51
|
Busse WW, Castro M, Casale TB. Asthma Management in Adults. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:21-33. [PMID: 36283607 DOI: 10.1016/j.jaip.2022.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Management of asthma in adults has advanced in the past 10 years. Central to these advances has been further clarification of type (T) 2 mechanisms of airway inflammation and utilization of T2 biomarkers, that is, eosinophils and fractional exhaled nitric oxide. In addition, epithelial cells are emerging as significant contributors to inflammation through generation of alarmins to initiate local injury as well as downstream pathways. Five new biologics, mepolizumab, benralizumab, reslizumab, dupilumab, and tezepelumab, were approved to join omalizumab and revolutionize severe asthma treatment. These biologics significantly prevent exacerbations to spare systemic corticosteroids use and their side effects. Guidelines attest to the effectiveness of inhaled corticosteroids/long-acting β-agonists (formoterol) for both maintenance and rescue therapy. Focused updates to the Expert Panel Report addressed limited but specific questions relevant to asthma control. Future guidelines should include phenotype/endotype-directed therapeutics to gain more precision-directed treatment.
Collapse
Affiliation(s)
- William W Busse
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| | - Mario Castro
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas, Kansas City, Kan
| | - Thomas B Casale
- Division of Allergy and Immunology, University of South Florida, Tampa, Fla
| |
Collapse
|
52
|
Özcan A, Boyman O. Mechanisms regulating neutrophil responses in immunity, allergy, and autoimmunity. Allergy 2022; 77:3567-3583. [PMID: 36067034 PMCID: PMC10087481 DOI: 10.1111/all.15505] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Accepted: 09/03/2022] [Indexed: 01/28/2023]
Abstract
Neutrophil granulocytes, or neutrophils, are the most abundant circulating leukocytes in humans and indispensable for antimicrobial immunity, as exemplified in patients with inborn and acquired defects of neutrophils. Neutrophils were long regarded as the foot soldiers of the immune system, solely destined to execute a set of effector functions against invading pathogens before undergoing apoptosis, the latter of which was ascribed to their short life span. This simplistic understanding of neutrophils has now been revised on the basis of insights gained from the use of mouse models and single-cell high-throughput techniques, revealing tissue- and context-specific roles of neutrophils in guiding immune responses. These studies also demonstrated that neutrophil responses were controlled by sophisticated feedback mechanisms, including directed chemotaxis of neutrophils to tissue-draining lymph nodes resulting in modulation of antimicrobial immunity and inflammation. Moreover, findings in mice and humans showed that neutrophil responses adapted to different deterministic cytokine signals, which controlled their migration and effector function as well as, notably, their biologic clock by affecting the kinetics of their aging. These mechanistic insights have important implications for health and disease in humans, particularly, in allergic diseases, such as atopic dermatitis and allergic asthma bronchiale, as well as in autoinflammatory and autoimmune diseases. Hence, our improved understanding of neutrophils sheds light on novel therapeutic avenues, focusing on molecularly defined biologic agents.
Collapse
Affiliation(s)
- Alaz Özcan
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
53
|
Cheng X, Zhang H, Hamad A, Huang H, Tsung A. Surgery-mediated tumor-promoting effects on the immune microenvironment. Semin Cancer Biol 2022; 86:408-419. [PMID: 35066156 PMCID: PMC11770836 DOI: 10.1016/j.semcancer.2022.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
Surgical resection continues to be the mainstay treatment for solid cancers even though chemotherapy and immunotherapy have significantly improved patient overall survival and progression-free survival. Numerous studies have shown that surgery induces the dissemination of circulating tumor cells (CTCs) and that the resultant inflammatory response promotes occult tumor growth and the metastatic process by forming a supportive tumor microenvironment (TME). Surgery-induced platelet activation is one of the initial responses to a wound and the formation of fibrin clots can provide the scaffold for recruited inflammatory cells. Activated platelets can also shield CTCs to protect them from blood shear forces and promote CTCs evasion of immune destruction. Similarly, neutrophils are recruited to the fibrin clot and enhance cancer metastatic dissemination and progression by forming neutrophil extracellular traps (NETs). Activated macrophages are also recruited to surgical sites to facilitate the metastatic spread. More importantly, the body's response to surgical insult results in the recruitment and expansion of immunosuppressive cell populations (i.e. myeloid-derived suppressor cells and regulatory T cells) and in the suppression of natural killer (NK) cells that contribute to postoperative cancer recurrence and metastasis. In this review, we seek to provide an overview of the pro-tumorigenic mechanisms resulting from surgery's impact on these cells in the TME. Further understanding of these events will allow for the development of perioperative therapeutic strategies to prevent surgery-associated metastasis.
Collapse
Affiliation(s)
- Xiang Cheng
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hongji Zhang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Ahmad Hamad
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Hai Huang
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Allan Tsung
- Division of Surgical Oncology, Department of Surgery, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
54
|
Agarwal S. Neutrophil-Lymphocyte Ratio Predicting Case Severity in SARS-CoV-2 Infection: A Review. Cureus 2022; 14:e29760. [PMID: 36187170 PMCID: PMC9521818 DOI: 10.7759/cureus.29760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 12/15/2022] Open
|
55
|
Kragstrup TW, Sørensen AS, Brüner M, Lomholt S, Nielsen MA, Schafer P, Deleuran B. MAPK activated kinase 2 inhibition shifts the chemokine signature in arthritis synovial fluid mononuclear cells from CXCR3 to CXCR2. Int Immunopharmacol 2022; 112:109267. [PMID: 36179420 DOI: 10.1016/j.intimp.2022.109267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The development of novel treatment strategies of immune-mediated inflammatory arthritis (IMIA) is still a clinical unmet need. The mitogen-activated protein kinase (MAPK) pathway is activated by environmental stressors, growth factors and inflammatory cytokines. However, the inhibition of central MAPK proteins has so far had undesirable side effects. The MAPK-activated protein kinase 2 (MK2) is a downstream mediator in the MAPK signaling pathway. OBJECTIVES The objective of this study was to explore the effects of a small molecule inhibiting MK2 on synovial fluid mononuclear cells from patients with IMIA. METHODS Synovial fluid mononuclear cells (SFMCs) were obtained from a study population consisting of patients with active rheumatoid arthritis (RA), peripheral spondyloarthritis (SpA) or psoriatic arthritis (PsA) with at least one swollen joint (for obtaining synovial fluid) (n = 11). SFMCs were cultured for 48 h with and without the MK2 inhibitor CC0786512 at 1000 nM, 333 nM and 111 nMand cell free supernatants were harvested and frozen before they were analyzed by the Olink proseek multiplex interferon panel. RESULTS In SFMCs cultured for 48 h, the MK2 inhibitor decreased the production of chemokine (C-X-C motif) ligand 9 (CXCL9) (P < 0.001), CXCL10 (P < 0.01), hepatocyte growth factor (HGF) (P < 0.01), CXCL11 (P < 0.01), tumor necrosisfactor-like weak inducer of apoptosis (TWEAK) (P < 0.05), and interleukin 12B (IL-12B) (P < 0.05) and increased the production of CXCL5 (P < 0.0001), CXCL1 (P < 0.0001), CXCL6 (P < 0.001), transforming growthfactoralpha (TGFα) (P = 0.01), monocyte-chemotactic protein 3 (MCP-3) (P < 0.01), latency-associated peptide (LAP) TGFβ (P < 0.05) dose-dependently. CONCLUSIONS This study reveals the downstream effects of MK2 inhibition on the secretory profile of SFMCs. Specifically, C-X-C motif chemokine receptors 3 (CXCR3) chemokines were decreased and CXCR2 chemokines were increased. This shift in the chemokine milieu may be one of the mechanisms behind the anti-inflammatory effects of MK2 inhibitors.
Collapse
Affiliation(s)
- Tue W Kragstrup
- Department of Biomedicine, Aarhus University, Denmark; Department of Rheumatology, Aarhus University Hospital, Denmark; Diagnostic Center, Silkeborg Regional Hospital, Denmark.
