified using small and wide angle X-ray scattering (SAXS/WAXS), and digital image correlation (DIC) photography was used to calculate the local strain field that gave rise to the hierarchical changes. A molecular scattering model was used to calculate the tropocollagen tilt relative to the fibril axis and changes associated with applied strain. Changes were measured in the D-period, molecular tilt and the orientation and spacing of the fibrillar and molecular networks. These measurements were summarised into hierarchical deformation mechanisms, which were found to contribute at varying strains. The change in molecular tilt is indicative of a sub-fibrillar “spring-like” deformation mechanism, which was found to account for most of the applied strain under physiological and near-physiological loads. This deformation mechanism may play an important functional role in tissues rich in fibrils of high helical tilt, such as skin and cartilage. Statement of Significance Collagen is the primary mediator of soft tissue biomechanics, and variations in its hierarchical structure convey the varying amounts of structural support necessary for organs to function normally. Here we have examined the structural response of corneal collagen to tensile load using X-rays to probe hierarchies ranging from molecular to fibrillar. We found a previously unreported deformation mechanism whereby molecules, which are helically arranged relative to the axis of their fibril, change in tilt akin to the manner in which a spring stretches. This “spring-like” mechanism accounts for a significant portion of the applied deformation at low strains (<3%). These findings will inform the future design of collagen-based artificial corneas being developed to address world-wide shortages of corneal donor tissue.
Collapse
|
56
|
Zhang J, Sun Y, Zhao Y, Wei B, Xu C, He L, Oliveira CLP, Wang H. Centrifugation-induced fibrous orientation in fish-sourced collagen matrices. SOFT MATTER 2017; 13:9220-9228. [PMID: 29199311 DOI: 10.1039/c7sm01871a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Orientation of fibrous collagen structures plays an important role not only in the native function of various biological tissues but also in the development of next-generation tissue engineering scaffolds. However, the controlled assembly of collagen in vitro into an anisotropic structure, avoiding complex technical procedures and specialized apparatus, remains a challenge. Here, an oriented collagen matrix was fabricated at the macroscale by simple centrifugation, and the aligned topographical features of the resulting collagen matrix were revealed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and small angle X-ray scattering. The aligned matrix exhibited a higher ultimate tensile strength and strain than a random matrix. Centrifugation had an impact on the diameter and density of the collagen fibrils, while it had no effect on their native D-periodicity and thermal stability. Additionally, structural anisotropy of the collagen matrix facilitated the proliferation and migration of NIH/3T3 fibroblasts, compared with the random one. This simple and cost-effective method could lead to mass production of aligned collagen matrices and future possibilities for different applications in tissue engineering.
Collapse
Affiliation(s)
- Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Avila Rodríguez MI, Rodríguez Barroso LG, Sánchez ML. Collagen: A review on its sources and potential cosmetic applications. J Cosmet Dermatol 2017; 17:20-26. [PMID: 29144022 DOI: 10.1111/jocd.12450] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 12/29/2022]
Abstract
Collagen is a fibrillar protein that conforms the conjunctive and connective tissues in the human body, essentially skin, joints, and bones. This molecule is one of the most abundant in many of the living organisms due to its connective role in biological structures. Due to its abundance, strength and its directly proportional relation with skin aging, collagen has gained great interest in the cosmetic industry. It has been established that the collagen fibers are damaged with the pass of time, losing thickness and strength which has been strongly related with skin aging phenomena [Colágeno para todo. 60 y más. 2016. http://www.revista60ymas.es/InterPresent1/groups/revistas/documents/binario/ses330informe.pdf.]. As a solution, the cosmetic industry incorporated collagen as an ingredient of different treatments to enhance the user youth and well-being, and some common presentations are creams, nutritional supplement for bone and cartilage regeneration, vascular and cardiac reconstruction, skin replacement, and augmentation of soft skin among others [J App Pharm Sci. 2015;5:123-127]. Nowadays, the biomolecule can be obtained by extraction from natural sources such as plants and animals or by recombinant protein production systems including yeast, bacteria, mammalian cells, insects or plants, or artificial fibrils that mimic collagen characteristics like the artificial polymer commercially named as KOD. Because of its increased use, its market size is valued over USD 6.63 billion by 2025 [Collagen Market By Source (Bovine, Porcine, Poultry, Marine), Product (Gelatin, Hydrolyzed Collagen), Application (Food & Beverages, Healthcare, Cosmetics), By Region, And Segment Forecasts, 2014 - 2025. Grand View Research. http://www.grandviewresearch.com/industry-analysis/collagen-market. Published 2017.]. Nevertheless, there has been little effort on identifying which collagen types are the most suitable for cosmetic purposes, for which the present review will try to enlighten in a general scope this unattended matter.
Collapse
Affiliation(s)
| | | | - Mirna Lorena Sánchez
- Dpto. de Ciencia y Tecnología, Laboratorio de Ingeniería Genética y Biología Celular y Molecular - Área Virosis Emergentes y Zoonóticas, Universidad Nacional Quilmes, Bernal, Argentina
| |
Collapse
|
58
|
Despoudi K, Mantzoros I, Ioannidis O, Cheva A, Antoniou N, Konstantaras D, Symeonidis S, Pramateftakis MG, Kotidis E, Angelopoulos S, Tsalis K. Effects of albumin/glutaraldehyde glue on healing of colonic anastomosis in rats. World J Gastroenterol 2017; 23:5680-5691. [PMID: 28883693 PMCID: PMC5569282 DOI: 10.3748/wjg.v23.i31.5680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/08/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To evaluate the effect of local surgical adhesive glue (albumin/glutaraldehyde-Bioglue) on the healing of colonic anastomoses in rats. METHODS Forty Albino-Wistar male rats were randomly divided into two groups, with two subgroups of ten animals each. In the control group, an end-to-end colonic anastomosis was performed after segmental resection. In the Bioglue group, the anastomosis was protected with extraluminar application of adhesive glue containing albumin and glutaraldehyde. Half of the rats were sacrificed on the fourth and the rest on the eighth postoperative day. Anastomoses were resected and macroscopically examined. Bursting pressures were calculated and histological features were graded. Other parameters of healing, such as hydroxyproline and collagenase concentrations, were evaluated. The experimental data were summarized and computed from the results of a one-way ANOVA. Fisher's exact test was applied to compare percentages. RESULTS Bursting pressures, adhesion formation, inflammatory cell infiltration, and collagen deposition were significantly higher on the fourth postoperative day in the albumin/glutaraldehyde group than in the control group. Furthermore, albumin/glutaraldehyde significantly increased adhesion formation, inflammatory cell infiltration, neoangiogenesis, and collagen deposition on the eighth postoperative day. There was no difference in fibroblast activity or hydroxyproline and collagenase concentrations. CONCLUSION Albumin/glutaraldehyde, when applied on colonic anastomoses, promotes their healing in rats. Therefore, the application of protective local agents in colonic anastomoses leads to better outcomes.
