51
|
Vedad J, Domaradzki ME, Mojica ERE, Chang EJ, Profit AA, Desamero RZB. Conformational Differentiation of α-Cyanohydroxycinnamic Acid Isomers: A Raman Spectroscopic Study. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2017; 48:1282-1288. [PMID: 29225410 PMCID: PMC5720387 DOI: 10.1002/jrs.5209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two α-cyanohydroxycinnamic acid positional isomers, α-cyano-4-hydroxycinnamic acid (CHCA4) and α-cyano-3-hydroxycinnamic acid (CHCA3), were characterized using Raman spectroscopy. We analyzed the implications of the collected Raman spectral shifts, and verified them through other spectroscopic techniques, to arrive at plausible three dimensional structures of CHCA3 and CHCA4. The positions of these groups were mapped by systematically analyzing the orientation and type of interactions functional groups make in each CHCA isomer. We determined whether or not the carboxylic moieties are forming dimeric links and ascertained the existence of ring-ring π-stacking interactions. We also assessed the nature of the hydrogen bonding between -CN and -OH groups. The results were then taken together to model plausible three dimensional structures for each compound. The data revealed a structure for CHCA4 that matches the published x-ray crystallographic structure. We then applied the same spectral analysis to CHCA3 to reveal its plausible three dimensional structure. The structural details revealed may account for the functional properties of the two α-cyanohydroxycinnamic acid positional isomers.
Collapse
Affiliation(s)
- Jayson Vedad
- Department of Chemistry, York College and The Institute for Macromolecular Assemblies, Jamaica, NY, 11451 and Ph.D Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York, 10016 (United States)
| | - Maciej E. Domaradzki
- Department of Chemistry, York College and The Institute for Macromolecular Assemblies, Jamaica, NY, 11451 and Ph.D Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York, 10016 (United States)
| | | | - Emmanuel J. Chang
- Department of Chemistry, York College and The Institute for Macromolecular Assemblies, Jamaica, NY, 11451 and Ph.D Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York, 10016 (United States)
| | - Adam A. Profit
- Department of Chemistry, York College and The Institute for Macromolecular Assemblies, Jamaica, NY, 11451 and Ph.D Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York, 10016 (United States)
| | - Ruel Z. B. Desamero
- Department of Chemistry, York College and The Institute for Macromolecular Assemblies, Jamaica, NY, 11451 and Ph.D Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York, 10016 (United States)
| |
Collapse
|
52
|
Prentice BM, Caprioli RM, Vuiblet V. Label-free molecular imaging of the kidney. Kidney Int 2017; 92:580-598. [PMID: 28750926 PMCID: PMC6193761 DOI: 10.1016/j.kint.2017.03.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/25/2022]
Abstract
In this review, we will highlight technologies that enable scientists to study the molecular characteristics of tissues and/or cells without the need for antibodies or other labeling techniques. Specifically, we will focus on matrix-assisted laser desorption/ionization imaging mass spectrometry, infrared spectroscopy, and Raman spectroscopy.
Collapse
Affiliation(s)
- Boone M Prentice
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, Tennessee, USA; Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA.
| | - Vincent Vuiblet
- Biophotonic Laboratory, UMR CNRS 7369 URCA, Reims, France; Nephropathology, Department of Biopathology Laboratory, CHU de Reims, Reims, France; Nephrology and Renal Transplantation department, CHU de Reims, Reims, France.
| |
Collapse
|
53
|
The comparison of CHCA solvent compositions for improving LC-MALDI performance and its application to study the impact of aflatoxin B1 on the liver proteome of diabetes mellitus type 1 mice. PLoS One 2017; 12:e0181423. [PMID: 28738076 PMCID: PMC5524319 DOI: 10.1371/journal.pone.0181423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/19/2017] [Indexed: 01/16/2023] Open
Abstract
In nanoflow liquid chromatography-matrix-assisted laser desorption/ionization tandem time-of-flight (nanoLC-MALDI-TOF/TOF) approaches, it is critical to directly apply small amounts of the sample elutes on the sample target using a nanoLC system due to its low flow rate of 200 ~ 300 nl/min. It is recommended to apply a sheath liquid containing a matrix with a several μL/min flow rate at the end of the nanoLC column to ensure a larger co-eluted droplet for more reproducible sample spotting and avoid the laborious task of post-manual matrix spotting. In this study, to achieve a better nanoLC-MALDI performance on sample spotting, we first compared α-Cyano-4-hydroxycinnamic acid (CHCA) solvent composition for efficiently concentrating nanoLC elutes on an anchor chip. The solvent composition of isopropanol (IPA): acetonitrile (ACN):acetone:0.1% Trifluoroacetic acid (TFA) (2:7:7:2) provided strong and homogeneous signals with higher peptide ion yields than the other solvent compositions. Then, nanoLC-MALDI-TOF/TOF was applied to study the impact of aflatoxin B1 on the liver proteome from diabetes mellitus type 1 mice. Aflatoxin B1 (AFB1), produced by Aspergillus flavus and Aspergillus parasiticus is a carcinogen and a known causative agent of liver cancer. To evaluate the effects of long-term exposure to AFB1 on type 1 diabetes mellitus (TIDM), the livers of T1DM control mice and mice treated with AFB1 were analyzed using isotope-coded protein labeling (ICPL)-based quantitative proteomics. Our results showed that gluconeogenesis, lipid, and oxidative phosphorylation mechanisms, normally elevated in T1DM, were disordered following AFB1 treatment. In addition, major urinary protein 1 (MUP1), an indicator of increased insulin sensitivity, was significantly decreased in the T1DM/AFB1 group and may have resulted in higher blood glucose levels compared to the T1DM group. These results indicate that T1DM patients should avoid the AFB1 intake, as they could lead to increased blood glucose levels and disorders of energy-producing mechanisms.
Collapse
|
54
|
Chen Z, Zhong X, Tie C, Chen B, Zhang X, Li L. Development of a hydrophilic interaction liquid chromatography coupled with matrix-assisted laser desorption/ionization-mass spectrometric imaging platform for N-glycan relative quantitation using stable-isotope labeled hydrazide reagents. Anal Bioanal Chem 2017; 409:4437-4447. [PMID: 28540462 DOI: 10.1007/s00216-017-0387-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/20/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Abstract
In this work, the capability of newly developed hydrophilic interaction liquid chromatography (HILIC) coupled with matrix-assisted laser desorption/ionization-mass spectrometric imaging (MALDI-MSI) platform for quantitative analysis of N-glycans has been demonstrated. As a proof-of-principle experiment, heavy and light stable-isotope labeled hydrazide reagents labeled maltodextrin ladder were used to demonstrate the feasibility of the HILIC-MALDI-MSI platform for reliable quantitative analysis of N-glycans. MALDI-MSI analysis by an Orbitrap mass spectrometer enabled high-resolution and high-sensitivity detection of N-glycans eluted from HILIC column, allowing the re-construction of LC chromatograms as well as accurate mass measurements for structural inference. MALDI-MSI analysis of the collected LC traces showed that the chromatographic resolution was preserved. The N-glycans released from human serum was used to demonstrate the utility of this novel platform in quantitative analysis of N-glycans from a complex sample. Benefiting from the minimized ion suppression provided by HILIC separation, comparison between MALDI-MS and the newly developed platform HILIC-MALDI-MSI revealed that HILIC-MALDI-MSI provided higher N-glycan coverage as well as better quantitation accuracy in the quantitative analysis of N-glycans released from human serum. Graphical abstract Reconstructed chromatograms based on HILIC-MALDI-MSI results of heavy and light labeled maltodextrin enabling quantitative glycan analysis.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - Xuefei Zhong
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Cai Tie
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bingming Chen
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Xinxiang Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA.
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI, 53705, USA.
