51
|
Liu Y, Hu B, Xu Y, Bo J, Fan S, Wang J, Lu F. Improvement of the acid stability of Bacillus licheniformis alpha amylase by error-prone PCR. J Appl Microbiol 2012; 113:541-9. [DOI: 10.1111/j.1365-2672.2012.05359.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | | | | | - J.L. Wang
- College of Biotechnology; Tianjin University of Science & Technology; Tianjin; China
| | | |
Collapse
|
52
|
Presečki AV, Blažević ZF, Vasić-Rački Đ. Mathematical modeling of maize starch liquefaction catalyzed by α-amylases from Bacillus licheniformis: effect of calcium, pH and temperature. Bioprocess Biosyst Eng 2012; 36:117-26. [DOI: 10.1007/s00449-012-0767-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/01/2012] [Indexed: 11/24/2022]
|
53
|
Michel-Cuello C, Ortiz-Cerda I, Moreno-Vilet L, Grajales-Lagunes A, Moscosa-Santillán M, Bonnin J, González-Chávez MM, Ruiz-Cabrera M. Study of enzymatic hydrolysis of fructans from Agave salmiana characterization and kinetic assessment. ScientificWorldJournal 2012; 2012:863432. [PMID: 22629216 PMCID: PMC3354743 DOI: 10.1100/2012/863432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/18/2012] [Indexed: 12/30/2022] Open
Abstract
Fructans were extracted from Agave salmiana juice, characterized and subjected to hydrolysis process using a commercial inulinase preparation acting freely. To compare the performance of the enzymatic preparation, a batch of experiments were also conducted with chicory inulin (reference). Hydrolysis was performed for 6 h at two temperatures (50, 60 °C) and two substrate concentrations (40, 60 mg/ml). Hydrolysis process was monitored by measuring the sugars released and residual substrate by HPLC. A mathematical model which describes the kinetics of substrate degradation as well as fructose production was proposed to analyze the hydrolysis assessment. It was found that kinetics were significantly influenced by temperature, substrate concentration, and type of substrate (P < 0.01). The extent of substrate hydrolysis varied from 82 to 99%. Hydrolysis product was mainly constituted of fructose, obtaining from 77 to 96.4% of total reducing sugars.
Collapse
Affiliation(s)
- Christian Michel-Cuello
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, Avenida Dr Manuel Nava No 6, Zona Universitaria, 78210 San Luis Potosí, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 2011; 16:1-19. [PMID: 22080280 DOI: 10.1007/s00792-011-0402-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/05/2011] [Indexed: 01/05/2023]
Abstract
Acidophiles are ecologically and economically important group of microorganisms, which thrive in acidic natural (solfataric fields, sulfuric pools) as well as artificial man-made (areas associated with human activities such as mining of coal and metal ores) environments. They possess networked cellular adaptations to regulate pH inside the cell. Several extracellular enzymes from acidophiles are known to be functional at much lower pH than the cytoplasmic pH. Enzymes like amylases, proteases, ligases, cellulases, xylanases, α-glucosidases, endoglucanases, and esterases stable at low pH are known from various acidophilic microbes. The possibility of improving them by genetic engineering and directed evolution will further boost their industrial applications. Besides biocatalysts, other biomolecules such as plasmids, rusticynin, and maltose-binding protein have also been reported from acidophiles. Some strategies for circumventing the problems encountered in expressing genes encoding proteins from extreme acidophiles have been suggested. The investigations on the analysis of crystal structures of some acidophilic proteins have thrown light on their acid stability. Attempts are being made to use thermoacidophilic microbes for biofuel production from lignocellulosic biomass. The enzymes from acidophiles are mainly used in polymer degradation.
Collapse
|
55
|
Santa-Maria MC, Yencho CG, Haigler CH, Thompson WF, Kelly RM, Sosinski B. Starch self-processing in transgenic sweet potato roots expressing a hyperthermophilic α-amylase. Biotechnol Prog 2011; 27:351-9. [PMID: 21365786 DOI: 10.1002/btpr.573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 10/12/2010] [Indexed: 11/08/2022]
Abstract
Sweet potato is a major crop in the southeastern United States, which requires few inputs and grows well on marginal land. It accumulates large quantities of starch in the storage roots and has been shown to give comparable or superior ethanol yields to corn per cultivated acre in the southeast. Starch conversion to fermentable sugars (i.e., for ethanol production) is carried out at high temperatures and requires the action of thermostable and thermoactive amylolytic enzymes. These enzymes are added to the starch mixture impacting overall process economics. To address this shortcoming, the gene encoding a hyperthermophilic α-amylase from Thermotoga maritima was cloned and expressed in transgenic sweet potato, generated by Agrobacterium tumefaciens-mediated transformation, to create a plant with the ability to self-process starch. No significant enzyme activity could be detected below 40°C, but starch in the transgenic sweet potato storage roots was readily hydrolyzed at 80°C. The transgene did not affect normal storage root formation. The results presented here demonstrate that engineering plants with hyperthermophilic glycoside hydrolases can facilitate cost effective starch conversion to fermentable sugars. Furthermore, the use of sweet potato as an alternative near-term energy crop should be considered.