Collapse
Affiliation(s)
- Kalliopi Despoudi
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Ioannis Mantzoros
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Orestis Ioannidis
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Aggeliki Cheva
- Department of Pathology, General Hospital “G. Papanikolaou”, 57010 Thessaloniki, Greece
| | - Nikolaos Antoniou
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Dimitrios Konstantaras
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Savvas Symeonidis
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | | | - Efstathios Kotidis
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Stamatis Angelopoulos
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Konstantinos Tsalis
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| |
Collapse
|
59
|
Bertassoni LE. Dentin on the nanoscale: Hierarchical organization, mechanical behavior and bioinspired engineering. Dent Mater 2017; 33:637-649. [PMID: 28416222 PMCID: PMC5481168 DOI: 10.1016/j.dental.2017.03.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/09/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Knowledge of the structural organization and mechanical properties of dentin has expanded considerably during the past two decades, especially on a nanometer scale. In this paper, we review the recent literature on the nanostructural and nanomechanical properties of dentin, with special emphasis in its hierarchical organization. METHODS We give particular attention to the recent literature concerning the structural and mechanical influence of collagen intrafibrillar and extrafibrillar mineral in healthy and remineralized tissues. The multilevel hierarchical structure of collagen, and the participation of non-collagenous proteins and proteoglycans in healthy and diseased dentin are also discussed. Furthermore, we provide a forward-looking perspective of emerging topics in biomaterials sciences, such as bioinspired materials design and fabrication, 3D bioprinting and microfabrication, and briefly discuss recent developments on the emerging field of organs-on-a-chip. RESULTS The existing literature suggests that both the inorganic and organic nanostructural components of the dentin matrix play a critical role in various mechanisms that influence tissue properties. SIGNIFICANCE An in-depth understanding of such nanostructural and nanomechanical mechanisms can have a direct impact in our ability to evaluate and predict the efficacy of dental materials. This knowledge will pave the way for the development of improved dental materials and treatment strategies. CONCLUSIONS Development of future dental materials should take into consideration the intricate hierarchical organization of dentin, and pay particular attention to their complex interaction with the dentin matrix on a nanometer scale.
Collapse
Affiliation(s)
- Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA; Center for Regenerative Medicine, Oregon Health and Science University, School of Medicine, Portland, OR, USA; Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, Portland, OR, USA.
| |
Collapse
|
60
|
In vitro fibrillogenesis of tropocollagen type III in collagen type I affects its relative fibrillar topology and mechanics. Sci Rep 2017; 7:1392. [PMID: 28469139 PMCID: PMC5431193 DOI: 10.1038/s41598-017-01476-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/27/2017] [Indexed: 01/19/2023] Open
Abstract
Tropocollagen types I and III were simultaneously fibrilized in vitro, and the differences between the geometric and mechanical properties of the heterotypic fibrils with different mixing ratios of tropocollagen III to I were investigated. Transmission electron microscopy was used to confirm the simultaneous presence of both tropocollagen types within the heterotypic fibrils. The incorporation of collagen III in I caused the fibrils to be thinner with a shorter D-banding than pure collagen I. Hertzian contact model was used to obtain the elastic moduli from atomic force microscope indentation testing using a force volume analysis. The results indicated that an increase in the percentage of tropocollagen III reduced the mechanical stiffness of the obtained fibrils. The mechanical stiffness of the collagen fibrils was found to be greater at higher loading frequencies. This observation might explain the dominance of collagen III over I in soft distensible organs such as human vocal folds.
Collapse
|
61
|
Ferraro V, Gaillard-Martinie B, Sayd T, Chambon C, Anton M, Santé-Lhoutellier V. Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential. Int J Biol Macromol 2017; 97:55-66. [DOI: 10.1016/j.ijbiomac.2016.12.068] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 02/04/2023]
|
62
|
Daneault A, Prawitt J, Fabien Soulé V, Coxam V, Wittrant Y. Biological effect of hydrolyzed collagen on bone metabolism. Crit Rev Food Sci Nutr 2017; 57:1922-1937. [PMID: 25976422 DOI: 10.1080/10408398.2015.1038377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoporosis is a chronic and asymptomatic disease characterized by low bone mass and skeletal microarchitectural deterioration, increased risk of fracture, and associated comorbidities most prevalent in the elderly. Due to an increasingly aging population, osteoporosis has become a major health issue requiring innovative disease management. Proteins are important for bone by providing building blocks and by exerting specific regulatory function. This is why adequate protein intake plays a considerable role in both bone development and bone maintenance. More specifically, since an increase in the overall metabolism of collagen can lead to severe dysfunctions and a more fragile bone matrix and because orally administered collagen can be digested in the gut, cross the intestinal barrier, enter the circulation, and become available for metabolic processes in the target tissues, one may speculate that a collagen-enriched diet provides benefits for the skeleton. Collagen-derived products such as gelatin or hydrolyzed collagen (HC) are well acknowledged for their safety from a nutritional point of view; however, what is their impact on bone biology? In this manuscript, we critically review the evidence from literature for an effect of HC on bone tissues in order to determine whether HC may represent a relevant alternative in the design of future nutritional approaches to manage osteoporosis prevention.
Collapse
Affiliation(s)
- Audrey Daneault
- a INRA, UMR 1019, UNH, CRNH Auvergne , Clermont-Ferrand , France.,b Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine , Clermont-Ferrand , France
| | | | | | - Véronique Coxam
- a INRA, UMR 1019, UNH, CRNH Auvergne , Clermont-Ferrand , France.,b Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine , Clermont-Ferrand , France
| | - Yohann Wittrant
- a INRA, UMR 1019, UNH, CRNH Auvergne , Clermont-Ferrand , France.,b Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine , Clermont-Ferrand , France
| |
Collapse
|
63
|
Green EC, Zhang Y, Li H, Minus ML. Gel-spinning of mimetic collagen and collagen/nano-carbon fibers: Understanding multi-scale influences on molecular ordering and fibril alignment. J Mech Behav Biomed Mater 2017; 65:552-564. [DOI: 10.1016/j.jmbbm.2016.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022]
|
64
|
Pashley DH, Tay FR, Yiu C, Hashimoto M, Breschi L, Carvalho RM, Ito S. Collagen Degradation by Host-derived Enzymes during Aging. J Dent Res 2016; 83:216-21. [PMID: 14981122 DOI: 10.1177/154405910408300306] [Citation(s) in RCA: 643] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Incompletely infiltrated collagen fibrils in acid-etched dentin are susceptible to degradation. We hypothesize that degradation can occur in the absence of bacteria. Partially demineralized collagen matrices (DCMs) prepared from human dentin were stored in artificial saliva. Control specimens were stored in artificial saliva containing proteolytic enzyme inhibitors, or pure mineral oil. We retrieved them at 24 hrs, 90 and 250 days to examine the extent of degradation of DCM. In the 24-hour experimental and 90- and 250-day control specimens, we observed 5- to 6-μm-thick layers of DCM containing banded collagen fibrils. DCMs were almost completely destroyed in the 250-day experimental specimens, but not when incubated with enzyme inhibitors or mineral oil. Functional enzyme analysis of dentin powder revealed low levels of collagenolytic activity that was inhibited by protease inhibitors or 0.2% chlorhexidine. We hypothesize that collagen degradation occurred over time, via host-derived matrix metalloproteinases that are released slowly over time.
