51
|
Simões JLB, de Carvalho Braga G, Eichler SW, da Silva GB, Bagatini MD. Implications of COVID-19 in Parkinson's disease: the purinergic system in a therapeutic-target perspective to diminish neurodegeneration. Purinergic Signal 2024; 20:487-507. [PMID: 38460075 PMCID: PMC11377384 DOI: 10.1007/s11302-024-09998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/21/2024] [Indexed: 03/11/2024] Open
Abstract
The pathophysiology of Parkinson's disease (PD) is marked by degeneration of dopaminergic neurons in the substantia nigra. With advent of COVID-19, which is closely associated with generalized inflammation and multiple organ dysfunctions, the PD patients may develop severe conditions of disease leading to exacerbated degeneration. This condition is caused by the excessive release of pro-inflammatory markers, called cytokine storm, that is capable of triggering neurodegenerative conditions by affecting the blood-brain barrier (BBB). A possible SARS-CoV-2 infection, in serious cases, may compromise the immune system by triggering a hyperstimulation of the neuroimmune response, similar to the pathological processes found in PD. From this perspective, the inflammatory scenario triggers oxidative stress and, consequently, cellular dysfunction in the nervous tissue. The P2X7R seems to be the key mediator of the neuroinflammatory process, as it acts by increasing the concentration of ATP, allowing the influx of Ca2+ and the occurrence of mutations in the α-synuclein protein, causing activation of this receptor. Thus, modulation of the purinergic system may have therapeutic potential on the effects of PD, as well as on the damage caused by inflammation of the BBB, which may be able to mitigate the neurodegeneration caused by diseases. Considering all the processes of neuroinflammation, oxidative stress, and mitochondrial dysfunction that PD propose, we can conclude that the P2X7 antagonist acts in the prevention of viral diseases, and it also controls purinergic receptors formed by multi-target compounds directed to self-amplification circuits and, therefore, may be a viable strategy to obtain the desired disease-modifying effect. Thus, purinergic system receptor modulations have a high therapeutic potential for neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
| | | | | | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
52
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
53
|
Zhou Y, Liu X, Xu B. Research Progress on the Relationship between Parkinson's Disease and REM Sleep Behavior Disorder. J Integr Neurosci 2024; 23:166. [PMID: 39344226 DOI: 10.31083/j.jin2309166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 10/01/2024] Open
Abstract
An individual's quality of life is greatly affected by Parkinson's disease (PD), a prevalent neurological degenerative condition. Rapid eye movement (REM) sleep behavior disorder (RBD) is a prominent non-motor symptom commonly associated with PD. Previous studies have shown a close relationship between PD and RBD. In addition to being a prodromal symptom of PD, RBD has a major negative impact on the prognosis of PD patients. This intrinsic connection indicates that there is a bidirectional relationship between PD and RBD. This paper provides a comprehensive review of the pathological mechanism related to PD and RBD, including the α-synuclein pathological deposition, abnormal iron metabolism, neuroinflammation, glymphatic system dysfunction and dysbiosis of the gut microbiota. Increasing evidence has shown that RBD patients have the same pathogenic mechanisms that underlie PD, but relatively little research has been done on how RBD contributes to PD progression. Therefore, a more thorough investigation is warranted to characterise how RBD affects the course of PD, in order to prepare for future therapeutic trials.
Collapse
Affiliation(s)
- Yu Zhou
- The Second Clinical Medical College of Zhejiang Chinese Medical University, 310000 Hangzhou, Zhejiang, China
| | - Xiaoli Liu
- Department of Neurology, Zhejiang Hospital Affiliated to Zhejiang University, 310000 Hangzhou, Zhejiang, China
| | - Bin Xu
- Department of Neurology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 310000 Hangzhou, Zhejiang, China
| |
Collapse
|
54
|
Walker KA, Rhodes ST, Liberman DA, Gore AC, Bell MR. Microglial responses to inflammatory challenge in adult rats altered by developmental exposure to polychlorinated biphenyls in a sex-specific manner. Neurotoxicology 2024; 104:95-115. [PMID: 39038526 PMCID: PMC11548868 DOI: 10.1016/j.neuro.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 μg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 μg / kg BW, ip) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex-specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.
Collapse
Affiliation(s)
- Katherine A Walker
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Simone T Rhodes
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Deborah A Liberman
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Margaret R Bell
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA; Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
55
|
Fang X, Liu S, Muhammad B, Zheng M, Ge X, Xu Y, Kan S, Zhang Y, Yu Y, Zheng K, Geng D, Liu CF. Gut microbiota dysbiosis contributes to α-synuclein-related pathology associated with C/EBPβ/AEP signaling activation in a mouse model of Parkinson's disease. Neural Regen Res 2024; 19:2081-2088. [PMID: 38227539 DOI: 10.4103/1673-5374.391191] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00042/figure1/v/2024-01-16T170235Z/r/image-tiff Parkinson's disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction. Gastrointestinal dysfunction can precede the onset of motor symptoms by several years. Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson's disease, whether it plays a causal role in motor dysfunction, and the mechanism underlying this potential effect, remain unknown. CCAAT/enhancer binding protein β/asparagine endopeptidase (C/EBPβ/AEP) signaling, activated by bacterial endotoxin, can promote α-synuclein transcription, thereby contributing to Parkinson's disease pathology. In this study, we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling, α-synuclein-related pathology, and motor symptoms using a rotenone-induced mouse model of Parkinson's disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation. We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier, as well as activation of the C/EBP/AEP pathway, α-synuclein aggregation, and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits. However, treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics. Importantly, we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits, intestinal inflammation, and endotoxemia. Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits, intestinal inflammation, endotoxemia, and intestinal barrier impairment. These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits, C/EBPβ/AEP signaling activation, and α-synuclein-related pathology in a rotenone-induced mouse model of Parkinson's disease. Additionally, our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Xiaoli Fang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Sha Liu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Bilal Muhammad
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yan Xu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Shu Kan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yang Zhang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Jiangsu Key Laboratory of Neuropsychiatric Disease and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
56
|
Zhang Y, Kang J, Zhou Q, Chen M, Zhang J, Shi Z, Qiao Y, Qi C, Zhang Y. Discovery of 23,24-diols containing ergosterols with anti-neuroinflammatory activity from Penicillium citrinum TJ507. Bioorg Chem 2024; 150:107575. [PMID: 38941698 DOI: 10.1016/j.bioorg.2024.107575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Citristerones A-E (1-5), five new 23,24-diols containing ergosterols, along with three known analogues, were isolated from the endophytic fungus Penicillium citrinum TJ507 obtained from Hypericum wilsonii N. Robson. Their structures and absolute configurations were determined by NMR, HRESIMS, Snatzke's method, X-ray diffraction analyses and ECD calculation. Subsequently, the anti-neuroinflammatory effects of these isolates were screened using lipopolysaccharide (LPS)-induced BV-2 microglial cells, and citristerone B (2) showed outstanding anti-neuroinflammatory activity, with IC50 value of 0.60 ± 0.04 μM. Moreover, immunofluorescence and western blot analysis suggested that citristerone B not only reduced the release of nitric oxide (NO) and proinflammatory cytokines in LPS-induced BV-2 microglial cells, but also significantly inhibited the expression of TNF-α, iNOS and NF-κB, along with the production of cellular ROS.
Collapse
Affiliation(s)
- Yeting Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Jinbing Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Ming Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Jinlong Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China
| | - Yuben Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, People's Republic of China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
57
|
Shah S, Pushpa Tryphena K, Singh G, Kulkarni A, Pinjala P, Kumar Khatri D. Neuroprotective role of Carvacrol via Nrf2/HO-1/NLRP3 axis in Rotenone-induced PD mice model. Brain Res 2024; 1836:148954. [PMID: 38649135 DOI: 10.1016/j.brainres.2024.148954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder whose cause is unclear. Neuroinflammation is recognized as one of the major pathogenic mechanisms involved in the development and progression of PD. NLRP3 inflammasome is the most widely studied inflammatory mediator in various diseases including PD. Several phytoconstituents have shown neuroprotective role in PD. Carvacrol is a phenolic monoterpene commonly found in the essential oils derived from plants belonging to Lamiaceae family. It is well known for its anti-inflammatory and antioxidant properties and has been widely explored in several diseases. In this study, we explored the role of Carvacrol in suppressing neuroinflammation by regulating NLRP3 inflammasome through Nrf2/HO-1 axis and subsequently, inflammatory cytokines like IL-1β, IL-18 in Rotenone induced PD mice model. Three doses (25 mg/kg, 50 mg/kg, 100 mg/kg p.o.) of Carvacrol were administered to, respectively, three groups (LD, MD, HD), one hour after administration of Rotenone (1.5 mg/kg, i.p.), every day, for 21 days. Treatment with Carvacrol ameliorated the motor impairment caused by Rotenone. It alleviated neurotoxicity and reduced inflammatory cytokines. Further, Carvacrol also alleviated oxidative stress and increased antioxidant enzymes. From these results, we show that Carvacrol exerts neuroprotective effects in PD via anti-inflammatory and antioxidant mechanisms and could be a potential therapeutic option in PD.
Collapse
Affiliation(s)
- Shruti Shah
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Gurpreet Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Amrita Kulkarni
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Poojitha Pinjala
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
58
|
Alves BDS, Schimith LE, da Cunha AB, Dora CL, Hort MA. Omega-3 polyunsaturated fatty acids and Parkinson's disease: A systematic review of animal studies. J Neurochem 2024; 168:1655-1683. [PMID: 38923542 DOI: 10.1111/jnc.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. The primary pathological features of PD include the presence of α-synuclein aggregates and Lewy bodies, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Recently, omega-3 fatty acids (ω-3 PUFAs) have been under investigation as a preventive and/or therapeutic strategy for PD, primarily owing to their antioxidant and anti-inflammatory properties. Therefore, the objective of this study was to conduct a systematic review of the literature, focusing on studies that assessed the effects of ω-3 PUFAs in rodent models mimicking human PD. The search was performed using the terms "Parkinson's disease," "fish oil," "omega 3," "docosahexaenoic acid," and "eicosapentaenoic acid" across databases PUBMED, Web of Science, Science Direct, Scielo, and Google Scholar. Following analysis based on predefined inclusion and exclusion criteria, 39 studies were included. Considering behavioral parameters, pathological markers of the disease, quantification of ω-3 PUFAs in the brain, as well as anti-inflammatory, antioxidant, and anti-apoptotic effects, it can be observed that ω-3 PUFAs exhibit a potential neuroprotective effect in PD. In summary, this systematic review presents significant scientific evidence regarding the effects and mechanisms underlying the neuroprotective properties of ω-3 PUFAs, offering valuable insights for the development of future clinical investigations.