Collapse
Affiliation(s)
- Monica C Santa-Maria
- Department of Horticultural Science, North Carolina State University, Box 7609, Raleigh, NC 27695, USA
| | | | | | | | | | | |
Collapse
|
56
|
Kumar P, Satyanarayana T. Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 2009; 29:225-55. [DOI: 10.1080/07388550903136076] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
57
|
A 70-kDa molecular chaperone, DnaK, from the industrial bacterium Bacillus licheniformis: gene cloning, purification and molecular characterization of the recombinant protein. Indian J Microbiol 2009; 49:151-60. [PMID: 23100764 DOI: 10.1007/s12088-009-0029-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/27/2008] [Indexed: 12/24/2022] Open
Abstract
The heat shock protein 70 (Hsp70/DnaK) gene of Bacillus licheniformis is 1,839 bp in length encoding a polypeptide of 612 amino acid residues. The deduced amino acid sequence of the gene shares high sequence identity with other Hsp70/DnaK proteins. The characteristic domains typical for Hsps/DnaKs are also well conserved in B. licheniformis DnaK (BlDnaK). BlDnaK was overexpressed in Escherichia coli using pQE expression system and the recombinant protein was purified to homogeneity by nickel-chelate chromatography. The optimal temperature for ATPase activity of the purified BlDnaK was 40°C in the presence of 100 mM KCl. The purified BlDnaK had a V(max) of 32.5 nmol Pi/min and a K(M) of 439 μM. In vivo, the dnaK gene allowed an E. coli dnaK756-ts mutant to grow at 44°C, suggesting that BlDnaK should be functional for survival of host cells under environmental changes especially higher temperature. We also described the use of circular dichroism to characterize the conformation change induced by ATP binding. Binding of ATP was not accompanied by a net change in secondary structure, but ATP together with Mg(2+) and K(+) ions had a greater enhancement in the stability of BlDnaK at stress temperatures. Simultaneous addition of DnaJ, GrpE, and NR-peptide (NRLLLTG) synergistically stimulates the ATPase activity of BlDnaK by 11.7-fold.
Collapse
|
58
|
Characterization of a Neutral and Thermostable Glucoamylase from the Thermophilic Mold Thermomucor indicae-seudaticae: Activity, Stability, and Structural Correlation. Appl Biochem Biotechnol 2009; 160:879-90. [DOI: 10.1007/s12010-009-8666-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 05/04/2009] [Indexed: 11/26/2022]
|
59
|
Botella C, Diaz AB, Wang R, Koutinas A, Webb C. Particulate bioprocessing: A novel process strategy for biorefineries. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Mathematical modeling of maltose hydrolysis in different types of reactor. Bioprocess Biosyst Eng 2009; 33:299-307. [DOI: 10.1007/s00449-009-0324-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
|
61
|
Kelly RM, Dijkhuizen L, Leemhuis H. Starch and alpha-glucan acting enzymes, modulating their properties by directed evolution. J Biotechnol 2009; 140:184-93. [PMID: 19428713 DOI: 10.1016/j.jbiotec.2009.01.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 01/29/2009] [Indexed: 11/25/2022]
Abstract
Starch is the major food reserve in plants and forms a large part of the daily calorie intake in the human diet. Industrially, starch has become a major raw material in the production of various products including bio-ethanol, coating and anti-staling agents. The complexity and diversity of these starch based industries and the demand for high quality end products through extensive starch processing, can only be met through the use of a broad range of starch and alpha-glucan modifying enzymes. The economic importance of these enzymes is such that the starch industry has grown to be the largest market for enzymes after the detergent industry. However, as the starch based industries expand and develop the demand for more efficient enzymes leading to lower production cost and higher quality products increases. This in turn stimulates interest in modifying the properties of existing starch and alpha-glucan acting enzymes through a variety of molecular evolution strategies. Within this review we examine and discuss the directed evolution strategies applied in the modulation of specific properties of starch and alpha-glucan acting enzymes and highlight the recent developments in the field of directed evolution techniques which are likely to be implemented in the future engineering of these enzymes.
Collapse
Affiliation(s)
- Ronan M Kelly
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
62
|
McDaniel A, Fuchs E, Liu Y, Ford C. Directed evolution of Aspergillus niger glucoamylase to increase thermostability. Microb Biotechnol 2008; 1:523-31. [PMID: 21261873 PMCID: PMC3815294 DOI: 10.1111/j.1751-7915.2008.00055.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 07/01/2008] [Indexed: 11/30/2022] Open
Abstract
Using directed evolution and site-directed mutagenesis, we have isolated a highly thermostable variant of Aspergillus niger glucoamylase (GA), designated CR2-1. CR2-1 includes the previously described mutations Asn20Cys and Ala27Cys (forming a new disulfide bond), Ser30Pro, Thr62Ala, Ser119Pro, Gly137Ala, Thr290Ala, His391Tyr and Ser436Pro. In addition, CR2-1 includes several new putative thermostable mutations, Val59Ala, Val88Ile, Ser211Pro, Asp293Ala, Thr390Ser, Tyr402Phe and Glu408Lys, identified by directed evolution. CR2-1 GA has a catalytic efficiency (k(cat)/K(m)) at 35°C and a specific activity at 50°C similar to that of wild-type GA. Irreversible inactivation tests indicated that CR2-1 increases the free energy of thermoinactivation at 80°C by 10 kJ mol(-1) compared with that of wild-type GA. Thus, CR2-1 is more thermostable (by 5 kJ mol(-1) at 80°C) than the most thermostable A. niger GA variant previously described, THS8. In addition, Val59Ala and Glu408Lys were shown to individually increase the thermostability in GA variants by 1 and 2 kJ mol(-1), respectively, at 80°C.