Collapse
Affiliation(s)
- D H Pashley
- Department of Oral Biology and Maxillofacial Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Canelón SP, Wallace JM. β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking Causes In Vitro Changes in Collagen Morphology and Molecular Composition. PLoS One 2016; 11:e0166392. [PMID: 27829073 PMCID: PMC5102343 DOI: 10.1371/journal.pone.0166392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/27/2016] [Indexed: 01/04/2023] Open
Abstract
Type I collagen morphology can be characterized using fibril D-spacing, a metric which describes the periodicity of repeating bands of gap and overlap regions of collagen molecules arranged into collagen fibrils. This fibrillar structure is stabilized by enzymatic crosslinks initiated by lysyl oxidase (LOX), a step which can be disrupted using β-aminopropionitrile (BAPN). Murine in vivo studies have confirmed effects of BAPN on collagen nanostructure and the objective of this study was to evaluate the mechanism of these effects in vitro by measuring D-spacing, evaluating the ratio of mature to immature crosslinks, and quantifying gene expression of type I collagen and LOX. Osteoblasts were cultured in complete media, and differentiated using ascorbic acid, in the presence or absence of 0.25mM BAPN-fumarate. The matrix produced was imaged using atomic force microscopy (AFM) and 2D Fast Fourier transforms were performed to extract D-spacing from individual fibrils. The experiment was repeated for quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Fourier Transform infrared spectroscopy (FTIR) analyses. The D-spacing distribution of collagen produced in the presence of BAPN was shifted toward higher D-spacing values, indicating BAPN affects the morphology of collagen produced in vitro, supporting aforementioned in vivo experiments. In contrast, no difference in gene expression was found for any target gene, suggesting LOX inhibition does not upregulate the LOX gene to compensate for the reduction in aldehyde formation, or regulate expression of genes encoding type I collagen. Finally, the mature to immature crosslink ratio decreased with BAPN treatment and was linked to a reduction in peak percent area of mature crosslink hydroxylysylpyridinoline (HP). In conclusion, in vitro treatment of osteoblasts with low levels of BAPN did not induce changes in genes encoding LOX or type I collagen, but led to an increase in collagen D-spacing as well as a decrease in mature crosslinks.
Collapse
Affiliation(s)
- Silvia P. Canelón
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Joseph M. Wallace
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, United States of America
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
66
|
Zou M, Yang H, Wang H, Wang H, Zhang J, Wei B, Zhang H, Xie D. Detection of type I collagen fibrils formation and dissociation by a fluorescence method based on thioflavin T. Int J Biol Macromol 2016; 92:1175-1182. [DOI: 10.1016/j.ijbiomac.2016.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/01/2016] [Accepted: 08/08/2016] [Indexed: 11/28/2022]
|
67
|
Affiliation(s)
- Gregory M. Grason
- Department of Polymer Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
68
|
Impact of Telopeptides on Self-Assembly Properties of Snakehead (Channa argus) Skin Collagen. FOOD BIOPHYS 2016. [DOI: 10.1007/s11483-016-9452-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
69
|
Baldwin SJ, Kreplak L, Lee JM. Characterization via atomic force microscopy of discrete plasticity in collagen fibrils from mechanically overloaded tendons: Nano-scale structural changes mimic rope failure. J Mech Behav Biomed Mater 2016; 60:356-366. [DOI: 10.1016/j.jmbbm.2016.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/22/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
70
|
Liu X, Dan N, Dan W. Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix. Int J Biol Macromol 2016; 88:179-88. [DOI: 10.1016/j.ijbiomac.2016.03.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
|
71
|
Jastrzebska M, Tarnawska D, Wrzalik R, Chrobak A, Grelowski M, Wylegala E, Zygadlo D, Ratuszna A. New insight into the shortening of the collagen fibril D-period in human cornea. J Biomol Struct Dyn 2016; 35:551-563. [PMID: 26872619 DOI: 10.1080/07391102.2016.1153520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Collagen fibrils type I display a typical banding pattern, so-called D-periodicity, of about 67 nm, when visualized by atomic force or electron microscopy imaging. Herein we report on a significant shortening of the D-period for human corneal collagen fibrils type I (21 ± 4 nm) upon air-drying, whereas no changes in the D-period were observed for human scleral collagen fibrils type I (64 ± 4 nm) measured under the same experimental conditions as the cornea. It was also found that for the corneal stroma fixed with glutaraldehyde and air-dried, the collagen fibrils show the commonly accepted D-period of 61 ± 8 nm. We used the atomic force microscopy method to image collagen fibrils type I present in the middle layers of human cornea and sclera. The water content in the cornea and sclera samples was varying in the range of .066-.085. Calculations of the D-period using the theoretical model of the fibril and the FFT approach allowed to reveal the possible molecular mechanism of the D-period shortening in the corneal collagen fibrils upon drying. It was found that both the decrease in the shift and the simultaneous reduction in the distance between tropocollagen molecules can be responsible for the experimentally observed effect. We also hypothesize that collagen type V, which co-assembles with collagen type I into heterotypic fibrils in cornea, could be involved in the observed shortening of the corneal D-period.
Collapse
Affiliation(s)
- Maria Jastrzebska
- a Department of Solid State Physics, A. Chelkowski Institute of Physics , University of Silesia , Uniwersytecka 4, 40-007 Katowice , Poland.,d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| | - Dorota Tarnawska
- b Faculty of Medicine and Division of Dentistry in Zabrze, Clinical Department of Ophthalmology , Medical University of Silesia , Panewnicka 65, 40-760 Katowice , Poland.,c Department of Biophysics and Molecular Physics, A. Chelkowski Institute of Physics , University of Silesia , Uniwersytecka 4, 40-007 Katowice , Poland.,d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| | - Roman Wrzalik
- c Department of Biophysics and Molecular Physics, A. Chelkowski Institute of Physics , University of Silesia , Uniwersytecka 4, 40-007 Katowice , Poland.,d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| | - Artur Chrobak
- a Department of Solid State Physics, A. Chelkowski Institute of Physics , University of Silesia , Uniwersytecka 4, 40-007 Katowice , Poland.,d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| | - Michal Grelowski
- d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| | - Edward Wylegala
- b Faculty of Medicine and Division of Dentistry in Zabrze, Clinical Department of Ophthalmology , Medical University of Silesia , Panewnicka 65, 40-760 Katowice , Poland
| | - Dorota Zygadlo
- d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| | - Alicja Ratuszna
- a Department of Solid State Physics, A. Chelkowski Institute of Physics , University of Silesia , Uniwersytecka 4, 40-007 Katowice , Poland.,d Silesian Center for Education and Interdisciplinary Research , University of Silesia , 75 Pułku Piechoty 1, 41-500 Chorzów , Poland
| |
Collapse
|
72
|
Ramanathan G, Singaravelu S, Raja MD, Nagiah N, Padmapriya P, Ruban K, Kaveri K, Natarajan TS, Sivagnanam UT, Perumal PT. Fabrication and characterization of a collagen coated electrospun poly(3-hydroxybutyric acid)–gelatin nanofibrous scaffold as a soft bio-mimetic material for skin tissue engineering applications. RSC Adv 2016. [DOI: 10.1039/c5ra19529b] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The collagen coated nanofibrous scaffold mimics the function of the extra cellular matrix with good biocompatibility, cell adhesion, cell proliferation and aids to provide as a promising tool in skin tissue engineering application.
