51
|
Combs DJ, Shin HG, Xu Y, Ramu Y, Lu Z. Tuning voltage-gated channel activity and cellular excitability with a sphingomyelinase. ACTA ACUST UNITED AC 2013; 142:367-80. [PMID: 24043861 PMCID: PMC3787777 DOI: 10.1085/jgp.201310986] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Voltage-gated ion channels generate action potentials in excitable cells and help set the resting membrane potential in nonexcitable cells like lymphocytes. It has been difficult to investigate what kinds of phospholipids interact with these membrane proteins in their native environments and what functional impacts such interactions create. This problem might be circumvented if we could modify specific lipid types in situ. Using certain voltage-gated K(+) (KV) channels heterologously expressed in Xenopus laevis oocytes as a model, our group has shown previously that sphingomyelinase (SMase) D may serve this purpose. SMase D is known to remove the choline group from sphingomyelin, a phospholipid primarily present in the outer leaflet of plasma membranes. This SMase D action lowers the energy required for voltage sensors of a KV channel to enter the activated state, causing a hyperpolarizing shift of the Q-V and G-V curves and thus activating them at more hyperpolarized potentials. Here, we find that this SMase D effect vanishes after removing most of the voltage-sensor paddle sequence, a finding supporting the notion that SMase D modification of sphingomyelin molecules alters these lipids' interactions with voltage sensors. Then, using SMase D to probe lipid-channel interactions, we find that SMase D not only similarly stimulates voltage-gated Na(+) (Na(V)) and Ca(2+) channels but also markedly slows Na(V) channel inactivation. However, the latter effect is not observed in tested mammalian cells, an observation highlighting the profound impact of the membrane environment on channel function. Finally, we directly demonstrate that SMase D stimulates both native K(V)1.3 in nonexcitable human T lymphocytes at their typical resting membrane potential and native Na(V) channels in excitable cells, such that it shifts the action potential threshold in the hyperpolarized direction. These proof-of-concept studies illustrate that the voltage-gated channel activity in both excitable and nonexcitable cells can be tuned by enzymatically modifying lipid head groups.
Collapse
Affiliation(s)
- David J Combs
- Department of Physiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | | |
Collapse
|
52
|
Sokol E, Almeida R, Hannibal-Bach HK, Kotowska D, Vogt J, Baumgart J, Kristiansen K, Nitsch R, Knudsen J, Ejsing CS. Profiling of lipid species by normal-phase liquid chromatography, nanoelectrospray ionization, and ion trap-orbitrap mass spectrometry. Anal Biochem 2013; 443:88-96. [PMID: 23994565 DOI: 10.1016/j.ab.2013.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 01/08/2023]
Abstract
Detailed analysis of lipid species can be challenging due to their structural diversity and wide concentration range in cells, tissues, and biofluids. To address these analytical challenges, we devised a reproducible, sensitive, and integrated lipidomics workflow based on normal-phase liquid chromatography-Fourier transform mass spectrometry (LC-FTMS) and LC-ITMS(2) (ion trap tandem mass spectrometry) for profiling and structural analysis of lipid species. The workflow uses a normal-phase LC system for efficient separation of apolar and polar lipid species combined with sensitive and specific analysis powered by a chip-based nanoelectrospray ion source and a hybrid ion trap-orbitrap mass spectrometer. The workflow was executed using a primary LC-FTMS survey routine for identification and profiling of lipid species based on high-mass accuracy and retention time followed by a targeted LC-ITMS(2) routine for characterizing the fatty acid moieties of identified lipid species. We benchmarked the performance of the workflow by characterizing the chromatographic properties of the LC-MS system for general lipid analysis. In addition, we demonstrate the efficacy of the workflow by reporting a study of low-abundant triacylglycerol and ceramide species in mouse brain cerebellum and 3T3-L1 adipocytes, respectively. The workflow described here is generic and can be extended for detailed lipid analysis of sample matrices having a wide range of lipid compositions.
Collapse
Affiliation(s)
- Elena Sokol
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Dixon JL, Kim YK, Brinker A, Quadro L. Loss of β-carotene 15,15'-oxygenase in developing mouse tissues alters esterification of retinol, cholesterol and diacylglycerols. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:34-43. [PMID: 23988655 DOI: 10.1016/j.bbalip.2013.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 11/20/2022]
Abstract
We provide novel insights into the function(s) of β-carotene-15,15'-oxygenase (CMOI) during embryogenesis. By performing in vivo and in vitro experiments, we showed that CMOI influences not only lecithin:retinol acyltransferase but also acyl CoA:retinol acyltransferase reaction in the developing tissues at mid-gestation. In addition, LC/MS lipidomics analysis of the CMOI-/- embryos showed reduced levels of four phosphatidylcholine and three phosphatidylethanolamine acyl chain species, and of eight triacylglycerol species with four or more unsaturations and fifty-two or more carbons in the acyl chains. Cholesteryl esters of arachidonate, palmitate, linoleate, and DHA were also reduced to less than 30% of control. Analysis of the fatty acyl CoA species ruled out a loss in fatty acyl CoA synthetase capability. Comparison of acyl species suggested significantly decreased 18:2, 18:3, 20:1, 20:4, or 22:6 acyl chains within the above lipids in CMOI-null embryos. Furthermore, LCAT, ACAT1 and DGAT2 mRNA levels were also downregulated in CMOI-/- embryos. These data strongly support the notion that, in addition to cleaving β-carotene to generate retinoids, CMOI serves an additional function(s) in retinoid and lipid metabolism and point to its role in the formation of specific lipids, possibly for use in nervous system tissue.
Collapse
Affiliation(s)
- Joseph L Dixon
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
54
|
Lam SM, Shui G. Lipidomics as a Principal Tool for Advancing Biomedical Research. J Genet Genomics 2013; 40:375-90. [DOI: 10.1016/j.jgg.2013.06.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/04/2013] [Accepted: 06/19/2013] [Indexed: 01/22/2023]
|
55
|
Hallamaa RE, Batchu KC, Tallberg T. Phospholipids in sera of horses with summer eczema: lipid analysis of the autoserum preparation used in therapy. Equine Vet J 2013; 46:322-7. [PMID: 23826683 DOI: 10.1111/evj.12135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 06/29/2013] [Indexed: 11/27/2022]
Abstract
REASONS FOR PERFORMING STUDY Equine summer eczema, also known as insect bite hypersensitivity, affects horses recurrently during summer months. The treatment of this allergic pruritus is difficult and therefore there is a need for efficacious treatments. Autoserum therapy, based on the use of autogenous serum that is specifically prepared for oral administration and given when the animal shows clinical signs has been introduced recently. Lipids are thought to be responsible for the effect of this therapy. OBJECTIVES The main aim of this study was to analyse the phospholipid content of autogenous serum preparations and to further assess whether these preparations have different lipid profiles depending on the clinical status of the horse. The hypothesis is that the major serum phospholipids typical of the horse are present in the autoserum preparation. STUDY DESIGN Descriptive controlled clinical study. METHODS Sera were collected from 10 affected and 6 healthy horses, prepared in a similar fashion and the lipids contained in the resulting autoserum preparations were analysed by electrospray ionisation mass spectrometry. RESULTS The major phospholipid classes detected were phosphatidylcholine, sphingomyelin, phosphatidic acid and traces of lysophosphatidylcholine. Horses with summer eczema had significantly abundant concentrations of phosphatidylcholine (P = 0.042) and sphingomyelin (P = 0.0017) in comparison with healthy horses, while the concentration of phosphatidic acid was significantly higher in healthy horses (P = 0.0075). CONCLUSIONS The autoserum preparation contains minute amounts of the main serum phospholipids in differing concentrations in healthy horses and horses with an allergic skin disease.
