51
|
Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus Extracts Effectively Inhibit BK Virus and JC Virus Infection of Host Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5620867. [PMID: 28757888 PMCID: PMC5512047 DOI: 10.1155/2017/5620867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/03/2017] [Accepted: 05/25/2017] [Indexed: 11/17/2022]
Abstract
The human polyomaviruses BK (BKPyV) and JC (JCPyV) are ubiquitous pathogens long associated with severe disease in immunocompromised individuals. BKPyV causes polyomavirus-associated nephropathy and hemorrhagic cystitis, whereas JCPyV is the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy. No effective therapies targeting these viruses are currently available. The goal of this study was to identify Chinese medicinal herbs with antiviral activity against BKPyV and JCPyV. We screened extracts of Chinese medicinal herbs for the ability to inhibit hemagglutination by BKPyV and JCPyV virus-like particles (VLPs) and the ability to inhibit BKPyV and JCPyV binding and infection of host cells. Two of the 40 herbal extracts screened, Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus, had hemagglutination inhibition activity on BKPyV and JCPyV VLPs and further inhibited infection of the cells by BKPyV and JCPyV, as evidenced by reduced expression of viral proteins in BKPyV-infected and JCPyV-infected cells after treatment with Rhodiolae Kirliowii Radix et Rhizoma or Crataegus pinnatifida Fructus extract. The results in this work show that both Rhodiolae Kirliowii Radix et Rhizoma and Crataegus pinnatifida Fructus may be sources of potential antiviral compounds for treating BKPyV and JCPyV infections.
Collapse
|
52
|
Moens U, Calvignac-Spencer S, Lauber C, Ramqvist T, Feltkamp MCW, Daugherty MD, Verschoor EJ, Ehlers B, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Polyomaviridae. J Gen Virol 2017. [PMID: 28640744 PMCID: PMC5656788 DOI: 10.1099/jgv.0.000839] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Polyomaviridae is a family of small, non-enveloped viruses with circular dsDNA genomes of approximately 5 kbp. The family includes four genera whose members have restricted host range, infecting mammals and birds. Polyomavirus genomes have also been detected recently in fish. Merkel cell polyomavirus and raccoon polyomavirus are associated with cancer in their host; other members are human and veterinary pathogens. Clinical manifestations are obvious in immunocompromised patients but not in healthy individuals. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Polyomaviridae, which is available at www.ictv.global/report/polyomaviridae.
Collapse
Affiliation(s)
- Ugo Moens
- University of Tromsø, 9037 Tromsø, Norway
| | | | - Chris Lauber
- Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
53
|
Regulated Erlin-dependent release of the B12 transmembrane J-protein promotes ER membrane penetration of a non-enveloped virus. PLoS Pathog 2017; 13:e1006439. [PMID: 28614383 PMCID: PMC5484543 DOI: 10.1371/journal.ppat.1006439] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/26/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022] Open
Abstract
The molecular mechanism by which non-enveloped viruses penetrate biological membranes remains enigmatic. The non-enveloped polyomavirus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol and cause infection. We previously demonstrated that SV40 creates its own membrane penetration structure by mobilizing select transmembrane proteins to distinct puncta in the ER membrane called foci that likely function as the cytosol entry sites. How these ER membrane proteins reorganize into the foci is unknown. B12 is a transmembrane J-protein that mobilizes into the foci to promote cytosol entry of SV40. Here we identify two closely related ER membrane proteins Erlin1 and Erlin2 (Erlin1/2) as B12-interaction partners. Strikingly, SV40 recruits B12 to the foci by inducing release of this J-protein from Erlin1/2. Our data thus reveal how a non-enveloped virus promotes its own membrane translocation by triggering the release and recruitment of a critical transport factor to the membrane penetration site. Polyomavirus (PyV) is a non-enveloped DNA tumor virus that causes debilitating human diseases especially in immunocompromised individuals. At the cellular level, PyVs such as the simian PyV SV40 must enter a host cell and penetrate the ER membrane to reach the cytosol in order to cause infection. Prior to ER membrane transport, SV40 reorganizes select ER membrane proteins including the J-protein B12 to potential membrane penetration sites on the ER membrane called foci where B12 facilitates virus extraction into the cytosol. How B12 reorganizes into the foci is unclear. Here we find that two closely related ER membrane proteins Erlin1 and Erlin2 (Erlin1/2) bind to B12. During infection, SV40 induces release of this J-protein from Erlin1/2 to enable B12 to reorganize into the foci. Our data reveal how a non-enveloped virus mobilizes a specific ER membrane component to a membrane penetration structure to promote its own membrane transport.
Collapse
|
54
|
Ravindran MS, Engelke MF, Verhey KJ, Tsai B. Exploiting the kinesin-1 molecular motor to generate a virus membrane penetration site. Nat Commun 2017; 8:15496. [PMID: 28537258 PMCID: PMC5458101 DOI: 10.1038/ncomms15496] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Viruses exploit cellular machineries to penetrate a host membrane and cause infection, a process that remains enigmatic for non-enveloped viruses. Here we probe how the non-enveloped polyomavirus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a crucial infection step. We find that the microtubule-based motor kinesin-1 is recruited to the ER membrane by binding to the transmembrane J-protein B14. Strikingly, this motor facilitates SV40 ER-to-cytosol transport by constructing a penetration site on the ER membrane called a ‘focus'. Neither kinesin-2, kinesin-3 nor kinesin-5 promotes foci formation or infection. The specific use of kinesin-1 is due to its unique ability to select posttranslationally modified microtubules for cargo transport and thereby spatially restrict focus formation to the perinucleus. These findings support the idea of a ‘tubulin code' for motor-dependent trafficking and establish a distinct kinesin-1 function in which a motor is exploited to create a viral membrane penetration site. How non-enveloped viruses cross host membranes is incompletely understood. Here, Ravindran et al. show that polyomavirus SV40 recruits kinesin-1 to construct a penetration site on the ER membrane.
Collapse
Affiliation(s)
- Madhu Sudhan Ravindran
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, 3043 BSRB, Ann Arbor, Michigan 48109, USA
| | - Martin F Engelke
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, 3043 BSRB, Ann Arbor, Michigan 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, 3043 BSRB, Ann Arbor, Michigan 48109, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, 3043 BSRB, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
55
|
Li C, Kneller AR, Jacobson SC, Zlotnick A. Single Particle Observation of SV40 VP1 Polyanion-Induced Assembly Shows That Substrate Size and Structure Modulate Capsid Geometry. ACS Chem Biol 2017; 12:1327-1334. [PMID: 28323402 DOI: 10.1021/acschembio.6b01066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Simian virus 40 capsid protein (VP1) is a unique system for studying substrate-dependent assembly of a nanoparticle. Here, we investigate a simplest case of this system where 12 VP1 pentamers and a single polyanion, e.g., RNA, form a T = 1 particle. To test the roles of polyanion substrate length and structure during assembly, we characterized the assembly products with size exclusion chromatography, transmission electron microscopy, and single-particle resistive-pulse sensing. We found that 500 and 600 nt RNAs had the optimal length and structure for assembly of uniform T = 1 particles. Longer 800 nt RNA, shorter 300 nt RNA, and a linear 600 unit poly(styrene sulfonate) (PSS) polyelectrolyte produced heterogeneous populations of products. This result was surprising as the 600mer PSS and 500-600 nt RNA have similar mass and charge. Like ssRNA, PSS also has a short 4 nm persistence length, but unlike RNA, PSS lacks a compact tertiary structure. These data indicate that even for flexible substrates, shape as well as size affect assembly and are consistent with the hypothesis that work, derived from protein-protein and protein-substrate interactions, is used to compact the substrate.
Collapse
Affiliation(s)
- Chenglei Li
- Department
of Molecular and Cellular Biochemistry and ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Andrew R. Kneller
- Department
of Molecular and Cellular Biochemistry and ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Stephen C. Jacobson
- Department
of Molecular and Cellular Biochemistry and ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry and ‡Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
56
|
Raguram A, Sasisekharan V, Sasisekharan R. AChiralPentagonalPolyhedralFramework forCharacterizingVirusCapsidStructures. Trends Microbiol 2017; 25:438-446. [PMID: 28094093 DOI: 10.1016/j.tim.2016.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/04/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
Recent developments of rational strategies for the design of antiviral therapies, including monoclonal antibodies (mAbs), have naturally relied extensively on available viral structural information. As new strategies continue to be developed, it is equally important to continue to refine our understanding and interpretation of viral structural data. There are known limitations to the traditional (Caspar-Klug) theory for describing virus capsid structures that involves subdividing a capsid into triangular subunits. In this context, we describe a more general polyhedral framework for describing virus capsid structures that is able to account for many of these limitations, including a more thorough characterization of intersubunit interfaces. Additionally, our use of pentagonal subunits instead of triangular ones accounts for the intrinsic chirality observed in all capsids. In conjunction with the existing theory, the framework presented here provides a more complete picture of a capsid's structure and therefore can help contribute to the development of more effective antiviral strategies.