- School of Life Sciences, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
55
|
O'Rourke MB, Raymond BBA, Padula MP. The Characterization of Laser Ablation Patterns and a New Definition of Resolution in Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:895-900. [PMID: 28290124 DOI: 10.1007/s13361-017-1632-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/05/2017] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) is a technique that has seen a sharp rise in both use and development. Despite this rapid adoption, there have been few thorough investigations into the actual physical mechanisms that underlie the acquisition of IMS images. We therefore set out to characterize the effect of IMS laser ablation patterns on the surface of a sample. We also concluded that the governing factors that control spatial resolution have not been correctly defined and therefore propose a new definition of resolution. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Matthew B O'Rourke
- Mass Spectrometry Core Facility, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Benjamin B A Raymond
- The iThree Institute, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Matthew P Padula
- Proteomics Core Facility, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
56
|
Systematic assessment of surfactants for matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chim Acta 2017; 963:76-82. [DOI: 10.1016/j.aca.2017.01.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 11/18/2022]
|
57
|
Coufalíková K, Benešová I, Vaculovič T, Kanický V, Preisler J. LC coupled to ESI, MALDI and ICP MS - A multiple hyphenation for metalloproteomic studies. Anal Chim Acta 2017; 968:58-65. [PMID: 28395775 DOI: 10.1016/j.aca.2017.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
A new multiple detection arrangement for liquid chromatography (LC) that supplements conventional electrospray ionization (ESI) mass spectrometry (MS) detection with two complementary detection techniques, matrix-assisted laser desorption/ionization (MALDI) MS and substrate-assisted laser desorption inductively coupled plasma (SALD ICP) MS has been developed. The combination of the molecular and elemental detectors in a single separation run is accomplished by utilizing a commercial MALDI target made of conductive plastic. The proposed platform provides a number of benefits in today's metalloproteomic applications, which are demonstrated by analysis of a metallothionein mixture. To maintain metallothionein complexes, separation is carried out at a neutral pH. The effluent is split; a major portion is directed to ESI MS while the remaining 1.8% fraction is deposited onto a plastic MALDI target. Dried droplets are overlaid with MALDI matrix and analysed consecutively by MALDI MS and SALD ICP MS. In the ESI MS spectra, the MT isoform complexes with metals and their stoichiometry are determined; the apoforms are revealed in the MALDI MS spectra. Quantitative determination of metallothionein isoforms is performed via determination of metals in the complexes of the individual protein isoforms using SALD ICP MS.
Collapse
Affiliation(s)
- Kateřina Coufalíková
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Iva Benešová
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Viktor Kanický
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic
| | - Jan Preisler
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
58
|
Cai L, Sheng L, Xia M, Li Z, Zhang S, Zhang X, Chen H. Graphene Oxide as a Novel Evenly Continuous Phase Matrix for TOF-SIMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:399-408. [PMID: 27981442 DOI: 10.1007/s13361-016-1557-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Using matrix to enhance the molecular ion signals for biomolecule identification without loss of spatial resolution caused by matrix crystallization is a great challenge for the application of TOF-SIMS in real-world biological research. In this report, graphene oxide (GO) was used as a matrix for TOF-SIMS to improve the secondary ion yields of intact molecular ions ([M + H]+). Identifying and distinguishing the molecular ions of lipids (m/z >700) therefore became straightforward. The spatial resolution of TOF-SIMS imaging could also be improved as GO can form a homogeneous layer of matrix instead of crystalline domain, which prevents high spatial resolution in TOF-SIMS imaging. Lipid mapping in presence of GO revealed the delicate morphology and distribution of single vesicles with a diameter of 800 nm. On GO matrix, the vesicles with similar shape but different chemical composition could be distinguished using molecular ions. This novel matrix holds potentials in such applications as the analysis and imaging of complex biological samples by TOF-SIMS. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Lesi Cai
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Linfeng Sheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Mengchan Xia
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhanping Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Sichun Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xinrong Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Hongyuan Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
59
|
Shin D, Kim I, Paek J, Kim J. A Novel “Freeze Vacuum Drying” Crystallization Method Toward Quantitative MALDI-MS. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dongwon Shin
- Department of Chemistry; Chungnam National University; Daejeon 305-764 Republic of Korea
| | - Inyoung Kim
- Department of Chemistry; Chungnam National University; Daejeon 305-764 Republic of Korea
| | - Jihyun Paek
- Department of Chemistry; Chungnam National University; Daejeon 305-764 Republic of Korea
| | - Jeongkwon Kim
- Department of Chemistry; Chungnam National University; Daejeon 305-764 Republic of Korea
| |
Collapse
|
60
|
Structure-performance relationships of phenyl cinnamic acid derivatives as MALDI-MS matrices for sulfatide detection. Anal Bioanal Chem 2016; 409:1569-1580. [PMID: 27909779 DOI: 10.1007/s00216-016-0096-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/28/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
Abstract
A key aspect for the further development of matrix-assisted laser desorption ionization (MALDI)-mass spectrometry (MS) is a better understanding of the working principles of MALDI matrices. To address this issue, a chemical compound library of 59 structurally related cinnamic acid derivatives was synthesized. Potential MALDI matrices were evaluated with sulfatides, a class of anionic lipids which are abundant in complex brain lipid mixtures. For each matrix relative mean S/N ratios of sulfatides were determined against 9-aminoacridine as a reference matrix using negative ion mass spectrometry with 355 and 337 nm laser systems. The comparison of matrix features with their corresponding relative mean S/N ratios for sulfatide detection identified correlations between matrix substitution patterns, their chemical functionality, and their MALDI-MS performance. Crystal structures of six selected matrices provided structural insight in hydrogen bond interactions in the solid state. Principal component analysis allowed the additional identification of correlation trends between structural and physical matrix properties like number of exchangeable protons at the head group, MW, logP, UV-Vis, and sulfatide detection sensitivity. Graphical abstract Design, synthesis and mass spectrometric evaluation of MALDI-MS matrix compound libraries allows the identification of matrix structure - MALDI-MS performance relationships using multivariate statistics as a tool.
Collapse
|
61
|
Wang CC, Lai YH, Ou YM, Chang HT, Wang YS. Critical factors determining the quantification capability of matrix-assisted laser desorption/ionization- time-of-flight mass spectrometry. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0371. [PMID: 27644968 PMCID: PMC5031637 DOI: 10.1098/rsta.2015.0371] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2016] [Indexed: 05/03/2023]
Abstract
Quantitative analysis with mass spectrometry (MS) is important but challenging. Matrix-assisted laser desorption/ionization (MALDI) coupled with time-of-flight (TOF) MS offers superior sensitivity, resolution and speed, but such techniques have numerous disadvantages that hinder quantitative analyses. This review summarizes essential obstacles to analyte quantification with MALDI-TOF MS, including the complex ionization mechanism of MALDI, sensitive characteristics of the applied electric fields and the mass-dependent detection efficiency of ion detectors. General quantitative ionization and desorption interpretations of ion production are described. Important instrument parameters and available methods of MALDI-TOF MS used for quantitative analysis are also reviewed.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Chia-Chen Wang
- Department of Biochemistry, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 112, Taiwan, Republic of China Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan, Republic of China
| | - Yin-Hung Lai
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan, Republic of China
| | - Yu-Meng Ou
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan, Republic of China Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan, Republic of China
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan, Republic of China
| | - Yi-Sheng Wang
- Department of Biochemistry, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 112, Taiwan, Republic of China Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan, Republic of China
| |
Collapse
|
62
|
Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen KP, Kuppen PJK, van de Velde CJH, Weirich G, Erlmeier F, Langer R, Aubele M, Zitzelsberger H, McDonnell L, Aichler M, Walch A. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 2016; 11:1428-43. [PMID: 27414759 DOI: 10.1038/nprot.2016.081] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) tissue specimens are the gold standard for histological examination, and they provide valuable molecular information in tissue-based research. Metabolite assessment from archived tissue samples has not been extensively conducted because of a lack of appropriate protocols and concerns about changes in metabolite content or chemical state due to tissue processing. We present a protocol for the in situ analysis of metabolite content from FFPE samples using a high-mass-resolution matrix-assisted laser desorption/ionization fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR-MSI) platform. The method involves FFPE tissue sections that undergo deparaffinization and matrix coating by 9-aminoacridine before MALDI-MSI. Using this platform, we previously detected ∼1,500 m/z species in the mass range m/z 50-1,000 in FFPE samples; the overlap compared with fresh frozen samples is 72% of m/z species, indicating that metabolites are largely conserved in FFPE tissue samples. This protocol can be reproducibly performed on FFPE tissues, including small samples such as tissue microarrays and biopsies. The procedure can be completed in a day, depending on the size of the sample measured and raster size used. Advantages of this approach include easy sample handling, reproducibility, high throughput and the ability to demonstrate molecular spatial distributions in situ. The data acquired with this protocol can be used in research and clinical practice.