| | | | - Mads Brüner
- Department of Biomedicine, Aarhus University, Denmark
| | - Søren Lomholt
- Department of Biomedicine, Aarhus University, Denmark
| | - Morten A Nielsen
- Department of Biomedicine, Aarhus University, Denmark; Department of Rheumatology, Aarhus University Hospital, Denmark
| | - Peter Schafer
- Department of Translational Medicine, Bristol Myers Squibb, Princeton, NJ, USA
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Denmark; Department of Rheumatology, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
56
|
Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases. Pharmacol Ther 2022; 237:108257. [PMID: 35908611 DOI: 10.1016/j.pharmthera.2022.108257] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
|
57
|
Wu Q, Tu H, Li J. Multifaceted Roles of Chemokine C-X-C Motif Ligand 7 in Inflammatory Diseases and Cancer. Front Pharmacol 2022; 13:914730. [PMID: 35837284 PMCID: PMC9273993 DOI: 10.3389/fphar.2022.914730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over recent years, C-X-C motif ligand 7 (CXCL7) has received widespread attention as a chemokine involved in inflammatory responses. Abnormal production of the chemokine CXCL7 has been identified in different inflammatory diseases; nevertheless, the exact role of CXCL7 in the pathogenesis of inflammatory diseases is not fully understood. Persistent infection or chronic inflammation can induce tumorigenesis and progression. Previous studies have shown that the pro-inflammatory chemokine CXCL7 is also expressed by malignant tumor cells and that binding of CXCL7 to its cognate receptors C-X-C chemokine receptor 1 (CXCR1) and C-X-C chemokine receptor 2 (CXCR2) can influence tumor biological behavior (proliferation, invasion, metastasis, and tumor angiogenesis) in an autocrine and paracrine manner. CXCL7 and its receptor CXCR1/CXCR2, which are aberrantly expressed in tumors, may represent new targets for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Qianmiao Wu
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medicine, Nanchang University, Nanchang, China
| | - Huaijun Tu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Li
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
58
|
Phillips BE, Lantier L, Engman C, Garciafigueroa Y, Singhi A, Trucco M, Mantzoros C, Wasserman D, Giannoukakis N. Improvement in insulin sensitivity and prevention of high fat diet-induced liver pathology using a CXCR2 antagonist. Cardiovasc Diabetol 2022; 21:130. [PMID: 35831885 PMCID: PMC9277870 DOI: 10.1186/s12933-022-01564-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/28/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Liver pathology (LP) characteristic of non-alcoholic fatty acid disease (NAFLD)/non-alcoholic steatohepatitis (NASH) is a prevalent co-morbidity of type 2 diabetes (T2D). Accumulating evidence indicates that neutrophils driving insulin resistance (IR), including hepatic IR, precipitate T2D-associated NAFLD/NASH. We hypothesized that targeting neutrophil accumulation into insulin-sensitive tissues in mice using a CXCR2 antagonist under T2D-precipitating high fat diet (HFD) could improve insulin sensitivity and prevent the progression towards liver pathology reminiscent of NAFLD/NASH. METHODS Mice were age-matched and on standard rodent chow prior to 1:1 randomization into control and HFD formulated with the CXCR2 antagonist AZD5069 or with biologically inactive substitute. They were monitored for metabolic changes including insulin sensitivity using the hyperinsulinemic-euglycemic clamp and hepatic histopathologic evaluation in H&E-stained sections as well as via immunofluorescence microscopy of liver sections for leukocyte markers, collagen 1A1 formation, α-smooth muscle actin (SMA), and galectin-3 expression, for 16 weeks. Statistical tests used to determine significant differences among study groups and outcomes include Student's t-test, one-way ANOVA, repeated measures two-way ANOVA, and Fisher's exact test, depending on the analytical question. RESULTS Compared to mice on HFD, mice in the AZD5069-formulated HFD exhibited improved insulin sensitivity, a modest reduction in weight gain, and a significant improvement in LP and markers related to NAFLD/NASH. Mice in the AZD5069-formulated HFD also exhibited reduced neutrophil accumulation into the liver at the end of the 16 week study period. CONCLUSIONS These results show, for the first time, the effectiveness of a selective CXCR2 antagonist to improve insulin sensitivity, concomitantly preventing the progression towards LP characteristic of NAFLD/NASH. This represents a novel approach to target IR and developing LP under T2D-susceptible conditions using a single agent. Furthermore, our data extend the growing evidence in support of neutrophils as a leukocyte population that imprints and maintains a chronic inflammatory state in the progression of dysregulated metabolism in liver-specific co-morbid conditions.
Collapse
Affiliation(s)
- Brett E. Phillips
- Institute of Cellular Therapeutics, Allegheny Health Network, 11th Floor South Tower, 320 East North Avenue, Pittsburgh, PA S15212 USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University., Nashville, TN 37232 USA
| | - Carl Engman
- Institute of Cellular Therapeutics, Allegheny Health Network, 11th Floor South Tower, 320 East North Avenue, Pittsburgh, PA S15212 USA
| | - Yesica Garciafigueroa
- Institute of Cellular Therapeutics, Allegheny Health Network, 11th Floor South Tower, 320 East North Avenue, Pittsburgh, PA S15212 USA
| | - Aatur Singhi
- Department of Pathology, School of Medicine, Room A616.2, UPMC Presbyterian, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, 11th Floor South Tower, 320 East North Avenue, Pittsburgh, PA S15212 USA
| | - Christos Mantzoros
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - David Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University., Nashville, TN 37232 USA
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, 11th Floor South Tower, 320 East North Avenue, Pittsburgh, PA S15212 USA
| |
Collapse
|
59
|
Diver S, Brightling CE, Greening NJ. Novel Therapeutic Strategies in Asthma-Chronic Obstructive Pulmonary Disease Overlap. Immunol Allergy Clin North Am 2022; 42:671-690. [DOI: 10.1016/j.iac.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
60
|
Abdo M, Pedersen F, Kirsten AM, Veith V, Biller H, Trinkmann F, von Mutius E, Kopp M, Hansen G, Rabe KF, Bahmer T, Watz H. Longitudinal Impact of Sputum Inflammatory Phenotypes on Small Airway Dysfunction and Disease Outcomes in Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1545-1553.e2. [PMID: 35257957 DOI: 10.1016/j.jaip.2022.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Little is known about the relationship between airway inflammatory phenotypes and some important asthma features such as small airway dysfunction (SAD). OBJECTIVE To describe the longitudinal impact of airway inflammatory phenotypes on SAD and asthma outcomes. METHODS We measured eosinophil and neutrophil counts in induced sputum at baseline and 1 year later to stratify 197 adult patients with asthma into 4 inflammatory phenotypes. We conducted a comprehensive assessment of lung function using spirometry, body plethysmography, impulse oscillometry, and inert gas single and multiple breath washouts. We compared lung function, asthma severity, exacerbation frequency, and symptom control between the phenotypes. We studied the longitudinal impact of persistent sputum inflammatory phenotypes and the change of sputum cell counts on lung function. RESULTS Patients were stratified into eosinophilic (23%, n = 45), neutrophilic (33%, n = 62), mixed granulocytic (22%, n = 43), and paucigranulocytic (24%, n = 47) phenotypes. Patients with eosinophilic and mixed granulocytic asthma had higher rates of airflow obstruction and severe exacerbation as well as poorer symptom control than patients with paucigranulocytic asthma. All SAD measures were worse in patients with eosinophilic and mixed asthma than in those with paucigranulocytic asthma (all P values <.05). Eosinophilic asthma also indicated worse distal airflow obstruction, increased ventilation inhomogeneity (all P values <.05), and higher tendency for severe exacerbation (P = .07) than neutrophilic asthma. Longitudinally, persistent mixed granulocytic asthma was associated with the worst follow-up measures of SAD compared with persistent neutrophilic, persistent paucigranulocytic, or nonpersistent asthma phenotypes. In patients with stable forced expiratory volume in 1 second (FEV1), the mean increase in small airway resistance (R5-20) was greater in patients with persistent mixed granulocytic asthma (+103%) than in patients with persistent neutrophilic (+26%), P = .040, or persistent paucigranulocytic asthma (-41%), P = .028. Multivariate models adjusted for confounders and treatment with inhaled or oral corticosteroids or antieosinophilic biologics indicated that the change of sputum eosinophil rather than neutrophil counts is an independent predictor for the longitudinal change in FEV1, forced expiratory flow at 25% to 75% of forced vital capacity, specific effective airway resistance, residual lung volume, and lung clearance index. CONCLUSIONS In asthma, airway eosinophilic inflammation is the main driver of lung function impairment and poor disease outcomes, which might also be aggravated by the coexistence of airway neutrophilia to confer a severe mixed granulocytic asthma phenotype. Persistent airway eosinophilia might be associated with dynamic SAD even in patients with stable FEV1.
Collapse
Affiliation(s)
- Mustafa Abdo
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany.
| | - Frauke Pedersen
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany; Pulmonary Research Institute at the LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Anne-Marie Kirsten
- Pulmonary Research Institute at the LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Vera Veith
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Heike Biller
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Frederik Trinkmann
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Biomedical Informatics, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
| | - Erika von Mutius
- Dr von Hauner Children's Hospital, Ludwig Maximilians University of Munich, Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), and Institute of Asthma and Allergy Prevention, Helmholtz Centre, Munich, Germany
| | - Matthias Kopp
- Department of Pediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland; Division of Pediatric Pneumology & Allergology, University Hospital Schleswig-Holstein-Campus Luebeck, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Luebeck, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Klaus F Rabe
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Thomas Bahmer
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany; Department for Internal Medicine I, University Hospital Schleswig-Holstein-Campus Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Henrik Watz
- Pulmonary Research Institute at the LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | |
Collapse
|
61
|
Watchorn D, Menzies-Gow A. Investigational approaches for unmet need in severe asthma. Expert Rev Respir Med 2022; 16:661-678. [PMID: 35786146 DOI: 10.1080/17476348.2022.2096593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Molecular antibodies (mAb) targeting inflammatory mediators are effective in T2-high asthma. The recent approval of Tezepelumab presents a novel mAb therapeutic option for those with T2-low asthma. AREAS COVERED We discuss a number of clinical problems pertinent to severe asthma that are less responsive to current therapies, such as persistent airflow obstruction and airway hyperresponsiveness. We discuss selected investigational approaches, including a number of candidate therapies under investigation in two adaptive platform trials currently in progress, with particular reference to this unmet need, as well as their potential in phenotypes such as neutrophilic asthma and obese asthma, which may or may not overlap with a T2-high phenotype. EXPERT OPINION The application of discrete targeting approaches to T2-low molecular phenotypes, including those phenotypes in which inflammation may not arise within the airway, has yielded variable results to date. Endotypes associated with T2-low asthma are likely to be diverse but await validation. Investigational therapeutic approaches must, likewise, be diverse if the goal of remission is to become attainable for all those living with asthma.
