51
|
Uwayezu JN, Ren Z, Sonnenschein S, Leiviskä T, Lejon T, van Hees P, Karlsson P, Kumpiene J, Carabante I. Combination of separation and degradation methods after PFAS soil washing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168137. [PMID: 37890625 DOI: 10.1016/j.scitotenv.2023.168137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The current study evaluated a three-stage treatment to remediate PFAS-contaminated soil. The treatment consisted of soil washing, foam fractionation (FF), and electrochemical oxidation (EO). The possibility of replacing the third stage, i.e., EO, with an adsorption process was also assessed. The contamination in the studied soils was dominated by perfluorooctane sulfonate (PFOS), with a concentration of 760 and 19 μg kg-1 in soil I and in soil II, accounting for 97 % and 70 % of all detected per-and polyfluoroalkyl substances (PFAS). Before applying a pilot treatment of soil, soil washing was performed on a laboratory scale, to evaluate the effect of soil particle size, initial pH and a liquid-to-soil ratio (L/S) on the leachability of PFAS. A pilot washing system generated soil leachate that was subsequently treated using FF and EO (or adsorption) and then reused for soil washing. The results indicated that the leaching of PFAS occurred easier in 0.063-1 mm particles than in the soil particles having a size below 0.063 mm. Both alkaline conditions and a continual replacement of the leaching solution increased the leachability of PFAS. The analysis using one-way ANOVA showed no statistical difference in means of PFOS washed out in laboratory and pilot scales. This allowed estimating twenty washing cycles using 120 L water to reach 95 % PFOS removal in 60 kg soil. The aeration process removed 95-99 % PFOS in every washing cycle. The EO and adsorption processes achieved similar results removing up to 97 % PFOS in concentrated soil leachate. The current study demonstrated a multi-stage treatment as an effective and cost-efficient method to permanently clean up PFAS-contaminated soil.
Collapse
Affiliation(s)
- Jean Noel Uwayezu
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
| | - Zhongfei Ren
- Chemical Process Engineering, University of Oulu, Oulu, Finland
| | - Sarah Sonnenschein
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| | - Tiina Leiviskä
- Chemical Process Engineering, University of Oulu, Oulu, Finland
| | - Tore Lejon
- Department of Chemistry, UiT-The Arctic University of Norway, Norway
| | | | | | - Jurate Kumpiene
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| | - Ivan Carabante
- Waste Science and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
52
|
Umeh AC, Naidu R, Olisa E, Liu Y, Qi F, Bekele D. A systematic investigation of single solute, binary and ternary PFAS transport in water-saturated soil using batch and 1-dimensional column studies: Focus on mixture effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132688. [PMID: 37797575 DOI: 10.1016/j.jhazmat.2023.132688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/27/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
This study aimed to investigate the transport and release of per- and polyfluoroalkyl substances (PFAS), as single solutes and binary and ternary mixtures, and associated competitive sorption effects in water-saturated soil. Batch sorption isotherm and desorption, and one-dimensional miscible displacement studies were conducted. For the batch study, the mixtures exhibited extensive sorption isotherm nonlinearity at aqueous concentrations exceeding 20 µg/L. At and above this threshold, competitive effects significantly decreased PFAS sorption, mostly affecting perfluorooctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS). Importantly, mixture effects exacerbated isotherm nonlinearity and may increase the leaching of PFAS in subsurface soil and groundwater. Further, up to 100% desorption occurred for single solutes and mixtures, indicating that the studied PFAS were weakly sorbed. For the column study, at influent concentrations (21 - 27 µg/L, depending on PFAS) near the threshold, PFOA and PFHxS breakthrough curves (BTC) generally exhibited equilibrium (nonlinear) transport, whereas perfluorooctane sulfonate (PFOS) exhibited nonequilibrium transport, with minimal or no mixture effects. Nonequilibrium transport of PFOS was driven by rate-limited sorption, especially as flow interruption tests confirmed the absence of physical nonequilibrium. The sorption distribution coefficients (Kd) from moment and frontal analyses, and 2-site modelling of the BTC, were consistent with the batch-derived Kd, although comparatively smaller. Such discrepancies may limit the applicability of batch-derived Kd values for predictive transport modelling purposes. Overall, understanding mixture impacts may aid effective predictive modelling of PFAS transport and leaching, especially in aqueous film forming foam (AFFF)-source zone areas associated with elevated PFAS concentrations. At low or environmental PFAS concentrations, mixture effects can be expected to be play a minor role in influencing PFAS transport.