Collapse
Affiliation(s)
| | | | | | - Clark Ford
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
63
|
Liu YH, Lu FP, Li Y, Wang JL, Gao C. Acid stabilization of Bacillus licheniformis alpha amylase through introduction of mutations. Appl Microbiol Biotechnol 2008; 80:795-803. [DOI: 10.1007/s00253-008-1580-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
|
64
|
Gibbs PR, Uehara CS, Neunert U, Bommarius AS. Accelerated Biocatalyst Stability Testing for Process Optimization. Biotechnol Prog 2008; 21:762-74. [PMID: 15932254 DOI: 10.1021/bp049609k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The deactivation of protein biocatalysts even at relatively low temperatures is one of the principal drawbacks to their use. To aid in the development of novel biocatalysts, we have derived an equation for both time- and temperature-dependent activity of the biocatalyst based on known concepts such as transition state theory and the Lumry-Eyring model. We then derived an analytical solution for the total turnover number (ttn), under isothermal operation, as a function of the catalytic constant kcat, the unfolding equilibrium constant K, and the intrinsic first-order deactivation rate constant(s) k(d,i). Employing an immobilized glucose isomerase biocatalyst in a CSTR and utilizing a linear temperature ramp beyond the Tm of the enzyme, we demonstrate an accelerated method for extracting the thermodynamic and kinetic constants describing the biocatalyst system. In addition, we demonstrate that the predicted biocatalyst behavior at different temperatures and reaction times is consistent with the experimental observations.
Collapse
Affiliation(s)
- Phillip R Gibbs
- School of Chemical and Biomolecular Engineering, Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332-0363, USA
| | | | | | | |
Collapse
|
65
|
Kumar P, Satyanarayana T. Overproduction of glucoamylase by a deregulated mutant of a thermophilic mould Thermomucor indicae-seudaticae. Appl Biochem Biotechnol 2008; 158:113-25. [PMID: 18769880 DOI: 10.1007/s12010-008-8342-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 08/06/2008] [Indexed: 11/29/2022]
Abstract
Thermomucor indicae-seudaticae, a glucoamylase-producing thermophilic mould, was mutagenised using nitrous acid and gamma ((60)Co) irradiation in a sequential manner to isolate deregulated mutants for enhanced production of glucoamylase. The mutants were isolated on Emerson YpSs agar containing a non-metabolisable glucose analogue 2-deoxy-D-glucose (2-DG) for selection. The preliminary screening for glucoamylase production using starch-iodine plate assay followed by quantitative confirmation in submerged fermentation permitted the isolation of several variants showing varying levels of derepression and glucoamylase secretion. The mutant strain T. indicae-seudaticae CR19 was able to grow in the presence of 0.5 g l(-1) 2-DG and produced 1.8-fold higher glucoamylase. As with the parent strain, glucoamylase production by T. indicae-seudaticae CR19 in 250-ml Erlenmeyer flasks attained a peak in 48 h of fermentation, showing higher glucoamylase productivity (0.67 U ml(-1) h(-1)) than the former (0.375 U ml(-1) h(-1)). A large-scale cultivation in 5-l laboratory bioreactor confirmed similar fermentation profiles, though the glucoamylase production peak was attained within 36 h attributable to the better control of process parameters. Although the mutant grew slightly slow in the presence of 2-DG and exhibited less sporulation, it showed faster growth on normal Emerson medium with a higher specific growth rate (0.138 h(-1)) compared to the parent strain (0.123 h(-1)). The glucoamylase produced by both strains was optimally active at 60 degrees C and pH 7.0 and displayed broad substrate specificity by cleaving alpha-1,4- and alpha-1,6-glycosidic linkages in starch, amylopectin, amylose and pullulan. Improved productivity and higher specific growth rate make T. indicae-seudaticae CR19 a useful strain for glucoamylase production.