Collapse
Affiliation(s)
- Alice Ly
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karin Gorzolka
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Gregor Weirich
- Institute of Pathology, Technische Universität München, Munich, Germany
| | | | - Rupert Langer
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Michaela Aubele
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Liam McDonnell
- Centre for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, the Netherlands.,Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
63
|
Moskovets E, Misharin A, Laiko V, Doroshenko V. A comparative study on the analytical utility of atmospheric and low-pressure MALDI sources for the mass spectrometric characterization of peptides. Methods 2016; 104:21-32. [DOI: 10.1016/j.ymeth.2016.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/19/2015] [Accepted: 02/16/2016] [Indexed: 11/16/2022] Open
|
64
|
Griffiths RL, Creese AJ, Race AM, Bunch J, Cooper HJ. LESA FAIMS Mass Spectrometry for the Spatial Profiling of Proteins from Tissue. Anal Chem 2016; 88:6758-66. [DOI: 10.1021/acs.analchem.6b01060] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rian L. Griffiths
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Andrew J. Creese
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Alan M. Race
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, U.K
| | - Josephine Bunch
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, U.K
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Helen J. Cooper
- School
of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
65
|
Wei R, Jin CC, Quan J, Nie HL, Zhu LM. A novel self-assembling peptide with UV-responsive properties. Biopolymers 2016; 101:272-8. [PMID: 23828220 DOI: 10.1002/bip.22346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 11/11/2022]
Abstract
A novel heptapeptide comprising Ile-Gln-Ser-Pro-His-Phe-Phe (IQSPHFF) identified and found to undergo self-assembly into microparticles in solution. To understand the effects of ultraviolet (UV) irradiation on the self-assembly process, IQSPHFF solutions were exposed to the UV light of 365 nm at room temperature. This exposure was found to have a profound effect on the morphology of the self-assembled aggregates, converting the microparticles to nanorod shapes. Circular dichroism and FTIR studies indicated distinct structural differences in the arrangements of the peptide moieties before and after UV irradiation. However, Mass spectrum analysis and high performance liquid chromatography of the peptide molecules before and after UV irradiation demonstrated that the chemical structure of IQSPHFF was not changed. UV-visible spectroscopy and fluorescence spectroscopy studies showed that the absorption peak both increased after UV irradiation. Overall, our data show that the heptapeptide with UV-responsive properties.
Collapse
Affiliation(s)
- Ran Wei
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, Peoples Republic of China
| | | | | | | | | |
Collapse
|
66
|
Kudina O, Eral B, Mugele F. e-MALDI: An Electrowetting-Enhanced Drop Drying Method for MALDI Mass Spectrometry. Anal Chem 2016; 88:4669-75. [PMID: 27026060 DOI: 10.1021/acs.analchem.5b04283] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The performance of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is frequently compromised by the heterogeneous distribution of matrix and analyte deposits on the target plate arising during the conventional drop-drying sample preparation procedure. It was recently shown that this so-called coffee stain effect can be suppressed by exciting evaporating complex fluids throughout the drying process using AC-electrowetting. Here, we demonstrate that electrowetting-assisted drying of solutions of common MALDI matrix materials and a variety of common low molecular weight pharmaceutical molecules indeed leads to substantially smaller and more homogeneous sample spots on special electrowetting-functionalized e-MALDI target plates. The improved spot quality enables 2-30× enhanced MALDI-MS signals along with substantial reductions of the typical lateral variations of the MALDI-MS. The latter largely eliminates the time-consuming need to search for "sweet spots".
Collapse
Affiliation(s)
- Olena Kudina
- Physics of Complex Fluids, MESA+ Institute for Nanotechnology, University of Twente , PO Box 217, 7500 AE Enschede, The Netherlands
| | - Burak Eral
- eMALDI BV , Hengelosestraat 511, 7521 AG Enschede, The Netherlands
| | - Frieder Mugele
- Physics of Complex Fluids, MESA+ Institute for Nanotechnology, University of Twente , PO Box 217, 7500 AE Enschede, The Netherlands.,eMALDI BV , Hengelosestraat 511, 7521 AG Enschede, The Netherlands
| |
Collapse
|
67
|
Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: A novel statistical approach for quality scoring. Anal Chim Acta 2016; 919:1-10. [PMID: 27086093 DOI: 10.1016/j.aca.2016.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 12/25/2022]
Abstract
Preparation of samples according to an optimized method is crucial for accurate determination of polymer sample characteristics by Matrix-Assisted Laser Desorption Ionization (MALDI) analysis. Sample preparation conditions such as matrix choice, cationization agent, deposition technique or even the deposition volume should be chosen to suit the sample of interest. Many sample preparation protocols have been developed and employed, yet finding the optimal sample preparation protocol remains a challenge. Because an objective comparison between the results of diverse protocols is not possible, "gut-feeling" or "good enough" is often decisive in the search for an optimum. This implies that sub-optimal protocols are used, leading to a loss of mass spectral information quality. To address this problem a novel analytical strategy based on MALDI imaging and statistical data processing was developed in which eight parameters were formulated to objectively quantify the quality of sample deposition and optimal MALDI matrix composition and finally sum up to an overall quality score of the sample deposition. These parameters can be established in a fully automated way using commercially available mass spectrometry imaging instruments without any hardware adjustments. With the newly developed analytical strategy the highest quality MALDI spots were selected, resulting in more reproducible and more valuable spectra for PEG in a variety of matrices. Moreover, our method enables an objective comparison of sample preparation protocols for any analyte and opens up new fields of investigation by presenting MALDI performance data in a clear and concise way.
Collapse
|
68
|
Bibi A, Ju H. Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:291-297. [PMID: 27041659 DOI: 10.1002/jms.3753] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA-LDI-MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI-MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI-MS approach has promising application to the analysis of carbohydrates in complex biological samples.
Collapse
Affiliation(s)
- Aisha Bibi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
69
|
Monkkonen L, Edgar JS, Winters D, Heron SR, Mackay CL, Masselon CD, Stokes AA, Langridge-Smith PR, Goodlett DR. Screen-printed digital microfluidics combined with surface acoustic wave nebulization for hydrogen-deuterium exchange measurements. J Chromatogr A 2016; 1439:161-166. [DOI: 10.1016/j.chroma.2015.12.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/16/2015] [Accepted: 12/17/2015] [Indexed: 01/15/2023]
|
70
|
Smolira A, Hałas S. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis of lysozyme contained in hen egg white. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:9-17. [PMID: 26863071 DOI: 10.1255/ejms.1403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As a natural antibacterial peptide, lysozyme (LZ) is widely used in medicine and the food industry. Despite many years of research on this compound, its new antibacterial properties are still to be determined. The primary aim of this work is to demonstrate the application of the matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometric analysis of LZ directly in hen egg white samples without extraction thereof. The egg white samples were kept over 10 weeks at room temperature and measured every week. The resulting positive and negative ion mass spectra were then compared to determine the intensity of the LZ mass peak. Storage of the egg white for over 10 weeks did not influence the LZ mass peak intensity (both positive and negative). It can be concluded that the LZ concentration in the egg white samples did not vary with time. The effect of the matrix/sample ratio on LZ detection was also examined, and it was found to be different in the case of positive and negative ionization. The mass peaks of LZ oligomeric forms were observed in all mass spectra, so the MALDI method could be used in subsequent studies.