Collapse
Affiliation(s)
- Aditya Raguram
- Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - V Sasisekharan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ram Sasisekharan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
57
|
[How polyomavirus crosses the endoplasmic reticulum membrane to gain entry into the cytosol]. Uirusu 2017; 67:121-132. [PMID: 30369536 DOI: 10.2222/jsv.67.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Polyomavirus (Py) is a non-enveloped, double stranded DNA virus that causes a myriad of devastating human diseases for immunocompromised individuals. To cause infection, Py binds to its receptors on the plasma membrane, is endocytosed, and sorts to the endoplasmic reticulum (ER). From here, Py penetrates the ER membrane to reach the cytosol. Ensuing nuclear entry enables the virus to cause infection. How Py penetrates the ER membrane to access the cytosol is a decisive infection step that is enigmatic. In this review, I highlight the mechanisms by which host cell functions facilitate Py translocation across the ER membrane into the cytosol.
Collapse
|
58
|
Bagchi P, Inoue T, Tsai B. EMC1-dependent stabilization drives membrane penetration of a partially destabilized non-enveloped virus. eLife 2016; 5. [PMID: 28012275 PMCID: PMC5224922 DOI: 10.7554/elife.21470] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/23/2016] [Indexed: 11/13/2022] Open
Abstract
Destabilization of a non-enveloped virus generates a membrane transport-competent viral particle. Here we probe polyomavirus SV40 endoplasmic reticulum (ER)-to-cytosol membrane transport, a decisive infection step where destabilization initiates this non-enveloped virus for membrane penetration. We find that a member of the ER membrane protein complex (EMC) called EMC1 promotes SV40 ER membrane transport and infection. Surprisingly, EMC1 does so by using its predicted transmembrane residue D961 to bind to and stabilize the membrane-embedded partially destabilized SV40, thereby preventing premature viral disassembly. EMC1-dependent stabilization enables SV40 to engage a cytosolic extraction complex that ejects the virus into the cytosol. Thus EMC1 acts as a molecular chaperone, bracing the destabilized SV40 in a transport-competent state. Our findings reveal the novel principle that coordinated destabilization-stabilization drives membrane transport of a non-enveloped virus. DOI:http://dx.doi.org/10.7554/eLife.21470.001
Collapse
Affiliation(s)
- Parikshit Bagchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
59
|
Ni R, Zhou J, Hossain N, Chau Y. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Adv Drug Deliv Rev 2016; 106:3-26. [PMID: 27473931 DOI: 10.1016/j.addr.2016.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/02/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022]
Abstract
Targeted delivery of nucleic acids into disease sites of human body has been attempted for decades, but both viral and non-viral vectors are yet to meet our expectations. Safety concerns and low delivery efficiency are the main limitations of viral and non-viral vectors, respectively. The structure of viruses is both ordered and dynamic, and is believed to be the key for effective transfection. Detailed understanding of the physical properties of viruses, their interaction with cellular components, and responses towards cellular environments leading to transfection would inspire the development of safe and effective non-viral vectors. To this goal, this review systematically summarizes distinctive features of viruses that are implied for efficient nucleic acid delivery but not yet fully explored in current non-viral vectors. The assembly and disassembly of viral structures, presentation of viral ligands, and the subcellular targeting of viruses are emphasized. Moreover, we describe the current development of cationic material-based viral mimicry (CVM) and structural viral mimicry (SVM) in these aspects. In light of the discrepancy, we identify future opportunities for rational design of viral mimics for the efficient delivery of DNA and RNA.
Collapse
Affiliation(s)
- Rong Ni
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junli Zhou
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Naushad Hossain
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Chau
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
60
|
The Presumed Polyomavirus Viroporin VP4 of Simian Virus 40 or Human BK Polyomavirus Is Not Required for Viral Progeny Release. J Virol 2016; 90:10398-10413. [PMID: 27630227 DOI: 10.1128/jvi.01326-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/06/2016] [Indexed: 01/26/2023] Open
Abstract
The minor capsid protein of human BK polyomavirus (BKPyV), VP2, and its N-terminally truncated form, VP3, are both important for viral entry. The closely related simian virus 40 (SV40) reportedly produces an additional truncated form of VP2/3, denoted VP4, apparently functioning as a viroporin promoting progeny release. The VP4 open reading frame is conserved in some polyomaviruses, including BKPyV. In this study, we investigated the role of VP4 in BKPyV replication. By transfecting viral genomes into primary human renal proximal tubule epithelial cells, we demonstrated that unaltered BKPyV and mutants with start codon substitutions in VP4 (VP2M229I and VP2M229A) abolishing putative VP4 production were released at the same level to supernatants. However, during infection studies, VP2M229I and VP2M229A exhibited 90% and 65% reduced infectivity, respectively, indicating that isoleucine substitution inadvertently disrupted VP2/3 function to the detriment of viral entry, while inhibition of VP4 production during late infection was well tolerated. Unexpectedly, and similarly to BKPyV, wild-type SV40 and the corresponding VP4 start codon mutants (VP2M228I and VP2M228A) transfected into monkey kidney cell lines were also released at equal levels. Upon infection, only the VP2M228I mutant exhibited reduced infectivity, a 43% reduction, which also subsequently led to delayed host cell lysis. Mass spectrometry analysis of nuclear extracts from SV40-infected cells failed to identify VP4. Our results suggest that neither BKPyV nor SV40 require VP4 for progeny release. Moreover, our results reveal an important role in viral entry for the amino acid in VP2/VP3 unavoidably changed by VP4 start codon mutagenesis. IMPORTANCE Almost a decade ago, SV40 was reported to produce a late nonstructural protein, VP4, which forms pores in the nuclear membrane, facilitating progeny release. By performing transfection studies with unaltered BKPyV and SV40 and their respective VP4-deficient mutants, we found that VP4 is dispensable for progeny release, contrary to the original findings. However, infection studies demonstrated a counterintuitive reduction of infectivity of certain VP4-deficient mutants. In addition to the isoleucine-substituted SV40 mutant of the original study, we included alanine-substituted VP4-deficient mutants of BKPyV (VP2M229A) and SV40 (VP2M228A). These revealed that the reduction in infectivity was not caused by a lack of VP4 but rather depended on the identity of the single amino acid substituted within VP2/3 for VP4 start codon mutagenesis. Hopefully, our results will correct the longstanding misconception of VP4's role during infection and stimulate continued work on unraveling the mechanism for release of polyomavirus progeny.
Collapse
|
61
|
How Polyomaviruses Exploit the ERAD Machinery to Cause Infection. Viruses 2016; 8:v8090242. [PMID: 27589785 PMCID: PMC5035956 DOI: 10.3390/v8090242] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022] Open
Abstract
To infect cells, polyomavirus (PyV) traffics from the cell surface to the endoplasmic reticulum (ER) where it hijacks elements of the ER-associated degradation (ERAD) machinery to penetrate the ER membrane and reach the cytosol. From the cytosol, the virus transports to the nucleus, enabling transcription and replication of the viral genome that leads to lytic infection or cellular transformation. How PyV exploits the ERAD machinery to cross the ER membrane and access the cytosol, a decisive infection step, remains enigmatic. However, recent studies have slowly unraveled many aspects of this process. These emerging insights should advance our efforts to develop more effective therapies against PyV-induced human diseases.
Collapse
|
62
|
Phylogenetic and structural analysis of merkel cell polyomavirus VP1 in Brazilian samples. Virus Res 2016; 221:1-7. [PMID: 27173789 DOI: 10.1016/j.virusres.2016.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/29/2022]
Abstract
Our understanding of the phylogenetic and structural characteristics of the Merkel Cell Polyomavirus (MCPyV) is increasing but still scarce, especially in samples originating from South America. In order to investigate the properties of MCPyV circulating in the continent in more detail, MCPyV Viral Protein 1 (VP1) sequences from five basal cell carcinoma (BCC) and four saliva samples from Brazilian individuals were evaluated from the phylogenetic and structural standpoint, along with all complete MCPyV VP1 sequences available at Genbank database so far. The VP1 phylogenetic analysis confirmed the previously reported pattern of geographic distribution of MCPyV genotypes and the complexity of the South-American clade. The nine Brazilian samples were equally distributed in the South-American (3 saliva samples); North American/European (2 BCC and 1 saliva sample); and in the African clades (3 BCC). The classification of mutations according to the functional regions of VP1 protein revealed a differentiated pattern for South-American sequences, with higher number of mutations on the neutralizing epitope loops and lower on the region of C-terminus, responsible for capsid formation, when compared to other continents. In conclusion, the phylogenetic analysis showed that the distribution of Brazilian VP1 sequences agrees with the ethnic composition of the country, indicating that VP1 can be successfully used for MCPyV phylogenetic studies. Finally, the structural analysis suggests that some mutations could have impact on the protein folding, membrane binding or antibody escape, and therefore they should be further studied.