Collapse
Affiliation(s)
- Pardeep Kumar
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
66
|
Characterisation of mutagenised acid-resistant alpha-amylase expressed in Bacillus subtilis WB600. Appl Microbiol Biotechnol 2008; 78:85-94. [DOI: 10.1007/s00253-007-1287-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 11/11/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
|
67
|
Functional-genomics-based identification and characterization of open reading frames encoding alpha-glucoside-processing enzymes in the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 2007; 74:1281-3. [PMID: 18156337 DOI: 10.1128/aem.01920-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bioinformatics analysis and transcriptional response information for Pyrococcus furiosus grown on alpha-glucans led to the identification of a novel isomaltase (PF0132) representing a new glycoside hydrolase (GH) family, a novel GH57 beta-amylase (PF0870), and an extracellular starch-binding protein (1,141 amino acids; PF1109-PF1110), in addition to several other putative alpha-glucan-processing enzymes.
Collapse
|
68
|
Production of raw starch-saccharifying thermostable and neutral glucoamylase by the thermophilic mold Thermomucor indicae-seudaticae in submerged fermentation. Appl Biochem Biotechnol 2007; 142:221-30. [PMID: 18025583 DOI: 10.1007/s12010-007-0011-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 07/20/2006] [Accepted: 07/24/2006] [Indexed: 10/23/2022]
Abstract
Among physical and nutritional parameters optimized by "one variable at a time" approach, four cultural variables (sucrose, MgSO4 .7H2O, inoculum size, and incubation period) significantly affected glucoamylase production. These variables were, therefore, selected for optimization using response surface methodology. The p-values of the coefficients for linear effect of sucrose and inoculum size were less than 0.0001, suggesting them to be the key experimental variables in glucoamylase production. The enzyme production (34 U/ml) attained under optimized conditions (sucrose, 2%; MgSO4 .7H2O, 0.13%; yeast extract, 0.1%; inoculum size, 5 x 10(6) spores per 50 ml production medium; incubation time, 48 h; temperature, 40 degrees C; and pH 7.0) was comparable with the value predicted by polynomial model (34.2 U/ml). An over all 3.1-fold higher enzyme titers were attained due to response surface optimization. The experimental model was validated by carrying out glucoamylase production in shake flasks of increasing capacity (0.25-2.0 l) and 22-l laboratory bioreactors (stirred tank and airlift), where the enzyme production was sustainable. Furthermore, the fermentation time was reduced from 48 h in shake flasks to 32 h in bioreactors.
Collapse
|
69
|
Kumar P, Satyanarayana T. Economical glucoamylase production by alginate-immobilized Thermomucor indicae-seudaticae in cane molasses medium. Lett Appl Microbiol 2007; 45:392-7. [PMID: 17897381 DOI: 10.1111/j.1472-765x.2007.02201.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS The present investigation is aimed at assessing the suitability of cane molasses as a cheaper carbon and energy source for glucoamylase production using alginate-immobilized Thermomucor indicae-seudaticae. METHODS AND RESULTS The culture variables for glucoamylase production were optimized by 'one-variable-at-a-time' strategy and response surface methodology (RSM). A high glucoamylase titre was attained when 40 alginate beads (c. 5x10(6) immobilized spores) were used to inoculate 50 ml of cane molasses (8%) medium in 250-ml Erlenmeyer flasks. Response surface optimization of fermentation parameters (cane molasses 7%, inoculum level 44 alginate beads per 50 ml of medium and ammonium nitrate 0.25%) resulted in 1.8-fold higher glucoamylase production (27 U ml(-1)) than that in the unoptimized medium (15 U ml(-1)). Enzyme production was also sustainable in 22 l of laboratory air-lift bioreactor. CONCLUSIONS Cane molasses served as an excellent carbon and energy source for the economical production of glucoamylase, which was almost comparable with that in sucrose yeast-extract broth. The statistical model developed using RSM allowed determination of optimum levels of the variables for improving glucoamylase production. SIGNIFICANCE AND IMPACT OF THE STUDY The cost of glucoamylase produced in cane molasses supplemented with ammonium nitrate was considerably lower (euro1.43 per million U) than in synthetic medium containing sucrose and yeast-extract (euro35.66 per million U). The reduction in fermentation time in air-lift bioreactor with sustainable glucoamylase titres suggested the feasibility of scale up of the process.
Collapse
Affiliation(s)
- P Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, India
| | | |
Collapse
|
70
|
Kumar P, Satyanarayana T. Optimization of culture variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods. BIORESOURCE TECHNOLOGY 2007; 98:1252-9. [PMID: 16806908 DOI: 10.1016/j.biortech.2006.05.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/02/2006] [Accepted: 05/06/2006] [Indexed: 05/10/2023]
Abstract
Alginate-entrapped sporangiospores of Thermomucor indicae-seudaticae were used for the production of glucoamylase. The critical variables that affected glucoamylase production were identified by Plackett-Burman design (sucrose, yeast-extract, K(2)HPO(4) and asparagine) and further optimized by using a four factor central composite design (CCD) of response surface methodology (RSM). Immobilized sporangiospores secreted 41% and 60% higher glucoamylase titers in shake flasks and airlift fermenter, respectively, when the variables were used at their optimum levels (sucrose 3.0%, yeast-extract 0.2%, K(2)HPO(4) 0.1% and asparagine 0.35%). Glucoamylase production (26.3 U ml(-1)) in the optimized medium was in good agreement with the values predicted by the quadratic model (26.7 U ml(-1)), thereby confirming its validity. The enzyme production was sustainable in flasks of higher volume and also airlift fermenter, and attained a peak within 32 h in the fermenter as compared to that of 48 h in shake flasks.