Collapse
Affiliation(s)
| | | | - M. D. Raja
- Bioproducts Lab
- CSIR-Central Leather Research Institute
- Chennai-600020
- India
| | - Naveen Nagiah
- Department of Mechanical Engineering
- University of Colorado
- Boulder
- USA
| | - P. Padmapriya
- Department of Virology
- King Institute of Preventive Medicine and Research
- Chennai-600032
- India
| | - K. Ruban
- Department of Virology
- King Institute of Preventive Medicine and Research
- Chennai-600032
- India
| | - Krishnasamy Kaveri
- Department of Virology
- King Institute of Preventive Medicine and Research
- Chennai-600032
- India
| | - T. S. Natarajan
- Conducting Polymers Lab
- Department of Physics
- Indian Institute of Technology Madras
- Chennai
- India
| | | | | |
Collapse
|
73
|
Vielreicher M, Gellner M, Rottensteiner U, Horch RE, Arkudas A, Friedrich O. Multiphoton microscopy analysis of extracellular collagen I network formation by mesenchymal stem cells. J Tissue Eng Regen Med 2015; 11:2104-2115. [PMID: 26712389 DOI: 10.1002/term.2107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 08/31/2015] [Accepted: 10/05/2015] [Indexed: 12/19/2022]
Abstract
Collagen I is the major fibrous extracellular component of bone responsible for its ultimate tensile strength. In tissue engineering, one of the most important challenges for tissue formation is to get cells interconnected via a strong and functional extracellular matrix (ECM), mimicking as closely as possible the natural ECM geometry. Still missing in tissue engineering are: (a) a versatile, high-resolution and non-invasive approach to evaluate and quantify different aspects of ECM development within engineered biomimetic scaffolds online; and (b) deeper insights into the mechanism whereby cellular matrix production is enhanced in 3D cell-scaffold composites, putatively via enhanced focal adhesion linkage, over the 2D setting. In this study, we developed sensitive morphometric detection methods for collagen I-producing and bone-forming mesenchymal stem cells (MSCs), based on multiphoton second harmonic generation (SHG) microscopy, and used those techniques to compare collagen I production capabilities in 2D- and 3D-arranged cells. We found that stimulating cells with 1% serum in the presence of ascorbic acid is superior to other medium conditions tested, including classical osteogenic medium. In contrast to conventional 2D culture, having MSCs packed closely in a 3D environment presumably stimulates cells to produce strong and complex collagen I networks with defined network structures (visible in SHG images) and improves collagen production. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Martin Vielreicher
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich Alexander University of Erlangen-Nürnberg, Germany
| | - Monika Gellner
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich Alexander University of Erlangen-Nürnberg, Germany
| | - Ulrike Rottensteiner
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich Alexander University of Erlangen-Nürnberg, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich Alexander University of Erlangen-Nürnberg, Germany
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich Alexander University of Erlangen-Nürnberg, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich Alexander University of Erlangen-Nürnberg, Germany
| |
Collapse
|
74
|
Naleway SE, Porter MM, McKittrick J, Meyers MA. Structural Design Elements in Biological Materials: Application to Bioinspiration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5455-76. [PMID: 26305858 DOI: 10.1002/adma.201502403] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/16/2015] [Indexed: 05/20/2023]
Abstract
Eight structural elements in biological materials are identified as the most common amongst a variety of animal taxa. These are proposed as a new paradigm in the field of biological materials science as they can serve as a toolbox for rationalizing the complex mechanical behavior of structural biological materials and for systematizing the development of bioinspired designs for structural applications. They are employed to improve the mechanical properties, namely strength, wear resistance, stiffness, flexibility, fracture toughness, and energy absorption of different biological materials for a variety of functions (e.g., body support, joint movement, impact protection, weight reduction). The structural elements identified are: fibrous, helical, gradient, layered, tubular, cellular, suture, and overlapping. For each of the structural design elements, critical design parameters are presented along with constitutive equations with a focus on mechanical properties. Additionally, example organisms from varying biological classes are presented for each case to display the wide variety of environments where each of these elements is present. Examples of current bioinspired materials are also introduced for each element.
Collapse
Affiliation(s)
- Steven E Naleway
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093-0411, USA
| | - Michael M Porter
- Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Joanna McKittrick
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093-0411, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093-0411, USA
| | - Marc A Meyers
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093-0411, USA
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093-0411, USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093-0411, USA
| |
Collapse
|
75
|
Melander MC, Jürgensen HJ, Madsen DH, Engelholm LH, Behrendt N. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review). Int J Oncol 2015; 47:1177-88. [PMID: 26316068 PMCID: PMC4583827 DOI: 10.3892/ijo.2015.3120] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023] Open
Abstract
The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important pathological functions of uPARAP/Endo180 have been identified in various cancers and in several fibrotic conditions. With a particular focus on matrix turnover in cancer, this review presents the necessary background for understanding the function of uPARAP/Endo180 at the molecular and cellular level, followed by an in-depth survey of the available knowledge of the expression and role of this receptor in various types of cancer and other degenerative diseases.
Collapse
Affiliation(s)
- Maria C Melander
- The Finsen Laboratory, Rigshospitalet/BRIC, The University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Henrik J Jürgensen
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - Daniel H Madsen
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - Lars H Engelholm
- The Finsen Laboratory, Rigshospitalet/BRIC, The University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet/BRIC, The University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
76
|
Compositional and in Vitro Evaluation of Nonwoven Type I Collagen/Poly-dl-lactic Acid Scaffolds for Bone Regeneration. J Funct Biomater 2015; 6:667-86. [PMID: 26251924 PMCID: PMC4598677 DOI: 10.3390/jfb6030667] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/20/2015] [Accepted: 07/30/2015] [Indexed: 11/23/2022] Open
Abstract
Poly-dl-lactic acid (PDLLA) was blended with type I collagen to attempt to overcome the instantaneous gelation of electrospun collagen scaffolds in biological environments. Scaffolds based on blends of type I collagen and PDLLA were investigated for material stability in cell culture conditions (37 °C; 5% CO2) in which post-electrospinning glutaraldehyde crosslinking was also applied. The resulting wet-stable webs were cultured with bone marrow stromal cells (HBMSC) for five weeks. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), Fourier transform infra-red spectroscopy (FTIR) and biochemical assays were used to characterise the scaffolds and the consequent cell-scaffold constructs. To investigate any electrospinning-induced denaturation of collagen, identical PDLLA/collagen and PDLLA/gelatine blends were electrospun and their potential to promote osteogenic differentiation investigated. PDLLA/collagen blends with w/w ratios of 40/60, 60/40 and 80/20 resulted in satisfactory wet stabilities in a humid environment, although chemical crosslinking was essential to ensure long term material cell culture. Scaffolds of PDLLA/collagen at a 60:40 weight ratio provided the greatest stability over a five-week culture period. The PDLLA/collagen scaffolds promoted greater cell proliferation and osteogenic differentiation compared to HMBSCs seeded on the corresponding PDLLA/gelatine scaffolds, suggesting that any electrospinning-induced collagen denaturation did not affect material biofunctionality within 5 weeks in vitro.