Collapse
|
63
|
Wilson DP. Protruding Features of Viral Capsids Are Clustered on Icosahedral Great Circles. PLoS One 2016; 11:e0152319. [PMID: 27045511 PMCID: PMC4821576 DOI: 10.1371/journal.pone.0152319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/11/2016] [Indexed: 11/20/2022] Open
Abstract
Spherical viruses are remarkably well characterized by the Triangulation (T) number developed by Casper and Klug. The T-number specifies how many viral capsid proteins are required to cover the virus, as well as how they are further subdivided into pentamer and hexamer subunits. The T-number however does not constrain the orientations of these proteins within the subunits or dictate where the proteins should place their protruding features. These protrusions often take the form of loops, spires and helices, and are significant because they aid in stability of the capsid as well as recognition by the host organism. Until now there has be no overall understanding of the placement of protrusions for spherical viruses, other than they have icosahedral symmetry. We constructed a set of gauge points based upon the work affine extensions of Keef and Twarock, which have fixed relative angular locations with which to measure the locations of these features. This work adds a new element to our understanding of the geometric arrangement of spherical viral capsid proteins; chiefly that the locations of protruding features are not found stochastically distributed in an icosahedral manner across the viral surface, but instead these features are found only in specific locations along the 15 icosahedral great circles. We have found that this result holds true as the T number and viral capsids size increases, suggesting an underlying geometric constraint on their locations. This is in spite of the fact that the constraints on the pentamers and hexamer orientations change as a function of T-number, as you need to accommodate more hexamers in the same solid angle between pentamers. The existence of this angular constraint of viral capsids suggests that there is a fitness or energetic benefit to the virus placing its protrusions in this manner. This discovery may have profound impacts on identifying and eliminating viral pathogens, understanding evolutionary constraints as well as bioengineering for capsid drug delivery systems. This result also suggests that in addition to biochemical attachment restrictions, there are additional geometric constraints that should be adhered to when modifying protein capsids.
Collapse
Affiliation(s)
- David P. Wilson
- Department of Physics, Albion College, 611 E. Porter St., Albion, Michigan, United States of America
- * E-mail:
| |
Collapse
|
64
|
New Structural Insights into the Genome and Minor Capsid Proteins of BK Polyomavirus using Cryo-Electron Microscopy. Structure 2016; 24:528-536. [PMID: 26996963 PMCID: PMC4826271 DOI: 10.1016/j.str.2016.02.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/22/2016] [Accepted: 02/17/2016] [Indexed: 11/22/2022]
Abstract
BK polyomavirus is the causative agent of several diseases in transplant patients and the immunosuppressed. In order to better understand the structure and life cycle of BK, we produced infectious virions and VP1-only virus-like particles in cell culture, and determined their three-dimensional structures using cryo-electron microscopy (EM) and single-particle image processing. The resulting 7.6-Å resolution structure of BK and 9.1-Å resolution of the virus-like particles are the highest-resolution cryo-EM structures of any polyomavirus. These structures confirm that the architecture of the major structural protein components of these human polyomaviruses are similar to previous structures from other hosts, but give new insight into the location and role of the enigmatic minor structural proteins, VP2 and VP3. We also observe two shells of electron density, which we attribute to a structurally ordered part of the viral genome, and discrete contacts between this density and both VP1 and the minor capsid proteins.
Collapse
|
65
|
Structural and Functional Analysis of Murine Polyomavirus Capsid Proteins Establish the Determinants of Ligand Recognition and Pathogenicity. PLoS Pathog 2015; 11:e1005104. [PMID: 26474293 PMCID: PMC4608799 DOI: 10.1371/journal.ppat.1005104] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/22/2015] [Indexed: 11/29/2022] Open
Abstract
Murine polyomavirus (MuPyV) causes tumors of various origins in newborn mice and hamsters. Infection is initiated by attachment of the virus to ganglioside receptors at the cell surface. Single amino acid exchanges in the receptor-binding pocket of the major capsid protein VP1 are known to drastically alter tumorigenicity and spread in closely related MuPyV strains. The virus represents a rare example of differential receptor recognition directly influencing viral pathogenicity, although the factors underlying these differences remain unclear. We performed structural and functional analyses of three MuPyV strains with strikingly different pathogenicities: the low-tumorigenicity strain RA, the high-pathogenicity strain PTA, and the rapidly growing, lethal laboratory isolate strain LID. Using ganglioside deficient mouse embryo fibroblasts, we show that addition of specific gangliosides restores infectability for all strains, and we uncover a complex relationship between virus attachment and infection. We identify a new infectious ganglioside receptor that carries an additional linear [α-2,8]-linked sialic acid. Crystal structures of all three strains complexed with representative oligosaccharides from the three main pathways of ganglioside biosynthesis provide the molecular basis of receptor recognition. All strains bind to a range of sialylated glycans featuring the central [α-2,3]-linked sialic acid present in the established receptors GD1a and GT1b, but the presence of additional sialic acids modulates binding. An extra [α-2,8]-linked sialic acid engages a protein pocket that is conserved among the three strains, while another, [α-2,6]-linked branching sialic acid lies near the strain-defining amino acids but can be accommodated by all strains. By comparing electron density of the oligosaccharides within the binding pockets at various concentrations, we show that the [α-2,8]-linked sialic acid increases the strength of binding. Moreover, the amino acid exchanges have subtle effects on their affinity for the validated receptor GD1a. Our results indicate that both receptor specificity and affinity influence MuPyV pathogenesis. Viruses are obligate intracellular pathogens, and all of them share one crucial step in their life cycle—the attachment to their host cell via cellular receptors, which are usually proteins or carbohydrates. This step is decisive for the selection of target cells and virus entry. In this study, we investigated murine polyomavirus (MuPyV), which attaches to host gangliosides with its major capsid protein, VP1. We have solved the crystal structures of VP1 in complex with previously known interaction partners as well as with the ganglioside GT1a, which we have identified as a novel functional receptor for MuPyV. Earlier studies have shown that different strains with singular amino acid exchanges in the receptor binding pocket of VP1 display altered pathogenicity and viral spread. Our investigations show that, while these exchanges do not abolish binding or significantly alter interaction modes to our investigated carbohydrates, they have subtle effects on glycan affinity. The combination of receptor specificity, abundance, and affinity reveals a much more intricate regulation of pathogenicity than previously believed. Our results exemplify how delicate changes to the receptor binding pocket of MuPyV VP1 are able to drastically alter virus behavior. This system provides a unique example to study how the first step in the life cycle of a virus can dictate its biological properties.
Collapse
|
66
|
A Non-enveloped Virus Hijacks Host Disaggregation Machinery to Translocate across the Endoplasmic Reticulum Membrane. PLoS Pathog 2015; 11:e1005086. [PMID: 26244546 PMCID: PMC4526233 DOI: 10.1371/journal.ppat.1005086] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/15/2015] [Indexed: 02/02/2023] Open
Abstract
Mammalian cytosolic Hsp110 family, in concert with the Hsc70:J-protein complex, functions as a disaggregation machinery to rectify protein misfolding problems. Here we uncover a novel role of this machinery in driving membrane translocation during viral entry. The non-enveloped virus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a critical infection step. Combining biochemical, cell-based, and imaging approaches, we find that the Hsp110 family member Hsp105 associates with the ER membrane J-protein B14. Here Hsp105 cooperates with Hsc70 and extracts the membrane-penetrating SV40 into the cytosol, potentially by disassembling the membrane-embedded virus. Hence the energy provided by the Hsc70-dependent Hsp105 disaggregation machinery can be harnessed to catalyze a membrane translocation event. How non-enveloped viruses penetrate a host membrane to enter cells and cause disease remains an enigmatic step. To infect cells, the non-enveloped SV40 must transport across the ER membrane to reach the cytosol. In this study, we report that a cellular Hsp105-powered disaggregation machinery pulls SV40 into the cytosol, likely by uncoating the ER membrane-penetrating virus. Because this disaggregation machinery is thought to clarify cellular aggregated proteins, we propose that the force generated by this machinery can also be hijacked by a non-enveloped virus to propel its entry into the host.
Collapse
|
67
|
ERdj5 Reductase Cooperates with Protein Disulfide Isomerase To Promote Simian Virus 40 Endoplasmic Reticulum Membrane Translocation. J Virol 2015; 89:8897-908. [PMID: 26085143 DOI: 10.1128/jvi.00941-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/08/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED The nonenveloped polyomavirus (PyV) simian virus 40 (SV40) traffics from the cell surface to the endoplasmic reticulum (ER), where it penetrates the ER membrane to reach the cytosol before mobilizing into the nucleus to cause infection. Prior to ER membrane penetration, ER lumenal factors impart structural rearrangements to the virus, generating a translocation-competent virion capable of crossing the ER membrane. Here we identify ERdj5 as an ER enzyme that reduces SV40's disulfide bonds, a reaction important for its ER membrane transport and infection. ERdj5 also mediates human BK PyV infection. This enzyme cooperates with protein disulfide isomerase (PDI), a redox chaperone previously implicated in the unfolding of SV40, to fully stimulate membrane penetration. Negative-stain electron microscopy of ER-localized SV40 suggests that ERdj5 and PDI impart structural rearrangements to the virus. These conformational changes enable SV40 to engage BAP31, an ER membrane protein essential for supporting membrane penetration of the virus. Uncoupling of SV40 from BAP31 traps the virus in ER subdomains called foci, which likely serve as depots from where SV40 gains access to the cytosol. Our study thus pinpoints two ER lumenal factors that coordinately prime SV40 for ER membrane translocation and establishes a functional connection between lumenal and membrane events driving this process. IMPORTANCE PyVs are established etiologic agents of many debilitating human diseases, especially in immunocompromised individuals. To infect cells at the cellular level, this virus family must penetrate the host ER membrane to reach the cytosol, a critical entry step. In this report, we identify two ER lumenal factors that prepare the virus for ER membrane translocation and connect these lumenal events with events on the ER membrane. Pinpointing cellular components necessary for supporting PyV infection should lead to rational therapeutic strategies for preventing and treating PyV-related diseases.