Collapse
Affiliation(s)
- R E Hallamaa
- Institute for Bioimmunotherapy, Helsinki, Finland; Veterinary Clinic, Nummela, Finland
| | | | | |
Collapse
|
56
|
Bohdanowicz M, Schlam D, Hermansson M, Rizzuti D, Fairn GD, Ueyama T, Somerharju P, Du G, Grinstein S. Phosphatidic acid is required for the constitutive ruffling and macropinocytosis of phagocytes. Mol Biol Cell 2013; 24:1700-12, S1-7. [PMID: 23576545 PMCID: PMC3667723 DOI: 10.1091/mbc.e12-11-0789] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phagocytes spontaneously ruffle as they probe their environment and take up antigens. These cells are uniquely enriched in phosphatidic acid, which is necessary for ruffling and macropinocytosis. Macrophages and dendritic cells continuously survey their environment in search of foreign particles and soluble antigens. Such surveillance involves the ongoing extension of actin-rich protrusions and the consequent formation of phagosomes and macropinosomes. The signals inducing this constitutive cytoskeletal remodeling have not been defined. We report that, unlike nonphagocytic cells, macrophages and immature dendritic cells have elevated levels of phosphatidic acid (PA) in their plasma membrane. The plasmalemmal PA is synthesized by phosphorylation of diacylglycerol, which is in turn generated by a G protein–stimulated phospholipase C. Inhibition of diacylglycerol kinase activity results in the detachment of T-cell lymphoma invasion and metastasis–inducing protein 1 (TIAM1)—a Rac guanine exchange factor—from the plasma membrane, thereby depressing Rac activity and abolishing the constitutive ruffling and macropinocytosis that characterize macrophages and immature dendritic cells. Accumulation of PA and binding of TIAM1 to the membrane require the activity of phosphatidylinositol-4,5-bisphosphate 3-kinase. Thus a distinctive, constitutive pathway of PA biosynthesis promotes the actin remodeling required for immune surveillance.
Collapse
Affiliation(s)
- Michal Bohdanowicz
- Division of Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Zeng YX, Mjøs SA, Meier S, Lin CC, Vadla R. Least squares spectral resolution of liquid chromatography–mass spectrometry data of glycerophospholipids. J Chromatogr A 2013; 1280:23-34. [DOI: 10.1016/j.chroma.2012.12.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 11/16/2022]
|
58
|
Kilpinen L, Tigistu-Sahle F, Oja S, Greco D, Parmar A, Saavalainen P, Nikkilä J, Korhonen M, Lehenkari P, Käkelä R, Laitinen S. Aging bone marrow mesenchymal stromal cells have altered membrane glycerophospholipid composition and functionality. J Lipid Res 2012; 54:622-635. [PMID: 23271708 DOI: 10.1194/jlr.m030650] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human mesenchymal stem/stromal cells (hMSC) are increasingly used in advanced cellular therapies. The clinical use of hMSCs demands sequential cell expansions. As it is well established that membrane glycerophospholipids (GPL) provide precursors for signaling lipids that modulate cellular functions, we studied the effect of the donor's age and cell doublings on the GPL profile of human bone marrow MSC (hBMSC). The hBMSCs, which were harvested from five young and five old adults, showed clear compositional changes during expansion seen at the level of lipid classes, lipid species, and acyl chains. The ratio of phosphatidylinositol to phosphatidylserine increased toward the late-passage samples. Furthermore, 20:4n-6-containing species of phosphatidylcholine and phosphatidylethanolamine accumulated while the species containing monounsaturated fatty acids (FA) decreased during passaging. Additionally, in the total FA pool of the cells, 20:4n-6 increased, which happened at the expense of n-3 polyunsaturated FAs, especially 22:6n-3. The GPL and FA correlated with the decreased immunosuppressive capacity of hBMSCs during expansion. Our observations were further supported by alterations in the gene expression levels of several enzymes involved in lipid metabolism and immunomodulation. The results show that extensive expansion of hBMSCs harmfully modulates membrane GPLs, affecting lipid signaling and eventually impairing functionality.
Collapse
Affiliation(s)
- Lotta Kilpinen
- Advanced Therapies and Product Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Application of supercritical fluid carbon dioxide to the extraction and analysis of lipids. Bioanalysis 2012; 4:2413-22. [DOI: 10.4155/bio.12.198] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Supercritical carbon dioxide (SCCO2) is an ecofriendly supercritical fluid that is chemically inert, nontoxic, noninflammable and nonpolluting. As a green material, SCCO2 has desirable properties such as high density, low viscosity and high diffusivity that make it suitable for use as a solvent in supercritical fluid extraction, an effective and environment-friendly analytical method, and as a mobile phase for supercritical fluid chromatography, which facilitates high-throughput, high-resolution analysis. Furthermore, the low polarity of SCCO2 is suitable for the extraction and analysis of hydrophobic compounds. The growing concern surrounding environmental pollution has triggered the development of green analysis methods based on the use of SCCO2 in various laboratories and industries. SCCO2 is becoming an effective alternative to conventional organic solvents. In this review, the usefulness of SCCO2 in supercritical fluid extraction and supercritical fluid chromatography for the extraction and analysis of lipids is described.
Collapse
|
60
|
Ecker J. Profiling eicosanoids and phospholipids using LC-MS/MS: principles and recent applications. J Sep Sci 2012; 35:1227-35. [PMID: 22733504 DOI: 10.1002/jssc.201200056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Eicosanoids are potent lipid mediators involved in numerous physiological and pathophysiological processes. Precursors are polyunsaturated fatty acids liberated from membrane phospholipids. Thus, profiling and quantification of these molecules has gained a lot of attention during last years. Eicosanoids and phospholipids are commonly profiled by LC-MS/MSbecause this technique allows accurate quantification within acceptable run-times. This article therefore focuses on liquid chromatography and the ESI-MS/MS analysis of proinflammatory lipid mediators, particularly arachidonic acid (C20:4) derived eicosanoids and their precursors phospholipids. Recent analytical developments for quantification of these compounds are highlighted and analytical challenges are discussed. Furthermore, applications such as the use of these molecules as biomarkers are presented.
Collapse
Affiliation(s)
- Josef Ecker
- ABF Analytisch-Biologisches Forschungslabor GmbH, Munich, Germany.
| |
Collapse
|
61
|
Kuronen M, Hermansson M, Manninen O, Zech I, Talvitie M, Laitinen T, Gröhn O, Somerharju P, Eckhardt M, Cooper JD, Lehesjoki AE, Lahtinen U, Kopra O. Galactolipid deficiency in the early pathogenesis of neuronal ceroid lipofuscinosis model Cln8mnd: implications to delayed myelination and oligodendrocyte maturation. Neuropathol Appl Neurobiol 2012; 38:471-86. [DOI: 10.1111/j.1365-2990.2011.01233.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
62
|
Bamba T, Lee JW, Matsubara A, Fukusaki E. Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. J Chromatogr A 2012; 1250:212-9. [PMID: 22709604 DOI: 10.1016/j.chroma.2012.05.068] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 11/29/2022]
Abstract
This review describes the usefulness of supercritical fluid chromatography (SFC) for the metabolic profiling of lipids. First, non-targeted lipid profiling by SFC/MS is described. The use of SFC/MS allows for high-throughput, exhaustive analysis of diverse lipids, and hence, this technique finds potential applications in lipidomics. Development of a polar lipid profiling method with trimethylsilyl (TMS) derivatization widens the scope of applicability of SFC/MS. SFC is a high-resolution technique that is suitable for non-targeted profiling aimed at the simultaneous analysis of many components. Next, targeted lipid profiling by SFC/MS is described. SFC is useful for the separation of lipids, such as carotenoids and triacylglycerols, which have numerous analogs with similar structures. In addition, SFC/MS shows the maximum efficiency for the target analysis of lipids in a biological sample that includes many matrices. Finally, a high-resolution, high-throughput analytical system based on SFC/MS is stated to be suitable for lipidomics because it is useful not only for the screening of lipid mixtures (as a fingerprint method) but also for the detailed profiling of individual components.