Collapse
Affiliation(s)
- David Watchorn
- Lung Division, Royal Brompton & Harefield Hospitals,London,UK
| | | |
Collapse
|
62
|
Cazzola M, Rogliani P, Naviglio S, Calzetta L, Matera MG. An update on the currently available and emerging synthetic pharmacotherapy for uncontrolled asthma. Expert Opin Pharmacother 2022; 23:1205-1216. [PMID: 35621331 DOI: 10.1080/14656566.2022.2083955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION : The treatment of uncontrolled asthma has improved because of triple therapy that includes a long-acting muscarinic antagonist (LAMA) and biological drugs, but several patients are resistant to corticosteroids and/or cannot achieve adequate asthma control using such therapies. AREAS COVERED : Herein, the authors review the current and emerging synthetic pharmacotherapy for uncontrolled asthma to overcome obstacles and limitations of biological therapies. The authors also provide their expert perspectives and opinion on the treatment of uncontrolled asthma. EXPERT OPINION : LAMAs should be added to inhaled corticosteroid/long-acting β2-agonist combinations much earlier than currently recommended by the Global Initiative for Asthma strategy because they can influence the course of small airways disease, reducing lung hyperinflation and improving asthma control. Biological therapies are a major advance in the treatment of severe asthma, but their use is still very limited for several reasons. An alternative to overcome the use of biological therapies is to synthesise compounds that target inflammation-signalling pathways. Several pathways have been identified as potential targets to design either therapeutic or prophylactic drugs against asthma. Some new compounds have already been tested in humans, but results have often been disappointing probably because existing phenotypic and endotypic variants may unpredictably limit the therapeutic value of blocking a specific pathway in most asthmatics, although there may be a substantial benefit for a subgroup of patients.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
63
|
Paucigranulocytic Asthma: Potential Pathogenetic Mechanisms, Clinical Features and Therapeutic Management. J Pers Med 2022; 12:jpm12050850. [PMID: 35629272 PMCID: PMC9145917 DOI: 10.3390/jpm12050850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Asthma is a heterogeneous disease usually characterized by chronic airway inflammation, in which several phenotypes have been described, related to the age of onset, symptoms, inflammatory characteristics and treatment response. The identification of the inflammatory phenotype in asthma is very useful, since it allows for both the recognition of the asthmatic triggering factor as well as the optimization of treatment The paucigranulocytic phenotype of asthma (PGA) is characterized by sputum eosinophil levels <1−3% and sputum neutrophil levels < 60%. The precise characteristics and the pathobiology of PGA are not fully understood, and, in some cases, it seems to represent a previous eosinophilic phenotype with a good response to anti-inflammatory treatment. However, many patients with PGA remain uncontrolled and experience asthmatic symptoms and exacerbations, irrespective of the low grade of airway inflammation. This observation leads to the hypothesis that PGA might also be either a special phenotype driven by different kinds of cells, such as macrophages or mast cells, or a non-inflammatory phenotype with a low grade of eosinophilic inflammation. In this review, we aim to describe the special characteristics of PGA and the potential therapeutic interventions that could be offered to these patients.
Collapse
|
64
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
65
|
Carr TF, Peters MC. Novel potential treatable traits in asthma: Where is the research taking us? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:27-36. [PMID: 37780590 PMCID: PMC10509971 DOI: 10.1016/j.jacig.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 10/03/2023]
Abstract
Asthma is a complex, heterogeneous disease in which the underlying mechanisms are not fully understood. Patients are often grouped into phenotypes (based on clinical, biologic, and physiologic characteristics) and endotypes (based on distinct genetic or molecular mechanisms). Recently, patients with asthma have been broadly split into 2 phenotypes based on their levels of type 2 inflammation: type 2 and non-type 2 asthma. However, this approach is likely oversimplified, and our understanding of the non-type 2 mechanisms in asthma remains extremely limited. A better understanding of asthma phenotypes and endotypes may assist in development of drugs for new therapeutic targets in asthma. One approach is to identify "treatable traits," which are specific patient characteristics related to phenotypes and endotypes that can be targeted by therapies. This review will focus on emerging treatable traits in asthma and aim to describe novel patient subgroups and endotypes that may represent the next step in the search for new therapeutic approaches.
Collapse
Affiliation(s)
- Tara F. Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Michael C. Peters
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, Calif
| |
Collapse
|
66
|
Busse WW, Kraft M. Current unmet needs and potential solutions to uncontrolled asthma. Eur Respir Rev 2022; 31:210176. [PMID: 35082128 PMCID: PMC9488919 DOI: 10.1183/16000617.0176-2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of effective inhaled therapies, many patients with asthma have poor asthma control. Uncontrolled asthma presents a significant burden on the patient and society, and, for many, remains largely preventable. There are numerous reasons why a patient may remain uncontrolled despite access to therapies, including incorrect inhaler technique, poor adherence to treatment, oversight of triggers and suboptimal medical care. Shared decision-making, good patient-clinician communication, supported self-management, multidisciplinary patient education, new technology and risk stratification may all provide solutions to this major unmet need in asthma. Novel treatments such as biologics could benefit patients' lives, while the investigations into biomarkers, non-Type 2 asthma, treatable traits and disease modification give an exciting glimpse into the future of asthma care.
Collapse
Affiliation(s)
- William W Busse
- Dept of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Monica Kraft
- University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
67
|
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev 2022; 31:31/163/210241. [PMID: 35197267 PMCID: PMC9488971 DOI: 10.1183/16000617.0241-2021] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophilic inflammation has a key role in the pathophysiology of multiple chronic lung diseases. The formation of neutrophil extracellular traps (NETs) has emerged as a key mechanism of disease in neutrophilic lung diseases including asthma, COPD, cystic fibrosis and, most recently, bronchiectasis. NETs are large, web-like structures composed of DNA and anti-microbial proteins that are able to bind pathogens, prevent microbial dissemination and degrade bacterial virulence factors. The release of excess concentrations of proteases, antimicrobial proteins, DNA and histones, however, also leads to tissue damage, impaired mucociliary clearance, impaired bacterial killing and increased inflammation. A number of studies have linked airway NET formation with greater disease severity, increased exacerbations and overall worse disease outcomes across the spectrum of airway diseases. Treating neutrophilic inflammation has been challenging in chronic lung disease because of the delicate balance between reducing inflammation and increasing the risk of infections through immunosuppression. Novel approaches to suppressing NET formation or the associated inflammation are in development and represent an important therapeutic target. This review will discuss the relationship between NETs and the pathophysiology of cystic fibrosis, asthma, COPD and bronchiectasis, and explore the current and future development of NET-targeting therapies. NETs contribute to the pathophysiology of chronic lung disease. Immunomodulating therapies that may reduce inflammatory mediators and NET formation, without compromising bacterial clearance, offer a new treatment path for patients. https://bit.ly/3fyJC6I
Collapse
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
68
|
Gunaseelan S, Ariffin MZ, Khanna S, Ooi MH, Perera D, Chu JJH, Chua JJE. Pharmacological perturbation of CXCL1 signaling alleviates neuropathogenesis in a model of HEVA71 infection. Nat Commun 2022; 13:890. [PMID: 35173169 PMCID: PMC8850555 DOI: 10.1038/s41467-022-28533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Hand, foot and mouth disease (HFMD) caused by Human Enterovirus A71 (HEVA71) infection is typically a benign infection. However, in minority of cases, children can develop severe neuropathology that culminate in fatality. Approximately 36.9% of HEVA71-related hospitalizations develop neurological complications, of which 10.5% are fatal. Yet, the mechanism by which HEVA71 induces these neurological deficits remain unclear. Here, we show that HEVA71-infected astrocytes release CXCL1 which supports viral replication in neurons by activating the CXCR2 receptor-associated ERK1/2 signaling pathway. Elevated CXCL1 levels correlates with disease severity in a HEVA71-infected mice model. In humans infected with HEVA71, high CXCL1 levels are only present in patients presenting neurological complications. CXCL1 release is specifically triggered by VP4 synthesis in HEVA71-infected astrocytes, which then acts via its receptor CXCR2 to enhance viral replication in neurons. Perturbing CXCL1 signaling or VP4 myristylation strongly attenuates viral replication. Treatment with AZD5069, a CXCL1-specific competitor, improves survival and lessens disease severity in infected animals. Collectively, these results highlight the CXCL1-CXCR2 signaling pathway as a potential target against HFMD neuropathogenesis.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, 117456, Singapore
| | - Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, 117456, Singapore
| | - Mong How Ooi
- Department of Paediatrics, Sarawak General Hospital, Kuching, Sarawak, Malaysia
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - David Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Infectious Disease Translational Research Programme, National University of Singapore, Singapore, 117597, Singapore.