Collapse
|
68
|
Abstract
Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid and in some cases are surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assemble within their host cells and in vitro. We describe the thermodynamics and kinetics for the assembly of protein subunits into icosahedral capsid shells and how these are modified in cases in which the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques used to characterize capsid assembly, and we highlight aspects of virus assembly that are likely to receive significant attention in the near future.
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454;
| | | |
Collapse
|
69
|
Li TC, Iwasaki K, Katano H, Kataoka M, Nagata N, Kobayashi K, Mizutani T, Takeda N, Wakita T, Suzuki T. Characterization of self-assembled virus-like particles of Merkel cell polyomavirus. PLoS One 2015; 10:e0115646. [PMID: 25671590 PMCID: PMC4324643 DOI: 10.1371/journal.pone.0115646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/25/2014] [Indexed: 12/17/2022] Open
Abstract
In our recombinant baculovirus system, VP1 protein of merkel cell polyomavirus (MCPyV), which is implicated as a causative agent in Merkel cell carcinoma, was self-assembled into MCPyV-like particles (MCPyV-LP) with two different sizes in insect cells, followed by being released into the culture medium. DNA molecules of 1.5- to 5-kb, which were derived from host insect cells, were packaged in large, ~50-nm spherical particles but not in small, ~25-nm particles. Structure reconstruction using cryo-electron microscopy showed that large MCPyV-LPs are composed of 72 pentameric capsomeres arranged in a T = 7 icosahedral surface lattice and are 48 nm in diameter. The MCPyV-LPs did not share antigenic determinants with BK- and JC viruses (BKPyV and JCPyV). The VLP-based enzyme immunoassay was applied to investigate age-specific prevalence of MCPyV infection in the general Japanese population aged 1–70 years. While seroprevalence of MCPyV increased with age in children and young individuals, its seropositivity in each age group was lower compared with BKPyV and JCPyV.
Collapse
Affiliation(s)
- Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazumi Kobayashi
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Tetsuya Mizutani
- Research and Education center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naokazu Takeda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
70
|
A nucleotide exchange factor promotes endoplasmic reticulum-to-cytosol membrane penetration of the nonenveloped virus simian virus 40. J Virol 2015; 89:4069-79. [PMID: 25653441 DOI: 10.1128/jvi.03552-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The nonenveloped simian polyomavirus (PyV) simian virus 40 (SV40) hijacks the endoplasmic reticulum (ER) quality control machinery to penetrate the ER membrane and reach the cytosol, a critical infection step. During entry, SV40 traffics to the ER, where host-induced conformational changes render the virus hydrophobic. The hydrophobic virus binds and integrates into the ER lipid bilayer to initiate membrane penetration. However, prior to membrane transport, the hydrophobic SV40 recruits the ER-resident Hsp70 BiP, which holds the virus in a transport-competent state until it is ready to cross the ER membrane. Here we probed how BiP disengages from SV40 to enable the virus to penetrate the ER membrane. We found that nucleotide exchange factor (NEF) Grp170 induces nucleotide exchange of BiP and releases SV40 from BiP. Importantly, this reaction promotes SV40 ER-to-cytosol transport and infection. The human BK PyV also relies on Grp170 for successful infection. Interestingly, SV40 mobilizes a pool of Grp170 into discrete puncta in the ER called foci. These foci, postulated to represent the ER membrane penetration site, harbor ER components, including BiP, known to facilitate viral ER-to-cytosol transport. Our results thus identify a nucleotide exchange activity essential for catalyzing the most proximal event before ER membrane penetration of PyVs. IMPORTANCE PyVs are known to cause debilitating human diseases. During entry, this virus family, including monkey SV40 and human BK PyV, hijacks ER protein quality control machinery to breach the ER membrane and access the cytosol, a decisive infection step. In this study, we pinpointed an ER-resident factor that executes a crucial role in promoting ER-to-cytosol membrane penetration of PyVs. Identifying a host factor that facilitates entry of the PyV family thus provides additional therapeutic targets to combat PyV-induced diseases.
Collapse
|
71
|
The endoplasmic reticulum membrane J protein C18 executes a distinct role in promoting simian virus 40 membrane penetration. J Virol 2015; 89:4058-68. [PMID: 25631089 DOI: 10.1128/jvi.03574-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The nonenveloped simian virus 40 (SV40) hijacks the three endoplasmic reticulum (ER) membrane-bound J proteins B12, B14, and C18 to escape from the ER into the cytosol en route to successful infection. How C18 controls SV40 ER-to-cytosol membrane penetration is the least understood of these processes. We previously found that SV40 triggers B12 and B14 to reorganize into discrete puncta in the ER membrane called foci, structures postulated to represent the cytosol entry site (C. P. Walczak, M. S. Ravindran, T. Inoue, and B. Tsai, PLoS Pathog 10: e1004007, 2014). We now find that SV40 also recruits C18 to the virus-induced B12/B14 foci. Importantly, the C18 foci harbor membrane penetration-competent SV40, further implicating this structure as the membrane penetration site. Consistent with this, a mutant SV40 that cannot penetrate the ER membrane and promote infection fails to induce C18 foci. C18 also regulates the recruitment of B12/B14 into the foci. In contrast to B14, C18's cytosolic Hsc70-binding J domain, but not the lumenal domain, is essential for its targeting to the foci; this J domain likewise is necessary to support SV40 infection. Knockdown-rescue experiments reveal that C18 executes a role that is not redundant with those of B12/B14 during SV40 infection. Collectively, our data illuminate C18's contribution to SV40 ER membrane penetration, strengthening the idea that SV40-triggered foci are critical for cytosol entry. IMPORTANCE Polyomaviruses (PyVs) cause devastating human diseases, particularly in immunocompromised patients. As this virus family continues to be a significant human pathogen, clarifying the molecular basis of their cellular entry pathway remains a high priority. To infect cells, PyV traffics from the cell surface to the ER, where it penetrates the ER membrane to reach the cytosol. In the cytosol, the virus moves to the nucleus to cause infection. ER-to-cytosol membrane penetration is a critical yet mysterious infection step. In this study, we clarify the role of an ER membrane protein called C18 in mobilizing the simian PyV SV40, a PyV archetype, from the ER into the cytosol. Our findings also support the hypothesis that SV40 induces the formation of punctate structures in the ER membrane, called foci, that serve as the portal for cytosol entry of the virus.
Collapse
|
72
|
Genome analysis of non-human primate polyomaviruses. INFECTION GENETICS AND EVOLUTION 2014; 26:283-94. [DOI: 10.1016/j.meegid.2014.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022]
|
73
|
Abstract
Of the many pathogens that infect humans and animals, a large number use cells of the host organism as protected sites for replication. To reach the relevant intracellular compartments, they take advantage of the endocytosis machinery and exploit the network of endocytic organelles for penetration into the cytosol or as sites of replication. In this review, we discuss the endocytic entry processes used by viruses and bacteria and compare the strategies used by these dissimilar classes of pathogens.
Collapse
Affiliation(s)
- Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France; INSERM U604, Paris F-75015, France; and INRA, USC2020, Paris F-75015, France
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
74
|
Perlmutter JD, Perkett MR, Hagan MF. Pathways for virus assembly around nucleic acids. J Mol Biol 2014; 426:3148-3165. [PMID: 25036288 DOI: 10.1016/j.jmb.2014.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/17/2014] [Accepted: 07/07/2014] [Indexed: 12/25/2022]
Abstract
Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work, we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single-molecule fluorescence correlation spectroscopy or bulk time-resolved small-angle X-ray scattering experiments.
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Matthew R Perkett
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
75
|
Structure analysis of the major capsid proteins of human polyomaviruses 6 and 7 reveals an obstructed sialic acid binding site. J Virol 2014; 88:10831-9. [PMID: 25008942 DOI: 10.1128/jvi.01084-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Human polyomavirus 6 (HPyV6) and HPyV7 are commonly found on human skin. We have determined the X-ray structures of their major capsid protein, VP1, at resolutions of 1.8 and 1.7 Å, respectively. In polyomaviruses, VP1 commonly determines antigenicity as well as cell-surface receptor specificity, and the protein is therefore linked to attachment, tropism, and ultimately, viral pathogenicity. The structures of HPyV6 and HPyV7 VP1 reveal uniquely elongated loops that cover the bulk of the outer virion surfaces, obstructing a groove that binds sialylated glycan receptors in many other polyomaviruses. In support of this structural observation, interactions of VP1 with α2,3- and α2,6-linked sialic acids could not be detected in solution by nuclear magnetic resonance spectroscopy. Single-cell binding studies indicate that sialylated glycans are likely not required for initial attachment to cultured human cells. Our findings establish distinct antigenic properties of HPyV6 and HPyV7 capsids and indicate that these two viruses engage nonsialylated receptors. IMPORTANCE Eleven new human polyomaviruses, including the skin viruses HPyV6 and HPyV7, have been identified during the last decade. In contrast to better-studied polyomaviruses, the routes of infection, cell tropism, and entry pathways of many of these new viruses remain largely mysterious. Our high-resolution X-ray structures of major capsid proteins VP1 from HPyV6 and from HPyV7 reveal critical differences in surface morphology from those of all other known polyomavirus structures. A groove that engages specific sialic acid-containing glycan receptors in related polyomaviruses is obstructed, and VP1 of HPyV6 and HPyV7 does not interact with sialylated compounds in solution or on cultured human cells. A comprehensive comparison with other structurally characterized polyomavirus VP1 proteins enhances our understanding of molecular determinants that underlie receptor specificity, antigenicity, and, ultimately, pathogenicity within the polyomavirus family and highlight the need for structure-based analysis to better define phylogenetic relationships within the growing polyomavirus family and perhaps also for other viruses.