Collapse
Affiliation(s)
- Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
63
|
Alex Brown H. Lipidomics: when apocrypha becomes canonical. Curr Opin Chem Biol 2012; 16:221-6. [PMID: 22381642 DOI: 10.1016/j.cbpa.2012.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/02/2012] [Accepted: 02/06/2012] [Indexed: 11/26/2022]
Abstract
Lipidomics is a branch of the field of metabolomics. Although only about a decade since its inception, lipidomics has already had a major influence on the way in which questions about lipid metabolism and signaling are posed. The field is intertwined in the culture and rich history of mass spectrometry. Early work emphasized analytical issues such as limits of detection and numbers of molecular species quantitated in single injections. Increased sophistication in applications of lipidomic analysis and emerging technologies, such as imaging mass spectrometry, are facilitating the study of lipid metabolism and signaling species in cellular functions and human diseases. In the coming years we anticipate a richer understanding of how specific lipid species mediate complex biological processes and interconnections between cellular pathways that were thought to be disparate.
Collapse
Affiliation(s)
- H Alex Brown
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-6600, USA.
| |
Collapse
|
64
|
Han X, Yang K, Gross RW. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. MASS SPECTROMETRY REVIEWS 2012; 31:134-78. [PMID: 21755525 PMCID: PMC3259006 DOI: 10.1002/mas.20342] [Citation(s) in RCA: 399] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 05/05/2023]
Abstract
Since our last comprehensive review on multi-dimensional mass spectrometry-based shotgun lipidomics (Mass Spectrom. Rev. 24 (2005), 367), many new developments in the field of lipidomics have occurred. These developments include new strategies and refinements for shotgun lipidomic approaches that use direct infusion, including novel fragmentation strategies, identification of multiple new informative dimensions for mass spectrometric interrogation, and the development of new bioinformatic approaches for enhanced identification and quantitation of the individual molecular constituents that comprise each cell's lipidome. Concurrently, advances in liquid chromatography-based platforms and novel strategies for quantitative matrix-assisted laser desorption/ionization mass spectrometry for lipidomic analyses have been developed. Through the synergistic use of this repertoire of new mass spectrometric approaches, the power and scope of lipidomics has been greatly expanded to accelerate progress toward the comprehensive understanding of the pleiotropic roles of lipids in biological systems.
Collapse
Affiliation(s)
- Xianlin Han
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA.
| | | | | |
Collapse
|
65
|
Byeon SK, Lee JY, Moon MH. Optimized extraction of phospholipids and lysophospholipids for nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry. Analyst 2011; 137:451-8. [PMID: 22108841 DOI: 10.1039/c1an15920h] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The efficiencies of four different methods for the extraction of phospholipids (PLs) and lysophospholipids (LPLs) from human plasma samples were examined by comparing extraction recovery values using nanoflow liquid chromatography-electrospray ionization-mass spectrometry (nLC-ESI-MS). For recovery measurements, six PL and six LPL standards of different head groups were spiked into a human plasma sample, and the peak areas of each individual species after extraction were measured from the chromatograms of the nLC-ESI-MS runs. Recovery was calculated by comparing the peak area of an extracted standard species with that of the same species' spike after extraction of the same plasma sample. For lipid extraction, four different extraction methods were examined: three based on the Folch method with different organic solvents such as CHCl(3), methyl-tert-butyl ether (MTBE), and MTBE/CH(3)OH, and one relatively fast method involving CH(3)OH only. Evaluations of recovery showed that the modified Folch method with MTBE/CH(3)OH proposed in this study was effective for extracting most PL and LPL standards. Then, the four extraction methods were compared with the identified numbers of plasma PLs and LPLs, of which molecular structures can be confirmed by data-dependent, collision-induced dissociation experiments during nLC-ESI-MS-MS. These results demonstrated that the proposed method yielded the identification of 54 LPLs and 66 PLs from a plasma sample, which was the highest identification rate among the four methods.
Collapse
Affiliation(s)
- Seul Kee Byeon
- Department of Chemistry, Yonsei University, Seoul, 120-749, South Korea
| | | | | |
Collapse
|
66
|
Yang K, Han X. Accurate quantification of lipid species by electrospray ionization mass spectrometry - Meet a key challenge in lipidomics. Metabolites 2011; 1:21-40. [PMID: 22905337 PMCID: PMC3420347 DOI: 10.3390/metabo1010021] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electrospray ionization mass spectrometry (ESI-MS) has become one of the most popular and powerful technologies to identify and quantify individual lipid species in lipidomics. Meanwhile, quantitative analysis of lipid species by ESI-MS has also become a major obstacle to meet the challenges of lipidomics. Herein, we discuss the principles, advantages, and possible limitations of different mass spectrometry-based methodologies for lipid quantification, as well as a few practical issues important for accurate quantification of individual lipid species. Accordingly, accurate quantification of individual lipid species, one of the key challenges in lipidomics, can be practically met.
Collapse
Affiliation(s)
- Kui Yang
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; E-Mail; (K.Y.)
| | - Xianlin Han
- Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-407-745-2139; Fax: +1-407-745-2013
| |
Collapse
|
67
|
Liebisch G, Scherer M. Quantification of bioactive sphingo- and glycerophospholipid species by electrospray ionization tandem mass spectrometry in blood. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 883-884:141-6. [PMID: 22100558 DOI: 10.1016/j.jchromb.2011.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 11/24/2022]
Abstract
Bioactive glycerophospho- and sphingolipids species are involved in the regulation of numerous biological processes and implicated in the pathophysiology of various diseases. Here we review electrospray ionization tandem mass spectrometric (ESI-MS/MS) methods for the analysis of these bioactive lipid species in blood including lysophosphatidic acid (LPA), lysophosphatidylcholine (LPC), bis(monoacylglycero)phosphate (BMP), ceramide (Cer), sphingosine-1-phosphate (S1P) and sphingosylphosphorylcholine (SPC). Beside direct tandem mass spectrometric and liquid chromatography coupled approaches, we present an overview of concentrations of these bioactive lipids in plasma. The analytical strategies are discussed together with aspects of sample preparation, quantification and sample stability.
Collapse
Affiliation(s)
- Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|
68
|
Brouwers JF. Liquid chromatographic–mass spectrometric analysis of phospholipids. Chromatography, ionization and quantification. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:763-75. [DOI: 10.1016/j.bbalip.2011.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 12/21/2022]
|
69
|
Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity. Nat Cell Biol 2011; 13:1424-30. [PMID: 21964439 DOI: 10.1038/ncb2351] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/24/2011] [Indexed: 11/09/2022]
Abstract
Polarity is key to the function of eukaryotic cells. On the establishment of a polarity axis, cells can vectorially target secretion, generating an asymmetric distribution of plasma membrane proteins. From Saccharomyces cerevisiae to mammals, the small GTPase Cdc42 is a pivotal regulator of polarity. We used a fluorescent probe to visualize the distribution of phosphatidylserine in live S. cerevisiae. Remarkably, phosphatidylserine was polarized in the plasma membrane, accumulating in bud necks, the bud cortex and the tips of mating projections. Polarization required vectorial delivery of phosphatidylserine-containing secretory vesicles, and phosphatidylserine was largely excluded from endocytic vesicles, contributing to its polarized retention. Mutants lacking phosphatidylserine synthase had impaired polarization of the Cdc42 complex, leading to a delay in bud emergence, and defective mating. The addition of lysophosphatidylserine resulted in resynthesis and polarization of phosphatidylserine, as well as repolarization of Cdc42. The results indicate that phosphatidylserine--and presumably its polarization--are required for optimal Cdc42 targeting and activation during cell division and mating.