Collapse
Affiliation(s)
- Anna Smolira
- Mass Spectrometry Laboratory, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland..
| | - Stanisław Hałas
- Mass Spectrometry Laboratory, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie- Skłodowskiej 1, 20-031 Lublin, Poland..
| |
Collapse
|
71
|
Trimpin S. "Magic" Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:4-21. [PMID: 26486514 PMCID: PMC4686549 DOI: 10.1007/s13361-015-1253-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 05/11/2023]
Abstract
The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.
Collapse
Affiliation(s)
- Sarah Trimpin
- />Department of Chemistry, Wayne State University, Detroit, MI 48202 USA
- />Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201 USA
- />MSTM, LLC, Newark, DE 19711 USA
| |
Collapse
|
72
|
López-García M, García MSD, Vilariño JML, Rodríguez MVG. MALDI-TOF to compare polysaccharide profiles from commercial health supplements of different mushroom species. Food Chem 2015; 199:597-604. [PMID: 26776013 DOI: 10.1016/j.foodchem.2015.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
In this work MALDI-TOF mass spectroscopy was investigated to characterise the β-glucan profiles of several commercial health supplements, without any derivatisation or purification pre-treatment. The effect of two solvents (water and dimethyl sulfoxide) and two MALDI matrices (2,5-dihydroxybenzoic acid and 2',4',6'-trihydroxyacetophenone) was first evaluated on dextran standards. MALDI-TOF was found as a useful and quick technique to obtain structural information of diverse food supplements based on mushroom extracts. The MALDI polysaccharide profiles of 5 supplements from different mushroom species were qualitatively similar showing [Glucan+Na](+) cations with a peak-to-peak mass difference of 16 Da consistent with the repeating unit of the β-(1→3)-glucan. The profiles strongly depended on the sample solvent used, with m/z values around 5000-8000 for water and 2000 for dimethyl sulfoxide; differences between samples were revealed in the molecular weight of the aqueous preparation, with the highest values for Maitake and Cordyceps species.
Collapse
Affiliation(s)
- Marta López-García
- Grupo de Polímeros, Centro de Investigacións Tecnolóxicas (CIT), Universidade da Coruña, Campus de Esteiro s/n, 15403 Ferrol, Spain
| | - María Sonia Dopico García
- Grupo de Polímeros, Centro de Investigacións Tecnolóxicas (CIT), Universidade da Coruña, Campus de Esteiro s/n, 15403 Ferrol, Spain
| | - José Manuel López Vilariño
- Grupo de Polímeros, Centro de Investigacións Tecnolóxicas (CIT), Universidade da Coruña, Campus de Esteiro s/n, 15403 Ferrol, Spain.
| | | |
Collapse
|
73
|
Fischer JL, Lutomski CA, El-Baba TJ, Siriwardena-Mahanama BN, Weidner SM, Falkenhagen J, Allen MJ, Trimpin S. Matrix-Assisted Ionization-Ion Mobility Spectrometry-Mass Spectrometry: Selective Analysis of a Europium-PEG Complex in a Crude Mixture. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2086-2095. [PMID: 26453417 DOI: 10.1007/s13361-015-1233-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
The analytical utility of a new and simple to use ionization method, matrix-assisted ionization (MAI), coupled with ion mobility spectrometry (IMS) and mass spectrometry (MS) is used to characterize a 2-armed europium(III)-containing poly(ethylene glycol) (Eu-PEG) complex directly from a crude sample. MAI was used with the matrix 1,2-dicyanobenzene, which affords low chemical background relative to matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). MAI provides high ion abundance of desired products in comparison to ESI and MALDI. Inductively coupled plasma-MS measurements were used to estimate a maximum of 10% of the crude sample by mass was the 2-arm Eu-PEG complex, supporting evidence of selective ionization of Eu-PEG complexes using the new MAI matrix, 1,2-dicyanobenzene. Multiply charged ions formed in MAI enhance the IMS gas-phase separation, especially relative to the singly charged ions observed with MALDI. Individual components are cleanly separated and readily identified, allowing characterization of the 2-arm Eu-PEG conjugate from a mixture of the 1-arm Eu-PEG complex and unreacted starting materials. Size-exclusion chromatography, liquid chromatography at critical conditions, MALDI-MS, ESI-MS, and ESI-IMS-MS had difficulties with this analysis, or failed. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Joshua L Fischer
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Corinne A Lutomski
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Tarick J El-Baba
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | | | - Steffen M Weidner
- BAM Federal Institute for Materials Research and Testing, D-12489, Berlin, Germany
| | - Jana Falkenhagen
- BAM Federal Institute for Materials Research and Testing, D-12489, Berlin, Germany
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
- MSTM, LLC, Newark, DE, 19711, USA.
| |
Collapse
|
74
|
Smolira A, Hałas S, Wessely-Szponder J. Quantification of the PR-39 cathelicidin compound in porcine blood by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1811-1816. [PMID: 26331932 DOI: 10.1002/rcm.7284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE The PR-39 porcine cathelicidin occurs naturally in animal neutrophils. Its main function is antimicrobial activity, which potentially can be used in antibiotic treatments in veterinary medicine. Investigations concerning such a use require the detection and quantification of PR-39 in a given sample. The aim of this work is to determine the concentration of PR-39 contained in porcine blood. METHODS Prior to matrix-assisted laser desorption/ionization (MALDI) analysis, the porcine blood sample was subjected to crude extraction in order to release the active form of PR-39 from the neutrophil granules. Next, gel filtration chromatography was performed to separate PR-39 from other cathelicidins present in porcine blood. Positive ion MALDI time-of-flight (TOF) mass spectra of the resulting portion of lyophilisate with unknown PR-39 content were acquired in linear mode. To quantify PR-39 in the lyophilisate sample, the standard addition method was applied. The PR-39 concentration obtained in the lyophilisate sample was then converted into the peptide concentration in porcine blood. RESULTS The linear fit function of the constructed calibration curve indicates an excellent correlation between the PR-39 peak intensity and the added quantity of synthetic PR-39 (R(2) = 0.994) and a low relative standard deviation of the slope = 1.98%. From the x-intercept of the straight line, we estimated the PR-39 concentration in porcine blood to be 20.5 ± 4.6 ng/mL. CONCLUSIONS The MALDI method was successfully applied for the quantitative analysis of PR-39 found in porcine blood. Compared with other available methods, it is relatively easy, inexpensive and not time-consuming. Despite the method having lower accuracy than the enzyme-linked immunosorbent assay (ELISA), the results obtained here, by a much simpler method, are in good agreement with the literature data.
Collapse
Affiliation(s)
- Anna Smolira
- Mass Spectrometry Laboratory, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - Stanisław Hałas
- Mass Spectrometry Laboratory, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland
| | - Joanna Wessely-Szponder
- Department of Pathophysiology, Chair of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| |
Collapse
|
75
|
|
76
|
Mainz ER, Dobes NC, Allbritton NL. Pronase E-Based Generation of Fluorescent Peptide Fragments: Tracking Intracellular Peptide Fate in Single Cells. Anal Chem 2015; 87:7987-95. [PMID: 26171808 PMCID: PMC6026012 DOI: 10.1021/acs.analchem.5b01929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to track intracellular peptide proteolysis at the single cell level is of growing interest, particularly as short peptide sequences continue to play important roles as biosensors, therapeutics, and endogenous participants in antigen processing and intracellular signaling. We describe a rapid and inexpensive methodology to generate fluorescent peptide fragments from a parent sequence with diverse chemical properties, including aliphatic, nonpolar, basic, acidic, and non-native amino acids. Four peptide sequences with existing biochemical applications were fragmented using incubation with Pronase E and/or formic acid, and in each case a complete set of fluorescent fragments was generated for use as proteolysis standards in chemical cytometry. Fragment formation and identity was monitored with capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) and matrix assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-MS) to confirm the presence of all sequences and yield fragmentation profiles across Pronase E concentrations which can readily be used by others. As a pilot study, Pronase E-generated standards from an Abl kinase sensor and an ovalbumin antigenic peptide were then employed to identify proteolysis products arising from the metabolism of these sequences in single cells. The Abl kinase sensor fragmented at 4.2 ± 4.8 zmol μM(-1) s(-1) and the majority of cells possessed similar fragment identities. In contrast, an ovalbumin epitope peptide was degraded at 8.9 ± 0.1 zmol μM(-1) s(-1), but with differential fragment formation between individual cells. Overall, Pronase E-generated peptide standards were a rapid and efficient method to identify proteolysis products from cells.