Collapse
Affiliation(s)
- Barbara da Silva Alves
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Lucia Emanueli Schimith
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - André Brito da Cunha
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Cristiana Lima Dora
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Mariana Appel Hort
- Programa de Pós-graduação Em Ciências da Saúde, Faculdade de Medicina, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
59
|
Li S, Wang Z, Liu G, Chen M. Neurodegenerative diseases and catechins: (-)-epigallocatechin-3-gallate is a modulator of chronic neuroinflammation and oxidative stress. Front Nutr 2024; 11:1425839. [PMID: 39149548 PMCID: PMC11326534 DOI: 10.3389/fnut.2024.1425839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Catechins, a class of phytochemicals found in various fruits and tea leaves, have garnered attention for their diverse health-promoting properties, including their potential in combating neurodegenerative diseases. Among these catechins, (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, has emerged as a promising therapeutic agent due to its potent antioxidant and anti-inflammatory effects. Chronic neuroinflammation and oxidative stress are key pathological mechanisms in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). EGCG has neuroprotective efficacy due to scavenging free radicals, reducing oxidative stress and attenuating neuroinflammatory processes. This review discusses the molecular mechanisms of EGCG's anti-oxidative stress and chronic neuroinflammation, emphasizing its effects on autoimmune responses, neuroimmune system interactions, and focusing on the related effects on AD and PD. By elucidating EGCG's mechanisms of action and its impact on neurodegenerative processes, this review underscores the potential of EGCG as a therapeutic intervention for AD, PD, and possibly other neurodegenerative diseases. Overall, EGCG emerges as a promising natural compound for combating chronic neuroinflammation and oxidative stress, offering novel avenues for neuroprotective strategies in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Siying Li
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| | - Zaoyi Wang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Meixia Chen
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
60
|
Ryman SG, Vakhtin AA, Mayer AR, van der Horn HJ, Shaff NA, Nitschke SR, Julio KR, Tarawneh RM, Rosenberg GA, Diaz SV, Pirio Richardson SE, Lin HC. Abnormal Cerebrovascular Activity, Perfusion, and Glymphatic Clearance in Lewy Body Diseases. Mov Disord 2024; 39:1258-1268. [PMID: 38817039 PMCID: PMC11341260 DOI: 10.1002/mds.29867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Cerebrovascular activity is not only crucial to optimal cerebral perfusion, but also plays an important role in the glymphatic clearance of interstitial waste, including α-synuclein. This highlights a need to evaluate how cerebrovascular activity is altered in Lewy body diseases. This review begins by discussing how vascular risk factors and cardiovascular autonomic dysfunction may serve as upstream or direct influences on cerebrovascular activity. We then discuss how patients with Lewy body disease exhibit reduced and delayed cerebrovascular activity, hypoperfusion, and reductions in measures used to capture cerebrospinal fluid flow, suggestive of a reduced capacity for glymphatic clearance. Given the lack of an existing framework, we propose a model by which these processes may foster α-synuclein aggregation and neuroinflammation. Importantly, this review highlights several avenues for future research that may lead to treatments early in the disease course, prior to neurodegeneration. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sephira G Ryman
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, New Mexico, USA
- Center for Memory and Aging, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Andrei A Vakhtin
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Andrew R Mayer
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Harm Jan van der Horn
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Nicholas A Shaff
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Stephanie R Nitschke
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Kayla R Julio
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Rawan M Tarawneh
- Center for Memory and Aging, The University of New Mexico, Albuquerque, New Mexico, USA
- Cognitive Neurology Section, Department of Neurology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Gary A Rosenberg
- Center for Memory and Aging, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Shanna V Diaz
- Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Sarah E Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| | - Henry C Lin
- Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| |
Collapse
|
61
|
Hölscher C. Glucagon-like peptide-1 class drugs show clear protective effects in Parkinson's and Alzheimer's disease clinical trials: A revolution in the making? Neuropharmacology 2024; 253:109952. [PMID: 38677445 DOI: 10.1016/j.neuropharm.2024.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Parkinson's disease (PD) is a complex syndrome for which there is no disease-modifying treatment on the market. However, a group of drugs from the Glucagon-like peptide-1 (GLP-1) class have shown impressive improvements in clinical phase II trials. Exendin-4 (Bydureon), Liraglutide (Victoza, Saxenda) and Lixisenatide (Adlyxin), drugs that are on the market as treatments for diabetes, have shown clear effects in improving motor activity in patients with PD in phase II clinical trials. In addition, Liraglutide has shown improvement in cognition and brain shrinkage in a phase II trial in patients with Alzheimer disease (AD). Two phase III trials testing the GLP-1 drug semaglutide (Wegovy, Ozempic, Rybelsus) are ongoing. This perspective article will summarize the clinical results obtained so far in this novel research area. We are at a crossroads where GLP-1 class drugs are emerging as a new treatment strategy for PD and for AD. Newer drugs that have been designed to enter the brain easier are being developed already show improved effects in preclinical studies compared with the older GLP-1 class drugs that had been developed to treat diabetes. The future looks bright for new treatments for AD and PD.
Collapse
Affiliation(s)
- Christian Hölscher
- Henan Academy of Innovations in Medical Science, Neurodegeneration Research Group, 451100 Xinzheng, Henan province, China.
| |
Collapse
|
62
|
Choe K, Park JS, Park HY, Tahir M, Park TJ, Kim MO. Lupeol protect against LPS-induced neuroinflammation and amyloid beta in adult mouse hippocampus. Front Nutr 2024; 11:1414696. [PMID: 39050141 PMCID: PMC11266137 DOI: 10.3389/fnut.2024.1414696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Neuroinflammation includes the activation of immune glial cells in the central nervous system, release pro-inflammatory cytokines, which disrupt normal neural function and contribute to various neurological disorders, including Alzheimer's disease (AD), Parkinson's disease, multiple sclerosis, and stroke. AD is characterized by various factors including amyloidogenesis, synaptic dysfunction, memory impairment and neuroinflammation. Lipopolysaccharide (LPS) constitutes a vital element of membrane of the gram-negative bacterial cell, triggering vigorous neuroinflammation and facilitating neurodegeneration. Lupeol, a naturally occurring pentacyclic triterpene, has demonstrated several pharmacological properties, notably its anti-inflammatory activity. In this study, we evaluated the anti-inflammatory and anti-Alzheimer activity of lupeol in lipopolysaccharide (LPS)-injected mice model. LPS (250ug/kg) was administered intraperitoneally to C57BL/6 N male mice for 1 week to induce neuroinflammation and cognitive impairment. For biochemical analysis, acetylcholinesterase (AChE) assay, western blotting and confocal microscopy were performed. AChE, western blot and immunofluorescence results showed that lupeol treatment (50 mg/kg) along with LPS administration significantly inhibited the LPS-induced activation of neuroinflammatory mediators and cytokines like nuclear factor (NF-κB), tumor necrosis factor (TNF-α), cyclooxygenase (COX-2) and interleukin (IL-1β). Furthermore, we found that LPS-induced systemic inflammation lead to Alzheimer's symptoms as LPS treatment enhances level of amyloid beta (Aβ), amyloid precursor protein (APP), Beta-site APP cleaving enzyme (BACE-1) and hyperphosphorylated Tau (p-Tau). Lupeol treatment reversed the LPS-induced elevated level of Aβ, APP, BACE-1 and p-Tau in the hippocampus, showing anti-Alzheimer's properties. It is also determined that lupeol prevented LPS-induced synaptic dysfunction via enhanced expression of pre-and post-synaptic markers like SNAP-23, synaptophysin and PSD-95. Overall, our study shows that lupeol prevents memory impairment and synaptic dysfunction via inhibition of neuroinflammatory processes. Hence, we suggest that lupeol might be a useful therapeutic agent in prevention of neuroinflammation-induced neurological disorders like AD.
Collapse
Affiliation(s)
- Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - Muhammad Tahir
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow, United Kingdom
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju-si, Republic of Korea
- Alz-Dementia Korea Co., Jinju, Republic of Korea
| |
Collapse
|
63
|
Su C, Hou Y, Xu J, Xu Z, Zhou M, Ke A, Li H, Xu J, Brendel M, Maasch JRMA, Bai Z, Zhang H, Zhu Y, Cincotta MC, Shi X, Henchcliffe C, Leverenz JB, Cummings J, Okun MS, Bian J, Cheng F, Wang F. Identification of Parkinson's disease PACE subtypes and repurposing treatments through integrative analyses of multimodal data. NPJ Digit Med 2024; 7:184. [PMID: 38982243 PMCID: PMC11233682 DOI: 10.1038/s41746-024-01175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
Parkinson's disease (PD) is a serious neurodegenerative disorder marked by significant clinical and progression heterogeneity. This study aimed at addressing heterogeneity of PD through integrative analysis of various data modalities. We analyzed clinical progression data (≥5 years) of individuals with de novo PD using machine learning and deep learning, to characterize individuals' phenotypic progression trajectories for PD subtyping. We discovered three pace subtypes of PD exhibiting distinct progression patterns: the Inching Pace subtype (PD-I) with mild baseline severity and mild progression speed; the Moderate Pace subtype (PD-M) with mild baseline severity but advancing at a moderate progression rate; and the Rapid Pace subtype (PD-R) with the most rapid symptom progression rate. We found cerebrospinal fluid P-tau/α-synuclein ratio and atrophy in certain brain regions as potential markers of these subtypes. Analyses of genetic and transcriptomic profiles with network-based approaches identified molecular modules associated with each subtype. For instance, the PD-R-specific module suggested STAT3, FYN, BECN1, APOA1, NEDD4, and GATA2 as potential driver genes of PD-R. It also suggested neuroinflammation, oxidative stress, metabolism, PI3K/AKT, and angiogenesis pathways as potential drivers for rapid PD progression (i.e., PD-R). Moreover, we identified repurposable drug candidates by targeting these subtype-specific molecular modules using network-based approach and cell line drug-gene signature data. We further estimated their treatment effects using two large-scale real-world patient databases; the real-world evidence we gained highlighted the potential of metformin in ameliorating PD progression. In conclusion, this work helps better understand clinical and pathophysiological complexity of PD progression and accelerate precision medicine.
Collapse
Grants
- R21 AG083003 NIA NIH HHS
- R01 AG082118 NIA NIH HHS
- R56 AG074001 NIA NIH HHS
- R01AG076448 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1AG072449 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- MJFF-023081 Michael J. Fox Foundation for Parkinson's Research (Michael J. Fox Foundation)
- R01AG080991 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P30 AG072959 NIA NIH HHS
- 3R01AG066707-01S1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R21AG083003 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01AG066707 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R35 AG071476 NIA NIH HHS
- RF1 AG082211 NIA NIH HHS
- R56AG074001 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01AG082118 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R25 AG083721 NIA NIH HHS
- RF1AG082211 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01 NS093334 NINDS NIH HHS
- AG083721-01 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1NS133812 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P20GM109025 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1 NS133812 NINDS NIH HHS
- R35AG71476 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01 AG073323 NIA NIH HHS
- R01 AG066707 NIA NIH HHS
- R01AG053798 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01AG076234 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 AG076448 NIA NIH HHS
- R01 AG080991 NIA NIH HHS
- R01 AG076234 NIA NIH HHS
- U01NS093334 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P20 GM109025 NIGMS NIH HHS
- P30AG072959 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- RF1 AG072449 NIA NIH HHS
- R01 AG053798 NIA NIH HHS
- 3R01AG066707-02S1 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- U01AG073323 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- ALZDISCOVERY-1051936 Alzheimer's Association
Collapse
Affiliation(s)
- Chang Su
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Yu Hou
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Jielin Xu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zhenxing Xu
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Manqi Zhou
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Alison Ke
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Haoyang Li
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jie Xu
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Matthew Brendel
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline R M A Maasch
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Computer Science, Cornell Tech, Cornell University, New York, NY, USA
| | - Zilong Bai
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Haotan Zhang
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Yingying Zhu
- Department of Computer Science, University of Texas at Arlington, Arlington, TX, USA
| | - Molly C Cincotta
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xinghua Shi
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
| | - Claire Henchcliffe
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
64
|
Shen T, Cui G, Chen H, Huang L, Song W, Zu J, Zhang W, Xu C, Dong L, Zhang Y. TREM-1 mediates interaction between substantia nigra microglia and peripheral neutrophils. Neural Regen Res 2024; 19:1375-1384. [PMID: 37905888 PMCID: PMC11467918 DOI: 10.4103/1673-5374.385843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 05/29/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia-mediated neuroinflammation is considered a pathological feature of Parkinson’s disease. Triggering receptor expressed on myeloid cell-1 (TREM-1) can amplify the inherent immune response, and crucially, regulate inflammation. In this study, we found marked elevation of serum soluble TREM-1 in patients with Parkinson’s disease that positively correlated with Parkinson’s disease severity and dyskinesia. In a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease, we found that microglial TREM-1 expression also increased in the substantia nigra. Further, TREM-1 knockout alleviated dyskinesia in a mouse model of Parkinson’s disease and reduced dopaminergic neuronal injury. Meanwhile, TREM-1 knockout attenuated the neuroinflammatory response, dopaminergic neuronal injury, and neutrophil migration. Next, we established an in vitro 1-methyl-4-phenyl-pyridine-induced BV2 microglia model of Parkinson’s disease and treated the cells with the TREM-1 inhibitory peptide LP17. We found that LP17 treatment reduced apoptosis of dopaminergic neurons and neutrophil migration. Moreover, inhibition of neutrophil TREM-1 activation diminished dopaminergic neuronal apoptosis induced by lipopolysaccharide. TREM-1 can activate the downstream CARD9/NF-κB proinflammatory pathway via interaction with SYK. These findings suggest that TREM-1 may play a key role in mediating the damage to dopaminergic neurons in Parkinson’s disease by regulating the interaction between microglia and peripheral neutrophils.
