51
|
Ng SYM, Jarrell KF. Cloning and characterization of archaeal type I signal peptidase from Methanococcus voltae. J Bacteriol 2003; 185:5936-42. [PMID: 14526003 PMCID: PMC225044 DOI: 10.1128/jb.185.20.5936-5942.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaeal protein trafficking is a poorly characterized process. While putative type I signal peptidase genes have been identified in sequenced genomes for many archaea, no biochemical data have been presented to confirm that the gene product possesses signal peptidase activity. In this study, the putative type I signal peptidase gene in Methanococcus voltae was cloned and overexpressed in Escherichia coli, the membranes of which were used as the enzyme source in an in vitro peptidase assay. A truncated, His-tagged form of the M. voltae S-layer protein was generated for use as the substrate to monitor the signal peptidase activity. With M. voltae membranes as the enzyme source, signal peptidase activity in vitro was optimal between 30 and 40 degrees C; it was dependent on a low concentration of KCl or NaCl but was effective over a broad concentration range up to 1 M. Processing of the M. voltae S-layer protein at the predicted cleavage site (confirmed by N-terminal sequencing) was demonstrated with the overexpressed archaeal gene product. Although E. coli signal peptidase was able to correctly process the signal peptide during overexpression of the M. voltae S-layer protein in vivo, the contribution of the E. coli signal peptidase to cleavage of the substrate in the in vitro assay was minimal since E. coli membranes alone did not show significant activity towards the S-layer substrate in in vitro assays. In addition, when the peptidase assays were performed in 1 M NaCl (a previously reported inhibitory condition for E. coli signal peptidase I), efficient processing of the substrate was observed only when the E. coli membranes contained overexpressed M. voltae signal peptidase. This is the first proof of expressed type I signal peptidase activity from a specific archaeal gene product.
Collapse
Affiliation(s)
- Sandy Y M Ng
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
52
|
Pop OI, Westermann M, Volkmer-Engert R, Schulz D, Lemke C, Schreiber S, Gerlach R, Wetzker R, Müller JP. Sequence-specific binding of prePhoD to soluble TatAd indicates protein-mediated targeting of the Tat export in Bacillus subtilis. J Biol Chem 2003; 278:38428-36. [PMID: 12867413 DOI: 10.1074/jbc.m306516200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tat (twin-arginine protein translocation) system initially discovered in the thylakoid membrane of chloroplasts has been described recently for a variety of eubacterial organisms. Although in Escherichia coli four Tat proteins with calculated membrane spanning domains have been demonstrated to mediate Tat-dependent transport, a specific transport system for twin-arginine signal peptide containing phosphodiesterase PhoD of Bacillus subtilis consists of one TatA/TatC (TatAd/TatCd) pair of proteins. Here, we show that TatAd was found beside its membrane-integrated localization in the cytosol were it interacted with prePhoD. prePhoD was efficiently co-immunoprecipitated by TatAd. Inefficient co-immunoprecipitation of mature PhoD and missing interaction to Sec-dependent and cytosolic peptides by TatAd demonstrated a particular role of the twin-arginine signal peptide for this interaction. Affinity of prePhoD to TatAd was interfered by peptides containing the twin-arginine motif but remained active when the arginine residues were substituted. The selective binding of TatAd to peptides derived from the signal peptide of PhoD elucidated the function of the twin-arginine motif as a target site for pre-protein TatAd interaction. Substitution of the binding motif demonstrated the pivotal role of basic amino acid residues for TatA binding. These features suggest that TatA interacts prior to membrane integration with its pre-protein substrate and could therefore assist targeting of twin-arginine pre-proteins.
Collapse
Affiliation(s)
- Ovidiu I Pop
- Institut für Molekularbiologie, Friedrich-Schiller-Universität Jena, Hans-Knöll-Strasse 2, Jena D-07745, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Zhou J, Xu Z. Structural determinants of SecB recognition by SecA in bacterial protein translocation. Nat Struct Mol Biol 2003; 10:942-7. [PMID: 14517549 DOI: 10.1038/nsb980] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 07/31/2003] [Indexed: 11/09/2022]
Abstract
SecB is a bacterial chaperone involved in directing pre-protein to the translocation pathway by its specific interaction with the peripheral membrane ATPase SecA. The SecB-binding site on SecA is located at its C terminus and consists of a stretch of highly conserved residues. The crystal structure of SecB in complex with the C-terminal 27 amino acids of SecA from Haemophilus influenzae shows that the SecA peptide is structured as a CCCH zinc-binding motif. One SecB tetramer is bound by two SecA peptides, and the interface involves primarily salt bridges and hydrogen bonding interactions. The structure explains the importance of the zinc-binding motif and conserved residues at the C terminus of SecA in its high-affinity binding with SecB. It also suggests a model of SecB-SecA interaction and its implication for the mechanism of pre-protein transfer in bacterial protein translocation.
Collapse
Affiliation(s)
- Jiahai Zhou
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan Medical School, Ann Arbor 48109-0606, USA
| | | |
Collapse
|
54
|
Blaudeck N, Kreutzenbeck P, Freudl R, Sprenger GA. Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane. J Bacteriol 2003; 185:2811-9. [PMID: 12700260 PMCID: PMC154414 DOI: 10.1128/jb.185.9.2811-2819.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the SecB/SecA branch of the Sec pathway and the twin-arginine translocation (Tat) pathway represent two alternative possibilities for posttranslational translocation of proteins across the cytoplasmic membrane. Maintenance of pathway specificity was analyzed using a model precursor consisting of the mature part of the SecB-dependent maltose-binding protein (MalE) fused to the signal peptide of the Tat-dependent TorA protein. The TorA signal peptide selectively and specifically directed MalE into the Tat pathway. The characterization of a spontaneous TorA signal peptide mutant (TorA*), in which the two arginine residues in the c-region had been replaced by one leucine residue, showed that the TorA*-MalE mutant precursor had acquired the ability for efficiently using the SecB/SecA pathway. Despite the lack of the "Sec avoidance signal," the mutant precursor was still capable of using the Tat pathway, provided that the kinetically favored Sec pathway was blocked. These results show that the h-region of the TorA signal peptide is, in principle, sufficiently hydrophobic for Sec-dependent protein translocation, and therefore, the positively charged amino acid residues in the c-region represent a major determinant for Tat pathway specificity. Tat-dependent export of TorA-MalE was significantly slower in the presence of SecB than in its absence, showing that SecB can bind to this precursor despite the presence of the Sec avoidance signal in the c-region of the TorA signal peptide, strongly suggesting that the function of the Sec avoidance signal is not the prevention of SecB binding; rather, it must be exerted at a later step in the Sec pathway.
Collapse
Affiliation(s)
- Natascha Blaudeck
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | | | | |
Collapse
|
55
|
Rehling P, Pfanner N, Meisinger C. Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane--a guided tour. J Mol Biol 2003; 326:639-57. [PMID: 12581629 DOI: 10.1016/s0022-2836(02)01440-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Only a few mitochondrial proteins are encoded by the organellar genome. The majority of mitochondrial proteins are nuclear encoded and thus have to be transported into the organelle from the cytosol. Within the mitochondrion proteins have to be sorted into one of the four sub-compartments: the outer or inner membranes, the intermembrane space or the matrix. These processes are mediated by complex protein machineries within the different compartments that act alone or in concert with each other. The translocation machinery of the outer membrane is formed by a multi-subunit protein complex (TOM complex), that is built up by signal receptors and the general import pore (GIP). The inner membrane houses two multi-subunit protein complexes that each handles special subsets of mitochondrial proteins on their way to their final destination. According to their primary function these two complexes have been termed the pre-sequence translocase (or TIM23 complex) and the protein insertion complex (or TIM22 complex). The identification of components of these complexes and the analysis of the molecular mechanisms underlying their function are currently an exciting and fast developing field of molecular cell biology.
Collapse
Affiliation(s)
- Peter Rehling
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
56
|
Bruggemann H, Baumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, Herzberg C, Martinez-Arias R, Merkl R, Henne A, Gottschalk G. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci U S A 2003; 100:1316-21. [PMID: 12552129 PMCID: PMC298770 DOI: 10.1073/pnas.0335853100] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tetanus disease is one of the most dramatic and globally prevalent diseases of humans and vertebrate animals, and has been reported for over 24 centuries. The manifestation of the disease, spastic paralysis, is caused by the second most poisonous substance known, the tetanus toxin, with a human lethal dose of approximately 1 ng/kg. Fortunately, this disease is successfully controlled through immunization with tetanus toxoid; nevertheless, according to the World Health Organization, an estimated 400,000 cases still occur each year, mainly of neonatal tetanus. The causative agent of tetanus disease is Clostridium tetani, an anaerobic spore-forming bacterium, whose natural habitat is soil, dust, and intestinal tracts of various animals. Here we report the complete genome sequence of toxigenic C. tetani E88, a variant of strain Massachusetts. The genome consists of a 2,799,250-bp chromosome encoding 2,372 ORFs. The tetanus toxin and a collagenase are encoded on a 74,082-bp plasmid, containing 61 ORFs. Additional virulence-related factors could be identified, such as an array of surface-layer and adhesion proteins (35 ORFs), some of them unique to C. tetani. Comparative genomics with the genomes of Clostridium perfringens, the causative agent of gas gangrene, and Clostridium acetobutylicum, a nonpathogenic solvent producer, revealed a remarkable capacity of C. tetani: The organism can rely on an extensive sodium ion bioenergetics. Additional candidate genes involved in the establishment and maintenance of a pathogenic lifestyle of C. tetani are presented.