Collapse
Affiliation(s)
- Emilie R. Mainz
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Nicholas C. Dobes
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA and North Carolina State University, Raleigh, North Carolina 27695, US
| |
Collapse
|
77
|
Sandu C, Chandramouli N, Glickman JF, Molina H, Kuo CL, Kukushkin N, Goldberg AL, Steller H. Thiostrepton interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. J Cell Mol Med 2015; 19:2181-92. [PMID: 26033448 PMCID: PMC4568923 DOI: 10.1111/jcmm.12602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/03/2015] [Indexed: 11/30/2022] Open
Abstract
Here, we report a novel mechanism of proteasome inhibition mediated by Thiostrepton (Thsp), which interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. We identified Thsp in a cell-based high-throughput screen using a fluorescent reporter sensitive to degradation by the ubiquitin-proteasome pathway. Thiostrepton behaves as a proteasome inhibitor in several paradigms, including cell-based reporters, detection of global ubiquitination status, and proteasome-mediated labile protein degradation. In vitro, Thsp does not block the chymotrypsin activity of the 26S proteasome. In a cell-based IκBα degradation assay, Thsp is a slow inhibitor and 4 hrs of treatment achieves the same effects as MG-132 at 30 min. We show that Thsp forms covalent adducts with proteins in human cells and demonstrate their nature by mass spectrometry. Furthermore, the ability of Thsp to interact covalently with the cysteine residues is essential for its proteasome inhibitory function. We further show that a Thsp modified peptide cannot be degraded by proteasomes in vitro. Importantly, we demonstrate that Thsp binds covalently to Rpt subunits of the 19S regulatory particle and forms bridges with a proteasome substrate. Taken together, our results uncover an important role of Thsp in 19S proteasome inhibition.
Collapse
Affiliation(s)
- Cristinel Sandu
- Howard Hughes Medical Institute, Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, NY, USA
| | | | - Joseph Fraser Glickman
- High Throughput Screening Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Chueh-Ling Kuo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | | | - Hermann Steller
- Howard Hughes Medical Institute, Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
78
|
Lou X, de Waal BFM, Milroy LG, van Dongen JLJ. A sample preparation method for recovering suppressed analyte ions in MALDI TOF MS. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:766-770. [PMID: 26259660 DOI: 10.1002/jms.3587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
In matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS), analyte signals can be substantially suppressed by other compounds in the sample. In this technical note, we describe a modified thin-layer sample preparation method that significantly reduces the analyte suppression effect (ASE). In our method, analytes are deposited on top of the surface of matrix preloaded on the MALDI plate. To prevent embedding of analyte into the matrix crystals, the sample solution were prepared without matrix and efforts were taken not to re-dissolve the preloaded matrix. The results with model mixtures of peptides, synthetic polymers and lipids show that detection of analyte ions, which were completely suppressed using the conventional dried-droplet method, could be effectively recovered by using our method. Our findings suggest that the incorporation of analytes in the matrix crystals has an important contributory effect on ASE. By reducing ASE, our method should be useful for the direct MALDI MS analysis of multicomponent mixtures.
Collapse
Affiliation(s)
- Xianwen Lou
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bas F M de Waal
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Joost L J van Dongen
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
79
|
Richardson SL, Hanjra P, Zhang G, Mackie BD, Peterson DL, Huang R. A direct, ratiometric, and quantitative MALDI-MS assay for protein methyltransferases and acetyltransferases. Anal Biochem 2015; 478:59-64. [PMID: 25778392 DOI: 10.1016/j.ab.2015.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
Abstract
Protein methylation and acetylation play important roles in biological processes, and misregulation of these modifications is involved in various diseases. Therefore, it is critical to understand the activities of the enzymes responsible for these modifications. Herein we describe a sensitive method for ratiometric quantification of methylated and acetylated peptides via MALDI-MS by direct spotting of enzymatic methylation and acetylation reaction mixtures without tedious purification procedures. The quantifiable detection limit for peptides with our method is approximately 10 fmol. This is achieved by increasing the signal-to-noise ratio through the addition of NH4H2PO4 to the matrix solution and reduction of the matrix α-cyanohydroxycinnamic acid concentration to 2 mg/ml. We have demonstrated the application of this method in enzyme kinetic analysis and inhibition studies. The unique feature of this method is the simultaneous quantification of multiple peptide species for investigation of processivity mechanisms. Its wide buffer compatibility makes it possible to be adapted to investigate the activity of any protein methyltransferase or acetyltransferase.
Collapse
Affiliation(s)
- Stacie L Richardson
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Pahul Hanjra
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Gang Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Brianna D Mackie
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Darrell L Peterson
- Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Rong Huang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, USA; Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA.
| |
Collapse
|
80
|
Padoan A, Basso D, La Malfa M, Zambon CF, Aiyetan P, Zhang H, Di Chiara A, Pavanello G, Bellocco R, Chan DW, Plebani M. Reproducibility in urine peptidome profiling using MALDI-TOF. Proteomics 2015; 15:1476-85. [DOI: 10.1002/pmic.201400253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/09/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Andrea Padoan
- Department of Medicine-DIMED; University of Padova; Padova Italy
| | - Daniela Basso
- Department of Medicine-DIMED; University of Padova; Padova Italy
| | - Marco La Malfa
- Department of Medicine-DIMED; University of Padova; Padova Italy
| | | | - Paul Aiyetan
- Department of Pathology; Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Hui Zhang
- Department of Pathology; Johns Hopkins University School of Medicine; Baltimore MD USA
| | | | | | - Rino Bellocco
- Department of Statistics and Quantitative Methods; University of Milano-Bicocca; Milano Italy
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute; Stockholm Sweden
| | - Daniel W. Chan
- Department of Pathology; Johns Hopkins University School of Medicine; Baltimore MD USA
| | - Mario Plebani
- Department of Medicine-DIMED; University of Padova; Padova Italy
| |
Collapse
|
81
|
Hart PJ, Wey E, McHugh TD, Balakrishnan I, Belgacem O. A method for the detection of antibiotic resistance markers in clinical strains of Escherichia coli using MALDI mass spectrometry. J Microbiol Methods 2015; 111:1-8. [PMID: 25633625 DOI: 10.1016/j.mimet.2015.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 11/25/2022]
Abstract
Matrix-assisted laser-desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass spectrometry based approaches for bacterial identification and classification. The relatively simple sample preparation requirements and the speed of analysis which can usually be completed within a few minutes have resulted in the adoption and assimilation of MALDI-TOF MS into the routine diagnostic workflow of Clinical microbiology laboratories worldwide. This study describes the facilitation of bacterial discrimination based on antibiotic resistance markers through the implementation of MALDI-TOF MS. The periplasmic compartment of whole bacterial cells contains several proteins which confer antibiotic resistance in the Enterobacteriaceae. In order to reduce the complexity of the sample to be analysed via MALDI-TOF MS, the periplasm was extracted and subjected to in solution tryptic digestion followed by nano-LC separation. This method, established that peptide sequence biomarkers from several classes of antibiotic resistance proteins could be predicted using protein/peptide database tools such as Mascot. Biomarkers for a CTX-M-1 group extended spectrum β-lactamase, CMY-2 an Amp-C β-lactamase, VIM a metallo-β-lactamase, TEM a β-lactamase and KanR an aminoglycoside modifying enzyme were detected. This allowed for discrimination at a species level and at an almost identical strain level where the only difference between strains was the carriage of a modified antibiotic resistance carrying plasmid. This method also was able to detect some of these biomarkers in clinical strains where multiple resistance mechanisms were present.