Collapse
Affiliation(s)
- Tong Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Long Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| | - Wei Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Liguo Dong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yongmei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| |
Collapse
|
65
|
Yaow CYL, Hong ASY, Chong NZY, Chong RIH, Mai AS, Tan EK. Risk of Parkinson's disease in hepatitis B and C populations: a systematic review and meta-analysis. J Neural Transm (Vienna) 2024; 131:609-616. [PMID: 37899363 DOI: 10.1007/s00702-023-02705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder, and its association with viral hepatitis has been debated. We performed a meta-analysis to examine the association between PD risk and viral hepatitis. Medline, EMBASE, and the Cochrane library were searched from inception till July 2022. Meta-analysis was conducted using a fixed-effect model with the inverse variance method. Three groups were compared to controls: infection with either hepatitis B or C virus (HBV and HCV, respectively), or coinfection with both viruses. We found 551 records, and six studies comprising of 2,566,947 patients were included in the analysis. PD risk was increased in HCV-infected population (OR 1.10, 95% CI 1.03-1.17, p = 0.005) and (HR 1.37, 95% CI 1.26-1.49, p < 0.001). This increase was not observed for the HBV-infected and HBV-HCV-coinfected coinfection populations. For pooled OR, the risk was significantly lower in HBV-infected (OR 0.79, 95% CI 0.76-0.83, p < 0.001) but not significantly different in HBV-HCV-coinfected populations (OR 0.96, 95% CI 0.82-1.12, p = 0.57). For pooled HR, the risk was significantly higher in both HBV-infected (HR 1.22, 95% CI 1.14-1.31, p < 0.001) and HBV-HCV-coinfected populations (HR 1.29, 95% CI 1.05-1.58, p = 0.013). We found that the risk of PD was increased in the HCV-infected population, but results were inconsistent in those with HBV and HBV-HCV infections. Our findings provide impetus for further clinical and functional studies to unravel the role of the adaptive immune system in PD.
Collapse
Affiliation(s)
- Clyve Yu Leon Yaow
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | - Ryan Ian Houe Chong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aaron Shengting Mai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Duke NUS Medical School, Outram Road, Singapore, 169608, Singapore.
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
66
|
Hu W, Wang M, Sun G, Zhang L, Lu H. RND3 modulates microglial polarization and alleviates neuroinflammation in Parkinson's disease by suppressing NLRP3 inflammasome activation. Exp Cell Res 2024; 439:114088. [PMID: 38744409 DOI: 10.1016/j.yexcr.2024.114088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Neuroinflammation mediated by microglia plays an important role in the etiology of Parkinson's disease (PD). Rho family GTPase 3 (RND3) exerts anti-inflammatory effects and may act as a potential new inducer of neuroprotective phenotypes in microglia. However, whether RND3 can be used to regulate microglia activation or reduce neuroinflammation in PD remains elusive. The study investigated the microglia modulating effects and potential anti-inflammatory effects of RND3 in vivo and in vitro, using animal models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD and cell models of BV-2 cells stimulated by LPS plus IFN-γ with or without RND3-overexpression. The results showed that RND3 was highly expressed in the MPTP-induced PD mouse model and BV-2 cells treated with LPS and IFN-γ. In vivo experiments confirmed that RND3 overexpression could modulate microglia phenotype and ameliorate MPTP-induced neuroinflammation through inhibiting activation of the NLRP3 inflammasome in substantia nigra pars compacta (SNpc). In vitro study showed that RND3 overexpression could attenuate the production of pro-inflammatory factors in BV2 cells stimulated by LPS and IFN-γ. Mechanistically, RND3 reduced the activation of the NLRP3 inflammasome upon LPS and IFN-γ stimulation. Taken together, these findings suggest that RND3 modulates microglial polarization and alleviates neuroinflammation in Parkinson's disease by suppressing NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Menghan Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Limin Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
67
|
Wu Y, Wang J, Deng Y, Angelov B, Fujino T, Hossain MS, Angelova A. Lipid and Transcriptional Regulation in a Parkinson's Disease Mouse Model by Intranasal Vesicular and Hexosomal Plasmalogen-Based Nanomedicines. Adv Healthc Mater 2024; 13:e2304588. [PMID: 38386974 PMCID: PMC11468381 DOI: 10.1002/adhm.202304588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Plasmalogens (vinyl-ether phospholipids) are an emergent class of lipid drugs against various diseases involving neuro-inflammation, oxidative stress, mitochondrial dysfunction, and altered lipid metabolism. They can activate neurotrophic and neuroprotective signaling pathways but low bioavailabilities limit their efficiency in curing neurodegeneration. Here, liquid crystalline lipid nanoparticles (LNPs) are created for the protection and non-invasive intranasal delivery of purified scallop-derived plasmalogens. The in vivo results with a transgenic mouse Parkinson's disease (PD) model (characterized by motor impairments and α-synuclein deposition) demonstrate the crucial importance of LNP composition, which determines the self-assembled nanostructure type. Vesicle and hexosome nanostructures (characterized by small-angle X-ray scattering) display different efficacy of the nanomedicine-mediated recovery of motor function, lipid balance, and transcriptional regulation (e.g., reduced neuro-inflammation and PD pathogenic gene expression). Intranasal vesicular and hexosomal plasmalogen-based LNP treatment leads to improvement of the behavioral PD symptoms and downregulation of the Il6, Il33, and Tnfa genes. Moreover, RNA-sequencing and lipidomic analyses establish a dramatic effect of hexosomal nanomedicines on PD amelioration, lipid metabolism, and the type and number of responsive transcripts that may be implicated in neuroregeneration.
Collapse
Affiliation(s)
- Yu Wu
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| | - Jieli Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Yuru Deng
- Wenzhou InstituteUniversity of Chinese Academy of SciencesNo.1, Jinlian Road, Longwan DistrictWenzhouZhejiang325001China
| | - Borislav Angelov
- Department of Structural DynamicsExtreme Light Infrastructure ERICDolni BrezanyCZ‐25241Czech Republic
| | - Takehiko Fujino
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Md. Shamim Hossain
- Institute of Rheological Functions of Food2241‐1 Kubara, Hisayama‐choKasuya‐gunFukuoka811‐2501Japan
| | - Angelina Angelova
- Université Paris‐SaclayInstitut Galien Paris‐SaclayCNRS17 Av. des SciencesOrsay91190France
| |
Collapse
|
68
|
Lee KS, Yoon SH, Hwang I, Ma JH, Yang E, Kim RH, Kim E, Yu JW. Hyperglycemia enhances brain susceptibility to lipopolysaccharide-induced neuroinflammation via astrocyte reprogramming. J Neuroinflammation 2024; 21:137. [PMID: 38802820 PMCID: PMC11131277 DOI: 10.1186/s12974-024-03136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Hyperglycemia has been shown to modulate the immune response of peripheral immune cells and organs, but the impact of hyperglycemia on neuroinflammation within the brain remains elusive. In the present study, we provide evidences that streptozotocin (STZ)-induced hyperglycemic condition in mice drives a phenotypic switch of brain astrocytes to a proinflammatory state, and increases brain vulnerability to mild peripheral inflammation. In particular, we found that hyperglycemia led to a significant increase in the astrocyte proliferation as determined by flow cytometric and immunohistochemical analyses of mouse brain. The increased astrocyte proliferation by hyperglycemia was reduced by Glut1 inhibitor BAY-876. Transcriptomic analysis of isolated astrocytes from Aldh1l1CreERT2;tdTomato mice revealed that peripheral STZ injection induced astrocyte reprogramming into proliferative, and proinflammatory phenotype. Additionally, STZ-induced hyperglycemic condition significantly enhanced the infiltration of circulating myeloid cells into the brain and the disruption of blood-brain barrier in response to mild lipopolysaccharide (LPS) administration. Systemic hyperglycemia did not alter the intensity and sensitivity of peripheral inflammation in mice to LPS challenge, but increased the inflammatory potential of brain microglia. In line with findings from mouse experiments, a high-glucose environment intensified the LPS-triggered production of proinflammatory molecules in primary astrocyte cultures. Furthermore, hyperglycemic mice exhibited a significant impairment in cognitive function after mild LPS administration compared to normoglycemic mice as determined by novel object recognition and Y-maze tasks. Taken together, these results demonstrate that hyperglycemia directly induces astrocyte reprogramming towards a proliferative and proinflammatory phenotype, which potentiates mild LPS-triggered inflammation within brain parenchymal regions.
Collapse
Affiliation(s)
- Kyung-Seo Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Hyun Yoon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Inhwa Hwang
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong-Hwa Ma
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Euimo Yang
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Rebekah Hyeyoon Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eosu Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Je-Wook Yu
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
69
|
Shukla H, John D, Banerjee S, Tiwari AK. Drug repurposing for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:249-319. [PMID: 38942541 DOI: 10.1016/bs.pmbts.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
Collapse
Affiliation(s)
- Halak Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Diana John
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
70
|
Mukherjee A, Biswas S, Roy I. Immunotherapy: An emerging treatment option for neurodegenerative diseases. Drug Discov Today 2024; 29:103974. [PMID: 38555032 DOI: 10.1016/j.drudis.2024.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Accumulation of misfolded proteins and protein aggregates leading to degeneration of neurons is a hallmark of several neurodegenerative diseases. Therapy mostly relies on symptomatic relief. Immunotherapy offers a promising approach for the development of disease-modifying routes. Such strategies have shown remarkable results in oncology, and this promise is increasingly being realized for neurodegenerative diseases in advanced preclinical and clinical studies. This review highlights cases of passive and active immunotherapies in Parkinson's and Alzheimer's diseases. The reasons for success and failure, wherever available, and strategies to cross the blood-brain barrier, are discussed. The need for conditional modulation of the immune response is also reflected on.