Collapse
Affiliation(s)
- Holger Bruggemann
- Göttingen Genomics Laboratory and Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Sapriel G, Wandersman C, Delepelaire P. The SecB chaperone is bifunctional in Serratia marcescens: SecB is involved in the Sec pathway and required for HasA secretion by the ABC transporter. J Bacteriol 2003; 185:80-8. [PMID: 12486043 PMCID: PMC141835 DOI: 10.1128/jb.185.1.80-88.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HasA is the secreted hemophore of the heme acquisition system (Has) of Serratia marcescens. It is secreted by a specific ABC transporter apparatus composed of three proteins: HasD, an inner membrane ABC protein; HasE, another inner membrane protein; and HasF, a TolC homolog. Except for HasF, the structural genes of the Has system are encoded by an iron-regulated operon. In previous studies, this secretion system has been reconstituted in Escherichia coli, where it requires the presence of the SecB chaperone, the Sec pathway-dedicated chaperone. We cloned and inactivated the secB gene from S. marcescens. We show that S. marcescens SecB is 93% identical to E. coli SecB and complements the secretion defects of a secB mutant of E. coli for both the Sec and ABC pathways of HasA secretion. In S. marcescens, SecB inactivation affects translocation by the Sec pathway and abolishes HasA secretion. This demonstrates that S. marcescens SecB is the genuine chaperone for HasA secretion in S. marcescens. These results also demonstrate that S. marcescens SecB is bifunctional, as it is involved in two separate secretion pathways. We investigated the effects of secB point mutations in the reconstituted HasA secretion pathway by comparing the translocation of a Sec substrate in various mutants. Two different patterns of SecB residue effects were observed, suggesting that SecB functions may differ for the Sec and ABC pathways.
Collapse
Affiliation(s)
- Guillaume Sapriel
- Unité des Membranes Bactériennes, URA CNRS 2172, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
58
|
Chou YT, Swain JF, Gierasch LM. Functionally significant mobile regions of Escherichia coli SecA ATPase identified by NMR. J Biol Chem 2002; 277:50985-90. [PMID: 12397065 DOI: 10.1074/jbc.m209237200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA, a 204-kDa homodimeric protein, is a major component of the cellular machinery that mediates the translocation of proteins across the Escherichia coli plasma membrane. SecA promotes translocation by nucleotide-modulated insertion and deinsertion into the cytoplasmic membrane once bound to both the signal sequence and portions of the mature domain of the preprotein. SecA is proposed to undergo major conformational changes during translocation. These conformational changes are accompanied by major rearrangements of SecA structural domains. To understand the interdomain rearrangements, we have examined SecA by NMR and identified regions that display narrow resonances indicating high mobility. The mobile regions of SecA have been assigned to a sequence from the second of two domains with nucleotide-binding folds (NBF-II; residues 564-579) and to the extreme C-terminal segment of SecA (residues 864-901), both of which are essential for preprotein translocation activity. Interactions with ligands suggest that the mobile regions are involved in functionally critical regulatory steps in SecA.
Collapse
Affiliation(s)
- Yi-Te Chou
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003-4510, USA
| | | | | |
Collapse
|
59
|
Adams H, Scotti PA, Luirink J, Tommassen J. Defective translocation of a signal sequence mutant in a prlA4 suppressor strain of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5572-80. [PMID: 12423356 DOI: 10.1046/j.1432-1033.2002.03263.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the accompanying paper [Adams, H., Scotti, P.A., de Cock, H., Luirink, J. & Tommassen, J. (2002) Eur. J. Biochem.269, 5564-5571], we showed that the precursor of outer-membrane protein PhoE of Escherichia coli with a Gly to Leu substitution at position -10 in the signal sequence (G-10L) is targeted to the SecYEG translocon via the signal-recognition particle (SRP) route, instead of via the SecB pathway. Here, we studied the fate of the mutant precursor in a prlA4 mutant strain. prlA mutations, located in the secY gene, have been isolated as suppressors that restore the export of precursors with defective signal sequences. Remarkably, the G-10L mutant precursor, which is normally exported in a wild-type strain, accumulated strongly in a prlA4 mutant strain. In vitro cross-linking experiments revealed that the precursor is correctly targeted to the prlA4 mutant translocon. However, translocation across the cytoplasmic membrane was defective, as appeared from proteinase K-accessibility experiments in pulse-labeled cells. Furthermore, the mutant precursor was found to accumulate when expressed in a secY40 mutant, which is defective in the insertion of integral-membrane proteins but not in protein translocation. Together, these data suggest that SecB and SRP substrates are differently processed at the SecYEG translocon.
Collapse
Affiliation(s)
- Hendrik Adams
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
60
|
Khatib K, Belin D. A novel class of secA alleles that exert a signal-sequence-dependent effect on protein export in Escherichia coli. Genetics 2002; 162:1031-43. [PMID: 12454053 PMCID: PMC1462312 DOI: 10.1093/genetics/162.3.1031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The murine plasminogen activator inhibitor 2 (PAI2) signal sequence inefficiently promotes the export of E. coli alkaline phosphatase (AP). High-level expression of PAI2::AP chimeric proteins from the arabinose P(BAD) promoter is toxic and confers an Ara(S) phenotype. Most Ara(R) suppressors map to secA, as determined by sequencing 21 independent alleles. Mutations occur throughout the gene, including both nucleotide binding domains (NBDI and NBDII) and the putative signal sequence binding domain (SSBD). Using malE and phoA signal sequence mutants, we showed that the vast majority of these secA suppressors exhibit weak Sec phenotypes. Eight of these secA mutations were further characterized in detail. Phenotypically, these eight suppressors can be divided into three groups, each localized to one domain of SecA. Most mutations allow near-normal levels of wild-type preprotein export, but they enhance the secretion defect conferred by signal sequence mutations. Interestingly, one group exerts a selective effect on the export of PAI2::AP when compared to that of AP. In conclusion, this novel class of secA mutations, selected as suppressors of a toxic signal sequence, differs from the classical secA (prlD) mutations, selected as suppressors of defective signal sequences, although both types of mutations affect signal sequence recognition.
Collapse
Affiliation(s)
- Karim Khatib
- Department of Pathology, University of Geneva, Switzerland
| | | |
Collapse
|
61
|
Rosander A, Bjerketorp J, Frykberg L, Jacobsson K. Phage display as a novel screening method to identify extracellular proteins. J Microbiol Methods 2002; 51:43-55. [PMID: 12069889 DOI: 10.1016/s0167-7012(02)00052-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extracellular proteins are involved in many diverse and essential cell functions and in pathogenic bacteria, and they may also serve as virulence factors. Therefore, there is a need for methods that identify the genes encoding this group of proteins in a bacterial genome. Here, we present such a method based on the phage display technology. A novel gene III-based phagemid vector, pG3DSS, was constructed that lacks the signal sequence which normally orientates the encoded fusion protein to the Escherichia coli cell membrane, where it is assembled into the phage particle. When randomly fragmented DNA is inserted into this vector, only phagemids containing an insert encoding a signal sequence will give rise to phage particles displaying a fusion protein. These phages also display an E-tag epitope in fusion with protein III, which enables isolation of phages displaying a fusion protein, using antibodies against the epitope. From a library constructed from Staphylococcus aureus chromosomal DNA, genes encoding secreted as well as transmembrane proteins were isolated, including adhesins, enzymes and transport proteins.