Collapse
Affiliation(s)
- Philippa J Hart
- Shimadzu, Wharfside, Trafford Wharf Road, Manchester M17 1GP, UK
| | | | - Timothy D McHugh
- UCL Centre for Clinical Microbiology, Division of Infection and Immunity, UK
| | | | - Omar Belgacem
- Shimadzu, Wharfside, Trafford Wharf Road, Manchester M17 1GP, UK.
| |
Collapse
|
82
|
Mukherjee G, Claudia Röwer C, Koy C, Protzel C, Lorenz P, Thiesen HJ, Hakenberg OW, Glocker MO. Ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for phosphopeptide analysis with a solidified ionic liquid matrix. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:65-77. [PMID: 26181280 DOI: 10.1255/ejms.1362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A solidified ionic liquid matrix (SILM) consisting of 3-aminoquinoline, α-cyano-4- hydroxycinnamic acid and ammonium dihydrogen phosphate combines the benefits of liquid and solid MALDI matrices and proves to be well suitable for phosphopeptide analysis using MALDI-MS in the low femtomole range. Desalting and buffer exchange that typically follow after phosphopeptide elution from metal oxide affinity chromatography (MOAC) materials can be omitted. Shifting the pH from acidic to basic during target preparation causes slow matrix crystallization and homogeneous embedding of the analyte molecules, forming a uniform preparation from which (phospho)peptides can be ionized in high yields over long periods of time. The novel combination of MOAC-based phosphopeptide enrichment with SILM preparation has been developed with commercially available standard phosphopeptides and with α-casein as phosphorylated standard protein. The applicability of the streamlined phosphopeptide analysis procedure to cell biological and clinical samples has been tested (i) using affinity-enriched endogenous TRIM28 from cell cultures and (ii) by analysis of a two-dimensional gel-separated protein spot from a bladder cancer sample.
Collapse
Affiliation(s)
| | | | - Cornelia Koy
- Proteome Center Rostock, University of Rostock, Germany..
| | - Chris Protzel
- Urology Clinic and Polyclinic, University Medicine Rostock, Germany..
| | - Peter Lorenz
- Institute of Immunology, University Medicine Rostock, Germany..
| | | | - Oliver W Hakenberg
- Urology Clinic and Polyclinic, University Medicine Rostock, Germany. - rostock.de
| | | |
Collapse
|
83
|
Abdelhamid HN, Wu HF. Synthesis of a highly dispersive sinapinic acid@graphene oxide (SA@GO) and its applications as a novel surface assisted laser desorption/ionization mass spectrometry for proteomics and pathogenic bacteria biosensing. Analyst 2015; 140:1555-65. [DOI: 10.1039/c4an02158d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
GO-modified sinapinic acid was synthesized and characterized; it was then investigated for use in SALDI-MS for proteomics and pathogenic bacterial biosensing.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- Department of Chemistry
| | - Hui-Fen Wu
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| |
Collapse
|
84
|
Samaraweera H, Moon SH, Lee EJ, Grant J, Fouks J, Choi I, Suh JW, Ahn DU. Characterisation of phosvitin phosphopeptides using MALDI-TOF mass spectrometry. Food Chem 2014; 165:98-103. [DOI: 10.1016/j.foodchem.2014.05.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/19/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
85
|
Smolira A, Wessely-Szponder J. Importance of the matrix and the matrix/sample ratio in MALDI-TOF-MS analysis of cathelicidins obtained from porcine neutrophils. Appl Biochem Biotechnol 2014; 175:2050-65. [PMID: 25432341 PMCID: PMC4322226 DOI: 10.1007/s12010-014-1405-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 11/13/2014] [Indexed: 11/24/2022]
Abstract
Qualitative and quantitative mass spectrometric studies of biomolecules for example proteins, peptides, or lipids contained in biological samples like physiologic fluids are very important for many fields of science such as medicine, veterinary medicine, biology, biochemistry, molecular biology, or environmental sciences. In the last two decades, MALDI TOF MS — matrix-assisted laser desorption mass spectrometry, proved to be an especially convenient tool for these analyses. The main advantages of this method are its rapidity and high sensitivity which is particularly appreciated in the case of studies of complex biological specimen. A major challenge for many researchers is to maximize this sensitivity, among others, by appropriate procedures of sample preparation for the measurement. The objective of this work was to optimize these procedures, selecting the optimal matrix and optimum proportions of the sample and the matrix solution in a mixture of both solutions, aiming at the achievement of the maximum intensity of ion current. In this respect, five low molecular mass cathelicidins were studied: prophenin-2, protegrins 1–3, PR-39. All of them were obtained directly from the porcine blood. As a result of studies, the authors determined such experimental conditions when the intensity of investigated ionic current had the highest value.
Collapse
Affiliation(s)
- Anna Smolira
- Department of Molecular Physics, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland,
| | | |
Collapse
|
86
|
Nika H, Angeletti RH, Hawke DH. N-terminal protein characterization by mass spectrometry using combined microscale liquid and solid-phase derivatization. J Biomol Tech 2014; 25:77-86. [PMID: 25187758 DOI: 10.7171/jbt.14-2503-001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A sample-preparation method for N-terminal peptide isolation from protein proteolytic digests has been developed. Protein thiols and primary amines were protected by carboxyamidomethylation and acetylation, respectively, followed by trypsinization. The digest was bound to ZipTip(C18) pipette tips for reaction of the newly generated N-termini with sulfosuccinimidyl-6-[3'-(2-pyridyldithio)-propionamido] hexanoate. The digest was subsequently exposed to hydroxylamine for reversal of hydroxyl group acylation, followed by reductive release of the pyridine-2-thione moiety from the derivatives. The thiol group-functionalized internal and C-terminal peptides were reversibly captured by covalent chromatography on activated thiol sepharose leaving the N-terminal fragment free in solution. The use of the reversed-phase supports as a reaction bed enabled optimization of the serial modification steps for throughput and completeness of derivatization. The use of the sample-preparation method was demonstrated with low picomole amounts of in-solution- and in-gel-digested protein. The N-terminal peptide was selectively retrieved from the affinity support. The sample-preparation method provides for throughput, robustness, and simplicity of operation using standard equipment available in most biological laboratories and is anticipated to be readily expanded to proteome-wide applications.
Collapse
Affiliation(s)
- Heinz Nika
- Laboratory for Macromolecular Analysis and Proteomics and ; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; and
| | - Ruth Hogue Angeletti
- Laboratory for Macromolecular Analysis and Proteomics and ; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; and
| | - David H Hawke
- MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA
| |
Collapse
|
87
|
Binzer M, Heuer CM, Kollmann M, Kahnt J, Hauser F, Grimmelikhuijzen CJP, Schachtner J. Neuropeptidome of Tribolium castaneum antennal lobes and mushroom bodies. J Comp Neurol 2014; 522:337-57. [PMID: 23818034 DOI: 10.1002/cne.23399] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 05/27/2013] [Accepted: 06/19/2013] [Indexed: 11/08/2022]
Abstract
Neuropeptides are a highly diverse group of signaling molecules that affect a broad range of biological processes in insects, including development, metabolism, behavior, and reproduction. In the central nervous system, neuropeptides are usually considered to act as neuromodulators and cotransmitters that modify the effect of "classical" transmitters at the synapse. The present study analyzes the neuropeptide repertoire of higher cerebral neuropils in the brain of the red flour beetle Tribolium castaneum. We focus on two integrative neuropils of the olfactory pathway, the antennal lobes and the mushroom bodies. Using the technique of direct peptide profiling by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, we demonstrate that these neuropils can be characterized by their specific neuropeptide expression profiles. Complementary immunohistological analyses of selected neuropeptides revealed neuropeptide distribution patterns within the antennal lobes and the mushroom bodies. Both approaches revealed consistent differences between the neuropils, underlining that direct peptide profiling by mass spectrometry is a fast and reliable method to identify neuropeptide content.