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- LSI Neurobiology Programme, National University of Singapore, Singapore, 117456, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
69
|
Xie Y, Abel PW, Casale TB, Tu Y. T H17 cells and corticosteroid insensitivity in severe asthma. J Allergy Clin Immunol 2022; 149:467-479. [PMID: 34953791 PMCID: PMC8821175 DOI: 10.1016/j.jaci.2021.12.769] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Asthma is classically described as having either a type 2 (T2) eosinophilic phenotype or a non-T2 neutrophilic phenotype. T2 asthma usually responds to classical bronchodilation therapy and corticosteroid treatment. Non-T2 neutrophilic asthma is often more severe. Patients with non-T2 asthma or late-onset T2 asthma show poor response to the currently available anti-inflammatory therapies. These therapeutic failures result in increased morbidity and cost associated with asthma and pose a major health care problem. Recent evidence suggests that some non-T2 asthma is associated with elevated TH17 cell immune responses. TH17 cells producing Il-17A and IL-17F are involved in the neutrophilic inflammation and airway remodeling processes in severe asthma and have been suggested to contribute to the development of subsets of corticosteroid-insensitive asthma. This review explores the pathologic role of TH17 cells in corticosteroid insensitivity of severe asthma and potential targets to treat this endotype of asthma.
Collapse
Affiliation(s)
- Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Peter W. Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Thomas B. Casale
- Department of Internal Medicine, University of South Florida School of Medicine, Tampa, FL, USA
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
70
|
Zhang X, Xu Z, Wen X, Huang G, Nian S, Li L, Guo X, Ye Y, Yuan Q. The onset, development and pathogenesis of severe neutrophilic asthma. Immunol Cell Biol 2022; 100:144-159. [PMID: 35080788 DOI: 10.1111/imcb.12522] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Bronchial asthma is divided into Th2 high, Th2 low and mixed types. The Th2 high type is dominated by eosinophils while the Th2 low type is divided into neutrophilic and paucigranulocytic types. Eosinophilic asthma has gained increased attention recently, and its pathogenesis and treatment are well understood. However, severe neutrophilic asthma requires more in-depth research because its pathogenesis is not well understood, and no effective treatment exists. This review looks at the advances made in asthma research, the pathogenesis of neutrophilic asthma, the mechanisms of progression to severe asthma, risk factors for asthma exacerbations, and biomarkers and treatment of neutrophilic asthma. The pathogenesis of neutrophilic asthma is further discussed from four aspects: Th17-type inflammatory response, inflammasomes, exosomes and microRNAs. This review provides direction for the mechanistic study, diagnosis and treatment of neutrophilic asthma. The treatment of neutrophilic asthma remains a significant challenge for clinical therapists and is an important area of future clinical research.
Collapse
Affiliation(s)
- Xingli Zhang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Zixi Xu
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xue Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Guoping Huang
- Zigong Hospital of Woman and Children Healthcare, Sichuan, China
| | - Siji Nian
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Li
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Yuan
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
71
|
CXCR2 Mediates Distinct Neutrophil Behavior in Brain Metastatic Breast Tumor. Cancers (Basel) 2022; 14:cancers14030515. [PMID: 35158784 PMCID: PMC8833752 DOI: 10.3390/cancers14030515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Brain metastasis is one of the main causes of mortality among breast cancer patients, but the origins and the mechanisms that drive this process remain poorly understood. Here, we report that the upregulation of certain CXCR2-associated ligands in the brain metastatic variants of the breast cancer cells (BrM) dynamically activate the corresponding CXCR2 receptors on the neutrophils, thereby resulting in the modulation of certain key functional neutrophil responses towards the BrM. Using established neutrophil-tumor biomimetic co-culture models, we show that the upregulation of CXCR2 increases the recruitment of Tumor-Associated Neutrophils (TANs) towards the BrM, to enable location-favored formation of Neutrophil Extracellular Traps (NETs). Inhibition of CXCR2 using small molecule antagonist AZD5069 reversed this behavior, limiting the neutrophil responses to the BrM and retarding the reciprocal tumor development. We further demonstrate that abrogation of NETs formation using Neutrophil Elastase Inhibitor (NEI) significantly decreases the influx of neutrophils towards BrM but not to their parental tumor, suggesting that CXCR2 activation could be used by the brain metastatic tumors as a mechanism to program the tumor-infiltrating TANs into a pro-NETotic state, so as to assume a unique spatial distribution that assists in the subsequent migration and invasion of the metastatic tumor cells. This new perspective indicates that CXCR2 is a critical target for suppressing neutrophilic inflammation in brain metastasis.
Collapse
|
72
|
Kang N, Song WJ. Discovering Biomarkers of Neutrophilic Asthma: A Clinician's Perspective. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:1-4. [PMID: 34983102 PMCID: PMC8724821 DOI: 10.4168/aair.2022.14.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Noeul Kang
- Division of Allergy, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
73
|
Which Therapy for Non-Type(T)2/T2-Low Asthma. J Pers Med 2021; 12:jpm12010010. [PMID: 35055325 PMCID: PMC8779705 DOI: 10.3390/jpm12010010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, the asthmatic population is divided into Type 2-high and non-Type 2/Type 2-low asthmatics, with 50% of patients belonging to one of the two groups. Differently from T2-high, T2-low asthma has not been clearly defined yet, and the T2-low patients are identified on the basis of the absence or non-predominant expression of T2-high biomarkers. The information about the molecular mechanisms underpinning T2-low asthma is scarce, but researchers have recognized as T2-low endotypes type 1 and type 3 immune response, and remodeling events occurring without inflammatory processes. In addition, the lack of agreed biomarkers reprents a challenge for the research of an effective therapy. The first-choice medication is represented by inhaled corticosteroids despite a low efficacy is reported for/in T2-low patients. However, macrolides and long-acting anti-muscarinic drugs have been recognized as efficacious. In recent years, clinical trials targeting biomarkers playing key roles in T3 and T1 immune pathways, alarmins, and molecules involved in neutrophil recruitment have provided conflicting results probably misleading (or biased) in patients' selection. However, further studies are warranted to achieve a precise characterization of T2-low asthma with the aim of defining a tailored therapy for each single asthmatic patient.
Collapse
|
74
|
Custovic A, Siddiqui S, Saglani S. Considering biomarkers in asthma disease severity. J Allergy Clin Immunol 2021; 149:480-487. [PMID: 34942235 DOI: 10.1016/j.jaci.2021.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
Amongst patients with asthma, reliance on the type/dose of prescribed medication and symptom control does not adequately capture those at risk of adverse outcomes, and we need biomarkers for risk and treatment stratification which are consistently accurate, readily quantifiable and reproducible. The majority of patients with severe asthma, regardless of age, have predominant type-2 (T2) inflammation mediated disease, making airway/blood eosinophils, FeNO, periostin and/or allergic sensitization potentially important biomarkers for severe disease. In both adult and pediatric asthma, there is scope to improve prediction of severe attacks by using a composite T2 biomarkers of blood eosinophils and FeNO. Technological advances in component-resolved diagnostics (CRD) microarray technologies coupled with the development of interpretation software offer a possibility to use CRD as biomarkers of asthma severity amongst sensitized asthmatics. Genetic predisposition and polygenic risk scores of relevant traits (e.g., lung function, host immune responses, biomarkers of exposure from the indoor and outdoor environment, infection and microbial dysbiosis) may also contribute to prediction algorithms. We challenge the idea that asthma can be accurately defined in an individual patient by a discrete and static "endotype" (e.g., T2-high asthma). As we traverse the new era of molecular endotyping in asthma, we need to understand how relevant mechanisms impact patient outcomes, and in parallel develop new tools and approaches to stratify therapies and define individual patient trajectories.
Collapse
Affiliation(s)
- Adnan Custovic
- National Heart and Lung Institute, Imperial College London, UK.
| | - Salman Siddiqui
- Department of Respiratory Sciences, University of Leicester and NIHR Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
75
|
Siwicka-Gieroba D, Dabrowski W. Credibility of the Neutrophil-to-Lymphocyte Count Ratio in Severe Traumatic Brain Injury. Life (Basel) 2021; 11:life11121352. [PMID: 34947883 PMCID: PMC8706648 DOI: 10.3390/life11121352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide. The consequences of a TBI generate the activation and accumulation of inflammatory cells. The peak number of neutrophils entering into an injured brain is observed after 24 h; however, cells infiltrate within 5 min of closed brain injury. Neutrophils release toxic molecules including free radicals, proinflammatory cytokines, and proteases that advance secondary damage. Regulatory T cells impair T cell infiltration into the central nervous system and elevate reactive astrogliosis and interferon-γ gene expression, probably inducing the process of healing. Therefore, the neutrophil-to-lymphocyte ratio (NLR) may be a low-cost, objective, and available predictor of inflammation as well as a marker of secondary injury associated with neutrophil activation. Recent studies have documented that an NLR value on admission might be effective for predicting outcome and mortality in severe brain injury patients.
Collapse
|
76
|
Mincham KT, Bruno N, Singanayagam A, Snelgrove RJ. Our evolving view of neutrophils in defining the pathology of chronic lung disease. Immunology 2021; 164:701-721. [PMID: 34547115 PMCID: PMC8561104 DOI: 10.1111/imm.13419] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are critical components of the body's immune response to infection, being loaded with a potent arsenal of toxic mediators and displaying immense destructive capacity. Given the potential of neutrophils to impart extensive tissue damage, it is perhaps not surprising that when augmented these cells are also implicated in the pathology of inflammatory diseases. Prominent neutrophilic inflammation is a hallmark feature of patients with chronic lung diseases such as chronic obstructive pulmonary disease, severe asthma, bronchiectasis and cystic fibrosis, with their numbers frequently associating with worse prognosis. Accordingly, it is anticipated that neutrophils are central to the pathology of these diseases and represent an attractive therapeutic target. However, in many instances, evidence directly linking neutrophils to the pathology of disease has remained somewhat circumstantial and strategies that have looked to reduce neutrophilic inflammation in the clinic have proved largely disappointing. We have classically viewed neutrophils as somewhat crude, terminally differentiated, insular and homogeneous protagonists of pathology. However, it is now clear that this does not do the neutrophil justice, and we now recognize that these cells exhibit heterogeneity, a pronounced awareness of the localized environment and a remarkable capacity to interact with and modulate the behaviour of a multitude of cells, even exhibiting anti-inflammatory, pro-resolving and pro-repair functions. In this review, we discuss evidence for the role of neutrophils in chronic lung disease and how our evolving view of these cells may impact upon our perceived assessment of their contribution to disease pathology and efforts to target them therapeutically.