Collapse
Affiliation(s)
- Anna Rosander
- Department of Microbiology, SLU, Swedish University of Agricultural Sciences, P.O. Box 7025, SE-750 07 Uppsala, Sweden
| | | | | | | |
Collapse
|
62
|
Rose RW, Brüser T, Kissinger JC, Pohlschröder M. Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 2002; 45:943-50. [PMID: 12180915 DOI: 10.1046/j.1365-2958.2002.03090.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Halophilic archaea thrive in environments with salt concentrations approaching saturation. However, little is known about the way in which these organisms stabilize their secreted proteins in such 'hostile' conditions. Here, we present data suggesting that the utilization of protein translocation pathways for protein secretion by the Halobacteriaceae differs significantly from that of non-haloarchaea, and most probably represents an adaptation to the high-salt environment. Although most proteins are secreted via the general secretion (Sec) machinery, the twin-arginine translocation (Tat) pathway is mainly used for the secretion of redox proteins and is distinct from the Sec pathway, in that it allows cytoplasmic folding of secreted proteins. tatfind (developed in this study) was used for systematic whole-genome analysis of Halobacterium sp. NRC-1 and several other prokaryotes to identify putative Tat substrates. Our analyses revealed that the vast majority of haloarchaeal secreted proteins were predicted substrates of the Tat pathway. Strikingly, most of these putative Tat substrates were non-redox proteins, the homologues of which in non-haloarchaea were identified as putative Sec substrates. We confirmed experimentally that the secretion of one such putative Tat substrate depended on the twin-arginine motif in its signal sequence. This extensive utilization of the Tat pathway in haloarchaea suggests an evolutionary adaptation to high-salt conditions by allowing cytoplasmic folding of secreted proteins before their secretion.
Collapse
Affiliation(s)
- R Wesley Rose
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
63
|
Zheng F, Angleton EL, Lu J, Peng SB. In vitro and in vivo self-cleavage of Streptococcus pneumoniae signal peptidase I. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3969-77. [PMID: 12180973 DOI: 10.1046/j.1432-1033.2002.03083.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously demonstrated that Streptococcus pneumoniae signal peptidase (SPase) I catalyzes a self-cleavage to result in a truncated product, SPase37-204 [Peng, S.B., Wang, L., Moomaw, J., Peery, R.B., Sun, P.M., Johnson, R.B., Lu, J., Treadway, P., Skatrud, P.L. & Wang, Q.M. (2001) J. Bacteriol.183, 621-627]. In this study, we investigated the effect of phospholipid on invitro self-cleavage of S. pneumoniae SPase I. In the presence of phospholipid, the self-cleavage predominantly occurred at one cleavage site between Gly36-His37, whereas the self-cleavage occurred at multiple sites in the absence of phospholipid, and two additional self-cleavage sites, Ala65-His66 and Ala143-Phe144, were identified. All three self-cleavage sites strongly resemble the signal peptide cleavage site and follow the (-1, -3) rule for SPase I recognition. Kinetic analysis demonstrated that self-cleavage is a concentration dependent and intermolecular event, and the activity in the presence of phospholipid is 25-fold higher than that in the absence of phospholipid. Biochemical analysis demonstrated that SPase37-204, the major product of the self-cleavage totally lost activity to cleave its substrates, indicating that the self-cleavage resulted in the inactivation of the enzyme. More importantly, the self-cleavage was demonstrated to be happening in vivo in all the growth phases of S. pneumoniae cells. The bacterial cells keep the active SPase I at the highest level in exponential growth phase, suggesting that the self-cleavage may play an important role in regulating the activity of the enzyme under different conditions.
Collapse
Affiliation(s)
- Feng Zheng
- Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, IN 46285, USA
| | | | | | | |
Collapse
|
64
|
Ochsner UA, Snyder A, Vasil AI, Vasil ML. Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proc Natl Acad Sci U S A 2002; 99:8312-7. [PMID: 12034867 PMCID: PMC123064 DOI: 10.1073/pnas.082238299] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel secretion pathway originally found in plants has recently been discovered in bacteria and termed TAT, for "twin-arginine translocation," with respect to the presence of an Arg-Arg motif in the signal sequence of TAT-secreted products. However, it is unknown whether the TAT system contributes in any way to virulence through the secretion of factors associated with pathogenesis or stress response. We found that the opportunistic pathogen Pseudomonas aeruginosa produces several virulence factors that depend on the TAT system for proper export to the periplasm, outer membrane, or extracellular milieu. We identified at least 18 TAT substrates of P. aeruginosa and characterized the pleiotropic phenotypes of a tatC deletion mutant. The TAT system proved essential for the export of phospholipases, proteins involved in pyoverdine-mediated iron-uptake, anaerobic respiration, osmotic stress defense, motility, and biofilm formation. Because all these traits have been associated with virulence, we studied the role of TAT in a rat lung model. A tatC mutant did not cause the typical multifocal pulmonary abscesses and did not evoke a heavy inflammatory host response compared with wild type, indicating that tatC mutant cells are attenuated for virulence. Because the TAT apparatus is well conserved among important bacterial pathogens yet absent in mammalian cells, it represents a potential target for novel antimicrobial compounds.
Collapse
Affiliation(s)
- Urs A Ochsner
- Department of Microbiology, University of Colorado Health Sciences Center, Campus Box B-175, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
65
|
McDevitt CA, Hugenholtz P, Hanson GR, McEwan AG. Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol Microbiol 2002; 44:1575-87. [PMID: 12067345 DOI: 10.1046/j.1365-2958.2002.02978.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum. Dimethyl sulphide dehydrogenase was shown to contain bis(molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdopterin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB, ddhD and ddhC. DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c2 mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.
Collapse
Affiliation(s)
- Christopher A McDevitt
- Centre for Metals in Biology, Department of Microbiology and Parasitology, School of Molecular and Microbial Sciences, The University of Queensland, St Lucia 4072, Australia
| | | | | | | |
Collapse
|
66
|
Leroux MR. Protein folding and molecular chaperones in archaea. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:219-77. [PMID: 11677685 DOI: 10.1016/s0065-2164(01)50007-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- M R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
67
|
Chu HH, Hoang V, Kreutzmann P, Hofemeister B, Melzer M, Hofemeister J. Identification and properties of type I-signal peptidases of Bacillus amyloliquefaciens. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:458-69. [PMID: 11856304 DOI: 10.1046/j.0014-2956.2001.02669.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The use of Bacillus amyloliquefaciens for enzyme production and its exceptional high protein export capacity initiated this study where the presence and function of multiple type I signal peptidase isoforms was investigated. In addition to type I signal peptidases SipS(ba) [Meijer, W.J.J., de Jong, A., Bea, G., Wisman, A., Tjalsma, H., Venema, G., Bron, S. & van Dijl, J.M. (1995) Mol. Microbiol. 17, 621-631] and SipT(ba) [Hoang, V. & Hofemeister, J. (1995) Biochim. Biophys. Acta 1269, 64-68] which were previously identified, here we present evidence for two other Sip-like genes in B. amyloliquefaciens. Same map positions as well as sequence motifs verified that these genes encode homologues of Bacillus subtilis SipV and SipW. SipU-encoding DNA was not found in B. amyloliquefaciens. SipW-encoding DNA was also found for other Bacillus strains representing different phylogenetic groups, but not for Bacillus stearothermophilus and Thermoactinomyces vulgaris. The absence of these genes, however, could have been overlooked due to sequence diversity. Sequence alignments of 23 known Sip-like proteins from Bacillus origin indicated further branching of the P-group signal peptidases into clusters represented by B. subtilis SipV, SipS-SipT-SipU and B. anthracis Sip3-Sip5 proteins, respectively. Each B. amyloliquefaciens sip(ba) gene was expressed in an Escherichia coli LepBts mutant and tested for genetic complementation of the temperature sensitive (TS) phenotype as well as pre-OmpA processing. Although SipS(ba) as well as SipT(ba) efficiently restored processing of pre-OmpA in E. coli, only SipS(ba) supported growth at TS conditions, indicating functional diversity. Changed properties of the sip(ba) gene disruption mutants, including cell autolysis, motility, sporulation, and nuclease activities, seemed to correlate with specificities and/or localization of B. amyloliquefaciens SipS, SipT and SipV isoforms.
Collapse
Affiliation(s)
- Hoang Ha Chu
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | | | | | | |
Collapse
|
68
|
Abstract
Queuosine is a hypermodified nucleoside found in position 34, the anticodon wobble position, of four tRNA species. This modification is distributed with near uniformity across all life forms found on this planet. Yet the molecular mechanisms involved with accomplishing this ubiquitous posttranscriptional modification of tRNA are dramatically different between prokaryotic and eukaryotic organisms, which suggests that these were formed by convergent evolution of a fundamental life process essential to nearly all life forms. This minireview describes the differences between these modification systems and points to a new direction for developing research on the molecular function queuosine-modified tRNA in diverse species.