Collapse
Affiliation(s)
- Marlene Binzer
- Philipps-University Marburg, Department of Biology, Animal Physiology, 35043, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
88
|
Sandoval W. Matrix‐Assisted Laser Desorption/Ionization Time‐of‐Flight Mass Analysis of Peptides. ACTA ACUST UNITED AC 2014; 77:16.2.1-16.2.11. [DOI: 10.1002/0471140864.ps1602s77] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wendy Sandoval
- Department of Protein Chemistry, Genentech South San Francisco California
| |
Collapse
|
89
|
Gabriel SJ, Schwarzinger C, Schwarzinger B, Panne U, Weidner SM. Matrix segregation as the major cause for sample inhomogeneity in MALDI dried droplet spots. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1356-1363. [PMID: 24781460 DOI: 10.1007/s13361-014-0913-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
The segregation in dried droplet MALDI sample spots was analyzed with regard to the matrix-to-sample ratio using optical microscopy, MALDI imaging mass spectrometry (MALDI MSI) and IR imaging spectroscopy. In this context, different polymer/matrix/solvent systems usually applied in the analysis of synthetic polymers were investigated. The use of typical matrix concentrations (10 mg mL⁻¹) in almost every case resulted in ring patterns, whereas higher concentrated matrix solutions always led to homogeneous sample spot layers. The data revealed that segregation is predominantly caused by matrix transport in the drying droplet, whereas polymer segregation seems to be only secondary.
Collapse
Affiliation(s)
- Stefan J Gabriel
- Federal Institute for Materials Research and Testing (BAM), D-12489, Berlin, Germany
| | | | | | | | | |
Collapse
|
90
|
Wang CW, Chen WT, Chang HT. Quantification of saccharides in honey samples through surface-assisted laser desorption/ionization mass spectrometry using HgTe nanostructures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1247-1252. [PMID: 24744213 DOI: 10.1007/s13361-014-0886-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
Quantification of monosaccharides and disaccharides in five honey samples through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using HgTe nanostructures as the matrix and sucralose as an internal standard has been demonstrated. Under optimal conditions (1× HgTe nanostructure, 0.2 mM ammonium citrate at pH 9.0), the SALDI-MS approach allows detection of fructose and maltose at the concentrations down to 15 and 10 μM, respectively. Without conducting tedious sample pretreatment and separation, the SALDI-MS approach allows determination of the contents of monosaccharides and disaccharides in honey samples within 30 min, with reproducibility (relative standard deviation <15%). Unlike only sodium adducts of standard saccharides detected, sodium adducts and potassium adducts with differential amounts have been found among various samples, showing different amounts of sodium and potassium ions in the honey samples. The SALDI-MS data reveal that the contents of monosaccharides and disaccharides in various honey samples are dependent on their nectar sources. In addition to the abundant amounts of monosaccharides and disaccharides, oligosaccharides in m/z range of 650 - 2700 are only detected in pomelo honey. Having advantages of simplicity, rapidity, and reproducibility, this SALDI-MS holds great potential for the analysis of honey samples.
Collapse
Affiliation(s)
- Chia-Wei Wang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
91
|
Kannen H, Hazama H, Kaneda Y, Fujino T, Awazu K. Development of laser ionization techniques for evaluation of the effect of cancer drugs using imaging mass spectrometry. Int J Mol Sci 2014; 15:11234-44. [PMID: 24968266 PMCID: PMC4139779 DOI: 10.3390/ijms150711234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 12/31/2022] Open
Abstract
Recently, combined therapy using chemotherapy and photodynamic therapy (PDT) has been proposed as a means of improving treatment outcomes. In order to evaluate the efficacy of combined therapy, it is necessary to determine the distribution of the anticancer drug and the photosensitizer. We investigated the use of imaging mass spectrometry (IMS) to simultaneously observe the distributions of an anticancer drug and photosensitizer administered to cancer cells. In particular, we sought to increase the sensitivity of detection of the anticancer drug docetaxel and the photosensitizer protoporphyrin IX (PpIX) by optimizing the ionization-assisting reagents. When we used a matrix consisting of equal weights of a zeolite (NaY5.6) and a conventional organic matrix (6-aza-2-thiothymine) in matrix-assisted laser desorption/ionization, the signal intensity of the sodium-adducted ion of docetaxel (administered at 100 μM) increased about 13-fold. Moreover, we detected docetaxel with the zeolite matrix using the droplet method, and detected PpIX by fluorescence and IMS with α-cyano-4-hydroxycinnamic acid (CHCA) using the spray method.
Collapse
Affiliation(s)
- Hiroki Kannen
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hisanao Hazama
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yasufumi Kaneda
- Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tatsuya Fujino
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa Hachioji, Tokyo 192-0397, Japan.
| | - Kunio Awazu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
92
|
Kahsai AW, Rajagopal S, Sun J, Xiao K. Monitoring protein conformational changes and dynamics using stable-isotope labeling and mass spectrometry. Nat Protoc 2014; 9:1301-19. [PMID: 24810039 PMCID: PMC4367447 DOI: 10.1038/nprot.2014.075] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An understanding of the mechanism accompanying functional conformational changes associated with protein activation has important implications for drug design. Here we describe a powerful method, conformational changes and dynamics using stable-isotope labeling and mass spectrometry (CDSiL-MS), which involves chemical labeling by isotope-coded forms of N-ethylmaleimide or succinic anhydride to site-specifically label the side chains of cysteines or lysines, respectively, in native proteins. Subsequent MS analysis allows the quantitative monitoring of reactivity of residues as a function of time, providing a measurement of the labeling kinetics and thereby enabling elucidation of conformational changes of proteins. We demonstrate the utility of this method using a model G protein-coupled receptor, the β2-adrenergic receptor, including experiments that characterize the functional conformational changes associated with activation of distinct signaling pathways induced by different β-adrenoceptor ligands. The procedure requires 5 d, and it can easily be adapted to systems in which soluble and detergent-solubilized membrane protein targets, which undergo function-dependent conformational changes, can be interrogated structurally to allow drug screening.
Collapse
Affiliation(s)
- Alem W. Kahsai
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Jinpeng Sun
- Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan, Shandong 250012, China
| | - Kunhong Xiao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710, USA
| |
Collapse
|
93
|
Napoli A, Aiello D, Aiello G, Cappello MS, Di Donna L, Mazzotti F, Materazzi S, Fiorillo M, Sindona G. Mass Spectrometry-Based Proteomic Approach in Oenococcus oeni Enological Starter. J Proteome Res 2014; 13:2856-66. [DOI: 10.1021/pr4012798] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anna Napoli
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | - Donatella Aiello
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | - Gilda Aiello
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | | | - Leonardo Di Donna
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | - Fabio Mazzotti
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | | | - Marco Fiorillo
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| | - Giovanni Sindona
- Department
of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12/D, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
94
|
Dekker TJA, Balluff BD, Jones EA, Schöne CD, Schmitt M, Aubele M, Kroep JR, Smit VTHBM, Tollenaar RAEM, Mesker WE, Walch A, McDonnell LA. Multicenter Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI) Identifies Proteomic Differences in Breast-Cancer-Associated Stroma. J Proteome Res 2014; 13:4730-8. [DOI: 10.1021/pr500253j] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tim J. A. Dekker
- Department
of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
- Department
of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin D. Balluff
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Emrys A. Jones
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Cédrik D. Schöne
- Research
Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Manfred Schmitt
- Department
of Obstetrics and Gynecology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michaela Aubele
- Institute
of Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Judith R. Kroep
- Department
of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Wilma E. Mesker
- Department
of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Axel Walch
- Research
Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Liam A. McDonnell
- Center
for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
95
|
Küster SK, Pabst M, Jefimovs K, Zenobi R, Dittrich PS. High-resolution droplet-based fractionation of nano-LC separations onto microarrays for MALDI-MS analysis. Anal Chem 2014; 86:4848-55. [PMID: 24725135 DOI: 10.1021/ac4041982] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present a robust droplet-based device, which enables the fractionation of ultralow flow rate nanoflow liquid chromatography (nano-LC) eluate streams at high frequencies and high peak resolution. This is achieved by directly interfacing the separation column to a micro T-junction, where the eluate stream is compartmentalized into picoliter droplets. This immediate compartmentalization prevents peak dispersion during eluate transport and conserves the chromatographic performance. Subsequently, nanoliter eluate fractions are collected at a rate of one fraction per second on a high-density microarray to retain the separation with high temporal resolution. Chromatographic separations of up to 45 min runtime can thus be archived on a single microarray possessing 2700 sample spots. The performance of this device is demonstrated by fractionating the separation of a tryptic digest of a known protein mixture onto the microarray chip and subsequently analyzing the sample archive using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Resulting peak widths are found to be significantly reduced compared to standard continuous flow spotting technologies as well as in comparison to a conventional nano-LC-electrospray ionization-mass spectrometry interface. Moreover, we demonstrate the advantage of our high-definition nanofractionation device by applying two different MALDI matrices to all collected fractions in an alternating fashion. Since the information that is obtained from a MALDI-MS measurement depends on the choice of MALDI matrix, we can extract complementary information from neighboring spots containing almost identical composition but different matrices.