Collapse
Affiliation(s)
- Kyle T. Mincham
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Nicoletta Bruno
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Aran Singanayagam
- National Heart and Lung InstituteImperial College LondonLondonUK
- Department of Infectious DiseaseImperial College LondonLondonUK
| | | |
Collapse
|
77
|
Shen M, Du Y, Ye Y. Tumor-associated macrophages, dendritic cells, and neutrophils: biological roles, crosstalk, and therapeutic relevance. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:222-243. [PMID: 37724296 PMCID: PMC10388790 DOI: 10.1515/mr-2021-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Tumor-associated myeloid cells constitute a series of plastic and heterogeneous cell populations within the tumor microenvironment (TME), and exhibit different phenotypes and functions in response to various microenvironmental signals. In light of promising preclinical data indicating that myeloid-based therapy can effectively suppress tumor growth, a series of novel immune-based therapies and approaches are currently undergoing clinical evaluation. A better understanding of the diversity and functional roles of different myeloid cell subtypes and of how they are associated with TME remodeling may help to improve cancer therapy. Herein, we focus on myeloid cells and discuss how tumor cells can simultaneously reprogram these cells through tumor-derived factors and metabolites. In addition, we discuss the interactions between myeloid cells and other cells in the TME that have the potential to directly or indirectly regulate tumor initiation, invasion, or angiogenesis. We further discuss the current and future potential applications of myeloid cells in the development of focused therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Mingyi Shen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
78
|
Affiliation(s)
- Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
79
|
Reply to Dutta et al.: Understanding scRNA-seq data in the context of the tissue microenvironment requires clinical relevance. Proc Natl Acad Sci U S A 2021; 118:2109159118. [PMID: 34686602 DOI: 10.1073/pnas.2109159118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
|
80
|
Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway. FRONTIERS IN ALLERGY 2021; 2:738987. [PMID: 35386999 PMCID: PMC8974750 DOI: 10.3389/falgy.2021.738987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Asthma is a heterogeneous, chronic respiratory disease affecting 300 million people and is thought to be driven by different inflammatory endotypes influenced by a myriad of genetic and environmental factors. The complexity of asthma has rendered it challenging to develop preventative and disease modifying therapies and it remains an unmet clinical need. Whilst many factors have been implicated in asthma pathogenesis and exacerbations, evidence indicates a prominent role for respiratory viruses. However, advances in culture-independent detection methods and extensive microbial profiling of the lung, have also demonstrated a role for respiratory bacteria in asthma. In particular, airway colonization by the Proteobacteria species Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) is associated with increased risk of developing recurrent wheeze and asthma in early life, poor clinical outcomes in established adult asthma and the development of more severe inflammatory phenotypes. Furthermore, emerging evidence indicates that bacterial-viral interactions may influence exacerbation risk and disease severity, highlighting the need to consider the impact chronic airway colonization by respiratory bacteria has on influencing host responses to viral infection. In this review, we first outline the currently understood role of viral and bacterial infections in precipitating asthma exacerbations and discuss the underappreciated potential impact of bacteria-virus crosstalk in modulating host responses. We discuss the mechanisms by which early life infection may predispose to asthma development. Finally, we consider how infection and persistent airway colonization may drive different asthma phenotypes, with a view to identifying pathophysiological mechanisms that may prove tractable to new treatment modalities.
Collapse
Affiliation(s)
- Jodie Ackland
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
- Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
- *Correspondence: Karl J. Staples
| |
Collapse
|
81
|
Effah CY, Drokow EK, Agboyibor C, Ding L, He S, Liu S, Akorli SY, Nuamah E, Sun T, Zhou X, Liu H, Xu Z, Feng F, Wu Y, Zhang X. Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations. Front Immunol 2021; 12:689866. [PMID: 34737734 PMCID: PMC8560714 DOI: 10.3389/fimmu.2021.689866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.
Collapse
Affiliation(s)
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shaohua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senyo Yao Akorli
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Nuamah
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Tongwen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolei Zhou
- Department of Respiratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Xu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
82
|
Louis R, Louis G, Bonhomme O. NOVELTY: a landmark study in phenotyping and endotyping chronic obstructive airway diseases in real clinical practice. Eur Respir J 2021; 58:58/3/2100627. [PMID: 34556532 DOI: 10.1183/13993003.00627-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/05/2022]
Affiliation(s)
| | - Gilles Louis
- Dept of Public Health, University of Liege, Liege, Belgium
| | | |
Collapse
|
83
|
Morissette M, Godbout K, Côté A, Boulet LP. Asthma COPD overlap: Insights into cellular and molecular mechanisms. Mol Aspects Med 2021; 85:101021. [PMID: 34521557 DOI: 10.1016/j.mam.2021.101021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Although there is still no consensus on the definition of Asthma-COPD Overlap (ACO), it is generally accepted that some patients with airway disease have features of both asthma and COPD. Just as its constituents, ACO consists of different phenotypes, possibly depending on the predominance of the underlying asthma or COPD-associated pathophysiological mechanisms. The clinical picture is influenced by the development of airway inflammatory processes either eosinophilic, neutrophilic or mixed, in addition to glandular changes leading to mucus hypersecretion and a variety of other airway structural changes. Although animal models have exposed how smoking-related changes can interact with those observed in asthma, much remains to be known about their interactions in humans and the additional modulating effects of environmental exposures. There is currently no solid evidence to establish the optimal treatment of ACO but it should understandably include an avoidance of environmental triggers such as smoking and relevant allergens. The recognition and targeting of "treatable traits" following phenotyping is a pragmatic approach to select the optimal pharmacological treatment for ACO, although an association of inhaled corticosteroids and bronchodilators is always required in these patients. This association acts both as an anti-inflammatory treatment for the asthma component and as a functional antagonist for the airway remodeling features. Research should be promoted on well phenotyped subgroups of ACO patients to determine their optimal management.
Collapse
Affiliation(s)
- Mathieu Morissette
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada.
| | - Krystelle Godbout
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada
| | - Andréanne Côté
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada
| | - Louis-Philippe Boulet
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada.
| |
Collapse
|
84
|
Murphy RC, Pavord ID, Alam R, Altman MC. Management Strategies to Reduce Exacerbations in non-T2 Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2588-2597. [PMID: 34246435 DOI: 10.1016/j.jaip.2021.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
There have been considerable advances in our understanding of asthmatic airway inflammation, resulting in a paradigm shift of classifying individuals on the basis of either the presence or the absence of type 2 (T2) inflammatory markers. Several novel monoclonal antibody therapies targeting T2 cytokines have demonstrated significant clinical effects including reductions in acute exacerbations and improvements in asthma-related quality of life and lung function for individuals with T2-high asthma. However, there have been fewer advancements in developing therapies for those without evidence of T2 airway inflammation (so-called non-T2 asthma). Here, we review the heterogeneity of molecular mechanisms responsible for initiation and regulation of non-T2 inflammation and discuss both current and potential future therapeutic options for individuals with non-T2 asthma.
Collapse
Affiliation(s)
- Ryan C Murphy
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Wash; Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Wash.
| | - Ian D Pavord
- Respiratory Medicine Unit and Oxford Respiratory NIHR Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rafeul Alam
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health and University of Colorado, Denver, Colo
| | - Matthew C Altman
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, Wash; Division of Allergy and Immunology, University of Washington, Seattle, Wash
| |
Collapse
|
85
|
Wang H, Aloe C, McQualter J, Papanicolaou A, Vlahos R, Wilson N, Bozinovski S. G-CSFR antagonism reduces mucosal injury and airways fibrosis in a virus-dependent model of severe asthma. Br J Pharmacol 2021; 178:1869-1885. [PMID: 33609280 DOI: 10.1111/bph.15415] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma is a chronic disease that displays heterogeneous clinical and molecular features. A phenotypic subset of late-onset severe asthmatics has debilitating fixed airflow obstruction, increased neutrophilic inflammation and a history of pneumonia. Influenza A virus (IAV) is an important viral cause of pneumonia and asthmatics are frequently hospitalised during IAV epidemics. This study aims to determine whether antagonising granulocyte colony stimulating factor receptor (G-CSFR) prevents pneumonia-associated severe asthma. EXPERIMENTAL APPROACH Mice were sensitised to house dust mite (HDM) to establish allergic airway inflammation and subsequently infected with IAV (HKx31/H3N2 subtype). A neutralising monoclonal antibody against G-CSFR was therapeutically administered. KEY RESULTS In IAV-infected mice with prior HDM sensitisation, a significant increase in airway fibrotic remodelling and airways hyper-reactivity was observed. A mixed granulocytic inflammatory profile consisting of neutrophils, macrophages and eosinophils was prominent and at a molecular level, G-CSF expression was significantly increased in HDMIAV-treated mice. Blockage of G-CSFR reduced neutrophilic inflammation in the bronchoalveolar and lungs by over 80% in HDMIAV-treated mice without altering viral clearance. Markers of NETosis (dsDNA and myeloperoxidase in bronchoalveolar), tissue injury (LDH activity in bronchoalveolar) and oedema (total bronchoalveolar-fluid protein) were also significantly reduced with anti-G-CSFR treatment. In addition, anti-G-CSFR antagonism significantly reduced bronchoalveolar gelatinase activity, active TFGβ lung levels, collagen lung expression, airways fibrosis and airways hyper-reactivity in HDMIAV-treated mice. CONCLUSIONS AND IMPLICATIONS We have shown that antagonising G-CSFR-dependent neutrophilic inflammation reduced pathological disruption of the mucosal barrier and airways fibrosis in an IAV-induced severe asthma model.