Collapse
Affiliation(s)
- R C Morris
- The Center for Pediatric Research, Eastern Virginia Medical School, 855 West Brambleton Avenue, Norfolk, Virginia 23510, USA.
| | | |
Collapse
|
69
|
Saleh MT, Fillon M, Brennan PJ, Belisle JT. Identification of putative exported/secreted proteins in prokaryotic proteomes. Gene 2001; 269:195-204. [PMID: 11376951 DOI: 10.1016/s0378-1119(01)00436-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The increasing number of bacterial genomes being sequenced fuels an equal demand for methods to rapidly analyze the proteomes of these organisms. One group of proteins of pressing importance is the exported/secreted proteins, given their dominant immunogenicity and role in pathogenesis. With this in mind, a weight matrix algorithm and two artificial neural networks, one based on amino acid position within the N-terminus and the other on amino acid frequency, were developed for identification of such proteins. The neural networks and a hybrid method, combining the weight matrix algorithm and the amino acid frequency neural network, were tested independently against a standard data set of secreted and cytoplasmic proteins to determine their accuracy in predicting secreted prokaryotic proteins. The results of these analyses demonstrated that the amino acid position neural network provided the highest accuracy (Mathews correlation coefficient of 0.93) in predicting secreted proteins of Gram-negative bacteria, whereas the hybrid method was best (Mathews correlation coefficient of 0.97) for prediction of Gram-positive secreted proteins. These two methods were integrated into a single program (ExProt) designed to analyze whole proteomes. In addition to protein localization, ExProt also contains a neural network trained to identify the most probable signal peptidase I cleavage site of secreted proteins. When tested against the standard protein data set ExProt correctly predicted 73.5 and 84.5% of the cleavage sites in Gram-positive and Gram-negative secreted proteins, respectively. Comparative analysis of Gram-negative, Gram-positive, Mycobacterium tuberculosis, and Archaea proteomes with ExProt revealed that the fraction of putative exported/secreted proteins encoded by bacterial genomes ranged from 8% for Methanococcus jannaschii to 37% for Mycoplasma pneumoniae.
Collapse
Affiliation(s)
- M T Saleh
- Mycobacteria Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | |
Collapse
|
70
|
Collinson I, Breyton C, Duong F, Tziatzios C, Schubert D, Or E, Rapoport T, Kühlbrandt W. Projection structure and oligomeric properties of a bacterial core protein translocase. EMBO J 2001; 20:2462-71. [PMID: 11350935 PMCID: PMC125464 DOI: 10.1093/emboj/20.10.2462] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The major route for protein export or membrane integration in bacteria occurs via the Sec-dependent transport apparatus. The core complex in the inner membrane, consisting of SecYEG, forms a protein-conducting channel, while the ATPase SecA drives translocation of substrate across the membrane. The SecYEG complex from Escherichia coli was overexpressed, purified and crystallized in two dimensions. A 9 A projection structure was calculated using electron cryo-microscopy. The structure exhibits P12(1) symmetry, having two asymmetric units inverted with respect to one another in the unit cell. The map shows elements of secondary structure that appear to be transmembrane helices. The crystallized form of SecYEG is too small to comprise the translocation channel and does not contain a large pore seen in other studies. In detergent solution, the SecYEG complex displays an equilibrium between monomeric and tetrameric forms. Our results therefore indicate that, unlike other known channels, the SecYEG complex can exist as both an assembled channel and an unassembled smaller unit, suggesting that transitions between the two states occur during a functional cycle.
Collapse
Affiliation(s)
- Ian Collinson
- Department of Cell Biology, Harvard Medical School/HHMI, Boston MA 02115, USA,
Department of Structural Biology, Max-Planck-Insitut für Biophysik, Frankfurt am Main 60596, Institut für Biophysik, JWG-Universität, Frankfurt am Main, Germany and Laboratoire Transports et Signalisation Cellulaires, Université de Paris XI, Orsay, France Corresponding author e-mail:
| | - Cécile Breyton
- Department of Cell Biology, Harvard Medical School/HHMI, Boston MA 02115, USA,
Department of Structural Biology, Max-Planck-Insitut für Biophysik, Frankfurt am Main 60596, Institut für Biophysik, JWG-Universität, Frankfurt am Main, Germany and Laboratoire Transports et Signalisation Cellulaires, Université de Paris XI, Orsay, France Corresponding author e-mail:
| | - Franck Duong
- Department of Cell Biology, Harvard Medical School/HHMI, Boston MA 02115, USA,
Department of Structural Biology, Max-Planck-Insitut für Biophysik, Frankfurt am Main 60596, Institut für Biophysik, JWG-Universität, Frankfurt am Main, Germany and Laboratoire Transports et Signalisation Cellulaires, Université de Paris XI, Orsay, France Corresponding author e-mail:
| | - Christos Tziatzios
- Department of Cell Biology, Harvard Medical School/HHMI, Boston MA 02115, USA,
Department of Structural Biology, Max-Planck-Insitut für Biophysik, Frankfurt am Main 60596, Institut für Biophysik, JWG-Universität, Frankfurt am Main, Germany and Laboratoire Transports et Signalisation Cellulaires, Université de Paris XI, Orsay, France Corresponding author e-mail:
| | - Dieter Schubert
- Department of Cell Biology, Harvard Medical School/HHMI, Boston MA 02115, USA,
Department of Structural Biology, Max-Planck-Insitut für Biophysik, Frankfurt am Main 60596, Institut für Biophysik, JWG-Universität, Frankfurt am Main, Germany and Laboratoire Transports et Signalisation Cellulaires, Université de Paris XI, Orsay, France Corresponding author e-mail:
| | | | | | - Werner Kühlbrandt
- Department of Cell Biology, Harvard Medical School/HHMI, Boston MA 02115, USA,
Department of Structural Biology, Max-Planck-Insitut für Biophysik, Frankfurt am Main 60596, Institut für Biophysik, JWG-Universität, Frankfurt am Main, Germany and Laboratoire Transports et Signalisation Cellulaires, Université de Paris XI, Orsay, France Corresponding author e-mail:
| |
Collapse
|
71
|
Hiltbrunner A, Bauer J, Vidi PA, Infanger S, Weibel P, Hohwy M, Kessler F. Targeting of an abundant cytosolic form of the protein import receptor at Toc159 to the outer chloroplast membrane. J Cell Biol 2001; 154:309-16. [PMID: 11470820 PMCID: PMC2150772 DOI: 10.1083/jcb.200104022] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2001] [Revised: 05/23/2001] [Accepted: 06/04/2001] [Indexed: 11/30/2022] Open
Abstract
Chloroplast biogenesis requires the large-scale import of cytosolically synthesized precursor proteins. A trimeric translocon (Toc complex) containing two homologous GTP-binding proteins (atToc33 and atToc159) and a channel protein (atToc75) facilitates protein translocation across the outer envelope membrane. The mechanisms governing function and assembly of the Toc complex are not yet understood. This study demonstrates that atToc159 and its pea orthologue exist in an abundant, previously unrecognized soluble form, and partition between cytosol-containing soluble fractions and the chloroplast outer membrane. We show that soluble atToc159 binds directly to the cytosolic domain of atToc33 in a homotypic interaction, contributing to the integration of atToc159 into the chloroplast outer membrane. The data suggest that the function of the Toc complex involves switching of atToc159 between a soluble and an integral membrane form.
Collapse
Affiliation(s)
- A Hiltbrunner
- Institute of Plant Sciences, Plant Physiology and Biochemistry Group, 8092 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
72
|
Sanders C, Wethkamp N, Lill H. Transport of cytochrome c derivatives by the bacterial Tat protein translocation system. Mol Microbiol 2001; 41:241-6. [PMID: 11454216 DOI: 10.1046/j.1365-2958.2001.02514.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An experimental system developed previously for the heterologous expression of c-type cytochromes in Escherichia coli Q1has been adapted to monitor protein transfer across the bacteria's cytoplasmic membrane. Apocytochrome, lacking the haem cofactor and probably in an unfolded state, was readily transferred across the cytoplasmic membrane when fused to a Sec-specific signal peptide. Furthermore, cytochrome fused to a signal peptide regarded as specific for the twin arginine transport (Tat) system was translocated in an unfolded state by the Sec apparatus. After maturation and folding in the cytoplasm, Tat-mediated transfer of holocytochrome to the periplasm occurred. We conclude that, in addition to the nature of the specific signal peptide, the folding state of a particular protein also governs its acceptance by a given transport system.
Collapse
Affiliation(s)
- C Sanders
- Abt. Biophysik, Universität Osnabrück, Germany
| | | | | |
Collapse
|
73
|
Dekker C, Agianian B, Weik M, Zaccai G, Kroon J, Gros P, de Kruijff B. Biophysical characterization of the influence of salt on tetrameric SecB. Biophys J 2001; 81:455-62. [PMID: 11423428 PMCID: PMC1301525 DOI: 10.1016/s0006-3495(01)75713-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
SecB is a tetrameric chaperone, with a monomeric molecular mass of 17 kDa, that is involved in protein translocation in Escherichia coli. It has been hypothesized that SecB undergoes a conformational change as a function of the salt concentration. To gain more insight into the salt-dependent behavior of SecB, we studied the protein in solution by dynamic light scattering, size exclusion chromatography, analytical ultracentrifugation, and small angle neutron scattering. The results clearly demonstrate the large influence of the salt concentration on the behavior of SecB. At high salt concentration, SecB is a non-spherical protein with a radius of gyration of 3.4 nm. At low salt concentration the hydrodynamic radius of the protein is apparently decreased, whereas the ratio of the frictional coefficients is increased. The protein solution behaves in a non-ideal way at low salt concentrations, as was shown by the analytical ultracentrifugation data and a pronounced interparticle effect observed by small angle neutron scattering. A possible explanation is a change in surface charge distribution dependent on the salt concentration in the solvent. We summarize our data in a model for the salt-dependent conformation of tetrameric SecB.