Collapse
|
70
|
Jung HR, Sylvänne T, Koistinen KM, Tarasov K, Kauhanen D, Ekroos K. High throughput quantitative molecular lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:925-34. [PMID: 21767661 DOI: 10.1016/j.bbalip.2011.06.025] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/15/2011] [Accepted: 06/22/2011] [Indexed: 12/17/2022]
Abstract
Applications in biomedical research increasingly demand detailed lipid molecule information acquired at high throughput. Although the recent advances in lipidomics offer to delineate the lipidomes in detail, the challenge remains in performing such analyses at the requested quality and to maintain the quality also in a high throughput setting. In this review we describe a high throughput molecular lipidomic solution based on robotic assisted sample preparation and lipid extraction and multiple lipidomic platforms integrated with a sophisticated bioinformatics system. As demonstrated, the virtue of this lipidomic toolkit lies in its high throughput delivery of comprehensive quantitative lipidomic outputs at the molecular lipid level, its ease of scalability and its capability to serve in a regulatory setting. We anticipate that this toolkit will contribute to basic research, nutritional research and promote the discovery of new disease biomarkers, disease related mechanisms of actions and drug targets.
Collapse
|
71
|
Hermansson M, Hokynar K, Somerharju P. Mechanisms of glycerophospholipid homeostasis in mammalian cells. Prog Lipid Res 2011; 50:240-57. [DOI: 10.1016/j.plipres.2011.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/21/2011] [Accepted: 02/25/2011] [Indexed: 01/09/2023]
|
72
|
Scherer M, Böttcher A, Liebisch G. Lipid profiling of lipoproteins by electrospray ionization tandem mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:918-24. [PMID: 21745591 DOI: 10.1016/j.bbalip.2011.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/30/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
Lipoproteins are of fundamental importance for the lipid transport and cardiovascular disease. The function and metabolism of lipoproteins is intimately linked to the biophysical properties of their surface lipids. Although a number of disease associations were found for lipid species in plasma, only a few studies reported lipid profiles of lipoproteins. Here, we provide an overview of techniques for lipoprotein separation, methods for lipid species analysis based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) as well as data from recent lipidomic studies on lipoprotein fractions. We also discuss the different analytical strategies and how lipid profiling can expand our understanding of the biology and structures of lipoproteins.
Collapse
|
73
|
Myers DS, Ivanova PT, Milne SB, Brown HA. Quantitative analysis of glycerophospholipids by LC-MS: acquisition, data handling, and interpretation. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:748-57. [PMID: 21683157 DOI: 10.1016/j.bbalip.2011.05.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 11/25/2022]
Abstract
As technology expands what it is possible to accurately measure, so too the challenges faced by modern mass spectrometry applications expand. A high level of accuracy in lipid quantitation across thousands of chemical species simultaneously is demanded. While relative changes in lipid amounts with varying conditions may provide initial insights or point to novel targets, there are many questions that require determination of lipid analyte absolute quantitation. Glycerophospholipids present a significant challenge in this regard, given the headgroup diversity, large number of possible acyl chain combinations, and vast range of ionization efficiency of species. Lipidomic output is being used more often not just for profiling of the masses of species, but also for highly-targeted flux-based measurements which put additional burdens on the quantitation pipeline. These first two challenges bring into sharp focus the need for a robust lipidomics workflow including deisotoping, differentiation from background noise, use of multiple internal standards per lipid class, and the use of a scriptable environment in order to create maximum user flexibility and maintain metadata on the parameters of the data analysis as it occurs. As lipidomics technology develops and delivers more output on a larger number of analytes, so must the sophistication of statistical post-processing also continue to advance. High-dimensional data analysis methods involving clustering, lipid pathway analysis, and false discovery rate limitation are becoming standard practices in a maturing field.
Collapse
Affiliation(s)
- David S Myers
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | |
Collapse
|
74
|
Abstract
The broad view of the state of biological systems cannot be complete without the added value of integrating proteomic and genomic data with metabolite measurement. By definition, metabolomics aims at quantifying not less than the totality of small molecules present in a biofluid, tissue, organism, or any material beyond living systems. To cope with the complexity of the task, mass spectrometry (MS) is the most promising analytical environment to fulfill increasing appetite for more accurate and larger view of the metabolome while providing sufficient data generation throughput. Bioinformatics and associated disciplines naturally play a central role in bridging the gap between fast evolving technology and domain experts. Here, we describe the strategies to translate crude MS information into features characteristics of metabolites, and resources available to guide scientists along the metabolomics pipeline. A particular emphasis is put on pragmatic solutions to interpret the outcome of metabolomics experiments at the level of signal processing, statistical treatment, and biochemical understanding.
Collapse
|
75
|
Hummel J, Segu S, Li Y, Irgang S, Jueppner J, Giavalisco P. Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. FRONTIERS IN PLANT SCIENCE 2011; 2:54. [PMID: 22629264 PMCID: PMC3355513 DOI: 10.3389/fpls.2011.00054] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 09/05/2011] [Indexed: 05/13/2023]
Abstract
Holistic analysis of lipids is becoming increasingly popular in the life sciences. Recently, several interesting, mass spectrometry-based studies have been conducted, especially in plant biology. However, while great advancements have been made we are still far from detecting all the lipids species in an organism. In this study we developed an ultra performance liquid chromatography-based method using a high resolution, accurate mass, mass spectrometer for the comprehensive profiling of more than 260 polar and non-polar Arabidopsis thaliana leaf lipids. The method is fully compatible to the commonly used lipid extraction protocols and provides a viable alternative to the commonly used direct infusion-based shotgun lipidomics approaches. The whole process is described in detail and compared to alternative lipidomic approaches. Next to the developed method we also introduce an in-house developed database search software (GoBioSpace), which allows one to perform targeted or un-targeted lipidomic and metabolomic analysis on mass spectrometric data of every kind.
Collapse
Affiliation(s)
- Jan Hummel
- Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Shruthi Segu
- Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Yan Li
- Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Susann Irgang
- Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Jessica Jueppner
- Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
- *Correspondence: Patrick Giavalisco, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Golm, 14476 Potsdam, Germany. e-mail:
| |
Collapse
|
76
|
Brodsky L, Moussaieff A, Shahaf N, Aharoni A, Rogachev I. Evaluation of Peak Picking Quality in LC−MS Metabolomics Data. Anal Chem 2010; 82:9177-87. [PMID: 20977194 DOI: 10.1021/ac101216e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leonid Brodsky
- Department of Plant Sciences, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel, and Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Arieh Moussaieff
- Department of Plant Sciences, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel, and Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Nir Shahaf
- Department of Plant Sciences, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel, and Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel, and Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Ilana Rogachev
- Department of Plant Sciences, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel, and Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| |
Collapse
|
77
|
Min HK, Lim S, Chung BC, Moon MH. Shotgun lipidomics for candidate biomarkers of urinary phospholipids in prostate cancer. Anal Bioanal Chem 2010; 399:823-30. [PMID: 20953865 DOI: 10.1007/s00216-010-4290-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/30/2010] [Accepted: 10/03/2010] [Indexed: 10/18/2022]
Abstract
Qualitative and quantitative profiling of six different categories of urinary phospholipids (PLs) from patients with prostate cancer was performed to develop an analytical method for the discovery of candidate biomarkers by shotgun lipidomics method. Using nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry, we identified the molecular structures of a total of 70 PL molecules (21 phosphatidylcholines (PCs), 11 phosphatidylethanolamines (PEs), 17 phosphatidylserines (PSs), 11 phosphatidylinositols (PIs), seven phosphatidic acids, and three phosphatidylglycerols) from urine samples of healthy controls and prostate cancer patients by data-dependent collision-induced dissociation. Identified molecules were quantitatively examined by comparing the MS peak areas. From statistical analyses, one PC, one PE, six PSs, and two PIs among the PL species showed significant differences between controls and cancer patients (p < 0.05, Student's t test), with concentration changes of more than threefold. Cluster analysis of both control and patient groups showed that 18:0/18:1-PS and 16:0/22:6-PS were 99% similar in upregulation and that the two PSs (18:1/18:0, 18:0/20:5) with two PIs (18:0/18:1 and 16:1/20:2) showed similar (>95%) downregulation. The total amount of each PL group was compared among prostate cancer patients according to the Gleason scale as larger or smaller than 6. It proposes that the current study can be utilized to sort out possible diagnostic biomarkers of prostate cancer.