Collapse
|
77
|
Zhang Y, Sun J. Multilevel and Multicomponent Layer-by-Layer Assembly for the Fabrication of Nanofibrillar Films. ACS NANO 2015; 9:7124-7132. [PMID: 26154064 DOI: 10.1021/acsnano.5b01832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we demonstrate multilevel and multicomponent layer-by-layer (LbL) assembly as a convenient and generally applicable method for the fabrication of nanofibrillar films by exploiting the dynamic nature of polymeric complexes. The alternate deposition of poly(allylamine hydrochloride)-methyl red (PAH-MR) complexes with poly(acrylic acid) (PAA) produces nanofibrillar PAH-MR/PAA films, which involves the disassembly of PAH-MR complexes, the subsequent assembly of PAH with PAA, and the PAA-induced assembly of MR molecules into MR nanofibrils via a π-π stacking interaction. The aqueous solution of weak polyelectrolyte PAA with a low solution pH plays an important role in fabricating nanofibrillar PAH-MR/PAA films because proton transfer from acidic PAA to MR molecules induces the formation of MR nanofibrils. The generality of the multilevel and multicomponent LbL assembly is verified by alternate assembly of complexes of 1-pyrenylbutyric acid (PYA) and PAH with PAA to fabricate PAH-PYA/PAA films with organized nanofibrillar structures. Unlike the traditional static LbL assembly, the multilevel and multicomponent LbL assembly is dynamic and more flexible and powerful in controlling the interfacial assembly process and in fabricating composite films with sophisticated structures. These characteristics of multilevel and multicomponent LbL assembly will enrich the functionalities of the LbL-assembled films.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
78
|
Qiu ZY, Cui Y, Tao CS, Zhang ZQ, Tang PF, Mao KY, Wang XM, Cui FZ. Mineralized Collagen: Rationale, Current Status, and Clinical Applications. MATERIALS 2015; 8:4733-4750. [PMID: 28793468 PMCID: PMC5455477 DOI: 10.3390/ma8084733] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/29/2015] [Accepted: 07/13/2015] [Indexed: 01/19/2023]
Abstract
This paper presents a review of the rationale for the in vitro mineralization process, preparation methods, and clinical applications of mineralized collagen. The rationale for natural mineralized collagen and the related mineralization process has been investigated for decades. Based on the understanding of natural mineralized collagen and its formation process, many attempts have been made to prepare biomimetic materials that resemble natural mineralized collagen in both composition and structure. To date, a number of bone substitute materials have been developed based on the principles of mineralized collagen, and some of them have been commercialized and approved by regulatory agencies. The clinical outcomes of mineralized collagen are of significance to advance the evaluation and improvement of related medical device products. Some representative clinical cases have been reported, and there are more clinical applications and long-term follow-ups that currently being performed by many research groups.
Collapse
Affiliation(s)
- Zhi-Ye Qiu
- School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
- Beijing Allgens Medical Science and Technology Co., Ltd., No.1 Disheng East Road, Yizhuang Economic and Technological Development Zone, Beijing 100176, China.
| | - Yun Cui
- Beijing Allgens Medical Science and Technology Co., Ltd., No.1 Disheng East Road, Yizhuang Economic and Technological Development Zone, Beijing 100176, China.
| | - Chun-Sheng Tao
- School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
- The 401 Hospital of Chinese People's Liberation Army, No. 22 Minjiang Road, Qingdao 266071, China.
| | - Zi-Qiang Zhang
- Beijing Allgens Medical Science and Technology Co., Ltd., No.1 Disheng East Road, Yizhuang Economic and Technological Development Zone, Beijing 100176, China.
| | - Pei-Fu Tang
- The General Hospital of People's Liberation Army, No. 28 Fuxing Road, Beijing 100853, China.
| | - Ke-Ya Mao
- The General Hospital of People's Liberation Army, No. 28 Fuxing Road, Beijing 100853, China.
| | - Xiu-Mei Wang
- School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
| | - Fu-Zhai Cui
- School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084, China.
| |
Collapse
|
79
|
Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res 2015; 49:1-16. [PMID: 26145225 PMCID: PMC4655862 DOI: 10.1016/j.preteyeres.2015.07.001] [Citation(s) in RCA: 523] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022]
Abstract
The corneal stroma plays several pivotal roles within the eye. Optically, it is the main refracting lens and thus has to combine almost perfect transmission of visible light with precise shape, in order to focus incoming light. Furthermore, mechanically it has to be extremely tough to protect the inner contents of the eye. These functions are governed by its structure at all hierarchical levels. The basic principles of corneal structure and transparency have been known for some time, but in recent years X-ray scattering and other methods have revealed that the details of this structure are far more complex than previously thought and that the intricacy of the arrangement of the collagenous lamellae provides the shape and the mechanical properties of the tissue. At the molecular level, modern technologies and theoretical modelling have started to explain exactly how the collagen fibrils are arranged within the stromal lamellae and how proteoglycans maintain this ultrastructure. In this review we describe the current state of knowledge about the three-dimensional stromal architecture at the microscopic level, and about the control mechanisms at the nanoscopic level that lead to optical transparency.
Collapse
Affiliation(s)
- Keith M Meek
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK.
| | - Carlo Knupp
- Structural Biophysics Research Group, School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
80
|
Pompe W, Worch H, Habraken WJEM, Simon P, Kniep R, Ehrlich H, Paufler P. Octacalcium phosphate - a metastable mineral phase controls the evolution of scaffold forming proteins. J Mater Chem B 2015; 3:5318-5329. [PMID: 32262608 DOI: 10.1039/c5tb00673b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular structure of collagen type 1 can be understood as the result of evolutionary selection in the process of formation of calcium phosphate based biocomposites acting as load bearing components in living organisms. The evolutionary selection fulfills the principle of 'survival of the fittest' in a particular biological environment. Disk-like post-nucleation complexes of Ca2(HPO4)3 2- organized in ribbon-like assemblies in the metastable octacalcium phosphate (OCP) phase, and Ca3 triangles in the stable HAP phase had formed the crystallographic motifs in this selection process. The rotational as well as the translational symmetry of the major tropocollagen (TC) helix agree nearly perfectly with the corresponding symmetries of the OCP structure. The sequence of (Gly-X-Y) motifs of the three α chains constituting the TC molecule enables an optimized structural fit for the nucleation of Ca3 triangles, the directed growth of nanostructured OCP, and the subsequent formation of hydroxyapatite (HAP) in collagen macrofibrils by a topotaxial transition. The known connection between genetic defects of collagen type 1 and Osteogenesis imperfecta should motivate the search for similar dependences of other bone diseases on a disturbed molecular structure of collagen on the genetic scale.