Collapse
Affiliation(s)
- C Dekker
- Department Biochemistry of Membranes, Institute of Biomembranes, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
74
|
Harms N, Koningstein G, Dontje W, Muller M, Oudega B, Luirink J, de Cock H. The early interaction of the outer membrane protein phoe with the periplasmic chaperone Skp occurs at the cytoplasmic membrane. J Biol Chem 2001; 276:18804-11. [PMID: 11278858 DOI: 10.1074/jbc.m011194200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spheroplasts were used to study the early interactions of newly synthesized outer membrane protein PhoE with periplasmic proteins employing a protein cross-linking approach. Newly translocated PhoE protein could be cross-linked to the periplasmic chaperone Skp at the periplasmic side of the inner membrane. To study the timing of this interaction, a PhoE-dihydrofolate reductase hybrid protein was constructed that formed translocation intermediates, which had the PhoE moiety present in the periplasm and the dihydrofolate reductase moiety tightly folded in the cytoplasm. The hybrid protein was found to cross-link to Skp, indicating that PhoE closely interacts with the chaperone when the protein is still in a transmembrane orientation in the translocase. Removal of N-terminal parts of PhoE protein affected Skp binding in a cumulative manner, consistent with the presence of two Skp-binding sites in that region. In contrast, deletion of C-terminal parts resulted in variable interactions with Skp, suggesting that interaction of Skp with the N-terminal region is influenced by parts of the C terminus of PhoE protein. Both the soluble as well as the membrane-associated Skp protein were found to interact with PhoE. The latter form is proposed to be involved in the initial interaction with the N-terminal regions of the outer membrane protein.
Collapse
Affiliation(s)
- N Harms
- Department of Molecular Microbiology, Institute of Molecular Biological Sciences, Biocentrum Amsterdam, De Boelelaan 1087, Amsterdam 1081 HV, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
75
|
Thomas NA, Bardy SL, Jarrell KF. The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol Rev 2001; 25:147-74. [PMID: 11250034 DOI: 10.1111/j.1574-6976.2001.tb00575.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The archaeal flagellum is a unique motility apparatus distinct in composition and likely in assembly from the bacterial flagellum. Gene families comprised of multiple flagellin genes co-transcribed with a number of conserved, archaeal-specific accessory genes have been identified in several archaea. However, no homologues of any bacterial genes involved in flagella structure have yet been identified in any archaeon, including those archaea in which the complete genome sequence has been published. Archaeal flagellins possess a highly conserved hydrophobic N-terminal sequence that is similar to that of type IV pilins and clearly unlike that of bacterial flagellins. Also unlike bacterial flagellins but similar to type IV pilins, archaeal flagellins are initially synthesized with a short leader peptide that is cleaved by a membrane-located peptidase. With recent advances in genetic transfer systems in archaea, knockouts have been reported in several genes involved in flagellation in different archaea. In addition, techniques to isolate flagella with attached hook and anchoring structures have been developed. Analysis of these preparations is under way to identify minor structural components of archaeal flagella. This and the continued isolation and characterization of flagella mutants should lead to significant advances in our knowledge of the composition and assembly of archaeal flagella.
Collapse
Affiliation(s)
- N A Thomas
- Department of Microbiology and Immunology, Queen's University, Kingston, Ont. K7L 3N6, Canada
| | | | | |
Collapse
|
76
|
Py B, Loiseau L, Barras F. An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep 2001; 2:244-8. [PMID: 11266368 PMCID: PMC1083838 DOI: 10.1093/embo-reports/kve042] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The type II secretion machinery allows most Gram-negative bacteria to deliver virulence factors into their surroundings. We report that in Erwinia chrysanthemi, GspE (the putative NTPase), GspF, GspL and GspM constitute a complex in the inner membrane that is presumably used as a platform for assembling other parts of the secretion machinery. The GspE-GspF-GspL-GspM complex was demonstrated by two methods: (i) co-immunoprecipitation of GspE-GspF-GspL with antibodies raised against either GspE or GspF; (ii) interactions in the yeast two-hybrid system between GspF and GspE, GspF and GspL, GspL and GspM. GspL was found to have an essential role in complex formation. We propose a model in which the GspE-GspF-GspL-GspM proteins constitute a building block within the secretion machinery on top of which another building block, referred to as a pseudopilus, assembles. By analogy, we predict that a similar platform is required for the biogenesis of the type IV pilus.
Collapse
Affiliation(s)
- B Py
- Laboratoire de Chimie Bactérienne, IBSM, CNRS, 31 chemin Joseph Aiguier, Marseille Cedex 20, 13402, France.
| | | | | |
Collapse
|
77
|
Topping TB, Woodbury RL, Diamond DL, Hardy SJ, Randall LL. Direct demonstration that homotetrameric chaperone SecB undergoes a dynamic dimer-tetramer equilibrium. J Biol Chem 2001; 276:7437-41. [PMID: 11110800 DOI: 10.1074/jbc.m009584200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown here that the cytosolic bacterial chaperone SecB is a structural dimer of dimers that undergoes a dynamic equilibrium between dimer and tetramer in the native state. We demonstrated this equilibrium by mixing two tetrameric species of SecB that can be distinguished by size. We showed that the homotetrameric species exchanged dimers, because when the mixture was analyzed both by size exclusion chromatography and native polyacrylamide gel electrophoresis a third hybrid tetrameric species was detected. Furthermore, treatment of SecB with 5,5'-dithiobis-(2-nitrobenzoic acid), which modifies the sulfhydryl group on cysteines, caused irreversible dissociation to a dimer indicating that cysteine must be involved in the stabilizing interactions at the dimer interface. It is clear that the two dimer-dimer interfaces of the SecB tetramer are differentially stable. Dissociation at one interface allows for a dynamic dimer-tetramer equilibrium. Because only dimers were exchanged it is clear that the other interface between dimers is significantly more stable, otherwise oligomers should have formed with a random distribution of monomers.
Collapse
Affiliation(s)
- T B Topping
- School of Molecular Biosciences, Washington State University, Pullman 99164-4660, USA.
| | | | | | | | | |
Collapse
|
78
|
Herranz C, Cintas LM, Hernández PE, Moll GN, Driessen AJ. Enterocin P causes potassium ion efflux from Enterococcus faecium T136 cells. Antimicrob Agents Chemother 2001; 45:901-4. [PMID: 11181377 PMCID: PMC90390 DOI: 10.1128/aac.45.3.901-904.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterocin P is a bacteriocin produced by Enterococcus faecium P13. We studied the mechanism of its bactericidal action using enterocin-P-sensitive E. faecium T136 cells. The bacteriocin is incapable of dissipating the transmembrane pH gradient. On the other hand, depending on the buffer used, enterocin P dissipates the transmembrane potential. Enterocin P efficiently elicits efflux of potassium ions, but not of intracellularly accumulated anions like phosphate and glutamate. Taken together, these data demonstrate that enterocin P forms specific, potassium ion-conducting pores in the cytoplasmic membrane of target cells.
Collapse
Affiliation(s)
- C Herranz
- Departamento de Nutrición y Bromatología III, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | | | |
Collapse
|
79
|
de Cock H, Pasveer M, Tommassen J, Bouveret E. Identification of phospholipids as new components that assist in the in vitro trimerization of a bacterial pore protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:865-75. [PMID: 11168429 DOI: 10.1046/j.1432-1327.2001.01975.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The in vitro trimerization of folded monomers of the bacterial pore protein PhoE, into its native-like, heat- and SDS-stable form requires incubations with isolated cell envelopes and Triton X-100. The possibility that membranes could be isolated that are enriched in assembly factors required for assembly of the pore protein was now investigated. Fractionation of total cell envelopes of Escherichia coli via various techniques indeed revealed the existence of membrane fractions with different capacities to support assembly in vitro. Fractions containing mainly inner membrane vesicles supported the formation of trimers that were associated with these membrane vesicles. However, only a proportion of these trimers were heat- and SDS-stable and these were formed with slow kinetics. In contrast, fractions containing mainly outer membrane vesicles supported formation of high amounts of heat-stable trimers with fast kinetics. We identified phospholipids as active assembly components in these membranes that support trimerization of folded monomers in a process with similar characteristics as observed with inner membrane vesicles. Furthermore, phospholipids strongly stimulate the kinetics of trimerization and increase the final yield of heat-stable trimers in the context of outer membranes. We propose that lipopolysaccharides stabilize the assembly competent state of folded monomers as a lipochaperone. Phospholipids are involved in converting the folded monomer into new assembly competent intermediate with a short half-life that will form heat-stable trimers most efficiently in the context of outer membrane vesicles. These results provide biochemical evidence for the involvement of different lipidic components at distinct stages of the porin assembly process.