Collapse
Affiliation(s)
- Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Christian Aloe
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Jonathan McQualter
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Angelica Papanicolaou
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
86
|
Ma Q, Qian Y, Jiang J, Wu J, Song M, Li X, Chen Z, Wang Z, Zhu R, Sun Z, Huang M, Ji N, Zhang M. IL-33/ST2 axis deficiency exacerbates neutrophil-dominant allergic airway inflammation. Clin Transl Immunology 2021; 10:e1300. [PMID: 34178329 PMCID: PMC8207976 DOI: 10.1002/cti2.1300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023] Open
Abstract
Objective The IL‐33/ST2 axis has been extensively investigated in type 2 eosinophilic inflammation. Here, we aimed to investigate the role of the IL‐33/ST2 axis in neutrophil‐dominant allergic airway inflammation. Methods House‐dust mite (HDM) extract and lipopolysaccharide (LPS) were administered to establish a murine model of neutrophil‐dominant allergic airway inflammation. The formation of neutrophilic extracellular traps (NETs) in the lung tissues was demonstrated by immunofluorescence imaging. Mature IL‐33 in bronchoalveolar lavage fluid (BALF) was detected by Western blotting. The neutrophilic chemokine KC produced by bone marrow‐derived macrophages (BMDMs) or primary alveolar epithelial cells was measured with a commercial ELISA kit. Results In the present study, we observed neutrophilic inflammation and tight junction damage in the lungs of mice sensitised with HDM and LPS. Furthermore, sensitisation with HDM and LPS resulted in the formation of NETs, accompanied by increased levels of mature IL‐33 in the BALF. Moreover, LPS damaged the epithelial tight junction protein occludin directly or indirectly by inducing NET formation. Surprisingly, IL‐33 deficiency augmented neutrophilia and epithelial barrier injury in the lungs of mice after sensitisation with HDM and LPS. Similarly, the absence of ST2 exacerbated the neutrophilic inflammatory response, decreased the expression of occludin and exacerbated the severity of neutrophil‐dominant allergic airway inflammation in an HDM/LPS‐induced mouse model. Mechanistically, BMDMs and alveolar epithelial cells from IL‐33‐ or ST2‐deficient mice tended to produce higher levels of the neutrophilic chemokine KC. Conclusions These results demonstrated that the IL‐33/ST2 axis may play a protective role in neutrophil‐dominant allergic airway inflammation.
Collapse
Affiliation(s)
- Qiyun Ma
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yan Qian
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Meijuan Song
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xinyu Li
- NHC Key Laboratory of Antibody Technique Jiangsu Key Laboratory of Pathogen Biology Department of Immunology Nanjing Medical University Nanjing China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Ranran Zhu
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Zhixiao Sun
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique Jiangsu Key Laboratory of Pathogen Biology Department of Immunology Nanjing Medical University Nanjing China
| |
Collapse
|
87
|
Abstract
PURPOSE OF REVIEW Severe asthma remains a debilitating disease and a challenge for the clinicians. Novel therapies have been introduced and have greatly improved asthma control and more are under development or in clinical studies. These include anti-IL5/IL5R, anti-IL4/IL4R, anti IL13, anti- thymic stromal lymphopoietin (TSLP) and more, and severe asthma is currently managed in personalized medicine approach. However, there is still an unmet need to discover new, clinically available biomarkers and targeted therapies for a large group of severe asthma patients, particularly those with T2-low asthma. In this review, we briefly present the phenotypes and endotypes of severe asthma, the omics technologies in asthma as well as current and future treatments for both T2-high and T2-low asthma. RECENT FINDINGS In this review, we are going to present the effectiveness and safety of anti-IL5 therapies, the clinical trials for dupilumab and tezepelumab and the most significant molecules and biological agents used in trials as possible treatments forT2-low asthma. SUMMARY Novel anti-IL5 agents have changed the management of T2-high asthma resulting in improved disease control, QoL and lung function and importantly, fewer exacerbations. Nevertheless, there is still the need to find new treatments, particularly for T2-low asthma, which remains a challenge.
Collapse
|
88
|
Yang Y, Jia M, Ou Y, Adcock IM, Yao X. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. CLINICAL RESPIRATORY JOURNAL 2021; 15:1027-1045. [PMID: 34097803 DOI: 10.1111/crj.13407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bronchial asthma is a heterogeneous disease with complex pathological mechanisms representing different phenotypes, including severe asthma. The airway epithelium is a major site of complex pathological changes in severe asthma due, in part, to activation of inflammatory and immune mechanisms in response to noxious agents. Current imaging procedures are unable to accurately measure epithelial and airway remodeling. Damage of airway epithelial cells occurs is linked to specific phenotypes and endotypes which provides an opportunity for the identification of biomarkers reflecting epithelial, and airway, remodeling. Identification of patients with more severe epithelial disruption using biomarkers may also provide personalised therapeutic opportunities and/or markers of successful therapeutic intervention. Here, we review the evidence for ongoing epithelial cell dysregulation in the pathogenesis of asthma, the sentinel role of the airway epithelium and how understanding these molecular mechanisms provides the basis for the identification of candidate biomarkers for asthma prediction, prevention, diagnosis, treatment and monitoring.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingwei Ou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Emergency Medical, Zhejiang Province People's Hospital, Zhejiang, China
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
89
|
Lamb D, De Sousa D, Quast K, Fundel-Clemens K, Erjefält JS, Sandén C, Hoffmann HJ, Kästle M, Schmid R, Menden K, Delic D. RORγt inhibitors block both IL-17 and IL-22 conferring a potential advantage over anti-IL-17 alone to treat severe asthma. Respir Res 2021; 22:158. [PMID: 34022896 PMCID: PMC8141258 DOI: 10.1186/s12931-021-01743-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND RORγt is a transcription factor that enables elaboration of Th17-associated cytokines (including IL-17 and IL-22) and is proposed as a pharmacological target for severe asthma. METHODS IL-17 immunohistochemistry was performed in severe asthma bronchial biopsies (specificity confirmed with in situ hybridization). Primary human small airway epithelial cells in air liquid interface and primary bronchial smooth muscle cells were stimulated with recombinant human IL-17 and/or IL-22 and pro-inflammatory cytokines measured. Balb/c mice were challenged intratracheally with IL-17 and/or IL-22 and airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. Balb/c mice were sensitized intraperitoneally and challenged intratracheally with house dust mite extract and the effect of either a RORγt inhibitor (BIX119) or an anti-IL-11 antibody assessed on airway hyperreactivity, pro-inflammatory cytokines and airway neutrophilia measured. RESULTS We confirmed in severe asthma bronchial biopsies both the presence of IL-17-positive lymphocytes and that an IL-17 transcriptome profile in a severe asthma patient sub-population. Both IL-17 and IL-22 stimulated the release of pro-inflammatory cytokine and chemokine release from primary human lung cells and in mice. Furthermore, IL-22 in combination with IL-17, but neither alone, elicits airway hyperresponsiveness (AHR) in naïve mice. A RORγt inhibitor specifically blocked both IL-17 and IL-22, AHR and neutrophilia in a mouse house dust mite model unlike other registered or advanced pipeline modes of action. Full efficacy versus these parameters was associated with 90% inhibition of IL-17 and 50% inhibition of IL-22. In contrast, anti-IL-17 also blocked IL-17, but not IL-22, AHR or neutrophilia. Moreover, the deregulated genes in the lungs from these mice correlated well with deregulated genes from severe asthma biopsies suggesting that this model recapitulates significant severe asthma-relevant biology. Furthermore, these genes were reversed upon RORγt inhibition in the HDM model. Cell deconvolution suggested that the responsible cells were corticosteroid insensitive γδ-T-cells. CONCLUSION These data strongly suggest that both IL-17 and IL-22 are required for Th2-low endotype associated biology and that a RORγt inhibitor may provide improved clinical benefit in a severe asthma sub-population of patients by blocking both IL-17 and IL-22 biology compared with blocking IL-17 alone.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Animals
- Anti-Asthmatic Agents/pharmacology
- Asthma/drug therapy
- Asthma/immunology
- Asthma/metabolism
- Asthma/physiopathology
- Cells, Cultured
- Disease Models, Animal
- Epithelial Cells/drug effects
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Female
- Humans
- Interleukin-17/metabolism
- Interleukins/antagonists & inhibitors
- Interleukins/metabolism
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Lung/physiopathology
- Male
- Mice, Inbred BALB C
- Middle Aged
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Pyroglyphidae/immunology
- Signal Transduction
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Young Adult
- Interleukin-22
- Mice
Collapse
Affiliation(s)
- David Lamb
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany.