Collapse
Affiliation(s)
- Abhiyanta Mukherjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
71
|
Stige KE, Kverneng SU, Sharma S, Skeie GO, Sheard E, Søgnen M, Geijerstam SA, Vetås T, Wahlvåg AG, Berven H, Buch S, Reese D, Babiker D, Mahdi Y, Wade T, Miranda GP, Ganguly J, Tamilselvam YK, Chai JR, Bansal S, Aur D, Soltani S, Adams S, Dölle C, Dick F, Berntsen EM, Grüner R, Brekke N, Riemer F, Goa PE, Haugarvoll K, Haacke EM, Jog M, Tzoulis C. The STRAT-PARK cohort: A personalized initiative to stratify Parkinson's disease. Prog Neurobiol 2024; 236:102603. [PMID: 38604582 DOI: 10.1016/j.pneurobio.2024.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The STRAT-PARK initiative aims to provide a platform for stratifying Parkinson's disease (PD) into biological subtypes, using a bottom-up, multidisciplinary biomarker-based and data-driven approach. PD is a heterogeneous entity, exhibiting high interindividual clinicopathological variability. This diversity suggests that PD may encompass multiple distinct biological entities, each driven by different molecular mechanisms. Molecular stratification and identification of disease subtypes is therefore a key priority for understanding and treating PD. STRAT-PARK is a multi-center longitudinal cohort aiming to recruit a total of 2000 individuals with PD and neurologically healthy controls from Norway and Canada, for the purpose of identifying molecular disease subtypes. Clinical assessment is performed annually, whereas biosampling, imaging, and digital and neurophysiological phenotyping occur every second year. The unique feature of STRAT-PARK is the diversity of collected biological material, including muscle biopsies and platelets, tissues particularly useful for mitochondrial biomarker research. Recruitment rate is ∼150 participants per year. By March 2023, 252 participants were included, comprising 204 cases and 48 controls. STRAT-PARK is a powerful stratification initiative anticipated to become a global research resource, contributing to personalized care in PD.
Collapse
Affiliation(s)
- Kjersti Eline Stige
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway; The Department of Neuromedicine and Movement Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway; Department of Neurology and Clinical Neurophysiology, St Olav's University Hospital, Trondheim 7006, Norway
| | - Simon Ulvenes Kverneng
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Soumya Sharma
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Geir-Olve Skeie
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Erika Sheard
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Mona Søgnen
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Solveig Af Geijerstam
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Therese Vetås
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Anne Grete Wahlvåg
- Department of Neurology and Clinical Neurophysiology, St Olav's University Hospital, Trondheim 7006, Norway
| | - Haakon Berven
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - David Reese
- Imaging Research Laboratories, Robarts Research Institute, Ontario, London N6A 5B7, Canada
| | - Dina Babiker
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Yekta Mahdi
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Trevor Wade
- Department of Medical Biophysics, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, Ontario, London N6A 6B7, Canada
| | - Gala Prado Miranda
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Jacky Ganguly
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Yokhesh Krishnasamy Tamilselvam
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada; Department of Electrical and Computer Engineering, Canadian Surgical Technologies and Advanced Robotics (CSTAR), University of Western Ontario (UWO), Ontario, London, Canada
| | - Jia Ren Chai
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Saurabh Bansal
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Dorian Aur
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Sima Soltani
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Scott Adams
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada; School of Communication Sciences & Disorders, Faculty of Health Sciences, Western University, Canada
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Fiona Dick
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Erik Magnus Berntsen
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim 7006, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Renate Grüner
- Department of Physics and Technology, University of Bergen, Bergen 5007, Norway; Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Post Office Box 1400, Bergen 5021, Norway
| | - Njål Brekke
- Department of Physics and Technology, University of Bergen, Bergen 5007, Norway; Radiology Department, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Frank Riemer
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Post Office Box 1400, Bergen 5021, Norway
| | - Pål Erik Goa
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim 7006, Norway; Department of Physics, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Kristoffer Haugarvoll
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - E Mark Haacke
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA; Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mandar Jog
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway.
| |
Collapse
|
72
|
Guan Y, Cao M, Wu X, Yan J, Hao Y, Zhang C. CD28 null T cells in aging and diseases: From biology to assessment and intervention. Int Immunopharmacol 2024; 131:111807. [PMID: 38471362 DOI: 10.1016/j.intimp.2024.111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
CD28null T cells, an atypical subset characterized by the loss of CD28 costimulatory molecule expression, exhibit functional variants and progressively expand with age. Moreover, T cells with these phenotypes are found in both typical and atypical humoral immune responses. Consequently, they accumulate during infectious diseases, autoimmune disorders, cardiovascular conditions, and neurodegenerative ailments. To provide an in-depth review of the current knowledge regarding CD28null T cells, we specifically focus on their phenotypic and functional characteristics as well as their physiological roles in aging and diseases. While uncertainties regarding the clinical utility remains, we will review the following two crucial research perspectives to explore clinical translational applications of the research on this specific T cell subset: 1) addressing the potential utility of CD28null T cells as immunological markers for prognosis and adverse outcomes in both aging and disease, and 2) speculating on the potential of targeting CD28null T cells as an interventional strategy for preventing or delaying immune aging processes and disease progression.
Collapse
Affiliation(s)
- Yuqi Guan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ming Cao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xiaofen Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yi Hao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
73
|
Zheng X, Zhao Z, Zhao L. Investigating the Effect of an Anti-Inflammatory Drug in Determining NURR1 Expression and Thus Exploring the Progression of Parkinson's Disease. Physiol Res 2024; 73:139-155. [PMID: 38466012 PMCID: PMC11019624 DOI: 10.33549/physiolres.935168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 04/26/2024] Open
Abstract
Nonsteroidal anti-inflammatory drugs are the most widely used drugs for Parkinson's disease (PD), of which ibuprofen shows positive effects in suppressing symptoms; however, the associated risk needs to be addressed in different pathological stages. Initially, we developed an initial and advanced stage of the Parkinson disease mouse model by intraperitoneal injection of MPTP (20 mg/kg; 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine) for 10 and 20 days, respectively. Subsequently, ibuprofen treatment was administered for 2 months, and a pole test, rotarod test, histology, immunohistochemistry, and western blotting were performed to determine neuronal motor function. Histological analysis for 10 days after mice were injected with MPTP showed the onset of neurodegeneration and cell aggregation, indicating the initial stages of Parkinson's disease. Advanced Parkinson's disease was marked by Lewy body formation after another 10 days of MPTP injection. Neurodegeneration reverted after ibuprofen therapy in initial Parkinson's disease but not in advanced Parkinson's disease. The pole and rotarod tests confirmed that motor activity in the initial Parkinson disease with ibuprofen treatment recovered (p<0.01). However, no improvement was observed in the ibuprofen-treated mice with advanced disease mice. Interestingly, ibuprofen treatment resulted in a significant improvement (p<0.01) in NURR1 (Nuclear receptor-related 1) expression in mice with early PD, but no substantial improvement was observed in its expression in mice with advanced PD. Our findings indicate that NURR1 exerts anti-inflammatory and neuroprotective effects. Overall, NURR1 contributed to the effects of ibuprofen on PD at different pathological stages.
Collapse
MESH Headings
- Animals
- Mice
- Parkinson Disease/metabolism
- Ibuprofen/pharmacology
- Ibuprofen/therapeutic use
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/metabolism
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Mice, Inbred C57BL
- Disease Models, Animal
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
Collapse
Affiliation(s)
- X Zheng
- Department of Divine Medicine, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.
| | | | | |
Collapse
|
74
|
Reyes-Resina I, Lillo J, Raïch I, Rebassa JB, Navarro G. The Expression and Functionality of CB 1R-NMDAR Complexes Are Decreased in A Parkinson's Disease Model. Int J Mol Sci 2024; 25:3021. [PMID: 38474266 PMCID: PMC10931566 DOI: 10.3390/ijms25053021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
One of the hallmarks of Parkinson's disease (PD) is the alteration in the expression and function of NMDA receptor (NMDAR) and cannabinoid receptor 1 (CB1R). The presence of CB1R-NMDAR complexes has been described in neuronal primary cultures. The activation of CB1R in CB1R-NMDAR complexes was suggested to counteract the detrimental NMDAR overactivation in an AD mice model. Thus, we aimed to explore the role of this receptor complex in PD. By using Bioluminescence Resonance Energy Transfer (BRET) assay, it was demonstrated that α-synuclein induces a reorganization of the CB1R-NMDAR complex in transfected HEK-293T cells. Moreover, α-synuclein treatment induced a decrease in the cAMP and MAP kinase (MAPK) signaling of both CB1R and NMDAR not only in transfected cells but also in neuronal primary cultures. Finally, the interaction between CB1R and NMDAR was studied by Proximity Ligation Assay (PLA) in neuronal primary cultures, where it was observed that the expression of CB1R-NMDAR complexes was decreased upon α-synuclein treatment. These results point to a role of CB1R-NMDAR complexes as a new therapeutic target in Parkinson's disease.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Molecular Neurobiology Laboratory, Department Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.)
- Network Center for Biomedical Research in Neurodegenerative Diseases, CiberNed, Spanish National Health Institute Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain;
- Institut de Neurociències UB, Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| |
Collapse
|
75
|
Liu WS, Zhang YR, Ge YJ, Wang HF, Cheng W, Yu JT. Inflammation and Brain Structure in Alzheimer's Disease and Other Neurodegenerative Disorders: a Mendelian Randomization Study. Mol Neurobiol 2024; 61:1593-1604. [PMID: 37736795 DOI: 10.1007/s12035-023-03648-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Previous in vitro and post-mortem studies have reported the role of inflammation in neurodegenerative disorders. However, the association between inflammation and brain structure in vivo and the transcriptome-driven functional basis with relevance to neurodegenerative disorders remains elusive. The aim of the present study is to identify the association among inflammation, brain structure, and neurodegenerative disorders at genetic and transcriptomic levels. Genetic variants associated with inflammatory cytokines were selected from the latest and largest genome-wide association studies of European ancestry. Neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and dementia with Lewy bodies (DLB) and brain structure imaging measures were selected as the outcomes. Two-sample Mendelian randomization analyses were conducted to identify the causal associations. Single-nucleus transcriptome data of the occipitotemporal cortex was further analyzed to identify the differential expressed genes in AD, which were tested for biological processes and protein interaction network. MR analysis indicated that genetically predicted TREM2 and sTREM2 were significantly associated with AD (TREM2: z-score = -9.088, p-value = 1.02 × 10-19; sTREM2: z-score = -7.495, p-value = 6.61 × 10-14). The present study found no evidence to support the causal associations between other inflammatory cytokines and the risks of AD, PD, ALS, or DLB. Genetically predicted TREM2 was significantly associated with the cortical thickness of inferior temporal (z-score = -4.238, p-value = 2.26 × 10-5) and pole temporal (z-score = -4.549, p-value = 5.40 × 10-6). In the occipitotemporal cortex samples, microglia were the main source of TREM2 gene and showed increasing expression of genes associated with inflammation and immunity. The present study has leveraged genetic and transcriptomic data to identify the association among TREM2, temporal lobe, and AD and the underlying cellular and molecular basis, thus providing a new perspective on the role of TREM2 in AD and insights into the complex associations among inflammation, brain structure, and neurodegenerative disorders, particularly AD.
Collapse
Affiliation(s)
- Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hui-Fu Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
76
|
Yoon SY, Heo SJ, Kim YW, Lee SC, Shin J, Lee JW. Depressive Symptoms and the Subsequent Risk of Parkinson's Disease: A Nationwide Cohort Study. Am J Geriatr Psychiatry 2024; 32:339-348. [PMID: 37953133 DOI: 10.1016/j.jagp.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVE Only a few studies have focused on depressive symptoms and Parkinson's disease (PD) risk. As a time lag exists from the onset of depressive symptoms to the diagnosis of depression, elucidating the association between depressive symptoms and PD development might be helpful for the early prediction of PD. We investigate the association between depressive symptoms and subsequent PD risk using nationwide population-based cohort database. DESIGN AND SETTING Cohort study using the Korean National Health Insurance Service data between 2007 and 2017, with longitudinal follow-up until 2019. PARTICIPANTS A total of 98,296 elderly people responded to a self-reported questionnaire from the National Health Screening Program on depressive symptoms. MEASUREMENTS The association between depressive symptoms such as 1) decreased activity or motivation, 2) worthlessness, and 3) hopelessness and PD risk was analyzed. RESULTS During median 5.06-year follow-up, 839 PD cases occurred: 230 in individuals with depressive symptoms and 609 in those without symptoms. Results showed an increased risk of PD development in those with depressive symptoms (HR = 1.47, 95% CI, 1.26-1.71), with dose-response association between the number of depressive symptoms and PD risk. Even in those already diagnosed with depression, combined depressive symptoms were linked to a higher risk compared to those without symptoms (with symptoms, HR = 2.71, 95% CI, 2.00-3.68; without symptoms, HR = 1.84, 95% CI, 1.43-2.36). CONCLUSION Individuals with depressive symptoms were at an increased risk of developing PD, and there was a dose-response association between the number of depressive symptoms and PD risk.