Collapse
Affiliation(s)
- Pardeep Kumar
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | |
Collapse
|
71
|
Synowiecki J, Grzybowska B, Zdziebło A. Sources, Properties and Suitability of New Thermostable Enzymes in Food Processing. Crit Rev Food Sci Nutr 2007; 46:197-205. [PMID: 16527752 DOI: 10.1080/10408690590957296] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Investigations concerning recombinant a-amylases from Pyrococcus woesei and thermostable a-glucosidase from Thermus thermophilus indicate their suitability for starch processing. Furthermore, the study of recombinant ss-galactosidase from Pyrococcus woesei suitable for purpose of low lactose milk and whey production are also presented. The activity of this enzyme in a wide pH range of 4.3-6.6 and high thermostability suggests that it can be used for processing of dairy products at temperatures which restrict microbial growth during a long operating time of continuous-flow reactor with an immobilized enzyme system. Preparation of recombinant a-amylase and ss-galactosidase was facilitated by cloning and expression of genes from Pyrococcus woesei in Escherichia coli host. Satisfactory level of recombinant enzymes purification was achieved by thermal precipitation of native proteins originated from Escherichia coli. The obtained a-amylase has maximal activity at pH 5.6 and 93 degrees C. The half-life of this preparation (pH 5.6) at 90 degrees C and 110 degrees C was 11 h and 3.5 h, respectively, and retained 24% of residual activity following incubation for 2 h at 120 degrees C. An advantageous attribute of recombinant a -amylase is independence of its activity and stability on calcium salt. a-Glucosidase from Thermus thermophilus also not require metal ions for stability and retained about 80% of maximal activity at pH range 5.8-6.9. Thus, this enzyme can be used together with recombinant a-amylase.
Collapse
Affiliation(s)
- Józef Synowiecki
- Department of Food Chemistry, Technology and Biotechnology, Chemical Faculty, Gdansk University of Technology, ul. Gabriela Narutowicza 11/12, 80-952, Gdansk, Poland.
| | | | | |
Collapse
|
72
|
Koutinas AA, Arifeen N, Wang R, Webb C. Cereal-based biorefinery development: Integrated enzyme production for cereal flour hydrolysis. Biotechnol Bioeng 2007; 97:61-72. [PMID: 17009318 DOI: 10.1002/bit.21206] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Restructuring the traditional fermentation industry into viable biorefineries for the production of fuels, chemicals and plastics is essential in order to replace (petro)chemical processing. This work presents engineering aspects of Aspergillus awamori submerged fermentation for on-site production of an enzymatic consortium that contains glucoamylase, protease and phosphatase. The crude broth filtrate was used for the production of wheat flour hydrolysates. Improvements on traditional starch hydrolysis carried out in two stages (liquefaction and saccharification) were attempted through integration of unit operations and reduction of processing temperature and reaction duration. An initial increase of temperature to 68 degrees C and a subsequent decrease to 60 degrees C for the rest of the enzymatic hydrolysis resulted in a starch to glucose conversion yield of 94 and 92% when a wheat flour concentration and commercial starch concentration of 225 g L(-1) was used, respectively. The use of crude broth filtrates resulted in the simultaneous hydrolysis of wheat protein and phytic acid, as was indicated by the increase in free amino nitrogen and phosphorus concentration, respectively.
Collapse
Affiliation(s)
- A A Koutinas
- Satake Centre for Grain Process Engineering, School of Chemical Engineering and Analytical Science, The University of Manchester, PO Box 88, Manchester, M60 1QD, United Kingdom
| | | | | | | |
Collapse
|
73
|
Wang Y, Fuchs E, da Silva R, McDaniel A, Seibel J, Ford C. Improvement ofAspergillus niger Glucoamylase Thermostability by Directed Evolution. STARCH-STARKE 2006. [DOI: 10.1002/star.200600493] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
74
|
Kumar P, Satyanarayana T. Production of thermostable and neutral glucoamylase using immobilized Thermomucor indicae-seudaticae. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9253-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
75
|
Dung NTP, Rombouts FM, Nout MJR. Functionality of selected strains of moulds and yeasts from Vietnamese rice wine starters. Food Microbiol 2006; 23:331-40. [PMID: 16943022 DOI: 10.1016/j.fm.2005.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 04/23/2005] [Accepted: 05/18/2005] [Indexed: 11/30/2022]
Abstract
The role of starch-degrading mycelial fungi, and the alcohol production and ethanol tolerance of the yeasts isolated from selected Vietnamese traditional rice wine starters were examined, and optimum conditions for these essential steps in rice wine fermentation were determined. Of pure isolates from Vietnamese rice wine starters, mould strains identified as Amylomyces rouxii, Amylomyces aff. rouxii, Rhizopus oligosporus and Rhizopus oryzae, were superior in starch degradation, glucose production and amyloglucosidase activity during the saccharification of purple glutinous rice. A. rouxii was able to produce up to 25%w/w glucose with an amyloglucosidase activity up to 0.6 Ug(-1) of fermented moulded mass. Five yeast isolates identified as Saccharomyces cerevisiae were selected for their superior alcohol productivity. They were able to deplete a relatively high initial percentage of glucose (20% w/v), forming 8.8% w/v ethanol. The ethanol tolerance of S. cerevisiae in challenge tests was 9-10% w/v, and 13.4% w/v as measured in fed-batch fermentations. Optimum conditions for the saccharification were: incubation for 2 d at 34 degrees C, of steamed rice inoculated with 5 log cfu g(-1); for the alcoholic fermentation 4 d at 28.3 degrees C, of saccharified rice liquid inoculated with 5.5 log cfu mL(-1).