| | | | - Karsten Quast
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | - Katrin Fundel-Clemens
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | | | | | | | - Marc Kästle
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | - Ramona Schmid
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | - Kevin Menden
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| | - Denis Delic
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397, Biberach-an-der-Riss, Germany
| |
Collapse
|
90
|
Guillemot-Legris O, Muccioli GG. The oxysterome and its receptors as pharmacological targets in inflammatory diseases. Br J Pharmacol 2021; 179:4917-4940. [PMID: 33817775 DOI: 10.1111/bph.15479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Oxysterols have gained attention over the last decades and are now considered as fully fledged bioactive lipids. The study of their levels in several conditions, including atherosclerosis, obesity and neurodegenerative diseases, led to a better understanding of their involvement in (patho)physiological processes such as inflammation and immunity. For instance, the characterization of the cholesterol-7α,25-dihydroxycholesterol/GPR183 axis and its implication in immunity represents an important step in the oxysterome study. Besides this axis, others were identified as important in several inflammatory pathologies (such as colitis, lung inflammation and atherosclerosis). However, the oxysterome is a complex system notably due to a redundancy of metabolic enzymes and a wide range of receptors. Indeed, deciphering oxysterol roles and identifying the potential receptor(s) involved in a given pathology remain challenging. Oxysterol properties are very diverse, but most of them could be connected by a common component: inflammation. Here, we review the implication of oxysterol receptors in inflammatory diseases.
Collapse
Affiliation(s)
- Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
91
|
Ashar HK, Pulavendran S, Rudd JM, Maram P, Achanta M, Chow VTK, Malayer JR, Snider TA, Teluguakula N. Administration of a CXC Chemokine Receptor 2 (CXCR2) Antagonist, SCH527123, Together with Oseltamivir Suppresses NETosis and Protects Mice from Lethal Influenza and Piglets from Swine-Influenza Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:669-685. [PMID: 33453177 PMCID: PMC8027923 DOI: 10.1016/j.ajpath.2020.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Excessive neutrophil influx, their released neutrophil extracellular traps (NETs), and extracellular histones are associated with disease severity in influenza-infected patients. Neutrophil chemokine receptor CXC chemokine receptor 2 (CXCR2) is a critical target for suppressing neutrophilic inflammation. Herein, temporal dynamics of neutrophil activity and NETosis were investigated to determine the optimal timing of treatment with the CXCR2 antagonist, SCH527123 (2-hydroxy-N,N-dimethyl-3-[2-([(R)-1-(5-methyl-furan-2-yl)-propyl]amino)-3,4-dioxo-cyclobut-1-enylamino]-benzamide), and its efficacy together with antiviral agent, oseltamivir, was tested in murine and piglet influenza-pneumonia models. SCH527123 plus oseltamivir markedly improved survival of mice infected with lethal influenza, and diminished lung pathology in swine-influenza-infected piglets. Mechanistically, addition of SCH527123 in the combination treatment attenuated neutrophil influx, NETosis, in both mice and piglets. Furthermore, neutrophils isolated from influenza-infected mice showed greater susceptibility to NETotic death when stimulated with a CXCR2 ligand, IL-8. In addition, CXCR2 stimulation induced nuclear translocation of neutrophil elastase, and enhanced citrullination of histones that triggers chromatin decondensation during NET formation. Studies on temporal dynamics of neutrophils and NETs during influenza thus provide important insights into the optimal timing of CXCR2 antagonist treatment for attenuating neutrophil-mediated lung pathology. These findings reveal that pharmacologic treatment with CXCR2 antagonist together with an antiviral agent could significantly ameliorate morbidity and mortality in virulent and sublethal influenza infections.
Collapse
Affiliation(s)
- Harshini K Ashar
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Sivasami Pulavendran
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Jennifer M Rudd
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Prasanthi Maram
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Mallika Achanta
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Vincent T K Chow
- National University Health System Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, School of Medicine, National University of Singapore, Singapore
| | - Jerry R Malayer
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Timothy A Snider
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | | |
Collapse
|
92
|
Wenzel SE. Severe Adult Asthmas: Integrating Clinical Features, Biology, and Therapeutics to Improve Outcomes. Am J Respir Crit Care Med 2021; 203:809-821. [PMID: 33326352 PMCID: PMC8017568 DOI: 10.1164/rccm.202009-3631ci] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Evaluation and effective management of asthma, and in particular severe asthma, remains at the core of pulmonary practice. Over the last 20-30 years, there has been increasing appreciation that "severe asthma" encompasses multiple different subgroups or phenotypes, each with differing presentations. Using clinical phenotyping, in combination with rapidly advancing molecular tools and targeted monoclonal antibodies (human knockouts), the understanding of these phenotypes, and our ability to treat them, have greatly advanced. Type-2 (T2)-high and -low severe asthmas are now easily identified. Fractional exhaled nitric oxide and blood eosinophil counts can be routinely employed in clinical settings to identify these phenotypes and predict responses to specific therapies, meeting the initial goals of precision medicine. Integration of molecular signals, biomarkers, and clinical responses to targeted therapies has enabled identification of critical molecular pathways and, in certain phenotypes, advanced them to near-endotype status. Despite these advances, little guidance is available to determine which class of biologic is appropriate for a given patient, and current "breakthrough" therapies remain expensive and even inaccessible to many patients. Many of the most severe asthmas, with and without T2-biomarker elevations, remain poorly understood and treated. Nevertheless, conceptual understanding of "the severe asthmas" has evolved dramatically in a mere 25 years, leading to dramatic improvements in the lives of many.
Collapse
Affiliation(s)
- Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh Asthma and Environmental Lung Health Institute at UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
93
|
Kyriakopoulos C, Gogali A, Bartziokas K, Kostikas K. Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 2021; 7:00309-2020. [PMID: 34109244 PMCID: PMC8181790 DOI: 10.1183/23120541.00309-2020] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Currently, and based on the development of relevant biologic therapies, T2-high is the most well-defined endotype of asthma. Although much progress has been made in elucidating T2-high inflammation pathways, no specific clinically applicable biomarkers for T2-low asthma have been identified. The therapeutic approach of T2-low asthma is a problem urgently needing resolution, firstly because these patients have poor response to steroids, and secondly because they are not candidates for the newer targeted biologic agents. Thus, there is an unmet need for the identification of biomarkers that can help the diagnosis and endotyping of T2-low asthma. Ongoing investigation is focusing on neutrophilic airway inflammation mediators as therapeutic targets, including interleukin (IL)-8, IL-17, IL-1, IL-6, IL-23 and tumour necrosis factor-α; molecules that target restoration of corticosteroid sensitivity, mainly mitogen-activated protein kinase inhibitors, tyrosine kinase inhibitors and phosphatidylinositol 3-kinase inhibitors; phosphodiesterase (PDE)3 inhibitors that act as bronchodilators and PDE4 inhibitors that have an anti-inflammatory effect; and airway smooth muscle mass attenuation therapies, mainly for patients with paucigranulocytic inflammation. This article aims to review the evidence for noneosinophilic inflammation being a target for therapy in asthma; discuss current and potential future therapeutic approaches, such as novel molecules and biologic agents; and assess clinical trials of licensed drugs in the treatment of T2-low asthma.
Collapse
Affiliation(s)
- Chris Kyriakopoulos
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | - Athena Gogali
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Konstantinos Kostikas
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| |
Collapse
|
94
|
Guo K, Ma S. The Immune System in Transfusion-Related Acute Lung Injury Prevention and Therapy: Update and Perspective. Front Mol Biosci 2021; 8:639976. [PMID: 33842545 PMCID: PMC8024523 DOI: 10.3389/fmolb.2021.639976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
As an initiator of respiratory distress, transfusion-related acute lung injury (TRALI) is regarded as one of the rare complications associated with transfusion medicine. However, to date, the pathogenesis of TRALI is still unclear, and specific therapies are unavailable. Understanding the mechanisms of TRALI may promote the design of preventive and therapeutic strategies. The immune system plays vital roles in reproduction, development and homeostasis. Sterile tissue damage, such as physical trauma, ischemia, or reperfusion injury, induces an inflammatory reaction that results in wound healing and regenerative mechanisms. In other words, in addition to protecting against pathogens, the immune response may be strongly associated with TRALI prevention and treatment through a variety of immunomodulatory strategies to inhibit excessive immune system activation. Immunotherapy based on immune cells or immunological targets may eradicate complications. For example, IL-10 therapy is a promising therapeutic strategy to explore further. This review will focus on ultramodern advances in our understanding of the potential role of the immune system in TRALI prevention and treatment.
Collapse
Affiliation(s)
- Kai Guo
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shuxuan Ma
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
95
|
The basic immunology of asthma. Cell 2021; 184:1469-1485. [PMID: 33711259 DOI: 10.1016/j.cell.2021.02.016] [Citation(s) in RCA: 534] [Impact Index Per Article: 133.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
In many asthmatics, chronic airway inflammation is driven by IL-4-, IL-5-, and IL-13-producing Th2 cells or ILC2s. Type 2 cytokines promote hallmark features of the disease such as eosinophilia, mucus hypersecretion, bronchial hyperresponsiveness (BHR), IgE production, and susceptibility to exacerbations. However, only half the asthmatics have this "type 2-high" signature, and "type 2-low" asthma is more associated with obesity, presence of neutrophils, and unresponsiveness to corticosteroids, the mainstay asthma therapy. Here, we review the underlying immunological basis of various asthma endotypes by discussing results obtained from animal studies as well as results generated in clinical studies targeting specific immune pathways.