Collapse
Affiliation(s)
- Seo Yeon Yoon
- Department and Research Institute of Rehabilitation Medicine (SYY, YWK, SCL), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Jae Heo
- Department of Biostatistics and Computing (SJH), Yonsei University Graduate School, Seoul, Republic of Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine (SYY, YWK, SCL), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine (SYY, YWK, SCL), Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeyong Shin
- Department of Preventive Medicine and Public Health (JS), Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jang Woo Lee
- Department of Physical Medicine and Rehabilitation (JWL), National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea.
| |
Collapse
|
77
|
Cao Q, Dong P, Han H. Therapeutic Effects of the major alkaloid constituents of Evodia rutaecarpa in Alzheimer's disease. Psychogeriatrics 2024; 24:443-457. [PMID: 38173117 DOI: 10.1111/psyg.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Since the report of Alzheimer's disease (AD) in 1907, it has garnered widespread attention due to its intricate pathogenic mechanisms, significant impact on patients' lives, and the substantial burden it places on society. Presently, effective treatments for AD remain elusive. Recent pharmacological studies on the traditional East Asian herb, Evodia rutaecarpa, have revealed that the bioactive alkaloid components within it can ameliorate AD-related cognitive impairments and neurological damage through various pathways, including anti-inflammatory, antioxidant, and anti-acetylcholinesterase activities. Consequently, this article provides an overview of the pharmacological effects and research status of the four main alkaloid components found in Evodia concerning AD. We hope this article will serve as a valuable reference for experimental and clinical research on the use of Evodia in AD prevention and treatment.
Collapse
Affiliation(s)
- Qingyu Cao
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
78
|
Wang Q, Bu C, Wang H, Zhang B, Chen Q, Shi D, Chi L. Distinct mechanisms underlying the therapeutic effects of low-molecular-weight heparin and chondroitin sulfate on Parkinson's disease. Int J Biol Macromol 2024; 262:129846. [PMID: 38296150 DOI: 10.1016/j.ijbiomac.2024.129846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder influenced by various factors, including age, genetics, and the environment. Current treatments provide symptomatic relief without impeding disease progression. Previous studies have demonstrated the therapeutic potential of exogenous heparin and chondroitin sulfate in PD. However, their therapeutic mechanisms and structure-activity relationships remain poorly understood. In this study, low-molecular-weight heparin (L-HP) and chondroitin sulfate (L-CS) exhibited favorable therapeutic effects in a mouse model of PD. Proteomics revealed that L-HP attenuated mitochondrial dysfunction through its antioxidant properties, whereas L-CS suppressed neuroinflammation by inhibiting platelet activation. Two glycosaminoglycan (GAG)-binding proteins, manganese superoxide dismutase (MnSOD2) and fibrinogen beta chain (FGB), were identified as potential targets of L-HP and L-CS, and we investigated their structure-activity relationships. The IdoA2S-GlcNS6S/GlcNAc6S unit in HP bound to SOD2, whereas the GlcA-GalNAc4S and GlcA-GalNAc4S6S units in CS preferred FGB. Furthermore, N-S and 2-O-S in L-HP, and 4-O-S, 6-O-S, and -COOH in L-CS contributed significantly to the binding process. These findings provide new insights and evidence for the development and use of glycosaminoglycan-based therapeutics for PD.
Collapse
Affiliation(s)
- Qingchi Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Changkai Bu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Haoran Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Bin Zhang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Qingqing Chen
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Deling Shi
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China
| | - Lianli Chi
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao 266200, China.
| |
Collapse
|
79
|
Yildirim-Balatan C, Fenyi A, Besnault P, Gomez L, Sepulveda-Diaz JE, Michel PP, Melki R, Hunot S. Parkinson's disease-derived α-synuclein assemblies combined with chronic-type inflammatory cues promote a neurotoxic microglial phenotype. J Neuroinflammation 2024; 21:54. [PMID: 38383421 PMCID: PMC10882738 DOI: 10.1186/s12974-024-03043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (FPD), Tumor necrosis factor-α (TNFα) and prostaglandin E2 (PGE2) (TPFPD). We showed that FPD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE2, FPD polarizes microglia toward a particular functional phenotype departing from FPD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPFPD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPFPD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPFPD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.
Collapse
Affiliation(s)
- Cansu Yildirim-Balatan
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Alexis Fenyi
- CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, MIRCen, 92265, Fontenay-aux-Roses, France
| | - Pierre Besnault
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Lina Gomez
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Julia E Sepulveda-Diaz
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Patrick P Michel
- Sorbonne Université, Paris, France
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France
- Inserm UMRS 1127, Paris, France
- CNRS UMR 7225, Paris, France
| | - Ronald Melki
- CEA and Laboratory of Neurodegenerative Diseases, CNRS, Institut François Jacob, MIRCen, 92265, Fontenay-aux-Roses, France
| | - Stéphane Hunot
- Sorbonne Université, Paris, France.
- Institut du Cerveau - Paris Brain Institute - ICM, Hôpital de la Pitié-Salpêtrière, 91 Bd de l'Hôpital, 75013, Paris, France.
- Inserm UMRS 1127, Paris, France.
- CNRS UMR 7225, Paris, France.
| |
Collapse
|
80
|
da Silva AAF, Fiadeiro MB, Bernardino LI, Fonseca CSP, Baltazar GMF, Cristóvão ACB. "Lipopolysaccharide-induced animal models for neuroinflammation - An overview.". J Neuroimmunol 2024; 387:578273. [PMID: 38183948 DOI: 10.1016/j.jneuroim.2023.578273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 01/08/2024]
Abstract
Neuroinflammation is a pathological mechanism contributing to neurodegenerative diseases. For in-depth studies of neuroinflammation, several animal models reported reproducing behavioral dysfunctions and cellular pathological mechanisms induced by brain inflammation. One of the most popular models of neuroinflammation is the one generated by lipopolysaccharide exposure. Despite its importance, the reported results using this model show high heterogeneity, making it difficult to analyze and compare the outcomes between studies. Therefore, the current review aims to summarize the different experimental paradigms used to reproduce neuroinflammation by lipopolysaccharide exposure and its respective outcomes, helping to choose the model that better suits each specific research aim.
Collapse
Affiliation(s)
- Ana Alexandra Flores da Silva
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; NeuroSoV/Fastprinciple-Lda, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | - Mariana Bernardo Fiadeiro
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; NeuroSoV/Fastprinciple-Lda, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | | | | | | | - Ana Clara Braz Cristóvão
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; NeuroSoV/Fastprinciple-Lda, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
81
|
Alizadehmoghaddam S, Pourabdolhossein F, Najafzadehvarzi H, Sarbishegi M, Saleki K, Nouri HR. Crocin attenuates the lipopolysaccharide-induced neuroinflammation via expression of AIM2 and NLRP1 inflammasome in an experimental model of Parkinson's disease. Heliyon 2024; 10:e25523. [PMID: 38356604 PMCID: PMC10864986 DOI: 10.1016/j.heliyon.2024.e25523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The underlying mechanisms of inflammasome activation and the following dopaminergic neuron loss caused by chronic neuroinflammation remain entirely unclear. Therefore, this study aimed to investigate the impact of crocin on the inflammasome complex within an experimental model of Parkinson's disease (PD) using male Wistar rats. PD was induced by the stereotaxic injection of lipopolysaccharide (LPS), and crocin was intraperitoneally administrated one week before the lesion, and then treatment continued for 21 days. Open field (OF) and elevated plus maze tests were applied for behavioral assays. Furthermore, hematoxylin and eosin (H&E) and immunostaining were performed on whole brain tissue, while dissected substantia nigra (SN) was used for immunoblotting and real-time PCR to evaluate compartments involved in PD. The time spent in the center of test was diminished in the LPS group, while treatment with 30 mg/kg of crocin significantly increased it. H&E staining showed a significant increase in cell infiltration at the site of LPS injection, which was ameliorated upon crocin treatment. Notably, crocin-treated animals showed a reduced number of caspase-1 and IL-1β positive cells, whereas the number of positive cells was increased in the LPS group (P < 0.05). A significant decrease in tyrosine hydroxylase (TH) expression was also found in the LPS group, while crocin treatment significantly elevated its expression. IL-1β, IL-18, NLRP1, and AIM2 genes expression significantly increased in the LPS group. On the other hand, treatment with 30 mg/kg of crocin significantly downregulated the expression levels of these genes along with NLRP1 (P < 0.05). In summary, our findings suggest that crocin reduces neuroinflammation in PD by diminishing IL-1β and caspase-1 levels, potentially by inhibiting the expression of AIM2 and NLRP1 genes.
Collapse
Affiliation(s)
- Solmaz Alizadehmoghaddam
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fereshteh Pourabdolhossein
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Najafzadehvarzi
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Sarbishegi
- Cellular and Molecular Research Center and Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
82
|
Essawy Essawy A, Abou-ElNaga OA, Mehanna RA, Badae NM, Elsawy ES, Soffar AA. Comparing the effect of intravenous versus intracranial grafting of mesenchymal stem cells against parkinsonism in a rat model: Behavioral, biochemical, pathological and immunohistochemical studies. PLoS One 2024; 19:e0296297. [PMID: 38349932 PMCID: PMC10863851 DOI: 10.1371/journal.pone.0296297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/10/2023] [Indexed: 02/15/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases worldwide. Currently applied therapeutic protocols are limited to improve the motor functions of patients. Therefore, seeking alternative regimes with better therapeutic impact is crucial. This study aims to validate the therapeutic impact of mesenchymal stem cell injection using two delivery methods, intracranial administration and intravenous administration, on rotenone (ROT)-induced PD model in rats. Our work included behavioral, biochemical, histological, and molecular investigations. Open field test (OFT) and rotarod tests were applied. Important oxidative stress, antioxidant and proinflammatory markers were monitored. Substantia Nigra and Striatum tissues were examined histologically and the molecular expression of DOPA decarboxylase, Tyrosine hydroxylase, and α-synuclein in neurons in these tissues were investigated. Our results showed that MSC grafting improved motor and memory impairments and oxidative stress status that were observed after ROT administration. Additionally, BM-MSCs application restored SOD and CAT activities and the levels of DA, L-Dopa, IL6, IL1β, and TNFα. Moreover, MSC grafting overwhelmed the pathological changes induced by ROT and normalized the expression of Tyrosine hydroxylase, DOPA decarboxylase, and α-synuclein towards the control values in the Nigral and Striatal tissues of male rats. Conclusively, both administration routes improved motor function, protection of the nigrostriatal system, and improved striatal dopamine release. The observed beneficial effect of applying MSCs suggests potential benefits in clinical applications. No significant differences in the outcomes of the treatment would favor a certain way of MSC application over the other. However, the intravenous delivery method seems to be safer and more feasible compared to the intrastriatal method.