Collapse
Affiliation(s)
- Wolfgang Pompe
- Institute of Materials Science, Technical University Dresden, D-01062 Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
81
|
Bertazzo S, Maidment SCR, Kallepitis C, Fearn S, Stevens MM, Xie HN. Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. Nat Commun 2015; 6:7352. [PMID: 26056764 PMCID: PMC4468865 DOI: 10.1038/ncomms8352] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/30/2015] [Indexed: 02/05/2023] Open
Abstract
Exceptionally preserved organic remains are known throughout the vertebrate fossil record, and recently, evidence has emerged that such soft tissue might contain original components. We examined samples from eight Cretaceous dinosaur bones using nano-analytical techniques; the bones are not exceptionally preserved and show no external indication of soft tissue. In one sample, we observe structures consistent with endogenous collagen fibre remains displaying ∼ 67 nm banding, indicating the possible preservation of the original quaternary structure. Using ToF-SIMS, we identify amino-acid fragments typical of collagen fibrils. Furthermore, we observe structures consistent with putative erythrocyte remains that exhibit mass spectra similar to emu whole blood. Using advanced material characterization approaches, we find that these putative biological structures can be well preserved over geological timescales, and their preservation is more common than previously thought. The preservation of protein over geological timescales offers the opportunity to investigate relationships, physiology and behaviour of long extinct animals.
Collapse
Affiliation(s)
- Sergio Bertazzo
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Present address: Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Susannah C. R. Maidment
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Charalambos Kallepitis
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Institute for Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Sarah Fearn
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Institute for Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Hai-nan Xie
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Institute for Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
82
|
Guo YP, Guan JJ, Yang J, Wang Y, Zhang CQ, Ke QF. Hybrid nanostructured hydroxyapatite-chitosan composite scaffold: bioinspired fabrication, mechanical properties and biological properties. J Mater Chem B 2015; 3:4679-4689. [PMID: 32262483 DOI: 10.1039/c5tb00175g] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The fabrication of bone scaffolds with interconnected porous structure, adequate mechanical properties, excellent biocompatibility and osteoinductivity presents a great challenge. Herein, a hybrid nanostructured hydroxyapatite-chitosan (HA-CS) composite scaffold has been fabricated according to the following steps: (i) the deposition of brushite-CS on a CS fibre porous scaffold by a dip-coating method; and (ii) the formation of a hybrid nanostructured HA-CS composite scaffold by the in situ conversion of brushite to HA using a bioinspired mineralization process. The hybrid HA-CS composite scaffold possesses three-dimensional (3D) interconnected pores with pore sizes of 30-80 μm. The HA rods with a length of ∼200 nm and width of ∼50 nm are perpendicularly oriented to the CS fibres. Interestingly, the abovementioned HA rods are composed of many smaller nanorods with a length of ∼40 nm and width of ∼10 nm oriented along the c-axis. The hybrid nanostructured HA-CS composite scaffold exhibits good mechanical properties with a compression strength of 9.41 ± 1.63 MPa and an elastic modulus of 0.17 ± 0.02 GPa, which are well-matched to those of trabecular bone. The influences of the hybrid HA-CS composite scaffold on cells have been investigated using human bone marrow stem cells (hBMSCs) as cell model and the CS fibre porous scaffold as the control sample. The hybrid HA-CS composite scaffold not only supports the adhesion and proliferation of hBMSCs, but also improves the osteoinductivity. The alkaline phosphatase activity and mineralization deposition on the hybrid HA-CS composite scaffold are higher than those on the CS fibre porous scaffold. Moreover, the hybrid HA-CS composite scaffold can promote the formation of new bone in rat calvarial defects as compared with the CS fibre porous scaffold. The excellent biocompatibility, osteoinductivity and mechanical properties suggest that the hybrid nanostructured HA-CS composite scaffold has great potential for bone tissue engineering.
Collapse
Affiliation(s)
- Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China.
| | | | | | | | | | | |
Collapse
|
83
|
Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EHJ, Koenderink GH. A guide to mechanobiology: Where biology and physics meet. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3043-52. [PMID: 25997671 DOI: 10.1016/j.bbamcr.2015.05.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/28/2015] [Accepted: 05/02/2015] [Indexed: 02/08/2023]
Abstract
Cells actively sense and process mechanical information that is provided by the extracellular environment to make decisions about growth, motility and differentiation. It is important to understand the underlying mechanisms given that deregulation of the mechanical properties of the extracellular matrix (ECM) is implicated in various diseases, such as cancer and fibrosis. Moreover, matrix mechanics can be exploited to program stem cell differentiation for organ-on-chip and regenerative medicine applications. Mechanobiology is an emerging multidisciplinary field that encompasses cell and developmental biology, bioengineering and biophysics. Here we provide an introductory overview of the key players important to cellular mechanobiology, taking a biophysical perspective and focusing on a comparison between flat versus three dimensional substrates. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Karin A Jansen
- Systems Biophysics Department, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Dominique M Donato
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Hayri E Balcioglu
- Faculty of Science, Leiden Academic Center for Drug Research, Toxicology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Erik H J Danen
- Faculty of Science, Leiden Academic Center for Drug Research, Toxicology, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gijsje H Koenderink
- Systems Biophysics Department, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
84
|
Abstract
In recent years, electrospinning has increased in popularity as a processing technique for obtaining nanometer-to-micron diameter polymer fibers collected to form a nonwoven scaffold. It possesses the ability to process collagen into nanofibrous scaffolds which have been used for a number of applications, such as artificial vascular grafts and for wound repair. This paper offers a review of some of the basic yet essential aspects of producing nanofibrous scaffolds of collagen by electrospinning. A primer to collagen structure, cross-linking techniques, and electrospinning principles is provided, along with some of the many applications of these unique materials.