Collapse
Affiliation(s)
- H de Cock
- Molecular Microbiology and Institute of Biomembranes, Utrecht University, the Netherlands.
| | | | | | | |
Collapse
|
80
|
Gabriel K, Buchanan SK, Lithgow T. The alpha and the beta: protein translocation across mitochondrial and plastid outer membranes. Trends Biochem Sci 2001; 26:36-40. [PMID: 11165515 DOI: 10.1016/s0968-0004(00)01684-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the evolution of mitochondria and plastids from endosymbiotic bacteria, most of the proteins that make up these organelles have become encoded by nuclear genes and must therefore be transported across the organellar membranes, following synthesis in the cytosol. The core component of the protein translocation machines in both the mitochondrial and plastid outer membranes appears to be a beta-barrel protein, perhaps a relic from their bacterial ancestry, distinguishing these translocases from the alpha-helical-based protein translocation pores found in all other eukaryotic membranes.
Collapse
Affiliation(s)
- K Gabriel
- Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Parkville, 3010, Australia
| | | | | |
Collapse
|
81
|
|
82
|
Cintas LM, Casaus P, Herranz C, Hâvarstein LS, Holo H, Hernández PE, Nes IF. Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 2000; 182:6806-14. [PMID: 11073927 PMCID: PMC111425 DOI: 10.1128/jb.182.23.6806-6814.2000] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2000] [Accepted: 09/23/2000] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecium L50 grown at 16 to 32 degrees C produces enterocin L50 (EntL50), consisting of EntL50A and EntL50B, two unmodified non-pediocin-like peptides synthesized without an N-terminal leader sequence or signal peptide. However, the bacteriocin activity found in the cell-free culture supernatants following growth at higher temperatures (37 to 47 degrees C) is not due to EntL50. A purification procedure including cation-exchange, hydrophobic interaction, and reverse-phase liquid chromatography has shown that the antimicrobial activity is due to two different bacteriocins. Amino acid sequences obtained by Edman degradation and DNA sequencing analyses revealed that one is identical to the sec-dependent pediocin-like enterocin P produced by E. faecium P13 (L. M. Cintas, P. Casaus, L. S. Hâvarstein, P. E. Hernández, and I. F. Nes, Appl. Environ. Microbiol. 63:4321-4330, 1997) and the other is a novel unmodified non-pediocin-like bacteriocin termed enterocin Q (EntQ), with a molecular mass of 3,980. DNA sequencing analysis of a 963-bp region of E. faecium L50 containing the enterocin P structural gene (entP) and the putative immunity protein gene (entiP) reveals a genetic organization identical to that previously found in E. faecium P13. DNA sequencing analysis of a 1,448-bp region identified two consecutive but diverging open reading frames (ORFs) of which one, termed entQ, encodes a 34-amino-acid protein whose deduced amino acid sequence was identical to that obtained for EntQ by amino acid sequencing, showing that EntQ, similarly to EntL50A and EntL50B, is synthesized without an N-terminal leader sequence or signal peptide. The second ORF, termed orf2, was located immediately upstream of and in opposite orientation to entQ and encodes a putative immunity protein composed of 221 amino acids. Bacteriocin production by E. faecium L50 showed that EntP and EntQ are produced in the temperature range from 16 to 47 degrees C and maximally detected at 47 and 37 to 47 degrees C, respectively, while EntL50A and EntL50B are maximally synthesized at 16 to 25 degrees C and are not detected at 37 degrees C or above.
Collapse
Affiliation(s)
- L M Cintas
- Laboratory of Microbial Gene Technology, Department of Biotechnological Sciences, Agricultural University of Norway, N-1432 As, Norway.
| | | | | | | | | | | | | |
Collapse
|
83
|
Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J Bacteriol 2000. [PMID: 11073927 DOI: 10.1128/jb.182-23.6806-6814.2000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecium L50 grown at 16 to 32 degrees C produces enterocin L50 (EntL50), consisting of EntL50A and EntL50B, two unmodified non-pediocin-like peptides synthesized without an N-terminal leader sequence or signal peptide. However, the bacteriocin activity found in the cell-free culture supernatants following growth at higher temperatures (37 to 47 degrees C) is not due to EntL50. A purification procedure including cation-exchange, hydrophobic interaction, and reverse-phase liquid chromatography has shown that the antimicrobial activity is due to two different bacteriocins. Amino acid sequences obtained by Edman degradation and DNA sequencing analyses revealed that one is identical to the sec-dependent pediocin-like enterocin P produced by E. faecium P13 (L. M. Cintas, P. Casaus, L. S. Hâvarstein, P. E. Hernández, and I. F. Nes, Appl. Environ. Microbiol. 63:4321-4330, 1997) and the other is a novel unmodified non-pediocin-like bacteriocin termed enterocin Q (EntQ), with a molecular mass of 3,980. DNA sequencing analysis of a 963-bp region of E. faecium L50 containing the enterocin P structural gene (entP) and the putative immunity protein gene (entiP) reveals a genetic organization identical to that previously found in E. faecium P13. DNA sequencing analysis of a 1,448-bp region identified two consecutive but diverging open reading frames (ORFs) of which one, termed entQ, encodes a 34-amino-acid protein whose deduced amino acid sequence was identical to that obtained for EntQ by amino acid sequencing, showing that EntQ, similarly to EntL50A and EntL50B, is synthesized without an N-terminal leader sequence or signal peptide. The second ORF, termed orf2, was located immediately upstream of and in opposite orientation to entQ and encodes a putative immunity protein composed of 221 amino acids. Bacteriocin production by E. faecium L50 showed that EntP and EntQ are produced in the temperature range from 16 to 47 degrees C and maximally detected at 47 and 37 to 47 degrees C, respectively, while EntL50A and EntL50B are maximally synthesized at 16 to 25 degrees C and are not detected at 37 degrees C or above.
Collapse
|
84
|
Sarker S, Rudd KE, Oliver D. Revised translation start site for secM defines an atypical signal peptide that regulates Escherichia coli secA expression. J Bacteriol 2000; 182:5592-5. [PMID: 10986266 PMCID: PMC111006 DOI: 10.1128/jb.182.19.5592-5595.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The secretion-responsive regulation of Escherichia coli secA occurs by coupling its translation to the translation and secretion of an upstream regulator, secM (formerly geneX). We revise the translational start site for secM, defining a new signal peptide sequence with an extended amino-terminal region. Mutational studies indicate that certain atypical amino acyl residues within this extended region are critical for proper secA regulation.
Collapse
Affiliation(s)
- S Sarker
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | |
Collapse
|
85
|
Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 2000; 64:515-47. [PMID: 10974125 PMCID: PMC99003 DOI: 10.1128/mmbr.64.3.515-547.2000] [Citation(s) in RCA: 602] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One of the most salient features of Bacillus subtilis and related bacilli is their natural capacity to secrete a variety of proteins into their environment, frequently to high concentrations. This has led to the commercial exploitation of bacilli as major "cell factories" for secreted enzymes. The recent sequencing of the genome of B. subtilis has provided major new impulse for analysis of the molecular mechanisms underlying protein secretion by this organism. Most importantly, the genome sequence has allowed predictions about the composition of the secretome, which includes both the pathways for protein transport and the secreted proteins. The present survey of the secretome describes four distinct pathways for protein export from the cytoplasm and approximately 300 proteins with the potential to be exported. By far the largest number of exported proteins are predicted to follow the major "Sec" pathway for protein secretion. In contrast, the twin-arginine translocation "Tat" pathway, a type IV prepilin-like export pathway for competence development, and ATP-binding cassette transporters can be regarded as "special-purpose" pathways, through which only a few proteins are transported. The properties of distinct classes of amino-terminal signal peptides, directing proteins into the various protein transport pathways, as well as the major components of each pathway are discussed. The predictions and comparisons in this review pinpoint important differences as well as similarities between protein transport systems in B. subtilis and other well-studied organisms, such as Escherichia coli and the yeast Saccharomyces cerevisiae. Thus, they may serve as a lead for future research and applications.