Collapse
Affiliation(s)
- Amina Essawy Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Radwa Ali Mehanna
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mohammed Badae
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman Sheta Elsawy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
83
|
Nájera-Maldonado JM, Salazar R, Alvarez-Fitz P, Acevedo-Quiroz M, Flores-Alfaro E, Hernández-Sotelo D, Espinoza-Rojo M, Ramírez M. Phenolic Compounds of Therapeutic Interest in Neuroprotection. J Xenobiot 2024; 14:227-246. [PMID: 38390994 PMCID: PMC10885129 DOI: 10.3390/jox14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
The number of elderly people is projected to double in the next 50 years worldwide, resulting in an increased prevalence of neurodegenerative diseases. Aging causes changes in brain tissue homeostasis, thus contributing to the development of neurodegenerative disorders. Current treatments are not entirely effective, so alternative treatments or adjuvant agents are being actively sought. Antioxidant properties of phenolic compounds are of particular interest for neurodegenerative diseases whose psychopathological mechanisms strongly rely on oxidative stress at the brain level. Moreover, phenolic compounds display other advantages such as the permeability of the blood-brain barrier (BBB) and the interesting molecular mechanisms that we reviewed in this work. We began by briefly outlining the physiopathology of neurodegenerative diseases to understand the mechanisms that result in irreversible brain damage, then we provided an overall classification of the phenolic compounds that would be addressed later. We reviewed in vitro and in vivo studies, as well as some clinical trials in which neuroprotective mechanisms were demonstrated in models of different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), ischemia, and traumatic brain injury (TBI).
Collapse
Affiliation(s)
| | - Ricardo Salazar
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Patricia Alvarez-Fitz
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Macdiel Acevedo-Quiroz
- National Technological Institute of Mexico, Technological/IT Institute of Zacatepec, Zacatepec 62780, Mexico
| | - Eugenia Flores-Alfaro
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Daniel Hernández-Sotelo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Espinoza-Rojo
- Faculty of Chemical Biological Sciences, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| | - Mónica Ramírez
- CONAHCYT National Council of Humanities, Sciences and Technologies, Autonomous University of Guerrero, Chilpancingo 39087, Mexico
| |
Collapse
|
84
|
Li H, Zeng F, Huang C, Pu Q, Thomas ER, Chen Y, Li X. The potential role of glucose metabolism, lipid metabolism, and amino acid metabolism in the treatment of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14411. [PMID: 37577934 PMCID: PMC10848100 DOI: 10.1111/cns.14411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is a common neurodegenerative disease, which can cause progressive deterioration of motor function causing muscle stiffness, tremor, and bradykinesia. In this review, we hope to describe approaches that can improve the life of PD patients through modifications of energy metabolism. RECENT FINDINGS The main pathological features of PD are the progressive loss of nigrostriatal dopaminergic neurons and the production of Lewy bodies. Abnormal aggregation of α-synuclein (α-Syn) leading to the formation of Lewy bodies is closely associated with neuronal dysfunction and degeneration. The main causes of PD are said to be mitochondrial damage, oxidative stress, inflammation, and abnormal protein aggregation. Presence of abnormal energy metabolism is another cause of PD. Many studies have found significant differences between neurodegenerative diseases and metabolic decompensation, which has become a biological hallmark of neurodegenerative diseases. SUMMARY In this review, we highlight the relationship between abnormal energy metabolism (Glucose metabolism, lipid metabolism, and amino acid metabolism) and PD. Improvement of key molecules in glucose metabolism, fat metabolism, and amino acid metabolism (e.g., glucose-6-phosphate dehydrogenase, triglycerides, and levodopa) might be potentially beneficial in PD. Some of these metabolic indicators may serve well during the diagnosis of PD. In addition, modulation of these metabolic pathways may be a potential target for the treatment and prevention of PD.
Collapse
Affiliation(s)
- Hangzhen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - Cancan Huang
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Qiqi Pu
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | | | - Yan Chen
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
85
|
Elangovan A, Dahiya B, Kirola L, Iyer M, Jeeth P, Maharaj S, Kumari N, Lakhanpal V, Michel TM, Rao KRSS, Cho SG, Yadav MK, Gopalakrishnan AV, Kadhirvel S, Kumar NS, Vellingiri B. Does gut brain axis has an impact on Parkinson's disease (PD)? Ageing Res Rev 2024; 94:102171. [PMID: 38141735 DOI: 10.1016/j.arr.2023.102171] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Parkinson's Disease (PD) is becoming a growing global concern by being the second most prevalent disease next to Alzheimer's Disease (AD). Henceforth new exploration is needed in search of new aspects towards the disease mechanism and origin. Evidence from recent studies has clearly stated the role of Gut Microbiota (GM) in the maintenance of the brain and as a root cause of various diseases and disorders including other neurological conditions. In the case of PD, with an unknown etiology, the GM is said to have a larger impact on the disease pathophysiology. Although GM and its metabolites are crucial for maintaining the normal physiology of the host, it is an undeniable fact that there is an influence of GM in the pathophysiology of PD. As such the Enteroendocrine Cells (EECs) in the epithelium of the intestine are one of the significant regulators of the gut-brain axis and act as a communication mediator between the gut and the brain. The communication is established via the molecules of neuroendocrine which are said to have a crucial part in neurological diseases such as AD, PD, and other psychiatry-related disorders. This review is focused on understanding the proper role of GM and EECs in PD. Here, we also focus on some of the metabolites and compounds that can interact with the PD genes causing various dysfunctions in the cell and facilitating the disease conditions using bioinformatical tools. Various mechanisms concerning EECs and PD, their identification, the latest studies, and available current therapies have also been discussed.
Collapse
Affiliation(s)
- Ajay Elangovan
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Bhawna Dahiya
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Laxmi Kirola
- Department of Biotechnology, School of Health Sciences and Technology (SoHST), UPES University, Dehradun, Uttarakhand 248007, India
| | - Mahalaxmi Iyer
- Department of Microbiology, Central University of Punjab, Bathinda 151401, Punjab, India; Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, Tamil Nadu, India
| | - Priyanka Jeeth
- Department of Computational Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sakshi Maharaj
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Nikki Kumari
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Vikas Lakhanpal
- Department of Neurology, All India Institute of Medical Sciences, Bathinda 151005, Punjab, India
| | - Tanja Maria Michel
- Research Unit of Psychiatry, Dept. of Psychiatry Odense, Clinical Institute, University of Southern Denmark, J.B. Winslowsvej 20, Indg. 220B, Odense, Denmark
| | - K R S Sambasiva Rao
- Mangalayatan University - Jabalpur, Jabalpur - 481662, Madhya Pradesh, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Saraboji Kadhirvel
- Department of Computational Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796 004 Mizoram, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
86
|
Wang ZP, Zhang W, Xing LZ, Zhao YD, Xu J, Zhang YX. Therapeutic potential of Coumarin-polyphenolic acid hybrids in PD: Inhibition of α-Syn aggregation and disaggregation of preformed fibrils, leading to reduced neuronal inclusion formation. Bioorg Med Chem Lett 2024; 99:129618. [PMID: 38219887 DOI: 10.1016/j.bmcl.2024.129618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This study focuses on the discovery of new potential drugs for treating PD by targeting the aggregation of α-Syn. A series of hybrids combining Coumarin and phenolic acid were designed and synthesized. Four particularly promising compounds were identified, showing strong inhibitory effects with IC50 values ranging from low micromolar to submicromolar concentrations, as low as 0.63 μM. These compounds exhibited a higher binding affinity to α-Syn residues and effectively hindered the entire aggregation process, maintaining the proteostasis conformation of α-Syn and preventing the formation of β-sheet aggregates. This approach holds significant promise for PD prevention. Additionally, these candidate compounds demonstrated the ability to break down preformed α-Syn oligomers and fibrils, resulting in the formation of smaller aggregates and monomers. Moreover, the candidate compounds showed impressive effectiveness in inhibiting α-Syn aggregation within nerve cells, thereby reducing the likelihood of α-Syn inclusion formation resembling Lewy bodies, which highlights their potential for treating PD.
Collapse
Affiliation(s)
- Zhen-Ping Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Wei Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Li-Zi Xing
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Ya-Dong Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China
| | - Ji Xu
- Deparment of Pharmacology, School of Basic Medical Science, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Kexue Road 100, 450001 Zhengzhou, China.
| | - Yun-Xiao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Daxue Road 75, 450052 Zhengzhou, China.
| |
Collapse
|
87
|
Dadkhah M, Baziar M, Rezaei N. The regulatory role of BDNF in neuroimmune axis function and neuroinflammation induced by chronic stress: A new therapeutic strategies for neurodegenerative disorders. Cytokine 2024; 174:156477. [PMID: 38147741 DOI: 10.1016/j.cyto.2023.156477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Neurodegenerative disorders account for a high proportion of neurological diseases that significantly threaten public health worldwide. Various factors are involved in the pathophysiology of such diseases which can lead to neurodegeneration and neural damage. Furthermore, neuroinflammation is a well-known factor in predisposing factors of neurological and especially neurodegenerative disorders which can be strongly suppressed by "anti-inflammatory" actions of brain-derived neurotrophic factor (BDNF). Stress has has also been identified as a risk factor in developing neurodegenerative disorders potentially leading to increased neuroinflammation in the brain and progressive loss in neuronal structures and impaired functions in the CNS. Recently, more studies have increasingly been focused on the role of neuroimmune system in regulating the neurobiology of stress. Emerging evidence indicate that exposure to chronic stress might alter the susceptibility to neurodegeneration via influencing the microglia function. Microglia is considered as the first responding group of cells in suppressing neuroinflammation, leading to an increased inflammatory cytokine signaling that promote the synaptic plasticity deficiencies, impairment in neurogenesis, and development of neurodegenerative disorders. In this review we discuss how exposure to chronic stress might alter the neuroimmune response potentially leading to progress of neurodegenerative disorders. We also emphasize on the role of BDNF in regulating the neuroimmune axis function and microglia modulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Milad Baziar
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| |
Collapse
|
88
|
Xue J, Tao K, Wang W, Wang X. What Can Inflammation Tell Us about Therapeutic Strategies for Parkinson's Disease? Int J Mol Sci 2024; 25:1641. [PMID: 38338925 PMCID: PMC10855787 DOI: 10.3390/ijms25031641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (K.T.); (W.W.)
| |
Collapse
|
89
|
Huang J, Li B, Wei H, Li C, Liu C, Mi H, Chen S. Integrative analysis of gene expression profiles of substantia nigra identifies potential diagnosis biomarkers in Parkinson's disease. Sci Rep 2024; 14:2167. [PMID: 38272954 PMCID: PMC10810830 DOI: 10.1038/s41598-024-52276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease whose etiology is attributed to development of Lewy bodies and degeneration of dopaminergic neurons in the substantia nigra (SN). Currently, there are no definitive diagnostic indicators for PD. In this study, we aimed to identify potential diagnostic biomarkers for PD and analyzed the impact of immune cell infiltrations on disease pathogenesis. The PD expression profile data for human SN tissue, GSE7621, GSE20141, GSE20159, GSE20163 and GSE20164 were downloaded from the Gene Expression Omnibus (GEO) database for use in the training model. After normalization and merging, we identified differentially expressed genes (DEGs) using the Robust rank aggregation (RRA) analysis. Simultaneously, DEGs after batch correction were identified. Gene interactions were determined through venn Diagram analysis. Functional analyses and protein-protein interaction (PPI) networks were used to the identify hub genes, which were visualized through Cytoscape. A Lasso Cox regression model was employed to identify the potential diagnostic genes. The GSE20292 dataset was used for validation. The proportion of infiltrating immune cells in the samples were determined via the CIBERSORT method. Sixty-two DEGs were screened in this study. They were found to be enriched in nerve conduction, dopamine (DA) metabolism, and DA biosynthesis Gene Ontology (GO) terms. The PPI network and Lasso Cox regression analysis revealed seven potential diagnostic genes, namely SLC18A2, TAC1, PCDH8, KIAA0319, PDE6H, AXIN1, and AGTR1, were subsequently validated in peripheral blood samples obtained from healthy control (HC) and PD patients, as well as in the GSE20292 dataset. The results revealed the exceptional sensitivity and specificity of these genes in PD diagnosis and monitoring. Moreover, PD patients exhibited a higher number of plasma cells, compared to HC individuals. The SLC18A2, TAC1, PCDH8, KIAA0319, PDE6H, AXIN1, and AGTR1 are potential diagnostic biomarkers for PD. Our findings also reveal the essential roles of immune cell infiltration in both disease onset and trajectory.