Collapse
|
85
|
Costa-Almeida R, Gonçalves AI, Gershovich P, Rodrigues MT, Reis RL, Gomes ME. Tendon Stem Cell Niche. TISSUE-SPECIFIC STEM CELL NICHE 2015. [DOI: 10.1007/978-3-319-21705-5_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
86
|
Fabrication of Hierarchical and Biomimetic Fibrous Structures to Support the Regeneration of Tendon Tissues. TENDON REGENERATION 2015. [DOI: 10.1016/b978-0-12-801590-2.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
87
|
Heinemann S. Polymer-Based Matrix Composites. HANDBOOK OF NANOCERAMIC AND NANOCOMPOSITE COATINGS AND MATERIALS 2015:3-27. [DOI: 10.1016/b978-0-12-799947-0.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
88
|
Xia Z, Calderón-Colón X, McCally R, Maranchi J, Rong L, Hsiao B, Elisseeff J, Trexler M. Banded structures in collagen vitrigels for corneal injury repair. Acta Biomater 2014; 10:3615-9. [PMID: 24859294 DOI: 10.1016/j.actbio.2014.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
There is a growing interest in using collagen vitrigels for corneal injury repair. We recently reported the synthesis and thermal denaturation behavior of these gels. In this paper, the banded structure in these vitrified gels is studied by small-angle X-ray scattering (SAXS) one-dimensional (1-D) correlation function analysis and transmission electron microscopy (TEM). Results demonstrate that the collagen vitrigel possess banded structures similar to those of the starting type I collagen, with an average D-spacing of 64nm (by SAXS) or 57nm (by TEM). A combination of SAXS 1-D correlation function analyses and TEM show that overlap and gap distances ranged from 30 to 33nm and from 23 to 25nm, respectively. Changing the vitrification condition does not impact on the banded structure significantly.
Collapse
|
89
|
Depalle B, Qin Z, Shefelbine SJ, Buehler MJ. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J Mech Behav Biomed Mater 2014; 52:1-13. [PMID: 25153614 PMCID: PMC4653952 DOI: 10.1016/j.jmbbm.2014.07.008] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/07/2014] [Indexed: 11/15/2022]
Abstract
Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength.
Collapse
Affiliation(s)
- Baptiste Depalle
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Room 1-290, Cambridge, 02139 MA, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Room 1-290, Cambridge, 02139 MA, USA
| | - Sandra J Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Room 1-290, Cambridge, 02139 MA, USA; Center for Computational Engineering, Massachusetts Institute of Technology, 77 Massachusetts, Ave. Cambridge, MA 02139, USA; Center for Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
90
|
Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation. J Mech Behav Biomed Mater 2014; 39:9-26. [PMID: 25081997 DOI: 10.1016/j.jmbbm.2014.06.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 01/22/2023]
Abstract
The nanomechanical assessment of collagen fibrils via atomic force microscopy (AFM) is of increasing interest within the biomedical research community. In contrast to conventional nanoindentation there exists no common standard for conducting experiments and analysis of data. Currently used analysis approaches vary between studies and validation of quantitative results is usually not performed, which makes comparison of data from different studies difficult. Also there are no recommendations with regards to the maximum indentation depth that should not be exceeded to avoid substrate effects. Here we present a methodology and analysis approach for AFM cantilever-based nanoindentation experiments that allows efficient use of captured data and relying on a reference sample for determination of tip shape. Further we show experimental evidence that maximum indentation depth on collagen fibrils should be lower than 10-15% of the height of the fibril to avoid substrate effects and we show comparisons between our and other approaches used in previous works. While our analysis approach yields similar values for indentation modulus compared to the Oliver-Pharr method we found that Hertzian analysis yielded significantly lower values. Applying our approach we successfully and efficiently indented collagen fibrils from human bronchi, which were about 30 nm in size, considerably smaller compared to collagen fibrils obtained from murine tail-tendon. In addition, derived mechanical parameters of collagen fibrils are in agreement with data previously published. To establish a quantitative validation we compared indentation results from conventional and AFM cantilever-based nanoindentation on polymeric samples with known mechanical properties. Importantly we can show that our approach yields similar results when compared to conventional nanoindentation on polymer samples. Introducing an approach that is reliable, efficient and taking into account the AFM tip shape, we anticipate that the present work may act as a guideline for conducting AFM cantilever-based nanoindentation of collagen fibrils. This may aid understanding of collagen-related diseases such as asthma, lung fibrosis or bone disease with potential alterations of collagen fibril mechanics.
Collapse
|
91
|
Kumar V, Taylor NL, Jalan AA, Hwang LK, Wang BK, Hartgerink JD. A nanostructured synthetic collagen mimic for hemostasis. Biomacromolecules 2014; 15:1484-90. [PMID: 24694012 PMCID: PMC3993945 DOI: 10.1021/bm500091e] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/18/2014] [Indexed: 12/24/2022]
Abstract
Collagen is a major component of the extracellular matrix and plays a wide variety of important roles in blood clotting, healing, and tissue remodeling. Natural, animal derived, collagen is used in many clinical applications but concerns exist with respect to its role in inflammation, batch-to-batch variability, and possible disease transfection. Therefore, development of synthetic nanomaterials that can mimic the nanostructure and properties of natural collagen has been a heavily pursued goal in biomaterials. Previously, we reported on the design and multihierarchial self-assembly of a 36 amino acid collagen mimetic peptide (KOD) that forms nanofibrous triple helices that entangle to form a hydrogel. In this report, we utilize this nanofiber forming collagen mimetic peptide as a synthetic biomimetic matrix useful in thrombosis. We demonstrate that nanofibrous KOD synthetic collagen matrices adhere platelets, activate them (indicated by soluble P-selectin secretion), and clot plasma and blood similar to animal derived collagen and control surfaces. In addition to the thrombotic potential, THP-1 monocytes incubated with our KOD collagen mimetic showed minimal proinflammatory cytokine (TNF-α or IL-1β) production. Together, the data presented demonstrates the potential of a novel synthetic collagen mimetic as a hemostat.
Collapse
Affiliation(s)
- Vivek
A. Kumar
- Department of Chemistry,
Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Nichole L. Taylor
- Department of Chemistry,
Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Abhishek A. Jalan
- Department of Chemistry,
Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Lyahn K. Hwang
- Department of Chemistry,
Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Benjamin K. Wang
- Department of Chemistry,
Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Jeffery D. Hartgerink
- Department of Chemistry,
Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
92
|
Jiang Y, Lu S. Three-dimensional insights into dermal tissue as a cue for cellular behavior. Burns 2014; 40:191-9. [DOI: 10.1016/j.burns.2013.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/22/2013] [Accepted: 09/29/2013] [Indexed: 01/23/2023]
|
93
|
Computational Study of a Heterostructural Model of Type I Collagen and Implementation of an Amino Acid Potential Method Applicable to Large Proteins. Polymers (Basel) 2014. [DOI: 10.3390/polym6020491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
94
|
Bourne JW, Lippell JM, Torzilli PA. Glycation cross-linking induced mechanical-enzymatic cleavage of microscale tendon fibers. Matrix Biol 2013; 34:179-84. [PMID: 24316373 DOI: 10.1016/j.matbio.2013.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 01/26/2023]
Abstract
Recent molecular modeling data using collagen peptides predicted that mechanical force transmitted through intermolecular cross-links resulted in collagen triple helix unwinding. These simulations further predicted that this unwinding, referred to as triple helical microunfolding, occurred at forces well below canonical collagen damage mechanisms. Based in large part on these data, we hypothesized that mechanical loading of glycation cross-linked tendon microfibers would result in accelerated collagenolytic enzyme damage. This hypothesis is in stark contrast to reports in literature that indicated that individually mechanical loading or cross-linking each retards enzymatic degradation of collagen substrates. Using our Collagen Enzyme Mechano-Kinetic Automated Testing (CEMKAT) System we mechanically loaded collagen-rich tendon microfibers that had been chemically cross-linked with sugar and tested for degrading enzyme susceptibility. Our results indicated that cross-linked fibers were >5 times more resistant to enzymatic degradation while unloaded but became highly susceptible to enzyme cleavage when they were stretched by an applied mechanical deformation.