Collapse
Affiliation(s)
- Hye Kyeong Min
- Department of Chemistry, Yonsei University, Seoul, 120-749, South Korea
| | | | | | | |
Collapse
|
78
|
Scherer M, Schmitz G, Liebisch G. Simultaneous Quantification of Cardiolipin, Bis(monoacylglycero)phosphate and their Precursors by Hydrophilic Interaction LC−MS/MS Including Correction of Isotopic Overlap. Anal Chem 2010; 82:8794-9. [DOI: 10.1021/ac1021826] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Max Scherer
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany
| |
Collapse
|
79
|
Berdeaux O, Juaneda P, Martine L, Cabaret S, Bretillon L, Acar N. Identification and quantification of phosphatidylcholines containing very-long-chain polyunsaturated fatty acid in bovine and human retina using liquid chromatography/tandem mass spectrometry. J Chromatogr A 2010; 1217:7738-48. [PMID: 21035124 DOI: 10.1016/j.chroma.2010.10.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/09/2010] [Accepted: 10/07/2010] [Indexed: 11/30/2022]
Abstract
The retina is one of the vertebrate tissues with the highest content in polyunsaturated fatty acids (PUFA). A large proportion of retinal phospholipids, especially those found in photoreceptor membranes, are dipolyunsaturated molecular species. Among them, dipolyunsaturated phosphatidylcholine (PC) molecular species are known to contain very-long-chain polyunsaturated fatty acids (VLC-PUFA) from the n-3 and n-6 series having 24-36 carbon atoms (C24-C36) and four to six double bonds. Recent interest in the role played by VLC-PUFA arose from the findings that a protein called elongation of very-long-chain fatty acids 4 (ELOVL4) is involved in their biosynthesis and that mutations in the ELOVL4 gene are associated with Stargardt-like macular dystrophy (STD3), a dominantly inherited juvenile macular degeneration leading to vision loss. The aim of the present study was to develop an HPLC-ESI-MS/MS method for the structural characterisation and the quantification of dipolyunsaturated PC molecular species containing VLC-PUFA and validate this methodology on retinas from bovines and human donors. Successful separation of phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), PC, lyso-phosphatidylcholine (LPC) and sphingomyelin (SM) was achieved using a silica gel column and a gradient of hexane/isopropanol/water containing ammonium formate as a mobile phase. A complete structural characterisation of intact phosphatidylcholine species was obtained by collision-induced dissociation (CID) in the negative mode. Fatty acid composition and distribution can be clearly assigned based on the intensity of sn-2/sn-1 fragment ions. The PC species were characterised on bovine retina, 28 of which were dipolyunsaturated PC species containing one VLC-PUFA (C24-C36) with three to six double bonds. VLC-PUFA was always in the sn-1 position while PUFA at the sn-2 position was exclusively docosahexaenoic acid (DHA, C22:6n-3). Most of these VLC-PUFA-containing dipolyunsaturated PCs were detected and quantified in human retinas. The quantitative analysis of the different PC molecular species was performed in the positive mode using precursor ion scanning of m/z 184 and 14:0/14:0-PC and 24:0/24:0-PC as internal standards. The relationship between the MS peak intensities of different PC species and their carbon chain length was included for calibration. The main compounds represented were those having VLC-PUFA with 32 carbon atoms (C32:3, C32:4, C32:5 and C32:6) and 34 carbon atoms (C34:3, C34:4, C34:5 and C34:6). Dipolyunsaturated PCs with 36:5 and 36:6 were detected but in smaller quantities. In conclusion, this new HPLC-ESI-MS/MS method is sensitive and specific enough to structurally characterise and quantify all molecular PC species, including those esterified with VLC-PUFA. This technique is valuable for a precise characterisation of PC molecular species containing VLC-PUFA in retina and may be useful for a better understanding of the pathogenesis of STD3.
Collapse
Affiliation(s)
- Olivier Berdeaux
- Lipid-Aroma Platform, Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne, Agrosup Dijon, F-21000 Dijon, France.
| | | | | | | | | | | |
Collapse
|
80
|
Kainu V, Hermansson M, Somerharju P. Introduction of phospholipids to cultured cells with cyclodextrin. J Lipid Res 2010; 51:3533-41. [PMID: 20881052 DOI: 10.1194/jlr.d009373] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Previous studies indicate that methyl-β-cyclodextrin (meβ-CD) can greatly enhance translocation of long-chain phospholipids from vesicles to cells in culture, which is very useful when studying, e.g., phospholipid metabolism and trafficking. However, the parameters affecting the transfer have not been systematically studied. Therefore, we studied the relevant parameters including meβ-CD and vesicle concentration, incubation time, phospholipid structure, and cell type. Because meβ-CD can extract cholesterol and other lipids from cells, thereby potentially altering cell growth or viability, these issues were studied as well. The results show that efficient incorporation of phospholipid species with hydrophobicity similar to that of natural species can be obtained without significantly compromising cell growth or viability. Cellular content of phosphatidyl-serine, -ethanolamine, and -choline could be increased dramatically, i.e., 400, 125, and 25%, respectively. Depletion of cellular cholesterol could be prevented or alleviated by inclusion of the proper amount of cholesterol in the donor vesicles. In summary, meβ-CD mediates efficient transfer of long-chain (phospho) lipids from vesicles to cells without significantly compromising their growth or viability. This lays a basis for detailed studies of phospholipid metabolism and trafficking as well as enables extensive manipulation of cellular phospholipid composition, which is particularly useful when investigating mechanisms underlying phospholipid homeostasis.
Collapse
Affiliation(s)
- Ville Kainu
- Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
81
|
Hein EM, Bödeker B, Nolte J, Hayen H. Software tool for mining liquid chromatography/multi-stage mass spectrometry data for comprehensive glycerophospholipid profiling. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2083-2092. [PMID: 20552715 DOI: 10.1002/rcm.4614] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) has emerged as an indispensable tool in the field of lipidomics. Despite the growing interest in lipid analysis, there are only a few software tools available for data evaluation, as compared for example to proteomics applications. This makes comprehensive lipid analysis a complex challenge. Thus, a computational tool for harnessing the raw data from liquid chromatography/mass spectrometry (LC/MS) experiments was developed in this study and is available from the authors on request. The Profiler-Merger-Viewer tool is a software package for automatic processing of raw-data from data-dependent experiments, measured by high-performance liquid chromatography hyphenated to electrospray ionization hybrid linear ion trap Fourier transform mass spectrometry (FTICR-MS and Orbitrap) in single and multi-stage mode. The software contains three parts: processing of the raw data by Profiler for lipid identification, summarizing of replicate measurements by Merger and visualization of all relevant data (chromatograms as well as mass spectra) for validation of the results by Viewer. The tool is easily accessible, since it is implemented in Java and uses Microsoft Excel (XLS) as output format. The motivation was to develop a tool which supports and accelerates the manual data evaluation (identification and relative quantification) significantly but does not make a complete data analysis within a black-box system. The software's mode of operation, usage and options will be demonstrated on the basis of a lipid extract of baker's yeast (S. cerevisiae). In this study, we focused on three important representatives of lipids: glycerophospholipids, lyso-glycerophospholipids and free fatty acids.