Collapse
Affiliation(s)
- Junming Huang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, 530000, Guangxi, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Bowen Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Huangwei Wei
- Department of Neurology, The People Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Chengxin Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Chao Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hua Mi
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China.
| | - Shaohua Chen
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, 530000, Guangxi, China.
| |
Collapse
|
90
|
Miao Y, Meng H. The involvement of α-synucleinopathy in the disruption of microglial homeostasis contributes to the pathogenesis of Parkinson's disease. Cell Commun Signal 2024; 22:31. [PMID: 38216911 PMCID: PMC10785555 DOI: 10.1186/s12964-023-01402-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/18/2023] [Indexed: 01/14/2024] Open
Abstract
The intracellular deposition and intercellular transmission of α-synuclein (α-syn) are shared pathological characteristics among neurodegenerative disorders collectively known as α-synucleinopathies, including Parkinson's disease (PD). Although the precise triggers of α-synucleinopathies remain unclear, recent findings indicate that disruption of microglial homeostasis contributes to the pathogenesis of PD. Microglia play a crucial role in maintaining optimal neuronal function by ensuring a homeostatic environment, but this function is disrupted during the progression of α-syn pathology. The involvement of microglia in the accumulation, uptake, and clearance of aggregated proteins is critical for managing disease spread and progression caused by α-syn pathology. This review summarizes current knowledge on the interrelationships between microglia and α-synucleinopathies, focusing on the remarkable ability of microglia to recognize and internalize extracellular α-syn through diverse pathways. Microglia process α-syn intracellularly and intercellularly to facilitate the α-syn neuronal aggregation and cell-to-cell propagation. The conformational state of α-synuclein distinctly influences microglial inflammation, which can affect peripheral immune cells such as macrophages and lymphocytes and may regulate the pathogenesis of α-synucleinopathies. We also discuss ongoing research efforts to identify potential therapeutic approaches targeting both α-syn accumulation and inflammation in PD. Video Abstract.
Collapse
Affiliation(s)
- Yongzhen Miao
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Hongrui Meng
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China.
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
91
|
Serrano-Martínez I, Pedreño M, Castillo-González J, Ferraz-de-Paula V, Vargas-Rodríguez P, Forte-Lago I, Caro M, Campos-Salinas J, Villadiego J, Peñalver P, Morales JC, Delgado M, González-Rey E. Cortistatin as a Novel Multimodal Therapy for the Treatment of Parkinson's Disease. Int J Mol Sci 2024; 25:694. [PMID: 38255772 PMCID: PMC10815070 DOI: 10.3390/ijms25020694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is a complex disorder characterized by the impairment of the dopaminergic nigrostriatal system. PD has duplicated its global burden in the last few years, becoming the leading neurological disability worldwide. Therefore, there is an urgent need to develop innovative approaches that target multifactorial underlying causes to potentially prevent or limit disease progression. Accumulating evidence suggests that neuroinflammatory responses may play a pivotal role in the neurodegenerative processes that occur during the development of PD. Cortistatin is a neuropeptide that has shown potent anti-inflammatory and immunoregulatory effects in preclinical models of autoimmune and neuroinflammatory disorders. The goal of this study was to explore the therapeutic potential of cortistatin in a well-established preclinical mouse model of PD induced by acute exposure to the neurotoxin 1-methil-4-phenyl1-1,2,3,6-tetrahydropyridine (MPTP). We observed that treatment with cortistatin mitigated the MPTP-induced loss of dopaminergic neurons in the substantia nigra and their connections to the striatum. Consequently, cortistatin administration improved the locomotor activity of animals intoxicated with MPTP. In addition, cortistatin diminished the presence and activation of glial cells in the affected brain regions of MPTP-treated mice, reduced the production of immune mediators, and promoted the expression of neurotrophic factors in the striatum. In an in vitro model of PD, treatment with cortistatin also demonstrated a reduction in the cell death of dopaminergic neurons that were exposed to the neurotoxin. Taken together, these findings suggest that cortistatin could emerge as a promising new therapeutic agent that combines anti-inflammatory and neuroprotective properties to regulate the progression of PD at multiple levels.
Collapse
Affiliation(s)
- Ignacio Serrano-Martínez
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Marta Pedreño
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Julia Castillo-González
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Viviane Ferraz-de-Paula
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Pablo Vargas-Rodríguez
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Irene Forte-Lago
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Marta Caro
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Jenny Campos-Salinas
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Javier Villadiego
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain;
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Mario Delgado
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| | - Elena González-Rey
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (I.S.-M.); (M.P.); (J.C.-G.); (V.F.-d.-P.); (P.V.-R.); (I.F.-L.); (M.C.); (J.C.-S.); (M.D.)
| |
Collapse
|
92
|
Di Lazzaro G, Picca A, Boldrini S, Bove F, Marzetti E, Petracca M, Piano C, Bentivoglio AR, Calabresi P. Differential profiles of serum cytokines in Parkinson's disease according to disease duration. Neurobiol Dis 2024; 190:106371. [PMID: 38061398 DOI: 10.1016/j.nbd.2023.106371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/08/2024] Open
Abstract
OBJECTIVE Neurodegeneration and neuroinflammation are two intertwined mechanisms contributing to the pathophysiology of Parkinson's disease. Whether circulating biomarkers reflecting those two processes differ according to disease duration remains to be established. The present study was conducted to characterize the biomarkers individuals with PD with short (≤5 years) or long disease duration (>5 years). METHODS We consecutively enrolled 104 patients with Parkinson's disease and evaluated them using validated clinical scales (MDS-UPDRS, Hoehn and Yahr staging, MMSE). Serum samples were assayed for the following biomarkers: neurofilament light chain (NfL), brain-derived neurotrophic factor (BDNF), interleukin (IL-) 1β, 4, 5, 6, 10, 17, interferon-γ, and tumor necrosis factor α. RESULTS Mean age of participants was 66.0 ± 9.6 years and 45 (34%) were women. The average disease duration was 8 ± 5 years (range 1 to 19 years). Patients with short disease duration (≤ 5 years) showed a pro-inflammatory profile, with significantly higher levels of pro-inflammatory IL-1β and lower concentrations of IL-5, IL-10 and IL-17 (p < 0.05). NfL serum levels showed a positive correlation with disease duration and age (respectively rho = 0.248, p = 0.014 and rho = 0.559, p < 0.001) while an opposite pattern was detected for BDNF (respectively rho -0,187, p = 0.034 and rho = -0.245, p = 0.014). CONCLUSIONS Our findings suggest that a pro-inflammatory status may be observed in PD patients in the early phases of the disease, independently from age.
Collapse
Affiliation(s)
- Giulia Di Lazzaro
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy.
| | - Anna Picca
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy
| | | | - Francesco Bove
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Martina Petracca
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Carla Piano
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Rita Bentivoglio
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Paolo Calabresi
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
93
|
Lashgari NA, Roudsari NM, Niknejad A, Shamsnia HS, Shayan M, Shalmani LM, Momtaz S, Rezaei N, Abdolghaffari AH. LRRK2; Communicative Role in the Treatment of Parkinson's Disease and Ulcerative Colitis Overlapping. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1177-1188. [PMID: 38279762 DOI: 10.2174/0118715273270874231205050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Involvement of gastrointestinal inflammation in Parkinson's disease (PD) pathogenesis and movement have progressively emerged. Inflammation is involved in the etiology of both PD and inflammatory bowel disease (IBD). Transformations in leucine-rich recurrent kinase 2 (LRRK2) are among the best hereditary supporters of IBD and PD. Elevated levels of LRRK2 have been reported in stimulated colonic tissue from IBD patients and peripheral invulnerable cells from irregular PD patients; thus, it is thought that LRRK2 directs inflammatory cycles. OBJECTIVE Since its revelation, LRRK2 has been seriously linked in neurons, albeit various lines of proof affirmed that LRRK2 is profoundly communicated in invulnerable cells. Subsequently, LRRK2 might sit at a junction by which stomach inflammation and higher LRRK2 levels in IBD might be a biomarker of expanded risk for inconsistent PD or potentially may address a manageable helpful objective in incendiary sicknesses that increment the risk of PD. Here, we discuss how PD and IBD share covering aggregates, especially regarding LRRK2 and present inhibitors, which could be a helpful objective in ongoing treatments. METHOD English data were obtained from Google Scholar, PubMed, Scopus, and Cochrane library studies published between 1990-December 2022. RESULT Inhibitors of the LRRK2 pathway can be considered as the novel treatment approaches for IBD and PD treatment. CONCLUSION Common mediators and pathways are involved in the pathophysiology of IBD and PD, which are majorly correlated with inflammatory situations. Such diseases could be used for further clinical investigations.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
94
|
Fredlund F, Jimenez-Ferrer I, Grabert K, Belfiori LF, Luk K, Swanberg M. Ciita Regulates Local and Systemic Immune Responses in a Combined rAAV-α-synuclein and Preformed Fibril-Induced Rat Model for Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:693-711. [PMID: 38728204 PMCID: PMC11191526 DOI: 10.3233/jpd-240062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Background Parkinson's disease (PD) is characterized by alpha-synuclein (α-Syn) pathology, neurodegeneration and neuroinflammation. Human leukocyte antigen (HLA) variants associated with PD and α-Syn specific CD4+ T lymphocytes in PD patients highlight the importance of antigen presentation in PD etiology. The class II transactivator (CIITA) regulates major histocompatibility complex class II (MHCII) expression. Reduced Ciita levels significantly increase α-Syn pathology, nigrostriatal neurodegeneration and behavioral deficits in α-Syn-induced rat PD models. Objective Characterize immune profiles associated with enhanced PD-like pathology observed in rats expressing lower Ciita levels (DA.VRA4) compared to the background strain (DA). Methods To model PD, we combined rAAV-mediated α-Syn overexpression in the substantia nigra with striatal injection of α-Syn preformed fibrils. Immune profiles in brain and blood were analyzed by flow cytometry and multiplexed ELISA in naïve rats, 4- and 8 weeks post rAAV injection. Results Flow cytometry showed Ciita-dependent regulation of MHCII on microglia, brain macrophages and circulating myeloid cells. The MHCII-dependent microglial response was highest at 4 weeks post rAAV injection, whereas the MHCII levels in circulating myeloid cells was highest at 8 weeks. There was no major infiltration of macrophages or T lymphocytes into the CNS in response to α-Syn and only subtle Ciita- and/or α-Syn-dependent changes in the T lymphocyte compartment. Lower Ciita levels were consistently associated with higher TNF levels in serum. Conclusions Ciita regulates susceptibility to PD-like pathology through minor but detectable changes in resident and peripheral immune cells and TNF levels, indicating that mild immunomodulatory therapies could have therapeutic effects in PD.