Collapse
Affiliation(s)
- Jonathan W Bourne
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, United States; Physiology, Biophysics & Systems Biology Program, Weill Graduate School of Medical Sciences, Cornell University, 1300 York Avenue, New York, New York 10065, United States.
| | - Jared M Lippell
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, United States
| | - Peter A Torzilli
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, United States; Physiology, Biophysics & Systems Biology Program, Weill Graduate School of Medical Sciences, Cornell University, 1300 York Avenue, New York, New York 10065, United States
| |
Collapse
|
95
|
Sowmya S, Bumgardener JD, Chennazhi KP, Nair SV, Jayakumar R. Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2013.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
96
|
Aragona P, Rania L, Roszkowska AM, Spinella R, Postorino E, Puzzolo D, Micali A. Effects of amino acids enriched tears substitutes on the cornea of patients with dysfunctional tear syndrome. Acta Ophthalmol 2013; 91:e437-44. [PMID: 23617248 DOI: 10.1111/aos.12134] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To evaluate the effect of aminoacid enriched artificial tears on the ocular surface of patients with dysfunctional tear syndrome (DTS). METHODS Forty patients were divided into two groups: group 1 treated for 90 days with sodium hyaluronate (SH) 0.15% 1 drop × 5 times/day; group 2 treated for 90 days with SH 0.15% + aminoacids mixture 1 drop × 5 times/day. Symptom score questionnaire, tear break-up time (TBUT), corneal fluorescein stain, Shirmer's I test and confocal microscopy were performed at baseline and after 30 and 90 days. Confocal images underwent morphometric analysis. RESULTS Both treatments improved symptoms after 1 month. Group 2 patients showed at 1 month an improvement of TBUT and corneal stain, maintained throughout the study. Also Shirmer's I test improved after 3 months. In group 1, an improvement of TBUT and corneal stain was observed after 3 months. The morphometric analysis of confocal images demonstrated at month 1 an improvement of nerve tortuosity in group 2; after 3 months both groups showed a significant improvement versus baseline. The epithelium showed, in both groups, a reduction in hyperreflective large cells starting from 1 month; the area of the cells was significantly reduced after 3 months, with a significant higher reduction in group 2. The perineural stromal opacity was significantly increased after 3 months, particularly in group 2. CONCLUSION This is the first study addressing corneal changes after amino acids administration in a DTS population. The treatment with amino acids enriched SH can be considered a useful tool in the treatment of DTS.
Collapse
Affiliation(s)
- Pasquale Aragona
- Department of Experimental Medical-Surgical Sciences, Ocular Surface Diseases Unit, University of Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
97
|
Li Y, Douglas EP. Effects of various salts on structural polymorphism of reconstituted type I collagen fibrils. Colloids Surf B Biointerfaces 2013; 112:42-50. [PMID: 23948153 DOI: 10.1016/j.colsurfb.2013.07.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 02/01/2023]
Abstract
Even though the behavior of collagen monomers self-assembling into fibrils is commonly understood in terms of hydrophobic and electrostatic interactions, the mechanisms that drive their ordered, longitudinal alignment to form a characteristic periodicity are still unclear. By introducing various salts into the collagen fibrillogenesis system, the intermolecular interactions of fibril formation were studied. We found that the pH and ion species play a critical role in forming native fibrils. Turbidity and electron microscopy revealed that collagen self-assembled into fibrils with a native banding pattern in the presence of multivalent ions. The isoelectric point of collagen in 12mM of NaCl is pH 8.9; it shifted to pH 9.4 and pH 7.0 after adding 10mM CaCl2 and Na2SO4, respectively. Native fibrils were reconstituted at pH 7.4 in salts with divalent anions and at pH 9.0 in salts with divalent cations. Circular dichroism spectroscopy showed a loss of helicity in the conditions where fibrillogenesis was unable to be achieved. The multivalent ions not only change the surface charge of collagen, but also facilitate the formation of fibrils with the native D-periodic banding pattern. It is likely that the binding multivalent ions induce the like-charge attraction and facilitate monomers' longitudinal registration to form fibrils with the native banding.
Collapse
Affiliation(s)
- Yuping Li
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400, USA.
| | | |
Collapse
|
98
|
|
99
|
Stein K, Prondvai E. Rethinking the nature of fibrolamellar bone: an integrative biological revision of sauropod plexiform bone formation. Biol Rev Camb Philos Soc 2013; 89:24-47. [DOI: 10.1111/brv.12041] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Koen Stein
- Steinmann Institut für Geologie, Mineralogie und Paläontologie; University of Bonn; Bonn Germany
| | - Edina Prondvai
- Hungarian Academy of Sciences-Eötvös Loránd University “Lendület” Dinosaur Research Group; Eötvös Loránd University; Budapest Hungary
| |
Collapse
|
100
|
Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK. Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 2013; 65:429-456. [PMID: 22960357 DOI: 10.1016/j.addr.2012.08.010] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022]
Abstract
The choice of biomaterials available for regenerative medicine continues to grow rapidly, with new materials often claiming advantages over the short-comings of those already in existence. Going back to nature, collagen is one of the most abundant proteins in mammals and its role is essential to our way of life. It can therefore be obtained from many sources including porcine, bovine, equine or human and offer a great promise as a biomimetic scaffold for regenerative medicine. Using naturally derived collagen, extracellular matrices (ECMs), as surgical materials have become established practice for a number of years. For clinical use the goal has been to preserve as much of the composition and structure of the ECM as possible without adverse effects to the recipient. This review will therefore cover in-depth both naturally and synthetically produced collagen matrices. Furthermore the production of more sophisticated three dimensional collagen scaffolds that provide cues at nano-, micro- and meso-scale for molecules, cells, proteins and bulk fluids by inducing fibrils alignments, embossing and layered configuration through the application of plastic compression technology will be discussed in details. This review will also shed light on both naturally and synthetically derived collagen products that have been available in the market for several purposes including neural repair, as cosmetic for the treatment of dermatologic defects, haemostatic agents, mucosal wound dressing and guided bone regeneration membrane. There are other several potential applications of collagen still under investigations and they are also covered in this review.
Collapse
Affiliation(s)
- Ensanya A Abou Neel
- King Abdulaziz University, Conservative Dental Science Department, Biomaterials Division, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|