Collapse
|
76
|
O'Hara BA, Rupasinghe C, Yatawara A, Gaidos G, Mierke DF, Atwood WJ. Gallic acid-based small-molecule inhibitors of JC and BK polyomaviral infection. Virus Res 2014; 189:280-5. [PMID: 24960120 DOI: 10.1016/j.virusres.2014.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 11/25/2022]
Abstract
JCPyV and BKPyV are common human polyomaviruses that cause lifelong asymptomatic persistent infections in their hosts. In immunosuppressed individuals, increased replication of JCPyV and BKPyV cause significant disease. JCPyV causes a fatal and rapidly progressing demyelinating disease known as progressive multifocal leukoencephalopathy. BKPyV causes hemorrhagic cystitis and polyomavirus associated nephropathy in bone marrow transplant recipients and in renal transplant recipients respectively. There are no specific anti-viral therapies to treat polyomavirus induced diseases. Based on detailed studies of the structures of these viruses bound to their receptors we screened several compounds that possessed similar chemical space as sialic acid for their ability to bind the virus. Positive hits in the assay were restricted to gallic acid based compounds that mimic the viruses known cellular glycan receptors. Pre-treatment of virions with these inhibitors reduced virus infection in cell culture and as such may form the basis for the development of virion specific antagonists to treat these infections.
Collapse
Affiliation(s)
- Bethany A O'Hara
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States
| | | | - Achani Yatawara
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| | - Gabriel Gaidos
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| | - Dale F Mierke
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| | - Walter J Atwood
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
77
|
O'Hara BA, Rupasinghe C, Yatawara A, Gaidos G, Mierke DF, Atwood WJ. Gallic acid-based small-molecule inhibitors of JC and BK polyomaviral infection. Virus Res 2014. [PMID: 24960120 DOI: 10.1016/virusres.2014.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
JCPyV and BKPyV are common human polyomaviruses that cause lifelong asymptomatic persistent infections in their hosts. In immunosuppressed individuals, increased replication of JCPyV and BKPyV cause significant disease. JCPyV causes a fatal and rapidly progressing demyelinating disease known as progressive multifocal leukoencephalopathy. BKPyV causes hemorrhagic cystitis and polyomavirus associated nephropathy in bone marrow transplant recipients and in renal transplant recipients respectively. There are no specific anti-viral therapies to treat polyomavirus induced diseases. Based on detailed studies of the structures of these viruses bound to their receptors we screened several compounds that possessed similar chemical space as sialic acid for their ability to bind the virus. Positive hits in the assay were restricted to gallic acid based compounds that mimic the viruses known cellular glycan receptors. Pre-treatment of virions with these inhibitors reduced virus infection in cell culture and as such may form the basis for the development of virion specific antagonists to treat these infections.
Collapse
Affiliation(s)
- Bethany A O'Hara
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States
| | | | - Achani Yatawara
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| | - Gabriel Gaidos
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| | - Dale F Mierke
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| | - Walter J Atwood
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
78
|
Walczak CP, Ravindran MS, Inoue T, Tsai B. A cytosolic chaperone complexes with dynamic membrane J-proteins and mobilizes a nonenveloped virus out of the endoplasmic reticulum. PLoS Pathog 2014; 10:e1004007. [PMID: 24675744 PMCID: PMC3968126 DOI: 10.1371/journal.ppat.1004007] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/02/2014] [Indexed: 11/18/2022] Open
Abstract
Nonenveloped viruses undergo conformational changes that enable them to bind to, disrupt, and penetrate a biological membrane leading to successful infection. We assessed whether cytosolic factors play any role in the endoplasmic reticulum (ER) membrane penetration of the nonenveloped SV40. We find the cytosolic SGTA-Hsc70 complex interacts with the ER transmembrane J-proteins DnaJB14 (B14) and DnaJB12 (B12), two cellular factors previously implicated in SV40 infection. SGTA binds directly to SV40 and completes ER membrane penetration. During ER-to-cytosol transport of SV40, SGTA disengages from B14 and B12. Concomitant with this, SV40 triggers B14 and B12 to reorganize into discrete foci within the ER membrane. B14 must retain its ability to form foci and interact with SGTA-Hsc70 to promote SV40 infection. Our results identify a novel role for a cytosolic chaperone in the membrane penetration of a nonenveloped virus and raise the possibility that the SV40-induced foci represent cytosol entry sites.
Collapse
Affiliation(s)
- Christopher Paul Walczak
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Cellular and Molecular Biology Graduate Program, Ann Arbor, Michigan, United States of America
| | - Madhu Sudhan Ravindran
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
79
|
Abstract
This review is a partially personal account of the discovery of virus structure and its implication for virus function. Although I have endeavored to cover all aspects of structural virology and to acknowledge relevant individuals, I know that I have favored taking examples from my own experience in telling this story. I am anxious to apologize to all those who I might have unintentionally offended by omitting their work. The first knowledge of virus structure was a result of Stanley's studies of tobacco mosaic virus (TMV) and the subsequent X-ray fiber diffraction analysis by Bernal and Fankuchen in the 1930s. At about the same time it became apparent that crystals of small RNA plant and animal viruses could diffract X-rays, demonstrating that viruses must have distinct and unique structures. More advances were made in the 1950s with the realization by Watson and Crick that viruses might have icosahedral symmetry. With the improvement of experimental and computational techniques in the 1970s, it became possible to determine the three-dimensional, near-atomic resolution structures of some small icosahedral plant and animal RNA viruses. It was a great surprise that the protecting capsids of the first virus structures to be determined had the same architecture. The capsid proteins of these viruses all had a 'jelly-roll' fold and, furthermore, the organization of the capsid protein in the virus were similar, suggesting a common ancestral virus from which many of today's viruses have evolved. By this time a more detailed structure of TMV had also been established, but both the architecture and capsid protein fold were quite different to that of the icosahedral viruses. The small icosahedral RNA virus structures were also informative of how and where cellular receptors, anti-viral compounds, and neutralizing antibodies bound to these viruses. However, larger lipid membrane enveloped viruses did not form sufficiently ordered crystals to obtain good X-ray diffraction. Starting in the 1990s, these enveloped viruses were studied by combining cryo-electron microscopy of the whole virus with X-ray crystallography of their protein components. These structures gave information on virus assembly, virus neutralization by antibodies, and virus fusion with and entry into the host cell. The same techniques were also employed in the study of complex bacteriophages that were too large to crystallize. Nevertheless, there still remained many pleomorphic, highly pathogenic viruses that lacked the icosahedral symmetry and homogeneity that had made the earlier structural investigations possible. Currently some of these viruses are starting to be studied by combining X-ray crystallography with cryo-electron tomography.
Collapse
|
80
|
Yamaguchi H, Kobayashi S, Maruyama J, Sasaki M, Takada A, Kimura T, Sawa H, Orba Y. Role of the C-terminal region of vervet monkey polyomavirus 1 VP1 in virion formation. J Vet Med Sci 2014; 76:637-44. [PMID: 24419975 PMCID: PMC4073331 DOI: 10.1292/jvms.13-0568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, we detected novel vervet monkey polyomavirus 1 (VmPyV) in a vervet monkey.