Collapse
Affiliation(s)
- Eva-Maria Hein
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, D-44139 Dortmund, Germany
| | | | | | | |
Collapse
|
82
|
Taguchi R, Ishikawa M. Precise and global identification of phospholipid molecular species by an Orbitrap mass spectrometer and automated search engine Lipid Search. J Chromatogr A 2010; 1217:4229-39. [PMID: 20452604 DOI: 10.1016/j.chroma.2010.04.034] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 03/25/2010] [Accepted: 04/14/2010] [Indexed: 11/28/2022]
Abstract
In the present research, we have established a new lipidomics approach for the comprehensive and precise identification of molecular species in a crude lipid mixture using a LTQ Orbitrap mass spectrometer (MS) and reverse-phase liquid chromatography (RPLC) combination with our newly developed lipid search engine "Lipid Search". LTQ Orbitrap provides high mass accuracy MS spectra by Fourier-transform (FT) mass spectrometer mode and can perform rapid MS(n) by ion trap (IT) mass spectrometer mode. In this study, the negative ion mode was selected to detect fragment ions from phospholipids, such as fatty acid anions, by MS2 or MS3. We selected the specific detection approach by neutral loss survey-dependent MS3, for the identification of molecular species of phosphatidylcholine, sphingomyelin and phosphatidylserine. Identification of molecular species was performed by using both the high mass accuracy of the mass spectrometric data obtained from FT mode and structural data obtained from fragments in IT mode. Some alkylacyl and alkenylacyl species have the same m/z value as molecular-related ions and fragment ions, thus, direct acid hydrolysis analysis was performed to identify alkylacyl and alkenylacyl species, and then the RPLC-LTQ Orbitrap method was applied. As a result, 290 species from mouse liver and 248 species from mouse brain were identified within six different classes of phospholipid, only those in manually detected and confirmed. Most of all manually detected mass peaks were also automatically detected by "Lipid Search". Adding to differences in molecular species in different classes of phospholipids, many characteristic differences in molecular species were detected in mouse liver and brain. More variable number of saturated and monounsaturated fatty acid-containing molecular species were detected in mouse brain than liver.
Collapse
Affiliation(s)
- Ryo Taguchi
- Graduate School of Medicine, Department of Metabolome, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
83
|
Shui G, Guan XL, Low CP, Chua GH, Goh JSY, Yang H, Wenk MR. Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry: application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics. MOLECULAR BIOSYSTEMS 2010; 6:1008-17. [PMID: 20485745 DOI: 10.1039/b913353d] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent rapid growth of lipidomics is mainly attributed to technological advances in mass spectrometry. Development of soft ionization techniques, in combination with computational tools, has spurred subsequent development of various methods for lipid analysis. However, none of these existing approaches can cover major cellular lipids in a single run. Here we demonstrate that a single method of liquid chromatography coupled with mass spectrometry (LCMS) can be used for simultaneous profiling of major cellular lipids including glycerophospholipids (PLs), sphingolipids (SPLs), waxes, sterols (ST) and mono-, di- as well as triacylglycerides (MAG, DAG, TAG). We applied this approach to analyze these lipids in various organisms including Saccharomyces cerevisiae and Schizosaccharomyces pombe. While phospholipids and triacylglycerides of S. pombe mainly contain 18 : 1 fatty acyls, those of S. cerevisiae contain 16 : 1, 16 : 0 and 18 : 1 fatty acyls. S. cerevisiae and S. pombe contain distinct sphingolipid profiles. S. cerevisiae has abundant inositol phytoceramides (IPC), while S. pombe contains high levels of free phytoceramides as well as short chain phytoceramides (t18:1/20 : 0-B) and IPC (t18:1/20 : 0-B). In S. cerevisiae, our results demonstrated accumulation of ergosterol esters in tgl1Delta cells and accumulation of various TAG species in tgl3Delta cells, which are consistent with the function of the respective enzymes. Furthermore, we, for the first time, systematically characterized lipids in S. pombe and measured their dynamic changes in Deltaplh1Deltadga1 cells at different growth phases. We further discussed dynamic changes of phospholipids, sphingolipids and neutral lipids in the progress of programmed cell death in Deltaplh1Deltadga1 cells of S. pombe.
Collapse
Affiliation(s)
- Guanghou Shui
- Yong Loo Lin School of Medicine, National University of Singapore, Department of Biochemistry, 8 Medical Drive, Block MD 7, Singapore.
| | | | | | | | | | | | | |
Collapse
|
84
|
Ruebsaamen K, Liebisch G, Boettcher A, Schmitz G. Lipidomic analysis of platelet senescence. Transfusion 2010; 50:1665-76. [DOI: 10.1111/j.1537-2995.2010.02584.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
85
|
Boccard J, Veuthey JL, Rudaz S. Knowledge discovery in metabolomics: An overview of MS data handling. J Sep Sci 2010; 33:290-304. [DOI: 10.1002/jssc.200900609] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
86
|
Haimi P, Hermansson M, Batchu KC, Virtanen JA, Somerharju P. Substrate efflux propensity plays a key role in the specificity of secretory A-type phospholipases. J Biol Chem 2010; 285:751-60. [PMID: 19887372 PMCID: PMC2804224 DOI: 10.1074/jbc.m109.061218] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/01/2009] [Indexed: 01/01/2023] Open
Abstract
To better understand the principles underlying the substrate specificity of A-type phospholipases (PLAs), a high throughput mass spectrometric assay was employed to study the effect of acyl chain length and unsaturation of phospholipids on their rate of hydrolysis by three different secretory PLAs in micelles and vesicle bilayers. With micelles, each enzyme responded differently to substrate acyl chain unsaturation and double bond position, probably reflecting differences in the accommodative properties of their substrate binding sites. Experiments with saturated acyl positional isomers indicated that the length of the sn2 chain was more critical than that of the sn1 chain, suggesting tighter association of the former with the enzyme. Only the first 9-10 carbons of the sn2 acyl chain seem to interact intimately with the active site. Strikingly, no discrimination between positional isomers was observed with vesicles, and the rate of hydrolysis decreased far more with increasing chain length than with micelles, suggesting that translocation of the phospholipid substrate to the active site is rate-limiting with bilayers. Supporting this conclusion, acyl chain structure affected hydrolysis and spontaneous intervesicle transfer, which correlates with lipid efflux propensity, analogously. We conclude that substrate efflux propensity plays a more important role in the specificity of secretory PLA(2)s than commonly thought and could also be a key attribute in phospholipid homeostasis in which (unknown) PLA(2)s are key players.
Collapse
Affiliation(s)
- Perttu Haimi
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Martin Hermansson
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Krishna Chaithanya Batchu
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Jorma A. Virtanen
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| | - Pentti Somerharju
- From the Institute of Biomedicine, Department of Medical Biochemistry and Developmental Biology, University of Helsinki, PL 63, 00014 Helsinki, Finland
| |
Collapse
|
87
|
Mutka AL, Haapanen A, Käkelä R, Lindfors M, Wright AK, Inkinen T, Hermansson M, Rokka A, Corthals G, Jauhiainen M, Gillingwater TH, Ikonen E, Tyynelä J. Murine cathepsin D deficiency is associated with dysmyelination/myelin disruption and accumulation of cholesteryl esters in the brain. J Neurochem 2009; 112:193-203. [PMID: 19845830 DOI: 10.1111/j.1471-4159.2009.06440.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cathepsin D (CTSD) deficiencies are fatal neurological diseases that in human infants and in sheep are characterized by extreme loss of neurons and myelin. To date, similar morphological evidence for myelin disruption in CTSD knockout mice has not been reported. Here, we show that CTSD deficiency leads to pronounced myelin changes in the murine brain: myelin-related proteolipid protein and myelin basic protein were both markedly reduced at postnatal day 24, and the amount of lipids characteristically high in myelin (e.g. plasmalogen-derived alkenyl chains and glycosphingolipid-derived 20- and 24-carbon acyl chains) were significantly lowered compared with controls. These changes were accompanied by ultrastructural alterations of myelin, including significant thinning of myelin sheaths. Furthermore, in CTSD knockout brains there was a pronounced accumulation of cholesteryl esters and abnormal levels of proteins related to cholesterol transport, with an increased content of apolipoprotein E and a reduced content of ATP-binding cassette transporter A1. These results provide evidence for dysmyelination and altered trafficking of cholesterol in brains of CTSD knockout mice, and warrant further studies on the role of lipid metabolism in the pathogenesis of CTSD deficiencies.