Collapse
|
96
|
Crisford H, Sapey E, Rogers GB, Taylor S, Nagakumar P, Lokwani R, Simpson JL. Neutrophils in asthma: the good, the bad and the bacteria. Thorax 2021; 76:thoraxjnl-2020-215986. [PMID: 33632765 PMCID: PMC8311087 DOI: 10.1136/thoraxjnl-2020-215986] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/30/2022]
Abstract
Airway inflammation plays a key role in asthma pathogenesis but is heterogeneous in nature. There has been significant scientific discovery with regard to type 2-driven, eosinophil-dominated asthma, with effective therapies ranging from inhaled corticosteroids to novel biologics. However, studies suggest that approximately 1 in 5 adults with asthma have an increased proportion of neutrophils in their airways. These patients tend to be older, have potentially pathogenic airway bacteria and do not respond well to classical therapies. Currently, there are no specific therapeutic options for these patients, such as neutrophil-targeting biologics.Neutrophils comprise 70% of the total circulatory white cells and play a critical defence role during inflammatory and infective challenges. This makes them a problematic target for therapeutics. Furthermore, neutrophil functions change with age, with reduced microbial killing, increased reactive oxygen species release and reduced production of extracellular traps with advancing age. Therefore, different therapeutic strategies may be required for different age groups of patients.The pathogenesis of neutrophil-dominated airway inflammation in adults with asthma may reflect a counterproductive response to the defective neutrophil microbial killing seen with age, resulting in bystander damage to host airway cells and subsequent mucus hypersecretion and airway remodelling. However, in children with asthma, neutrophils are less associated with adverse features of disease, and it is possible that in children, neutrophils are less pathogenic.In this review, we explore the mechanisms of neutrophil recruitment, changes in cellular function across the life course and the implications this may have for asthma management now and in the future. We also describe the prevalence of neutrophilic asthma globally, with a focus on First Nations people of Australia, New Zealand and North America.
Collapse
Affiliation(s)
- Helena Crisford
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Geraint B Rogers
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, South Australia, Australia
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Steven Taylor
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, South Australia, Australia
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Prasad Nagakumar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Respiratory Medicine, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Ravi Lokwani
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Jodie L Simpson
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
97
|
Zhang Z, Wang J, Chen O. Identification of biomarkers and pathogenesis in severe asthma by coexpression network analysis. BMC Med Genomics 2021; 14:51. [PMID: 33602227 PMCID: PMC7893911 DOI: 10.1186/s12920-021-00892-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Severe asthma is a heterogeneous inflammatory disease. The increase in precise immunotherapy for severe asthmatics requires a greater understanding of molecular mechanisms and biomarkers. In this study, we aimed to identify the underlying mechanisms and hub genes that determine asthma severity. METHODS Differentially expressed genes (DEGs) were identified based on bronchial epithelial brushings from mild and severe asthmatics. Then, weighted gene coexpression network analysis (WGCNA) was used to identify gene networks and the module most significantly associated with asthma severity. Furthermore, hub gene screening and functional enrichment analysis were performed. Replication with another dataset was conducted to validate the hub genes. RESULTS DEGs from 14 mild and 11 severe asthmatics were subjected to WGCNA. Six modules associated with asthma severity were identified. Three modules were positively correlated (P < 0.001) with asthma severity and contained genes that were upregulated in severe asthmatics. Functional enrichment analysis showed that genes in the most significant module were mainly enriched in neutrophil activation and degranulation, and cytokine receptor interaction. Hub genes included CXCR1, CXCR2, CCR1, CCR7, TLR2, FPR1, FCGR3B, FCGR2A, ITGAM, and PLEK; CXCR1, CXCR2, and TLR2 were significantly related to asthma severity in the validation dataset. The combination of ten hub genes exhibited a moderate ability to distinguish between severe and mild-moderate asthmatics. CONCLUSION Our results identified biomarkers and characterized potential pathogenesis of severe asthma, providing insight into treatment targets and prognostic markers.
Collapse
Affiliation(s)
- Zeyi Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, #44 West Wenhua Road, Jinan, 250012 China
| | - Jingjing Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, #44 West Wenhua Road, Jinan, 250012 China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, #44 West Wenhua Road, Jinan, 250012 China
| |
Collapse
|
98
|
Lin WC, Fessler MB. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell Mol Life Sci 2021; 78:4095-4124. [PMID: 33544156 PMCID: PMC7863617 DOI: 10.1007/s00018-021-03768-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The neutrophil, a short-lived effector leukocyte of the innate immune system best known for its proteases and other degradative cargo, has unique, reciprocal physiological interactions with the lung. During health, large numbers of ‘marginated’ neutrophils reside within the pulmonary vasculature, where they patrol the endothelial surface for pathogens and complete their life cycle. Upon respiratory infection, rapid and sustained recruitment of neutrophils through the endothelial barrier, across the extravascular pulmonary interstitium, and again through the respiratory epithelium into the airspace lumen, is required for pathogen killing. Overexuberant neutrophil trafficking to the lung, however, causes bystander tissue injury and underlies several acute and chronic lung diseases. Due in part to the unique architecture of the lung’s capillary network, the neutrophil follows a microanatomic passage into the distal airspace unlike that observed in other end-organs that it infiltrates. Several of the regulatory mechanisms underlying the stepwise recruitment of circulating neutrophils to the infected lung have been defined over the past few decades; however, fundamental questions remain. In this article, we provide an updated review and perspective on emerging roles for the neutrophil in lung biology, on the molecular mechanisms that control the trafficking of neutrophils to the lung, and on past and ongoing efforts to design therapeutics to intervene upon pulmonary neutrophilia in lung disease.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
99
|
Shilovskiy IP, Nikolskii AA, Kurbacheva OM, Khaitov MR. Modern View of Neutrophilic Asthma Molecular Mechanisms and Therapy. BIOCHEMISTRY (MOSCOW) 2021; 85:854-868. [PMID: 33045947 DOI: 10.1134/s0006297920080027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For a long time asthma was commonly considered as a homogeneous disease. However, recent studies provide increasing evidence of its heterogeneity and existence of different phenotypes of the disease. Currently, classification of asthma into several phenotypes is based on clinical and physiological features, anamnesis, and response to therapy. This review describes five most frequently identified asthma phenotypes. Neutrophilic asthma (NA) deserves special attention, since neutrophilic inflammation of the lungs is closely associated with severity of the disease and with the resistance to conventional corticosteroid therapy. This review focuses on molecular mechanisms of neutrophilic asthma pathogenesis and on the role of Th1- and Th17-cells in the development of this type of asthma. In addition, this review presents current knowledge of neutrophil biology. It has been established that human neutrophils are represented by at least three subpopulations with different biological functions. Therefore, total elimination of neutrophils from the lungs can result in negative consequences. Based on the new knowledge of NA pathogenesis and biology of neutrophils, the review summarizes current approaches for treatment of neutrophilic asthma and suggests new promising ways to treat this type of asthma that could be developed in future.
Collapse
Affiliation(s)
- I P Shilovskiy
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia.
| | - A A Nikolskii
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - O M Kurbacheva
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| | - M R Khaitov
- National Research Center - Institute of Immunology, Federal Medico-Biological Agency, Moscow, 115522, Russia
| |
Collapse
|
100
|
Hinks TSC, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J 2021; 57:13993003.00528-2020. [PMID: 32586877 DOI: 10.1183/13993003.00528-2020] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Monoclonal antibodies targeting IgE or the type-2 cytokines interleukin (IL)-4, IL-5 and IL-13 are proving highly effective in reducing exacerbations and symptoms in people with severe allergic and eosinophilic asthma, respectively. However, these therapies are not appropriate for 30-50% of patients in severe asthma clinics who present with non-allergic, non-eosinophilic, "type-2 low" asthma. These patients constitute an important and common clinical asthma phenotype, driven by distinct, yet poorly understood pathobiological mechanisms. In this review we describe the heterogeneity and clinical characteristics of type-2 low asthma and summarise current knowledge on the underlying pathobiological mechanisms, which includes neutrophilic airway inflammation often associated with smoking, obesity and occupational exposures and may be driven by persistent bacterial infections and by activation of a recently described IL-6 pathway. We review the evidence base underlying existing treatment options for specific treatable traits that can be identified and addressed. We focus particularly on severe asthma as opposed to difficult-to-treat asthma, on emerging data on the identification of airway bacterial infection, on the increasing evidence base for the use of long-term low-dose macrolides, a critical appraisal of bronchial thermoplasty, and evidence for the use of biologics in type-2 low disease. Finally, we review ongoing research into other pathways including tumour necrosis factor, IL-17, resolvins, apolipoproteins, type I interferons, IL-6 and mast cells. We suggest that type-2 low disease frequently presents opportunities for identification and treatment of tractable clinical problems; it is currently a rapidly evolving field with potential for the development of novel targeted therapeutics.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Nuffield Dept of Medicine, Experimental Medicine, University of Oxford, Oxford, UK
| | - Stewart J Levine
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guy G Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Depts of Epidemiology and Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|