Among amino acid sequences of major capsid protein VP1s of other polyomaviruses, VmPyV VP1
is the longest with additional amino acid residues in the C-terminal region. To examine
the role of VmPyV VP1 in virion formation, we generated virus-like particles (VLPs) of
VmPyV VP1, because VLP is a useful tool for the investigation of the morphological
characters of polyomavirus virions. After the full-length VmPyV VP1 was subcloned into a
mammalian expression plasmid, the plasmid was transfected into human embryonic kidney 293T
(HEK293T) cells. Thereafter, VmPyV VLPs were purified from the cell lysates of the
transfected cells via sucrose gradient sedimentation. Electron microscopic analyses
revealed that VmPyV VP1 forms VLPs with a diameter of approximately 50 nm that are
exclusively localized in cell nuclei. Furthermore, we generated VLPs consisting of the
deletion mutant VmPyV VP1 (ΔC VP1) lacking the C-terminal 116 amino acid residues and
compared its VLP formation efficiency and morphology to those of VLPs from wild-type VmPyV
VP1 (WT VP1). WT and ΔC VP1 VLPs were similar in size, but the number of ΔC VP1 VLPs was
much lower than that of WT VP1 VLPs in VP1-expressing HEK293T cells. These results suggest
that the length of VP1 is unrelated to virion morphology; however, the C-terminal region
of VmPyV VP1 affects the efficiency of its VLP formation.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Kawano M, Matsui M, Handa H. SV40 virus-like particles as an effective delivery system and its application to a vaccine carrier. Expert Rev Vaccines 2014; 12:199-210. [DOI: 10.1586/erv.12.149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
82
|
Kler S, Wang JCY, Dhason M, Oppenheim A, Zlotnick A. Scaffold properties are a key determinant of the size and shape of self-assembled virus-derived particles. ACS Chem Biol 2013; 8:2753-61. [PMID: 24093474 DOI: 10.1021/cb4005518] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Controlling the geometry of self-assembly will enable a greater diversity of nanoparticles than now available. Viral capsid proteins, one starting point for investigating self-assembly, have evolved to form regular particles. The polyomavirus SV40 assembles from pentameric subunits and can encapsidate anionic cargos. On short ssRNA (≤814 nt), SV40 pentamers form 22 nm diameter capsids. On RNA too long to fit a T = 1 particle, pentamers forms strings of 22 nm particles and heterogeneous particles of 29-40 nm diameter. However, on dsDNA SV40 forms 50 nm particles composed of 72 pentamers. A 7.2-Å resolution cryo-EM image reconstruction of 22 nm particles shows that they are built of 12 pentamers arranged with T = 1 icosahedral symmetry. At 3-fold vertices, pentamers each contribute to a three-helix triangle. This geometry of interaction is not seen in crystal structures of T = 7 viruses and provides a structural basis for the smaller capsids. We propose that the heterogeneous particles are actually mosaics formed by combining different geometries of interaction from T = 1 capsids and virions. Assembly can be trapped in novel conformations because SV40 interpentamer contacts are relatively strong. The implication is that by virtue of their large catalog of interactions, SV40 pentamers have the ability to self-assemble on and conform to a broad range of shapes.
Collapse
Affiliation(s)
- Stanislav Kler
- Department
of Hematology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Joseph Che-Yen Wang
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Mary Dhason
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ariella Oppenheim
- Department
of Hematology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
83
|
Combined approaches to flexible fitting and assessment in virus capsids undergoing conformational change. J Struct Biol 2013; 185:427-39. [PMID: 24333899 PMCID: PMC3988922 DOI: 10.1016/j.jsb.2013.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 11/28/2013] [Accepted: 12/06/2013] [Indexed: 01/25/2023]
Abstract
Fitting of atomic components into electron cryo-microscopy (cryoEM) density maps is routinely used to understand the structure and function of macromolecular machines. Many fitting methods have been developed, but a standard protocol for successful fitting and assessment of fitted models has yet to be agreed upon among the experts in the field. Here, we created and tested a protocol that highlights important issues related to homology modelling, density map segmentation, rigid and flexible fitting, as well as the assessment of fits. As part of it, we use two different flexible fitting methods (Flex-EM and iMODfit) and demonstrate how combining the analysis of multiple fits and model assessment could result in an improved model. The protocol is applied to the case of the mature and empty capsids of Coxsackievirus A7 (CAV7) by flexibly fitting homology models into the corresponding cryoEM density maps at 8.2 and 6.1 Å resolution. As a result, and due to the improved homology models (derived from recently solved crystal structures of a close homolog – EV71 capsid – in mature and empty forms), the final models present an improvement over previously published models. In close agreement with the capsid expansion observed in the EV71 structures, the new CAV7 models reveal that the expansion is accompanied by ∼5° counterclockwise rotation of the asymmetric unit, predominantly contributed by the capsid protein VP1. The protocol could be applied not only to viral capsids but also to many other complexes characterised by a combination of atomic structure modelling and cryoEM density fitting.
Collapse
|
84
|
Liu C, Xiong Y. Electron density sharpening as a general technique in crystallographic studies. J Mol Biol 2013; 426:980-93. [PMID: 24269527 DOI: 10.1016/j.jmb.2013.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
Abstract
Sharpening is a powerful method to restore the details from blurred electron density in crystals with high overall temperature factors (B-factors). This valuable technique is currently not optimally used because of the uncertainty in the scope of its application and ambiguities in practice. We performed an analysis of ~2000 crystal data sets deposited in the Protein Data Bank and show that sharpening improves the electron density map in many cases across all resolution ranges, often with dramatic enhancement for mid- and low-resolution structures. It is effective when used with either experimental or model phases without introducing additional bias. Our tests also provide a practical guide for optimal sharpening. We further show that anisotropic diffraction correction improves electron density in many cases but should be used with caution. Our study demonstrates that a routine practice of electron density sharpening may have a broad impact on the outcomes of structural biology studies.
Collapse
Affiliation(s)
- Chang Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
85
|
Neu U, Khan ZM, Schuch B, Palma AS, Liu Y, Pawlita M, Feizi T, Stehle T. Structures of B-lymphotropic polyomavirus VP1 in complex with oligosaccharide ligands. PLoS Pathog 2013; 9:e1003714. [PMID: 24204265 PMCID: PMC3814675 DOI: 10.1371/journal.ppat.1003714] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/03/2013] [Indexed: 12/04/2022] Open
Abstract
B-Lymphotropic Polyomavirus (LPyV) serves as a paradigm of virus receptor binding and tropism, and is the closest relative of the recently discovered Human Polyomavirus 9 (HPyV9). LPyV infection depends on sialic acid on host cells, but the molecular interactions underlying LPyV-receptor binding were unknown. We find by glycan array screening that LPyV specifically recognizes a linear carbohydrate motif that contains α2,3-linked sialic acid. High-resolution crystal structures of the LPyV capsid protein VP1 alone and in complex with the trisaccharide ligands 3′-sialyllactose and 3′-sialyl-N-acetyl-lactosamine (3SL and 3SLN, respectively) show essentially identical interactions. Most contacts are contributed by the sialic acid moiety, which is almost entirely buried in a narrow, preformed cleft at the outer surface of the capsid. The recessed nature of the binding site on VP1 and the nature of the observed glycan interactions differ from those of related polyomaviruses and most other sialic acid-binding viruses, which bind sialic acid in shallow, more exposed grooves. Despite their different modes for recognition, the sialic acid binding sites of LPyV and SV40 are half-conserved, hinting at an evolutionary strategy for diversification of binding sites. Our analysis provides a structural basis for the observed specificity of LPyV for linear glycan motifs terminating in α2,3-linked sialic acid, and links the different tropisms of known LPyV strains to the receptor binding site. It also serves as a useful template for understanding the ligand-binding properties and serological crossreactivity of HPyV9. Viruses must engage specific receptors on host cells in order to initiate infection. The type of receptor and its concentration on cells determine viral spread and tropism, but for many viruses, the receptor and the mode of recognition by the virus are not known. We have characterized the structural requirements for receptor binding of B-lymphotropic polyomavirus (LPyV). This virus was originally isolated from African Green Monkey lymph node cultures and attracted interest because of its narrow tropism for a human tumor cell line. LPyV is also the closest relative of the recently discovered Human Polyomavirus 9 (HPyV9). We screened the LPyV coat protein VP1 on an carbohydrate microarray and found that it specifically recognizes a linear sugar motif that terminates in α2,3-linked sialic acid. We then determined the structures LPyV VP1 bound to these carbohydrates. The protein has a preformed, deeply recessed binding site for sialic acid. The binding site differs in both architecture and mode of recognition from the binding sites of other viruses. LPyV only binds linear carbohydrates that are able to penetrate into the binding slot.
Collapse
Affiliation(s)
- Ursula Neu
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Zaigham Mahmood Khan
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Benjamin Schuch
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Angelina S. Palma
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Yan Liu
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Michael Pawlita
- Department of Genome Modificati and Carcinogenesis (F020), German Cancer Research Center, Heidelberg, Germany
| | - Ten Feizi
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
86
|
Cysteine residues in the major capsid protein, Vp1, of the JC virus are important for protein stability and oligomer formation. PLoS One 2013; 8:e76668. [PMID: 24130786 PMCID: PMC3793911 DOI: 10.1371/journal.pone.0076668] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/26/2013] [Indexed: 01/25/2023] Open
Abstract
The capsid of the human polyomavirus JC virus (JCV) consists of 72 pentameric capsomeres of a major structural protein, Vp1. The cysteine residues of the related Vp1 of SV40 are known to contribute to Vp1 folding, pentamer formation, pentamer-pentamer contacts, and capsid stabilization. In light of the presence of a slight structural difference between JCV Vp1 and SV40 counterpart, the way the former folds could be either different from or similar to the latter. We found a difference: an important contribution of Vp1 cysteines to the formation of infectious virions, unique in JCV and absent in SV40. Having introduced amino acid substitution at each of six cysteines (C42, C80, C97, C200, C247, and C260) in JCV Vp1, we found that, when expressed in HeLa cells, the Vp1 level was decreased in C80A and C247A mutants, and remained normal in the other mutants. Additionally, the C80A and C247A Vp1-expressing cell extracts did not show the hemagglutination activity characteristic of JCV particles. The C80A and C247A mutant Vp1s were found to be less stable than the wild-type Vp1 in HeLa cells. When produced in a reconstituted in vitro protein translation system, these two mutant proteins were stable, suggesting that some cellular factors were responsible for their degradation. As determined by their sucrose gradient sedimentation profiles, in vitro translated C247A Vp1 formed pentamers, but in vitro translated C80A Vp1 was entirely monomeric. When individually incorporated into the JCV genome, the C80A and C247A mutants, but not the other Vp1 cysteine residues mutants, interfered with JCV infectivity. Furthermore, the C80A, but not the C247A, mutation prevented the nuclear localization of Vp1 in JCV genome transfected cells. These findings suggest that C80 of JCV Vp1 is required for Vp1 stability and pentamer formation, and C247 is involved in capsid assembly in the nucleus.