Collapse
Affiliation(s)
- Filip Fredlund
- Department of Experimental Medical Science, Translational Neurogenetics Unit, Lund University, Lund, Sweden
- Department of Clinical Sciences, Inflammation and Stem Cell Therapy Group, Division of Clinical Neurophysiology, Lund University, Lund, Sweden
| | - Itzia Jimenez-Ferrer
- Department of Experimental Medical Science, Translational Neurogenetics Unit, Lund University, Lund, Sweden
| | - Kathleen Grabert
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Lautaro Francisco Belfiori
- Department of Experimental Medical Science, Translational Neurogenetics Unit, Lund University, Lund, Sweden
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maria Swanberg
- Department of Experimental Medical Science, Translational Neurogenetics Unit, Lund University, Lund, Sweden
| |
Collapse
|
95
|
Cao Z, Yuan Y, White AJ, Li C, Luo Z, D’Aloisio AA, Huang X, Kaufman JD, Sandler DP, Chen H. Air Pollutants and Risk of Parkinson's Disease among Women in the Sister Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17001. [PMID: 38175185 PMCID: PMC10766011 DOI: 10.1289/ehp13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Air pollutants may contribute to the development of Parkinson's disease (PD), but empirical evidence is limited and inconsistent. OBJECTIVES This study aimed to prospectively investigate the associations of PD with ambient exposures to fine particulate matter with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ) and nitrogen dioxide (NO 2 ). METHODS We analyzed data from 47,108 US women from the Sister Study, enrolled from 2003-2009 (35-80 years of age) and followed through 2018. Exposures of interest included address-level ambient PM 2.5 and NO 2 in 2009 and their cumulative averages from 2009 to PD diagnosis with varying lag-years. The primary outcome was PD diagnosis between 2009 and 2018 (n = 163 ). We used multivariable Cox proportional hazards and time-varying Cox models to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS NO 2 exposure in 2009 was associated with PD risk in a dose-response manner. The HR and 95% CI were 1.22 (95% CI: 1.03, 1.46) for one interquartile [4.8 parts per billion (ppb)] increment in NO 2 , adjusting for age, race and ethnicity, education, smoking status, alcohol drinking, caffeine intake, body mass index, physical activity, census region, residential area type, area deprivation index (ADI), and self-reported health status. The association was confirmed in secondary analyses with time-varying averaged cumulative exposures. For example, the multivariable adjusted HR for PD per 4.8 ppb increment in NO 2 was 1.25 (95% CI: 1.05, 1.50) in the 2-year lag analysis using cumulative average exposure. Post hoc subgroup analyses overall confirmed the association. However, statistical interaction analyses found that the positive association of NO 2 with PD risk was limited to women in urban, rural, and small town areas and women with ≥ 50 th percentile ADI but not among women from suburban areas or areas with < 50 th percentile ADI. In contrast, PM 2.5 exposure was not associated with PD risk with the possible exception for women from the Midwest region of the US (HR interquartile -range = 2.49 , 95% CI: 1.20, 5.14) but not in other census regions. DISCUSSION In this nationwide cohort of US women, higher level exposure to ambient NO 2 is associated with a greater risk of PD. This finding needs to be independently confirmed and the underlying mechanisms warrant further investigation. https://doi.org/10.1289/EHP13009.
Collapse
Affiliation(s)
- Zichun Cao
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Yaqun Yuan
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Chenxi Li
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Zhehui Luo
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Aimee A. D’Aloisio
- Social & Scientific Systems, DLH Holdings Corporation, Durham, North Carolina, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| |
Collapse
|
96
|
Shejul PP, Doshi GM. Glutamate Receptors and C-ABL Inhibitors: A New Therapeutic Approach for Parkinson's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:22-44. [PMID: 38273763 DOI: 10.2174/0118715249268627231206115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 01/27/2024]
Abstract
Parkinson's disease (PD) is the second-most prevalent central nervous system (CNS) neurodegenerative condition. Over the past few decades, suppression of BCR-Abelson tyrosine kinase (c-Abl), which serves as a marker of -synuclein aggregation and oxidative stress, has shown promise as a potential therapy target in PD. c-Abl inhibition has the potential to provide neuroprotection against PD, as shown by experimental results and the first-in-human trial, which supports the strategy in bigger clinical trials. Furthermore, glutamate receptors have also been proposed as potential therapeutic targets for the treatment of PD since they facilitate and regulate synaptic neurotransmission throughout the basal ganglia motor system. It has been noticed that pharmacological manipulation of the receptors can change normal as well as abnormal neurotransmission in the Parkinsonian brain. The review study contributes to a comprehensive understanding of the approach toward the role of c-Abl and glutamate receptors in Parkinson's disease by highlighting the significance and urgent necessity to investigate new pharmacotherapeutic targets. The article covers an extensive insight into the concept of targeting, pathophysiology, and c-Abl interaction with α-synuclein, parkin, and cyclin-dependent kinase 5 (Cdk5). Furthermore, the concepts of Nmethyl- D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPA) receptor, and glutamate receptors are discussed briefly. Conclusion: This review article focuses on in-depth literature findings supported by an evidence-based discussion on pre-clinical trials and clinical trials related to c-Abl and glutamate receptors that act as potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Priya P Shejul
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
97
|
Singla M, Verma S, Thakur K, Goyal A, Sharma V, Sharma D, Porwal O, Subramaniyan V, Behl T, Singh SK, Dua K, Gupta G, Gupta S. From Plants to Therapies: Exploring the Pharmacology of Coumestrol for Neurological Conditions. Curr Med Chem 2024; 31:6855-6870. [PMID: 37921179 DOI: 10.2174/0109298673250784231011094322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
Neurological disorders are possibly the most prevalent and have been identified to occur among individuals with autism beyond chance. These disorders encompass a diverse range of consequences with neurological causes and have been regarded as a major threat to public mental health. There is no tried-and-true approach for completely protecting the nervous system. Therefore, plant-derived compounds have developed significantly nowadays. Coumestrol (CML) is a potent isoflavone phytoestrogen with a protective effect against neurological dysfunction and has been discovered to be structurally and functionally similar to estrogen. In recent years, more research has been undertaken on phytoestrogens. This research demonstrates the biological complexity of phytoestrogens, which consist of multiple chemical families and function in various ways. This review aimed to explore recent findings on the most significant pharmacological advantages of CML by emphasising neurological benefits. Numerous CML extraction strategies and their pharmacological effects on various neurological disorders, including PD, AD, HD, anxiety, and cognitive impairments, were also documented.
Collapse
Affiliation(s)
- Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Smriti Verma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kiran Thakur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ahsas Goyal
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, U.P., India
| | - Vishal Sharma
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Diksha Sharma
- Department of Pharmacy, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Ishik University, Erbil, Kurdistan, Iraq
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Tapan Behl
- Department of Pharmacy, School of Health Science and Technology, University of Petroleum Science and Energy Studies, Dehradun, Uttarakhand, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, the University of Technology Sydney, Ultimo, NSW2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
98
|
Mu C, Gao M, Xu W, Sun X, Chen T, Xu H, Qiu H. Mechanisms of microRNA-132 in central neurodegenerative diseases: A comprehensive review. Biomed Pharmacother 2024; 170:116029. [PMID: 38128185 DOI: 10.1016/j.biopha.2023.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNA-132 (miR-132) is a highly conserved molecule that plays a crucial regulatory role in central nervous system (CNS) disorders. The expression levels of miR-132 exhibit variability in various neurological disorders and have been closely linked to disease onset and progression. The expression level of miR-132 in the CNS is regulated by a diverse range of stimuli and signaling pathways, including neuronal migration and integration, dendritic outgrowth, and complexity, synaptogenesis, synaptic plasticity, as well as inflammation and apoptosis activation. The aberrant expression of miR-132 in various central neurodegenerative diseases has garnered widespread attention. Clinical studies have revealed altered miR-132 expression levels in both chronic and acute CNS diseases, positioning miR-132 as a potential biomarker or therapeutic target. An in-depth exploration of miR-132 holds the promise of enhancing our understanding of the mechanisms underlying CNS diseases, thereby offering novel insights and strategies for disease diagnosis and treatment. It is anticipated that this review will assist researchers in recognizing the potential value of miR-132 and in generating innovative ideas for clinical trials related to CNS degenerative diseases.
Collapse
Affiliation(s)
- Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Meng Gao
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Weijing Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Tianhao Chen
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
99
|
Alnaaim SA, Al-Kuraishy HM, Alexiou A, Papadakis M, Saad HM, Batiha GES. Role of Brain Liver X Receptor in Parkinson's Disease: Hidden Treasure and Emerging Opportunities. Mol Neurobiol 2024; 61:341-357. [PMID: 37606719 PMCID: PMC10791998 DOI: 10.1007/s12035-023-03561-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease due to the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). The liver X receptor (LXR) is involved in different neurodegenerative diseases. Therefore, the objective of the present review was to clarify the possible role of LXR in PD neuropathology. LXRs are the most common nuclear receptors of transcription factors that regulate cholesterol metabolism and have pleiotropic effects, including anti-inflammatory effects and reducing intracellular cholesterol accumulation. LXRs are highly expressed in the adult brain and act as endogenous sensors for intracellular cholesterol. LXRs have neuroprotective effects against the development of neuroinflammation in different neurodegenerative diseases by inhibiting the expression of pro-inflammatory cytokines. LXRs play an essential role in mitigating PD neuropathology by reducing the expression of inflammatory signaling pathways, neuroinflammation, oxidative stress, mitochondrial dysfunction, and enhancement of BDNF signaling.In conclusion, LXRs, through regulating brain cholesterol homeostasis, may be effectual in PD. Also, inhibition of node-like receptor pyrin 3 (NLRP3) inflammasome and nuclear factor kappa B (NF-κB) by LXRs could effectively prevent neuroinflammation in PD. Taken together, LXRs play a crucial role in PD neuropathology by inhibiting neuroinflammation and associated degeneration of DNs.
Collapse
Affiliation(s)
- Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, 14132, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Wien, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt
| |
Collapse
|
100
|
Bilister Egilmez C, Azak Pazarlar B, Erdogan MA, Erbas O. Neuroprotective effect of dexpanthenol on rotenone-induced Parkinson's disease model in rats. Neurosci Lett 2024; 818:137575. [PMID: 38040406 DOI: 10.1016/j.neulet.2023.137575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Parkinson's disease (PD) is the second most common and progressive neurodegenerative disease. This experimental study was designed to investigate the neuroprotective effects of dexpanthenol on antioxidant and anti-inflammatory processes in a rotenone-induced Parkinson's disease model in rats. Twenty-one male rats were randomly divided into 2 groups. The rotenone group (n = 14) was administered rotenone by intrastriatal injection, and the vehicle group (n = 7) was administered DMSO with the same application route. All animals underwent rotational movement testing with apomorphine injection 10 days later. Those with Parkinson's disease model were randomly divided into 2 groups. While 1 ml/kg of saline was applied to the saline group (n = 7), 500 mg/kg was administered to the dexpanthenol group intraperitoneally for 28 days. After 28 days, all rats were euthanized and brain tissue was removed. While striatal areas were evaluated immunohistochemically, brain MDA, TNF-α, and HVA levels were measured to evaluate their anti-oxidative and anti-inflammatory effects. In the dexpanthenol group, the total count (p < 0.001) and intensity (p < 0.001) of dopaminergic neurons in the striatal areas increased compared to the saline group. It was revealed that MDA (nmol/g) (p < 0.001) and TNF-α (pg/g) (p < 0.001) levels decreased in the dexpanthenol group, while HVA (ng/mg) levels increased (p < 0.01). This study suggests that dexpanthenol may have a neuroprotective effect by reducing neuronal loss, oxidative damage, and neuroinflammation in the striatum in rats.
Collapse
Affiliation(s)
- Cansu Bilister Egilmez
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey.
| | - Burcu Azak Pazarlar
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey
| | - Mumin Alper Erdogan
- Faculty of Medicine, Department of Physiology, Izmir Katip Celebi University, Izmir, Turkey
| | - Oytun Erbas
- Faculty of Medicine, Department of Physiology, Bilim University, Istanbul, Turkey
| |
Collapse
|