Collapse
Affiliation(s)
- Aino-Liisa Mutka
- Institute of Biomedicine/Anatomy, Biomedicum, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Tyurin VA, Tyurina YY, Jung MY, Tungekar MA, Wasserloos KJ, Bayir H, Greenberger JS, Kochanek PM, Shvedova AA, Pitt B, Kagan VE. Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2863-72. [PMID: 19328050 PMCID: PMC2723191 DOI: 10.1016/j.jchromb.2009.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
Oxidation of two anionic phospholipids--cardiolipin (CL) in mitochondria and phosphatidylserine (PS) in extramitochondrial compartments--is important signaling event, particularly during the execution of programmed cell death and clearance of apoptotic cells. Quantitative analysis of CL and PS oxidation products is central to understanding their molecular mechanisms of action. We combined the identification of diverse phospholipid molecular species by ESI-MS with quantitative assessments of lipid hydroperoxides using a fluorescence HPLC-based protocol. We characterized CL and PS oxidation products formed in a model system (cyt c/H(2)O(2)), in apoptotic cells (neurons, pulmonary artery endothelial cells) and mouse lung under inflammatory/oxidative stress conditions (hyperoxia, inhalation of single walled carbon nanotubes). Our results demonstrate the usefulness of this approach for quantitative assessments, identification of individual molecular species and structural characterization of anionic phospholipids that are involved in oxidative modification in cells and tissues.
Collapse
Affiliation(s)
- Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| | - Mi-Yeon Jung
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| | - Muhammad A. Tungekar
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| | - Karla J. Wasserloos
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
- Critical Care Medicine, University of Pittsburgh, Pittsburgh PA
| | | | | | | | - Bruce Pitt
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| |
Collapse
|
89
|
Song H, Ladenson J, Turk J. Algorithms for automatic processing of data from mass spectrometric analyses of lipids. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2847-54. [PMID: 19131280 PMCID: PMC2723176 DOI: 10.1016/j.jchromb.2008.12.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
Abstract
Lipidomics comprises large-scale studies of the structures, quantities, and functions of lipid molecular species. Recently developed mass spectrometric methods for lipid analyses, especially electrospray ionization (ESI) tandem mass spectrometry, permit identification and quantitation of an enormous variety of distinct lipid molecular species from small amounts of biological samples but generate a huge amount of experimental data within a brief interval. Processing such data sets so that comprehensible information is derived from them requires bioinformatics tools, and algorithms developed for proteomics and genomics have provided some strategies that can be directly adapted to lipidomics. The structural diversity and complexity of lipids, however, also requires the development and application of new algorithms and software tools that are specifically directed at processing data from lipid analyses. Several such tools are reviewed here, including LipidQA. This program employs searches of a fragment ion database constructed from acquired and theoretical spectra of a wide variety of lipid molecular species, and raw mass spectrometric data can be processed by the program to achieve identification and quantification of many distinct lipids in mixtures. Other approaches that are reviewed here include LIMSA (Lipid Mass Spectrum Analysis), SECD (Spectrum Extraction from Chromatographic Data), MPIS (Multiple Precursor Ion Scanning), FIDS (Fragment Ion Database Searching), LipidInspector, Lipid Profiler, FAAT (Fatty Acid Analysis Tool), and LIPID Arrays. Internet resources for lipid analyses are also summarized.
Collapse
Affiliation(s)
- Haowei Song
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | | | |
Collapse
|
90
|
Ivanova PT, Milne SB, Myers DS, Brown HA. Lipidomics: a mass spectrometry based systems level analysis of cellular lipids. Curr Opin Chem Biol 2009; 13:526-31. [PMID: 19744877 DOI: 10.1016/j.cbpa.2009.08.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/11/2009] [Accepted: 08/15/2009] [Indexed: 12/21/2022]
Abstract
Lipidomics is a logical outcome of the history and traditions of lipid biochemistry and advances in mass spectrometry are at the heart of a renaissance in understanding the roles of lipids in cellular functions. Our desire to understand the complexity of lipids in biology has led to new techniques that allow us to identify over 1000 phospholipids in mammalian cell types and tissues. Improvements in chromatographic separation and mass spectrometry have positioned us to determine not only the lipid composition (i.e. parts list) of cells and tissues, but also address questions regarding lipid substrates and products that previously overwhelmed traditional analytical technologies. In the decade since lipidomics was conceived much of the efforts have been on new methodologies, development of computer programs to decipher the gigabytes of raw data, and struggling with the highly variable nature of biological systems where absolute quantities of a given metabolite may be less important than its relative change in concentration. It is clear that the technology is now sufficiently developed to address fundamental questions about the roles of lipids in cellular signaling and metabolic pathways.
Collapse
Affiliation(s)
- Pavlina T Ivanova
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | | | | | | |
Collapse
|
91
|
Niemelä PS, Castillo S, Sysi-Aho M, Orešič M. Bioinformatics and computational methods for lipidomics. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2855-62. [DOI: 10.1016/j.jchromb.2009.01.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 10/21/2022]
|
92
|
High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2664-72. [DOI: 10.1016/j.jchromb.2009.02.037] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/12/2009] [Accepted: 02/15/2009] [Indexed: 11/18/2022]
|
93
|
Graessler J, Schwudke D, Schwarz PEH, Herzog R, Shevchenko A, Bornstein SR. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS One 2009; 4:e6261. [PMID: 19603071 PMCID: PMC2705678 DOI: 10.1371/journal.pone.0006261] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 06/18/2009] [Indexed: 01/11/2023] Open
Abstract
Background Dyslipoproteinemia, obesity and insulin resistance are integrative constituents of the metabolic syndrome and are major risk factors for hypertension. The objective of this study was to determine whether hypertension specifically affects the plasma lipidome independently and differently from the effects induced by obesity and insulin resistance. Methodology/Principal Findings We screened the plasma lipidome of 19 men with hypertension and 51 normotensive male controls by top-down shotgun profiling on a LTQ Orbitrap hybrid mass spectrometer. The analysis encompassed 95 lipid species of 10 major lipid classes. Obesity resulted in generally higher lipid load in blood plasma, while the content of tri- and diacylglycerols increased dramatically. Insulin resistance, defined by HOMA-IR >3.5 and controlled for BMI, had little effect on the plasma lipidome. Importantly, we observed that in blood plasma of hypertensive individuals the overall content of ether lipids decreased. Ether phosphatidylcholines and ether phosphatidylethanolamines, that comprise arachidonic (20∶4) and docosapentaenoic (22∶5) fatty acid moieties, were specifically diminished. The content of free cholesterol also decreased, although conventional clinical lipid homeostasis indices remained unaffected. Conclusions/Significance Top-down shotgun lipidomics demonstrated that hypertension is accompanied by specific reduction of the content of ether lipids and free cholesterol that occurred independently of lipidomic alterations induced by obesity and insulin resistance. These results may form the basis for novel preventive and dietary strategies alleviating the severity of hypertension.