Collapse
Affiliation(s)
- N T P Dung
- Biotechnology Research and Development Institute, Can Tho University, Can Tho City, Vietnam
| | | | | |
Collapse
|
76
|
Heng C, Chen Z, Du L, Lu F. Expression and Secretion of an Acid-Stable α-Amylase Gene in Bacillus Subtilis by SacB Promoter and Signal Peptide. Biotechnol Lett 2005; 27:1731-7. [PMID: 16247683 DOI: 10.1007/s10529-005-2743-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
Alpha amylase gene from Bacillus licheniformis was mutated by site-directed mutagenesis to improve its acid stability. The mutant gene was expression in Bacillus subtilis under the control of the promoter of sacB gene which was followed by either the alpha-amylase leader peptide of Bacillus licheniformis or the signal peptide sequence of sacB gene of Bacillus subtilis. Both peptides efficiently directed the secretion of alpha-amylase from the recombinant B. subtilis cells. The extracellular alpha-amylase activities in two recombinants were 1001 and 2012 U ml(-1), respectively. The purity of the recombinant product was confirmed by SDS-PAGE.
Collapse
Affiliation(s)
- Cai Heng
- Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300222, Tianjin, PR China.
| | | | | | | |
Collapse
|
77
|
Antranikian G, Vorgias CE, Bertoldo C. Extreme environments as a resource for microorganisms and novel biocatalysts. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 96:219-62. [PMID: 16566093 DOI: 10.1007/b135786] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The steady increase in the number of newly isolated extremophilic microorganisms and the discovery of their enzymes by academic and industrial institutions underlines the enormous potential of extremophiles for application in future biotechnological processes. Enzymes from extremophilic microorganisms offer versatile tools for sustainable developments in a variety of industrial application as they show important environmental benefits due to their biodegradability, specific stability under extreme conditions, improved use of raw materials and decreased amount of waste products. Although major advances have been made in the last decade, our knowledge of the physiology, metabolism, enzymology and genetics of this fascinating group of extremophilic microorganisms and their related enzymes is still limited. In-depth information on the molecular properties of the enzymes and their genes, however, has to be obtained to analyze the structure and function of proteins that are catalytically active around the boiling and freezing points of water and extremes of pH. New techniques, such as genomics, metanogenomics, DNA evolution and gene shuffling, will lead to the production of enzymes that are highly specific for countless industrial applications. Due to the unusual properties of enzymes from extremophiles, they are expected to optimize already existing processes or even develop new sustainable technologies.
Collapse
Affiliation(s)
- Garabed Antranikian
- Institute of Technical Microbiology, Technical University Hamburg-Harburg, Kasernenstrasse 12, 21073 Hamburg, Germany.
| | | | | |
Collapse
|
78
|
Marini I. Discovering an accessible enzyme: Salivary α-amylase : Prima digestio fit in ore: A didactic approach for high school students. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 33:112-116. [PMID: 21638556 DOI: 10.1002/bmb.2005.494033022439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Human salivary α-amylase is used in this experimental approach to introduce biology high school students to the concept of enzyme activity in a dynamic way. Through a series of five easy, rapid, and inexpensive laboratory experiments students learn what the activity of an enzyme consists of: first in a qualitative then in a semi-quantitative way. They also learn how some environmental effectors can influence it. The choice of a "human body" enzyme and not an anonymous commercial enzyme is a very attractive one for students. This laboratory approach will be integrated with theoretical knowledge about α-amylase, starch, their physiological meaning, and biotechnological applications.