Collapse
|
87
|
Teunissen EA, de Raad M, Mastrobattista E. Production and biomedical applications of virus-like particles derived from polyomaviruses. J Control Release 2013; 172:305-321. [PMID: 23999392 DOI: 10.1016/j.jconrel.2013.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
Abstract
Virus-like particles (VLPs), aggregates of capsid proteins devoid of viral genetic material, show great promise in the fields of vaccine development and gene therapy. These particles spontaneously self-assemble after heterologous expression of viral structural proteins. This review will focus on the use of virus-like particles derived from polyomavirus capsid proteins. Since their first recombinant production 27 years ago these particles have been investigated for a myriad of biomedical applications. These virus-like particles are safe, easy to produce, can be loaded with a broad range of diverse cargoes and can be tailored for specific delivery or epitope presentation. We will highlight the structural characteristics of polyomavirus-derived VLPs and give an overview of their applications in diagnostics, vaccine development and gene delivery.
Collapse
Affiliation(s)
- Erik A Teunissen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Markus de Raad
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, University of Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
88
|
Lagatie O, Tritsmans L, Stuyver LJ. The miRNA world of polyomaviruses. Virol J 2013; 10:268. [PMID: 23984639 PMCID: PMC3765807 DOI: 10.1186/1743-422x-10-268] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/27/2013] [Indexed: 12/20/2022] Open
Abstract
Polyomaviruses are a family of non-enveloped DNA viruses infecting several species, including humans, primates, birds, rodents, bats, horse, cattle, raccoon and sea lion. They typically cause asymptomatic infection and establish latency but can be reactivated under certain conditions causing severe diseases. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in several cellular processes by binding to and inhibiting the translation of specific mRNA transcripts. In this review, we summarize the current knowledge of microRNAs involved in polyomavirus infection. We review in detail the different viral miRNAs that have been discovered and the role they play in controlling both host and viral protein expression. We also give an overview of the current understanding on how host miRNAs may function in controlling polyomavirus replication, immune evasion and pathogenesis.
Collapse
Affiliation(s)
- Ole Lagatie
- Janssen Diagnostics, Turnhoutseweg 30, Beerse 2340, Belgium.
| | | | | |
Collapse
|
89
|
Buck CB, Day PM, Trus BL. The papillomavirus major capsid protein L1. Virology 2013; 445:169-74. [PMID: 23800545 DOI: 10.1016/j.virol.2013.05.038] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 04/25/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
The elegant icosahedral surface of the papillomavirus virion is formed by a single protein called L1. Recombinant L1 proteins can spontaneously self-assemble into a highly immunogenic structure that closely mimics the natural surface of native papillomavirus virions. This has served as the basis for two highly successful vaccines against cancer-causing human papillomaviruses (HPVs). During the viral life cycle, the capsid must undergo a variety of conformational changes, allowing key functions including the encapsidation of the ~8 kb viral genomic DNA, maturation into a more stable state to survive transit between hosts, mediating attachment to new host cells, and finally releasing the viral DNA into the newly infected host cell. This brief review focuses on conserved sequence and structural features that underlie the functions of this remarkable protein.
Collapse
|
90
|
Perlmutter JD, Qiao C, Hagan MF. Viral genome structures are optimal for capsid assembly. eLife 2013; 2:e00632. [PMID: 23795290 PMCID: PMC3683802 DOI: 10.7554/elife.00632] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022] Open
Abstract
Understanding how virus capsids assemble around their nucleic acid (NA) genomes could promote efforts to block viral propagation or to reengineer capsids for gene therapy applications. We develop a coarse-grained model of capsid proteins and NAs with which we investigate assembly dynamics and thermodynamics. In contrast to recent theoretical models, we find that capsids spontaneously ‘overcharge’; that is, the negative charge of the NA exceeds the positive charge on capsid. When applied to specific viruses, the optimal NA lengths closely correspond to the natural genome lengths. Calculations based on linear polyelectrolytes rather than base-paired NAs underpredict the optimal length, demonstrating the importance of NA structure to capsid assembly. These results suggest that electrostatics, excluded volume, and NA tertiary structure are sufficient to predict assembly thermodynamics and that the ability of viruses to selectively encapsidate their genomic NAs can be explained, at least in part, on a thermodynamic basis. DOI:http://dx.doi.org/10.7554/eLife.00632.001 Viruses are infectious agents made up of proteins and a genome made of DNA or RNA. Upon infecting a host cell, viruses hijack the cell’s gene expression machinery and force it to produce copies of the viral genome and proteins, which then assemble into new viruses that can eventually infect other host cells. Because assembly is an essential step in the viral life cycle, understanding how this process occurs could significantly advance the fight against viral diseases. In many viral families, a protein shell called a capsid forms around the viral genome during the assembly process. However, capsids can also assemble around nucleic acids in solution, indicating that a host cell is not required for their formation. Since capsid proteins are positively charged, and nucleic acids are negatively charged, electrostatic interactions between the two are thought to have an important role in capsid assembly. However, it is unclear how structural features of the viral genome affect assembly, and why the negative charge on viral genomes is actually far greater than the positive charge on capsids. These questions are difficult to address experimentally because most of the intermediates that form during virus assembly are too short-lived to be imaged. Here, Perlmutter et al. have used state of the art computational methods and advances in graphical processing units (GPUs) to produce the most realistic model of capsid assembly to date. They showed that the stability of the complex formed between the nucleic acid and the capsid depends on the length of the viral genome. Yield was highest for genomes within a certain range of lengths, and capsids that assembled around longer or shorter genomes tended to be malformed. Perlmutter et al. also explored how structural features of the virus—including base-pairing between viral nucleic acids, and the size and charge of the capsid—determine the optimal length of the viral genome. When they included structural data from real viruses in their simulations and predicted the optimal lengths for the viral genome, the results were very similar to those seen in existing viruses. This indicates that the structure of the viral genome has been optimized to promote packaging into capsids. Understanding this relationship between structure and packaging will make it easier to develop antiviral agents that thwart or misdirect virus assembly, and could aid the redesign of viruses for use in gene therapy and drug delivery. DOI:http://dx.doi.org/10.7554/eLife.00632.002
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin A Fisher School of Physics , Brandeis University , Waltham , United States
| | | | | |
Collapse
|
91
|
Role of cell-type-specific endoplasmic reticulum-associated degradation in polyomavirus trafficking. J Virol 2013; 87:8843-52. [PMID: 23740996 DOI: 10.1128/jvi.00664-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BK polyomavirus (BKPyV) is a widespread human pathogen that establishes a lifelong persistent infection and can cause severe disease in immunosuppressed patients. BKPyV is a nonenveloped DNA virus that must traffic through the endoplasmic reticulum (ER) for productive infection to occur; however, it is unknown how BKPyV exits the ER before nuclear entry. In this study, we elucidated the role of the ER-associated degradation (ERAD) pathway during BKPyV intracellular trafficking in renal proximal tubule epithelial (RPTE) cells, a natural host cell. Using proteasome and ERAD inhibitors, we showed that ERAD is required for productive entry. Altered trafficking and accumulation of uncoated viral intermediates were detected by fluorescence in situ hybridization and indirect immunofluorescence in the presence of an inhibitor. Additionally, we detected a change in localization of partially uncoated virus within the ER during proteasome inhibition, from a BiP-rich area to a calnexin-rich subregion, indicating that BKPyV accumulated in an ER subcompartment. Furthermore, inhibiting ERAD did not prevent entry of capsid protein VP1 into the cytosol from the ER. By comparing the cytosolic entry of the related polyomavirus simian virus 40 (SV40), we found that dependence on the ERAD pathway for cytosolic entry varied between the polyomaviruses and between different cell types, namely, immortalized CV-1 cells and primary RPTE cells.
Collapse
|
92
|
Gao D, Zhang ZP, Li F, Men D, Deng JY, Wei HP, Zhang XE, Cui ZQ. Quantum dot-induced viral capsid assembling in dissociation buffer. Int J Nanomedicine 2013; 8:2119-28. [PMID: 23776332 PMCID: PMC3681329 DOI: 10.2147/ijn.s44534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Viruses encapsulating inorganic nanoparticles are a novel type of nanostructure with applications in biomedicine and biosensors. However, the encapsulation and assembly mechanisms of these hybridized virus-based nanoparticles (VNPs) are still unknown. In this article, it was found that quantum dots (QDs) can induce simian virus 40 (SV40) capsid assembly in dissociation buffer, where viral capsids should be disassembled. The analysis of the transmission electron microscope, dynamic light scattering, sucrose density gradient centrifugation, and cryo-electron microscopy single particle reconstruction experimental results showed that the SV40 major capsid protein 1 (VP1) can be assembled into ≈25 nm capsids in the dissociation buffer when QDs are present and that the QDs are encapsulated in the SV40 capsids. Moreover, it was determined that there is a strong affinity between QDs and the SV40 VP1 proteins (KD = 2.19E-10 M), which should play an important role in QD encapsulation in the SV40 viral capsids. This study provides a new understanding of the assembly mechanism of SV40 virus-based nanoparticles with QDs, which may help in the design and construction of other similar virus-based nanoparticles.