Collapse
Affiliation(s)
- Juergen Graessler
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University Dresden, Dresden, Germany
| | - Dominik Schwudke
- Max Planck Institute of Molecular (MPI) of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Peter E. H. Schwarz
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University Dresden, Dresden, Germany
| | - Ronny Herzog
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University Dresden, Dresden, Germany
- Max Planck Institute of Molecular (MPI) of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular (MPI) of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail: (AS); (SRB)
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University Dresden, Dresden, Germany
- * E-mail: (AS); (SRB)
| |
Collapse
|
94
|
|
95
|
Yang K, Cheng H, Gross RW, Han X. Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal Chem 2009; 81:4356-68. [PMID: 19408941 PMCID: PMC2728582 DOI: 10.1021/ac900241u] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article presents the strategies underlying the automated identification and quantification of individual lipid molecular species through array analysis of multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) data, which are acquired directly from lipid extracts after direct infusion and intrasource separation. The automated analyses of individual lipid molecular species in the program employ a strategy in which MDMS-SL data from building block analyses using precursor ion scans, neutral loss scans, or both are used to identify individual molecular species, followed by quantitation. Through this strategy, the program screens and identifies species in a high-throughput fashion from a built-in database of over 36,000 potential lipid molecular species constructed employing known building blocks. The program then uses a two-step procedure for quantitation of the identified species possessing a linear dynamic range over 3 orders of magnitude and reverifies the results when necessary through redundant quantification of multidimensional mass spectra. This program is designed to be easily adaptable for other shotgun lipidomics approaches that are currently used for mass spectrometric analysis of lipids. Accordingly, the development of this program should greatly accelerate high-throughput analysis of lipids using MDMS-based shotgun lipidomics.
Collapse
Affiliation(s)
- Kui Yang
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Hua Cheng
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Richard W. Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
- Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
96
|
Masukawa Y, Narita H, Sato H, Naoe A, Kondo N, Sugai Y, Oba T, Homma R, Ishikawa J, Takagi Y, Kitahara T. Comprehensive quantification of ceramide species in human stratum corneum. J Lipid Res 2009; 50:1708-19. [PMID: 19349641 DOI: 10.1194/jlr.d800055-jlr200] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
One of the key challenges in lipidomics is to quantify lipidomes of interest, as it is practically impossible to collect all authentic materials covering the targeted lipidomes. For diverse ceramides (CER) in human stratum corneum (SC) that play important physicochemical roles in the skin, we developed a novel method for quantification of the overall CER species by improving our previously reported profiling technique using normal-phase liquid chromatography-electrospray ionization-mass spectrometry (NPLC-ESI-MS). The use of simultaneous selected ion monitoring measurement of as many as 182 kinds of molecular-related ions enables the highly sensitive detection of the overall CER species, as they can be analyzed in only one SC-stripped tape as small as 5 mm x 10 mm. To comprehensively quantify CERs, including those not available as authentic species, we designed a procedure to estimate their levels using relative responses of representative authentic species covering the species targeted, considering the systematic error based on intra-/inter-day analyses. The CER levels obtained by this method were comparable to those determined by conventional thin-layer chromatography (TLC), which guarantees the validity of this method. This method opens lipidomics approaches for CERs in the SC.
Collapse
Affiliation(s)
- Yoshinori Masukawa
- Tochigi Research Laboratories, Kao Corporation, Ichikai, Haga, Tochigi 321-3497, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Lokhov PG, Archakov AI. Mass spectrometry methods in metabolomics. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2009. [DOI: 10.1134/s1990750809010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
98
|
Pettitt TR. Lipidomic analysis of phospholipids and related structures by liquid chromatography-mass spectrometry. Methods Mol Biol 2009; 462:25-41. [PMID: 19160659 DOI: 10.1007/978-1-60327-115-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Lipids are highly dynamic molecules with many different roles ranging from structural to signaling. Alterations in particular lipid levels change cellular behavior. In humans, inappropriate changes may manifest as diseases such as Alzheimer's, atherosclerosis, diabetes, obesity, and even cancer. This has led to a great interest in monitoring lipid changes both during normal cellular processes and in disease situations. With the advent of rapid mass spectrometry, it has become possible to analyze many lipids within a single sample with unsurpassed sensitivity and detail. Coupling this with liquid chromatography potentially enables the complete profiling of all the phospholipids, both major and minor, from a single sample within a single analysis run.
Collapse
Affiliation(s)
- Trevor R Pettitt
- Institute for Cancer Studies, Birmingham University Medical School, Birmingham, UK.
| |
Collapse
|
99
|
Kim H, Min HK, Kong G, Moon MH. Quantitative analysis of phosphatidylcholines and phosphatidylethanolamines in urine of patients with breast cancer by nanoflow liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 2009; 393:1649-56. [PMID: 19194696 DOI: 10.1007/s00216-009-2621-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/09/2009] [Accepted: 01/12/2009] [Indexed: 11/30/2022]
Abstract
Phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) from urine of patients with breast cancer were qualitatively and quantitatively analyzed by nanoflow liquid chromatography-electrospray ionization tandem mass spectrometry (nLC-ESI-MS-MS). Urinary phospholipids (PLs) were extracted from three different categories of patients (non-cancer controls and breast cancer patients before and after surgery) by first lyophilizing only 1 mL of urine sample to enrich PLs. Next, nLC-ESI-MS-MS analysis of intact urinary phospholipids was performed, resulting in structural identification of 21 PCs and 12 PEs, followed by quantitative analysis using a multiple standard addition method. This study demonstrated that nLC-ESI-MS-MS can be powerfully utilized for the study of relative changes in the contents and concentration of urinary PCs and PEs from breast cancer patients: total concentration of PCs and PEs of patient sample increased to (144 +/- 9)% and (171 +/- 11)%, respectively, compared to control sample but they decreased significantly following surgery.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Chemistry, Yonsei University, Seoul, 120-749, South Korea
| | | | | | | |
Collapse
|
100
|
Yang K, Zhao Z, Gross RW, Han X. Systematic analysis of choline-containing phospholipids using multi-dimensional mass spectrometry-based shotgun lipidomics. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2924-36. [PMID: 19201264 DOI: 10.1016/j.jchromb.2009.01.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/30/2008] [Accepted: 01/15/2009] [Indexed: 01/22/2023]
Abstract
Herein, a systematic study on the identification and quantitation of choline-containing phospholipid molecular species, including choline glycerophospholipid (PC), lysoPC, and sphingomyelin (SM), is described using multi-dimensional mass spectrometry-based shotgun lipidomics after intrasource separation (MDMS-SL). Current methods for analysis of choline-containing lipids were improved through multiple modifications leading to: (1) identification of constituents present in the PC and SM classes, subclasses of PC, and individual molecular species using MDMS-SL analysis in the positive-ion mode; (2) identification of the fatty acyl constituents and their regiospecificity in diacyl PC molecular species through the neutral loss of trimethylamine plus fatty acids; (3) direct identification of the alkenyl chains of plasmenylcholine species using precursor ion scans of the fragment ions carrying the alkenyl chains; (4) elimination of the effects of polyunsaturation on the quantitation of PC species by multiple ratiometric comparisons; (5) accurate identification and quantitation of lysoPC molecular species including regioisomers by diagnostic fragment ions; and (6) accurate identification and quantitation of SM molecular species by neutral loss scans of phosphocholine plus methyl aldehyde which is specific to SM molecular species. With these enhancements, the application of MDMS-SL for the analyses of choline-containing phospholipid molecular species in biomedical research has been extended to a much larger number of molecular species with greater quantitative accuracy and an increased depth of structural information.
Collapse
Affiliation(s)
- Kui Yang
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, Box 8020, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|