Collapse
Affiliation(s)
- Isabella Marini
- Dipartimento di Fisiologia e Biochimica, Sezione di Biochimica, Università di Pisa, Via S. Zeno, 51, 56127 Pisa, Italy; Liceo Scientifico "Ulisse Dini," via B. Croce, 36, 56125 Pisa, Italy; and Scuola di Specializzazione per l'Insegnamento Secondario (SSIS), Toscana-Sede Università di Pisa, via Possenti, 18, 56121 Pisa, Italy.
| |
Collapse
|
79
|
Sørensen JF, Kragh KM, Sibbesen O, Delcour J, Goesaert H, Svensson B, Tahir TA, Brufau J, Perez-Vendrell AM, Bellincampi D, D'Ovidio R, Camardella L, Giovane A, Bonnin E, Juge N. Potential role of glycosidase inhibitors in industrial biotechnological applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:275-87. [PMID: 14871668 DOI: 10.1016/j.bbapap.2003.09.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Accepted: 09/30/2003] [Indexed: 10/26/2022]
Abstract
The nutrient content of food and animal feed may be improved through new knowledge about enzymatic changes in complex carbohydrates. Enzymatic hydrolysis of complex carbohydrates containing alpha or beta glycosidic bonds is very important in nutrition and in several technological processes. These enzymes are called glycosidases (Enzyme Class 3.2.1) and include amylases, pectinases and xylanases. They are present in many foods such as cereals, but their microbial analogues are often produced and added in many food processes, for instance to improve the shelf-life of bakery products, clear beer, produce glucose, fructose or dextrins, hydrolyse lactose, modify food pectins, or improve processes. However, many plant foods also contain endogenous inhibitors, which reduce the activity of glycosidases, in particular, proteins, peptides, complexing agents and phenolic compounds. The plant proteinaceous inhibitors of glycosidases are in focus in this review whose objective is to report the effect and implications of these inhibitors in industrial processes and applications. These studies will contribute to the optimisation of industrial processes by using modified enzymes not influenced by the natural inhibitors. They will also allow careful selection of raw material and reaction conditions, and future development of new genetic varieties low in inhibitors. These are all new and very promising concepts for the food and feed sector.
Collapse
Affiliation(s)
- Jens Frisbaek Sørensen
- Section Enzyme Development, Danisco Cultor A/S, Edwin Rahrsvej 38, DK-8220 Brabrand, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Roy I, Gupta MN. Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzyme Microb Technol 2004. [DOI: 10.1016/j.enzmictec.2003.07.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
81
|
Bandlish RK, Michael Hess J, Epting KL, Vieille C, Kelly RM. Glucose-to-fructose conversion at high temperatures with xylose (glucose) isomerases from Streptomyces murinus and two hyperthermophilic Thermotoga species. Biotechnol Bioeng 2002; 80:185-94. [PMID: 12209774 DOI: 10.1002/bit.10362] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The conversion of glucose to fructose at elevated temperatures, as catalyzed by soluble and immobilized xylose (glucose) isomerases from the hyperthermophiles Thermotoga maritima (TMGI) and Thermotoga neapolitana 5068 (TNGI) and from the mesophile Streptomyces murinus (SMGI), was examined. At pH 7.0 in the presence of Mg(2+), the temperature optima for the three soluble enzymes were 85 degrees C (SMGI), 95 degrees to 100 degrees C (TNGI), and >100 degrees C (TMGI). Under certain conditions, soluble forms of the three enzymes exhibited an unusual, multiphasic inactivation behavior in which the decay rate slowed considerably after an initial rapid decline. However, the inactivation of the enzymes covalently immobilized to glass beads, monophasic in most cases, was characterized by a first-order decay rate intermediate between those of the initial rapid and slower phases for the soluble enzymes. Enzyme productivities for the three immobilized GIs were determined experimentally in the presence of Mg(2+). The highest productivities measured were 750 and 760 kg fructose per kilogram SMGI at 60 degrees C and 70 degrees C, respectively. The highest productivity for both TMGI and TNGI in the presence of Mg(2+) occurred at 70 degrees C, pH 7.0, with approximately 230 and 200 kg fructose per kilogram enzyme for TNGI and TMGI, respectively. At 80 degrees C and in the presence of Mg(2+), productivities for the three enzymes ranged from 31 to 273. A simple mathematical model, which accounted for thermal effects on kinetics, glucose-fructose equilibrium, and enzyme inactivation, was used to examine the potential for high-fructose corn syrup (HFCS) production at 80 degrees C and above using TNGI and SMGI under optimal conditions, which included the presence of both Co(2+) and Mg(2+). In the presence of both cations, these enzymes showed the potential to catalyze glucose-to-fructose conversion at 80 degrees C with estimated lifetime productivities on the order of 2000 kg fructose per kilogram enzyme, a value competitive with enzymes currently used at 55 degrees to 65 degrees C, but with the additional advantage of higher fructose concentrations. At 90 degrees C, the estimated productivity for SMGI dropped to 200, whereas, for TNGI, lifetime productivities on the order of 1000 were estimated. Assuming that the most favorable biocatalytic and thermostability features of these enzymes can be captured in immobilized form and the chemical lability of substrates and products can be minimized, HFCS production at high temperatures could be used to achieve higher fructose concentrations as well as create alternative processing strategies.