Collapse
Affiliation(s)
- H Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
86
|
Hyyryläinen HL, Vitikainen M, Thwaite J, Wu H, Sarvas M, Harwood CR, Kontinen VP, Stephenson K. d-Alanine Substitution of Teichoic Acids as a Modulator of Protein Folding and Stability at the Cytoplasmic Membrane/Cell Wall Interface of Bacillus subtilis. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61432-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
87
|
Dapic V, Oliver D. Distinct membrane binding properties of N- and C-terminal domains of Escherichia coli SecA ATPase. J Biol Chem 2000; 275:25000-7. [PMID: 10835419 DOI: 10.1074/jbc.m001100200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA is a motor protein that drives protein translocation at the Escherichia coli translocon. SecA membrane binding has been shown to occur with high affinity at SecYE and low affinity at anionic phospholipids. To dissect SecA-membrane interaction with reference to SecA structure, the membrane binding properties of N- and C-terminal SecA domains, denoted SecA-N664 and SecA-619C, respectively, were characterized. Remarkably, only SecA-N664 bound to the membrane with high affinity, whereas SecA-619C bound with low affinity in a nonsaturable manner through partitioning with phospholipids. Moreover, SecA-N664 and SecA-619C associated with each other to reconstitute wild type binding affinity. Corroborative results were also obtained from membrane binding competition and subcellular fractionation studies along with binding studies to membranes prepared from strains overproducing SecYE protein. Together, these findings indicate that the specific interaction of SecA with SecYE occurs through its N-terminal domain and that the C-terminal domain, although important in SecA membrane cycling at a later stage of translocation, appears to initially assist SecA membrane binding by interaction with phospholipids. These results provide the first evidence for distinct membrane binding characteristics of the two SecA primary domains and their importance for optimal binding activity, and they are significant for understanding SecA dynamics at the translocon.
Collapse
Affiliation(s)
- V Dapic
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
88
|
Woodbury RL, Topping TB, Diamond DL, Suciu D, Kumamoto CA, Hardy SJ, Randall LL. Complexes between protein export chaperone SecB and SecA. Evidence for separate sites on SecA providing binding energy and regulatory interactions. J Biol Chem 2000; 275:24191-8. [PMID: 10807917 DOI: 10.1074/jbc.m002885200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During localization to the periplasmic space or to the outer membrane of Escherichia coli some proteins are dependent on binding to the cytosolic chaperone SecB, which in turn is targeted to the membrane by specific interaction with SecA, a peripheral component of the translocase. Five variant forms of SecB, previously demonstrated to be defective in mediating export in vivo (Gannon, P. M., and Kumamoto, C. A. (1993) J. Biol. Chem. 268, 1590-1595; Kimsey, H. K., Dagarag, M. D., and Kumamoto, C. A. (1995) J. Biol. Chem. 270, 22831-22835) were investigated with respect to their ability to bind SecA both in solution and at the membrane translocase. We present evidence that at least two regions of SecA are involved in the formation of active complexes with SecB. The variant forms of SecB were all capable of interacting with SecA in solution to form complexes with stability similar to that of complexes between SecA and wild-type SecB. However, the variant forms were defective in interaction with a separate region of SecA, which was shown to trigger a change that was correlated to activation of the complex. The region of SecA involved in activation of the complexes was defined as the extreme carboxyl-terminal 21 aminoacyl residues.
Collapse
Affiliation(s)
- R L Woodbury
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Weinglass AB, Kaback HR. The central cytoplasmic loop of the major facilitator superfamily of transport proteins governs efficient membrane insertion. Proc Natl Acad Sci U S A 2000; 97:8938-43. [PMID: 10880570 PMCID: PMC16800 DOI: 10.1073/pnas.140224497] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deletion of 5 residues (Delta5) from the central cytoplasmic loop of the lactose permease of Escherichia coli has no significant effect on expression or activity, whereas Delta12 leads to increased rates of permease turnover after membrane insertion and decreased transport activity, and Delta20 abolishes insertion and activity. By expressing Delta12 or Delta20 in two halves, both expression and activity are restored to levels approximating wild type. Replacing deleted residues with random hydrophilic amino acids also leads to full recovery. However, introduction of hydrophobic residues decreases expression and activity in a context-dependent manner. Thus, a minimum length of the central cytoplasmic loop is vital for proper insertion, stability, and efficient transport activity, because of constraints at the cytoplasmic ends of helices VI and VII. Furthermore, the results are consistent with the idea that the middle cytoplasmic loop provides a temporal delay between insertion of the first six helices into the membrane before insertion of the second six helices.
Collapse
Affiliation(s)
- A B Weinglass
- Howard Hughes Medical Institute, Departments of Physiology and Microbiology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1662, USA
| | | |
Collapse
|
90
|
Houben EN, Scotti PA, Valent QA, Brunner J, de Gier JL, Oudega B, Luirink J. Nascent Lep inserts into the Escherichia coli inner membrane in the vicinity of YidC, SecY and SecA. FEBS Lett 2000; 476:229-33. [PMID: 10913619 DOI: 10.1016/s0014-5793(00)01735-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Targeting and assembly of the Escherichia coli inner membrane protein leader peptidase (Lep) was studied using a homologous in vitro targeting/translocation assay. Assembly of full-length Lep was efficient in the co-translational presence of membrane vesicles and hardly occurred when membranes were added post-translationally. This is consistent with the signal recognition particle-dependent targeting of Lep. Crosslinking experiments showed that the hydrophilic region P1 of nascent membrane-inserted Lep 100-mer was in the vicinity of SecA and SecY, whereas the first transmembrane domain H1 was in the vicinity of YidC. These results suggested that YidC, together with the Sec translocase, functions in the assembly of Lep. YidC might be a more generic component in the assembly of inner membrane proteins.
Collapse
Affiliation(s)
- E N Houben
- Department of Microbiology, Institute of Molecular Biological Sciences, Biocentrum Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Protein translocation across the bacterial cytoplasmic membrane has been studied extensively in Escherichia coli. The identification of the components involved and subsequent reconstitution of the purified translocation reaction have defined the minimal constituents that allowed extensive biochemical characterization of the so-called translocase. This functional enzyme complex consists of the SecYEG integral membrane protein complex and a peripherally bound ATPase, SecA. Under translocation conditions, four SecYEG heterotrimers assemble into one large protein complex, forming a putative protein-conducting channel. This tetrameric arrangement of SecYEG complexes and the highly dynamic SecA dimer together form a proton-motive force- and ATP-driven molecular machine that drives the stepwise translocation of targeted polypeptides across the cytoplasmic membrane. Recent findings concerning the translocase structure and mechanism of protein translocation are discussed and shine new light on controversies in the field.
Collapse
Affiliation(s)
- E H Manting
- Department of Microbiology and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
92
|
Stathopoulos C, Hendrixson DR, Thanassi DG, Hultgren SJ, St Geme JW, Curtiss R. Secretion of virulence determinants by the general secretory pathway in gram-negative pathogens: an evolving story. Microbes Infect 2000; 2:1061-72. [PMID: 10967286 DOI: 10.1016/s1286-4579(00)01260-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Secretion of proteins by the general secretory pathway (GSP) is a two-step process requiring the Sec translocase in the inner membrane and a separate substrate-specific secretion apparatus for translocation across the outer membrane. Gram-negative bacteria with pathogenic potential use the GSP to deliver virulence factors into the extracellular environment for interaction with the host. Well-studied examples of virulence determinants using the GSP for secretion include extracellular toxins, pili, curli, autotransporters, and crystaline S-layers. This article reviews our current understanding of the GSP and discusses examples of terminal branches of the GSP which are utilized by factors implicated in bacterial virulence.
Collapse
Affiliation(s)
- C Stathopoulos
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
93
|
Matsumoto G, Homma T, Mori H, Ito K. A mutation in secY that causes enhanced SecA insertion and impaired late functions in protein translocation. J Bacteriol 2000; 182:3377-82. [PMID: 10852867 PMCID: PMC101897 DOI: 10.1128/jb.182.12.3377-3382.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cold-sensitive secY mutant (secY125) with an amino acid substitution in the first periplasmic domain causes in vivo retardation of protein export. Inverted membrane vesicles prepared from this mutant were as active as the wild-type membrane vesicles in translocation of a minute amount of radioactive preprotein. The mutant membrane also allowed enhanced insertion of SecA, and this SecA insertion was dependent on the SecD and SecF functions. These and other observations suggested that the early events in translocation, such as SecA-dependent insertion of the signal sequence region, is actually enhanced by the SecY125 alteration. In contrast, since the mutant membrane vesicles had decreased capacity to translocate chemical quantity of pro-OmpA and since they were readily inactivated by pretreatment of the vesicles under the conditions in which a pro-OmpA translocation intermediate once accumulated, the late translocation functions appear to be impaired. We conclude that this periplasmic secY mutation causes unbalanced early and late functions in translocation, compromising the translocase's ability to catalyze multiple rounds of reactions.