Collapse
Affiliation(s)
- Simon K Küster
- Department of Chemistry and Applied Biosciences, ETH Zürich , Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
96
|
Nika H, Hawke DH, Angeletti RH. C-terminal protein characterization by mass spectrometry: isolation of C-terminal fragments from cyanogen bromide-cleaved protein. J Biomol Tech 2014; 25:1-18. [PMID: 24688319 PMCID: PMC3942263 DOI: 10.7171/jbt.14-2501-001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A sample preparation method for protein C-terminal peptide isolation from cyanogen bromide (CNBr) digests has been developed. In this strategy, the analyte was reduced and carboxyamidomethylated, followed by CNBr cleavage in a one-pot reaction scheme. The digest was then adsorbed on ZipTipC18 pipette tips for conjugation of the homoserine lactone-terminated peptides with 2,2'-dithiobis (ethylamine) dihydrochloride, followed by reductive release of 2-aminoethanethiol from the derivatives. The thiol-functionalized internal and N-terminal peptides were scavenged on activated thiol sepharose, leaving the C-terminal peptide in the flow-through fraction. The use of reversed-phase supports as a venue for peptide derivatization enabled facile optimization of the individual reaction steps for throughput and completeness of reaction. Reagents were replaced directly on the support, allowing the reactions to proceed at minimal sample loss. By this sequence of solid-phase reactions, the C-terminal peptide could be recognized uniquely in mass spectra of unfractionated digests by its unaltered mass signature. The use of the sample preparation method was demonstrated with low-level amounts of a whole, intact model protein. The C-terminal fragments were retrieved selectively and efficiently from the affinity support. The use of covalent chromatography for C-terminal peptide purification enabled recovery of the depleted material for further chemical and/or enzymatic manipulation. The sample preparation method provides for robustness and simplicity of operation and is anticipated to be expanded to gel-separated proteins and in a scaled-up format to high-throughput protein profiling in complex biological mixtures.
Collapse
Affiliation(s)
- Heinz Nika
- Laboratory for Macromolecular Analysis and Proteomics and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; and
| | - David H. Hawke
- MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | - Ruth Hogue Angeletti
- Laboratory for Macromolecular Analysis and Proteomics and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; and
| |
Collapse
|
97
|
Gabriel SJ, Pfeifer D, Schwarzinger C, Panne U, Weidner SM. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric imaging of synthetic polymer sample spots prepared using ionic liquid matrices. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:489-498. [PMID: 24497287 DOI: 10.1002/rcm.6810] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE Polymer sample spots for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) prepared by the dried-droplet method often reveal ring formation accompanied by possible segregation of matrix and sample molecules as well as of the polymer homologs itself. Since the majority of sample spots are prepared by this simple and fast method, a matrix or sample preparation method that excludes such segregation has to be found. METHODS Three different ionic liquid matrices based on conventionally used aromatic compounds for MALDI-TOF MS were prepared. The formation of ionic liquids was proven by (1) H NMR spectroscopy. MALDI-Imaging mass spectrometry was applied to monitor the homogeneity. RESULTS Our results show a superior sample spot homogeneity using ionic liquid matrices. Spots could be sampled several times without visible differences in the mass spectra. A frequently observed loss of matrix in the mass spectrometer vacuum was not observed. The necessary laser irradiance was reduced, which resulted in less polymer fragmentation. CONCLUSIONS Ionic liquid matrices can be used to overcome segregation, a typical drawback of conventional MALDI dried-droplet preparations. Homogeneous sample spots are easy to prepare, stable in the MS vacuum and, thereby, improve the reproducibility of MALDI.
Collapse
Affiliation(s)
- Stefan J Gabriel
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, D-12489, Berlin, Germany
| | | | | | | | | |
Collapse
|
98
|
Frank MJ, Walter MS, Rubert M, Thiede B, Monjo M, Reseland JE, Haugen HJ, Lyngstadaas SP. Cathodic Polarization Coats Titanium Based Implant Materials with Enamel Matrix Derivate (EMD). MATERIALS 2014; 7:2210-2228. [PMID: 28788564 PMCID: PMC5453263 DOI: 10.3390/ma7032210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 01/09/2023]
Abstract
The idea of a bioactive surface coating that enhances bone healing and bone growth is a strong focus of on-going research for bone implant materials. Enamel matrix derivate (EMD) is well documented to support bone regeneration and activates growth of mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. The aim of this study was to show that cathodic polarization can be used for coating commercially available implant surfaces with an immobilized but functional and bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on the surface while SIMS showed incorporation of EMD into the surface. The hydride layer of the original surface could be activated for coating in an integrated one-step process that did not require any pre-treatment of the surface. SEM images showed nano-spheres and nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness remained unchanged after coating, as it was shown by optical profilometry. The mass peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis confirmed the integrity of EMD after coating. Assessment of the bioavailability suggested that the modified surfaces were active for osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and ALP activity.
Collapse
Affiliation(s)
- Matthias J Frank
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
- Institute of Medical and Polymer Engineering, Technische Universität München, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Martin S Walter
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
- Institute of Medical and Polymer Engineering, Technische Universität München, Boltzmannstrasse 15, Garching 85748, Germany.
| | - Marina Rubert
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca ES-07122, Spain.
| | - Bernd Thiede
- The Biotechnology Centre of Oslo, University of Oslo, P.O. Box 1125 Blindern, Oslo NO-0317, Norway.
| | - Marta Monjo
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
- Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of Balearic Islands, Palma de Mallorca ES-07122, Spain.
| | - Janne E Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
| | - Håvard J Haugen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, P.O. Box 1109 Blindern, Oslo NO-0317, Norway.
| |
Collapse
|
99
|
Hu B, So PK, Yao ZP. Electrospray ionization with aluminum foil: A versatile mass spectrometric technique. Anal Chim Acta 2014; 817:1-8. [DOI: 10.1016/j.aca.2014.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 01/26/2014] [Accepted: 02/01/2014] [Indexed: 01/05/2023]
|
100
|
Lou X, Leenders CMA, van Onzen AHAM, Bovee RAA, van Dongen JLJ, Vekemans JAJM, Meijer EW. False results caused by solvent impurity in tetrahydrofuran for MALDI TOF MS analysis of amines. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:297-300. [PMID: 24222486 DOI: 10.1007/s13361-013-0766-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/27/2013] [Accepted: 10/04/2013] [Indexed: 06/02/2023]
Abstract
Tetrahydrofuran (THF) is one of the most frequently used solvents in the MALDI TOF MS analysis of synthetic compounds. However, it should be used with caution because a trace amount of 4-hydroxybutanal (HBA) might be generated and accumulated in THF during storage. Since only a tiny amount of analytes is required in MALDI MS measurements, a trace amount of HBA might have a significant effect on the MS results. It was found that HBA will quickly react with primary and secondary amino compounds, leading to false results about the sample composition with an extra series of ions with additional mass of 70 Da in between. The formation of HBA can be inhibited by butylated hydroxytoluene (BHT) antioxidant. Therefore, when THF is required as the solvent for sample preparation, it is strongly recommended to use a BHT-stabilized one, at least for the analysis of compounds with amino groups.
Collapse
Affiliation(s)
- Xianwen Lou
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|