Collapse
Affiliation(s)
- Ding Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Role of cell-type-specific endoplasmic reticulum-associated degradation in polyomavirus trafficking. J Virol 2013. [PMID: 23740996 DOI: 10.1028/jvi.00664-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BK polyomavirus (BKPyV) is a widespread human pathogen that establishes a lifelong persistent infection and can cause severe disease in immunosuppressed patients. BKPyV is a nonenveloped DNA virus that must traffic through the endoplasmic reticulum (ER) for productive infection to occur; however, it is unknown how BKPyV exits the ER before nuclear entry. In this study, we elucidated the role of the ER-associated degradation (ERAD) pathway during BKPyV intracellular trafficking in renal proximal tubule epithelial (RPTE) cells, a natural host cell. Using proteasome and ERAD inhibitors, we showed that ERAD is required for productive entry. Altered trafficking and accumulation of uncoated viral intermediates were detected by fluorescence in situ hybridization and indirect immunofluorescence in the presence of an inhibitor. Additionally, we detected a change in localization of partially uncoated virus within the ER during proteasome inhibition, from a BiP-rich area to a calnexin-rich subregion, indicating that BKPyV accumulated in an ER subcompartment. Furthermore, inhibiting ERAD did not prevent entry of capsid protein VP1 into the cytosol from the ER. By comparing the cytosolic entry of the related polyomavirus simian virus 40 (SV40), we found that dependence on the ERAD pathway for cytosolic entry varied between the polyomaviruses and between different cell types, namely, immortalized CV-1 cells and primary RPTE cells.
Collapse
|
94
|
Kazem S, van der Meijden E, Feltkamp MCW. Thetrichodysplasia spinulosa-associated polyomavirus: virological background and clinical implications. APMIS 2013; 121:770-82. [DOI: 10.1111/apm.12092] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/09/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Siamaque Kazem
- Department of Medical Microbiology; Leiden University Medical Center; Leiden; the Netherlands
| | - Els van der Meijden
- Department of Medical Microbiology; Leiden University Medical Center; Leiden; the Netherlands
| | - Mariet C. W. Feltkamp
- Department of Medical Microbiology; Leiden University Medical Center; Leiden; the Netherlands
| |
Collapse
|
95
|
Formation of covalently modified folding intermediates of simian virus 40 Vp1 in large T antigen-expressing cells. J Virol 2013; 87:5053-64. [PMID: 23427157 DOI: 10.1128/jvi.00955-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The folding and pentamer assembly of the simian virus 40 (SV40) major capsid protein Vp1, which take place in the infected cytoplasm, have been shown to progress through disulfide-bonded Vp1 folding intermediates. In this report, we further demonstrate the existence of another category of Vp1 folding or assembly intermediates: the nonreducible, covalently modified mdVp1s. These species were present in COS-7 cells that expressed a recombinant SV40 Vp1, Vp1ΔC, through plasmid transfection. The mdVp1s persisted under cell and lysate treatment and SDS-PAGE conditions that are expected to have suppressed the formation of artifactual disulfide cross-links. As shown through a pulse-chase analysis, the mdVp1s were derived from the newly synthesized Vp1ΔC in the same time frame as Vp1's folding and oligomerization. The apparent covalent modifications occurred in the cytoplasm within the core region of Vp1 and depended on the coexpression of the SV40 large T antigen (LT) in the cells. Analogous covalently modified species were found with the expression of recombinant polyomavirus Vp1s and human papillomavirus L1s in COS-7 cells. Furthermore, the mdVp1s formed multiprotein complexes with LT, Hsp70, and Hsp40, and a fraction of the largest mdVp1, md4, was disulfide linked to the unmodified Vp1ΔC. Both mdVp1 formation and most of the multiprotein complex formation were blocked by a Vp1 folding mutation, C87A-C254A. Our observations are consistent with a role for LT in facilitating the folding process of SV40 Vp1 by stimulating certain covalent modifications of Vp1 or by recruiting certain cellular proteins.
Collapse
|
96
|
Saper G, Kler S, Asor R, Oppenheim A, Raviv U, Harries D. Effect of capsid confinement on the chromatin organization of the SV40 minichromosome. Nucleic Acids Res 2013; 41:1569-80. [PMID: 23258701 PMCID: PMC3561987 DOI: 10.1093/nar/gks1270] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/26/2012] [Accepted: 11/05/2012] [Indexed: 01/10/2023] Open
Abstract
Using small-angle X-ray scattering, we determined the three-dimensional packing architecture of the minichromosome confined within the SV40 virus. In solution, the minichromosome, composed of closed circular dsDNA complexed in nucleosomes, was shown to be structurally similar to cellular chromatin. In contrast, we find a unique organization of the nanometrically encapsidated chromatin, whereby minichromosomal density is somewhat higher at the center of the capsid and decreases towards the walls. This organization is in excellent agreement with a coarse-grained computer model, accounting for tethered nucleosomal interactions under viral capsid confinement. With analogy to confined liquid crystals, but contrary to the solenoid structure of cellular chromatin, our simulations indicate that the nucleosomes within the capsid lack orientational order. Nucleosomes in the layer adjacent to the capsid wall, however, align with the boundary, thereby inducing a 'molten droplet' state of the chromatin. These findings indicate that nucleosomal interactions suffice to predict the genome organization in polyomavirus capsids and underscore the adaptable nature of the eukaryotic chromatin architecture to nanoscale confinement.
Collapse
Affiliation(s)
- Gadiel Saper
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel, The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel and Department of Hematology, Hebrew University–Hadassa Medical School, Jerusalem 91120, Israel
| | - Stanislav Kler
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel, The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel and Department of Hematology, Hebrew University–Hadassa Medical School, Jerusalem 91120, Israel
| | - Roi Asor
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel, The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel and Department of Hematology, Hebrew University–Hadassa Medical School, Jerusalem 91120, Israel
| | - Ariella Oppenheim
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel, The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel and Department of Hematology, Hebrew University–Hadassa Medical School, Jerusalem 91120, Israel
| | - Uri Raviv
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel, The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel and Department of Hematology, Hebrew University–Hadassa Medical School, Jerusalem 91120, Israel
| | - Daniel Harries
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel, The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel and Department of Hematology, Hebrew University–Hadassa Medical School, Jerusalem 91120, Israel
| |
Collapse
|
97
|
Janner A. From an affine extended icosahedral group towards a toolkit for viral architecture. Acta Crystallogr A 2013; 69:151-63. [DOI: 10.1107/s0108767312047162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/16/2012] [Indexed: 11/10/2022] Open
|
98
|
Suomalainen M, Greber UF. Uncoating of non-enveloped viruses. Curr Opin Virol 2013; 3:27-33. [PMID: 23332135 DOI: 10.1016/j.coviro.2012.12.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/19/2012] [Accepted: 12/10/2012] [Indexed: 11/17/2022]
Abstract
Non-enveloped viruses enclose their genome in capsids built of repetitive polypeptides interlinked with cementing proteins, divalent cations or disulphides. Interactions are broken in a stepwise manner during entry into cells leading to genome uncoating. Receptor or proteases induce conformational changes in case of rhinovirus, poliovirus or adenovirus, and thereby provide direct uncoating cues. Chemical cues from low endosomal pH activate rhinovirus or aphtovirus, and oxido-reductases mediate disulphide reshuffling of polyomavirus. Cellular motors provide a third class of cues as shown by adenoviruses. These examples highlight the diversity of cellular factors triggering virus uncoating, and offer new perspectives for the development of antivirals.
Collapse
Affiliation(s)
- Maarit Suomalainen
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
99
|
Inoue T, Tsai B. How viruses use the endoplasmic reticulum for entry, replication, and assembly. Cold Spring Harb Perspect Biol 2013; 5:a013250. [PMID: 23284050 DOI: 10.1101/cshperspect.a013250] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To cause infection, a virus enters a host cell, replicates, and assembles, with the resulting new viral progeny typically released into the extracellular environment to initiate a new infection round. Virus entry, replication, and assembly are dynamic and coordinated processes that require precise interactions with host components, often within and surrounding a defined subcellular compartment. Accumulating evidence pinpoints the endoplasmic reticulum (ER) as a crucial organelle supporting viral entry, replication, and assembly. This review focuses on the molecular mechanism by which different viruses co-opt the ER to accomplish these crucial infection steps. Certain bacterial toxins also hijack the ER for entry. An interdisciplinary approach, using rigorous biochemical and cell biological assays coupled with advanced microscopy strategies, will push to the next level our understanding of the virus-ER interaction during infection.
Collapse
Affiliation(s)
- Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | | |
Collapse
|
100
|
Niikura K, Sugimura N, Musashi Y, Mikuni S, Matsuo Y, Kobayashi S, Nagakawa K, Takahara S, Takeuchi C, Sawa H, Kinjo M, Ijiro K. Virus-like particles with removable cyclodextrins enable glutathione-triggered drug release in cells. MOLECULAR BIOSYSTEMS 2013; 9:501-7. [DOI: 10.1039/c2mb25420d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|