Collapse
Affiliation(s)
- G Matsumoto
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | |
Collapse
|
94
|
Schmidt M, Ding H, Ramamurthy V, Mukerji I, Oliver D. Nucleotide binding activity of SecA homodimer is conformationally regulated by temperature and altered by prlD and azi mutations. J Biol Chem 2000; 275:15440-8. [PMID: 10747939 DOI: 10.1074/jbc.m000605200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SecA ATPase is critical for protein translocation across the Escherichia coli inner membrane. To understand this activity further, the high affinity nucleotide binding activity of SecA was characterized. We found that at 4 degrees C SecA homodimer binds one ADP molecule with high affinity. This nucleotide binding activity was conformationally regulated by temperature: at low temperature SecA affinity for ADP was high with a slow exchange rate, whereas at high temperature the converse was true. Azi- and PrlD-SecA proteins that confer azide-resistant and signal sequence suppressor phenotypes were found to have reduced affinity for ADP and accelerated exchange rates compared with wild type SecA. Consistent with this observation, fluorescence and proteolysis studies indicated that these proteins had a conformationally relaxed state at a reduced temperature compared with SecA. The level of Azi- and PrlD-SecA protein was also elevated in inverted membrane vesicles where it displayed higher membrane ATPase activity. These results provide the first direct evidence for conformational regulation of the SecA-dependent nucleotide cycle, its alteration in azi and prlD mutants, and its relevance to in vivo protein export.
Collapse
Affiliation(s)
- M Schmidt
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | | | |
Collapse
|
95
|
van Geest M, Lolkema JS. Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol Mol Biol Rev 2000; 64:13-33. [PMID: 10704472 PMCID: PMC98984 DOI: 10.1128/mmbr.64.1.13-33.2000] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain structural information about membrane proteins. A critical step in the biosynthetic pathway leading to the folded protein in the membrane is its insertion into the lipid bilayer. Understanding of the fundamentals of the insertion and folding processes will significantly improve the methods used to predict the three-dimensional membrane protein structure from the amino acid sequence. In the first part of this review, biochemical approaches to elucidate membrane protein topology are reviewed and evaluated, and in the second part, the use of similar techniques to study membrane protein insertion is discussed. The latter studies search for signals in the polypeptide chain that direct the insertion process. Knowledge of the topogenic signals in the nascent chain of a membrane protein is essential for the evaluation of membrane topology studies.
Collapse
Affiliation(s)
- M van Geest
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
96
|
Manting EH, van Der Does C, Remigy H, Engel A, Driessen AJ. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J 2000; 19:852-61. [PMID: 10698927 PMCID: PMC305625 DOI: 10.1093/emboj/19.5.852] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translocase mediates preprotein translocation across the Escherichia coli inner membrane. It consists of the SecYEG integral membrane protein complex and the peripheral ATPase SecA. Here we show by functional assays, negative-stain electron microscopy and mass measurements with the scanning transmission microscope that SecA recruits SecYEG complexes to form the active translocation channel. The active assembly of SecYEG has a side length of 10.5 nm and exhibits an approximately 5 nm central cavity. The mass and structure of this SecYEG as well as the subunit stoichiometry of SecA and SecY in a soluble translocase-precursor complex reveal that translocase consists of the SecA homodimer and four SecYEG complexes.
Collapse
Affiliation(s)
- E H Manting
- Department of Microbiology, Groningen Biomolecular Sciences, Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
97
|
de Leeuw E, te Kaat K, Moser C, Menestrina G, Demel R, de Kruijff B, Oudega B, Luirink J, Sinning I. Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J 2000; 19:531-41. [PMID: 10675322 PMCID: PMC305591 DOI: 10.1093/emboj/19.4.531] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
FtsY, the Escherichia coli homologue of the eukaryotic signal recognition particle (SRP) receptor alpha-subunit, is located in both the cytoplasm and inner membrane. It has been proposed that FtsY has a direct targeting function, but the mechanism of its association with the membrane is unclear. FtsY is composed of two hydrophilic domains: a highly charged N-terminal domain (the A-domain) and a C-terminal GTP-binding domain (the NG-domain). FtsY does not contain any hydrophobic sequence that might explain its affinity for the inner membrane, and a membrane-anchoring protein has not been detected. In this study, we provide evidence that FtsY interacts directly with E.coli phospholipids, with a preference for anionic phospholipids. The interaction involves at least two lipid-binding sites, one of which is present in the NG-domain. Lipid association induced a conformational change in FtsY and greatly enhanced its GTPase activity. We propose that lipid binding of FtsY is important for the regulation of SRP-mediated protein targeting.
Collapse
Affiliation(s)
- E de Leeuw
- Department of Microbiology, Institute of Molecular Biological Sciences, Biocentrum Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Scotti PA, Urbanus ML, Brunner J, de Gier JW, von Heijne G, van der Does C, Driessen AJ, Oudega B, Luirink J. YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J 2000; 19:542-9. [PMID: 10675323 PMCID: PMC305592 DOI: 10.1093/emboj/19.4.542] [Citation(s) in RCA: 283] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Escherichia coli, both secretory and inner membrane proteins initially are targeted to the core SecYEG inner membrane translocase. Previous work has also identified the peripherally associated SecA protein as well as the SecD, SecF and YajC inner membrane proteins as components of the translocase. Here, we use a cross-linking approach to show that hydrophilic portions of a co-translationally targeted inner membrane protein (FtsQ) are close to SecA and SecY, suggesting that insertion takes place at the SecA/Y interface. The hydrophobic FtsQ signal anchor sequence contacts both lipids and a novel 60 kDa translocase-associated component that we identify as YidC. YidC is homologous to Saccharomyces cerevisiae Oxa1p, which has been shown to function in a novel export pathway at the mitochondrial inner membrane. We propose that YidC is involved in the insertion of hydrophobic sequences into the lipid bilayer after initial recognition by the SecAYEG translocase.
Collapse
Affiliation(s)
- P A Scotti
- Department of Microbiology, Institute of Molecular Biological Sciences, Biocentrum Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
van der Does C, Swaving J, van Klompenburg W, Driessen AJ. Non-bilayer lipids stimulate the activity of the reconstituted bacterial protein translocase. J Biol Chem 2000; 275:2472-8. [PMID: 10644701 DOI: 10.1074/jbc.275.4.2472] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the phospholipid requirement of the preprotein translocase in vitro, the Escherichia coli SecYEG complex was purified in a delipidated form using the detergent dodecyl maltoside. SecYEG was reconstituted into liposomes composed of defined synthetic phospholipids, and proteoliposomes were analyzed for their preprotein translocation and SecA translocation ATPase activity. The activity strictly required the presence of anionic phospholipids, whereas the non-bilayer lipid phosphatidylethanolamine was found stimulatory. The latter effect could also be induced by dioleoylglycerol, a lipid that adopts a non-bilayer conformation. Phosphatidylethanolamine derivatives that prefer the bilayer state were unable to stimulate translocation. In the absence of SecG, activity was reduced, but the phospholipid requirement was unaltered. Remarkably, non-bilayer lipids were found essential for the activity of the Bacillus subtilis SecYEG complex. Optimal activity required a mixture of anionic and non-bilayer lipids at concentrations that correspond to concentrations found in the natural membrane.
Collapse
Affiliation(s)
- C van der Does
- Department of Microbiology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | |
Collapse
|
100
|
McKiernan CJ, Friedlander M. The retinal rod Na(+)/Ca(2+),K(+) exchanger contains a noncleaved signal sequence required for translocation of the N terminus. J Biol Chem 1999; 274:38177-82. [PMID: 10608890 DOI: 10.1074/jbc.274.53.38177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinal rod Na(+)/Ca(2+),K(+) exchanger (RodX) is a polytopic membrane protein found in photoreceptor outer segments where it is the principal extruder of Ca(2+) ions during light adaptation. We have examined the role of the N-terminal 65 amino acids in targeting, translocation, and integration of the RodX using an in vitro translation/translocation system. cDNAs encoding human RodX and bovine RodX through the first transmembrane domain were correctly targeted and integrated into microsomal membranes; deletion of the N-terminal 65 amino acids (aa) resulted in a translation product that was not targeted or integrated. Deletion of the first 65 aa had no effect on membrane targeting of full-length RodX, but the N-terminal hydrophilic domain no longer translocated. Chimeric constructs encoding the first 65 aa of bovine RodX fused to globin were translocated across microsomal membranes, demonstrating that the sequence could function heterologously. Studies of fresh bovine retinal extracts demonstrated that the first 65 aa are present in the native protein. These data demonstrate that the first 65 aa of RodX constitute an uncleaved signal sequence required for the efficient membrane targeting and proper membrane integration of RodX.
Collapse
Affiliation(s)
- C J McKiernan
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|