Collapse
Affiliation(s)
- Rockey K Bandlish
- Department of Chemical Engineering, North Carolina State University, Stinson Drive, Box 7905, Raleigh, North Carolina 27695-7905, USA
| | | | | | | | | |
Collapse
|
82
|
van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 2002; 94:137-55. [PMID: 11796168 DOI: 10.1016/s0168-1656(01)00407-2] [Citation(s) in RCA: 696] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Starch is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. A large-scale starch processing industry has emerged in the last century. In the past decades, we have seen a shift from the acid hydrolysis of starch to the use of starch-converting enzymes in the production of maltodextrin, modified starches, or glucose and fructose syrups. Currently, these enzymes comprise about 30% of the world's enzyme production. Besides the use in starch hydrolysis, starch-converting enzymes are also used in a number of other industrial applications, such as laundry and porcelain detergents or as anti-staling agents in baking. A number of these starch-converting enzymes belong to a single family: the alpha-amylase family or family13 glycosyl hydrolases. This group of enzymes share a number of common characteristics such as a (beta/alpha)(8) barrel structure, the hydrolysis or formation of glycosidic bonds in the alpha conformation, and a number of conserved amino acid residues in the active site. As many as 21 different reaction and product specificities are found in this family. Currently, 25 three-dimensional (3D) structures of a few members of the alpha-amylase family have been determined using protein crystallization and X-ray crystallography. These data in combination with site-directed mutagenesis studies have helped to better understand the interactions between the substrate or product molecule and the different amino acids found in and around the active site. This review illustrates the reaction and product diversity found within the alpha-amylase family, the mechanistic principles deduced from structure-function relationship structures, and the use of the enzymes of this family in industrial applications.
Collapse
Affiliation(s)
- Marc J E C van der Maarel
- Microbial Physiology Research Group, Department of Microbiology, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands.
| | | | | | | | | |
Collapse
|
83
|
|
84
|
Abstract
SUMMARY
Profound changes are occurring in the strategies that biotechnology-based industries are deploying in the search for exploitable biology and to discover new products and develop new or improved processes. The advances that have been made in the past decade in areas such as combinatorial chemistry, combinatorial biosynthesis, metabolic pathway engineering, gene shuffling, and directed evolution of proteins have caused some companies to consider withdrawing from natural product screening. In this review we examine the paradigm shift from traditional biology to bioinformatics that is revolutionizing exploitable biology. We conclude that the reinvigorated means of detecting novel organisms, novel chemical structures, and novel biocatalytic activities will ensure that natural products will continue to be a primary resource for biotechnology. The paradigm shift has been driven by a convergence of complementary technologies, exemplified by DNA sequencing and amplification, genome sequencing and annotation, proteome analysis, and phenotypic inventorying, resulting in the establishment of huge databases that can be mined in order to generate useful knowledge such as the identity and characterization of organisms and the identity of biotechnology targets. Concurrently there have been major advances in understanding the extent of microbial diversity, how uncultured organisms might be grown, and how expression of the metabolic potential of microorganisms can be maximized. The integration of information from complementary databases presents a significant challenge. Such integration should facilitate answers to complex questions involving sequence, biochemical, physiological, taxonomic, and ecological information of the sort posed in exploitable biology. The paradigm shift which we discuss is not absolute in the sense that it will replace established microbiology; rather, it reinforces our view that innovative microbiology is essential for releasing the potential of microbial diversity for biotechnology penetration throughout industry. Various of these issues are considered with reference to deep-sea microbiology and biotechnology.
Collapse
|
85
|
Bull AT, Ward AC, Goodfellow M. Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 2000; 64:573-606. [PMID: 10974127 PMCID: PMC99005 DOI: 10.1128/mmbr.64.3.573-606.2000] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Profound changes are occurring in the strategies that biotechnology-based industries are deploying in the search for exploitable biology and to discover new products and develop new or improved processes. The advances that have been made in the past decade in areas such as combinatorial chemistry, combinatorial biosynthesis, metabolic pathway engineering, gene shuffling, and directed evolution of proteins have caused some companies to consider withdrawing from natural product screening. In this review we examine the paradigm shift from traditional biology to bioinformatics that is revolutionizing exploitable biology. We conclude that the reinvigorated means of detecting novel organisms, novel chemical structures, and novel biocatalytic activities will ensure that natural products will continue to be a primary resource for biotechnology. The paradigm shift has been driven by a convergence of complementary technologies, exemplified by DNA sequencing and amplification, genome sequencing and annotation, proteome analysis, and phenotypic inventorying, resulting in the establishment of huge databases that can be mined in order to generate useful knowledge such as the identity and characterization of organisms and the identity of biotechnology targets. Concurrently there have been major advances in understanding the extent of microbial diversity, how uncultured organisms might be grown, and how expression of the metabolic potential of microorganisms can be maximized. The integration of information from complementary databases presents a significant challenge. Such integration should facilitate answers to complex questions involving sequence, biochemical, physiological, taxonomic, and ecological information of the sort posed in exploitable biology. The paradigm shift which we discuss is not absolute in the sense that it will replace established microbiology; rather, it reinforces our view that innovative microbiology is essential for releasing the potential of microbial diversity for biotechnology penetration throughout industry. Various of these issues are considered with reference to deep-sea microbiology and biotechnology.
Collapse
Affiliation(s)
- A T Bull
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| | | | | |
Collapse
|