Collapse
Affiliation(s)
- Anthony C Umeh
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Emmanuel Olisa
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; Geosyntec Consultants, 211 Wheeler St, Saskatoon, SK S7P 0A4, Canada
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Fangjie Qi
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; Nanjing Institute of Soil Science, Chinese Academy of Sciences, 71 Beijing East Road, Nanjing, Jiangsu Province 210008, China
| | - Dawit Bekele
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; Douglas Partners Pty Ltd, 439 Montague Road West End, QLD 4101, Australia
| |
Collapse
|
53
|
Nilsen E, Muensterman D, Carini L, Waite I, Payne S, Field JA, Peterson J, Hafley D, Farrer D, Jones GD. Target and suspect per- and polyfluoroalkyl substances in fish from an AFFF-impacted waterway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167798. [PMID: 37838049 DOI: 10.1016/j.scitotenv.2023.167798] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
A major source of toxic per- and polyfluoroalkyl substances (PFAS) is aqueous film-forming foams (AFFF) used in firefighting and training at airports and military installations, however, PFAS have many additional sources in consumer products and industrial processes. A field study was conducted on fish tissues from three reaches of the Columbia Slough, located near Portland International Airport, OR, that are affected by AFFF and other PFAS sources. Fishes including largescale sucker (Catostomus macrocheilus), goldfish (Carassius auratus), and largemouth bass (Micropterus salmoides) were collected in 2019 and 2020. Fish blood, liver, and fillet (muscle) were analyzed for target and suspect PFAS by liquid chromatography high resolution mass spectrometry (LC-HRMS). Data were analyzed for patterns by fish species, tissue type, and river reach. Thirty-three out of 50 target PFAS and additional suspect compounds were detected at least once during the study, at concentrations up to 856 ng/g. Seven carboxylic acids (PFOA, PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA), three sulfonates (PFHxS, PFOS, PFDS), three electrofluorination-based compounds (FBSA, FHxSA, FOSA), and two fluorotelomer-based compounds (8:2 FTS, 10:2 FTS) were the most frequently detected compounds in all tissue types. The C6 (PFHxS) to C10 (PFDS) homologs were detected with PFOS and FHxSA at concentrations 1-3 orders of magnitude greater than the other PFAS detected. This is the first report of Cl-PFOS, FPeSA, and FHpSA detected in fish tissue. In all fish samples, fillet concentrations of PFAS were the lowest, followed by liver, and blood concentrations of PFAS were the highest. Differences in PFAS concentrations were driven primarily by tissue types and to a lesser extent fish species, but weakly by river reach. The Oregon Health Authority modified an existing fish consumption advisory on the Columbia Slough to recommend no whole-body consumption of most fish to avoid elevated levels of PFOS in fish liver. Measured PFAS concentrations in fish tissues indicate the potential for adverse ecological effects.
Collapse
Affiliation(s)
- Elena Nilsen
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, USA.
| | - Derek Muensterman
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Lya Carini
- Department of Biological & Ecological Engineering, Oregon State University, Corvallis, OR, USA
| | - Ian Waite
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, USA
| | - Sean Payne
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | | | - Daniel Hafley
- Oregon Department of Environmental Quality, Portland, OR, USA
| | - David Farrer
- Oregon Health Authority, 800 NE Oregon Street, Suite 640, Portland, OR 97232, USA
| | - Gerrad D Jones
- Department of Biological & Ecological Engineering, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
54
|
Ilieva Z, Hamza RA, Suehring R. The significance of fluorinated compound chain length, treatment technology, and influent composition on per- and polyfluoroalkyl substances removal in worldwide wastewater treatment plants. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:59-69. [PMID: 37096563 DOI: 10.1002/ieam.4778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Wastewater treatment plants (WWTPs) are deemed major conveyors and point sources of per- and polyfluoroalkyl substances (PFAS) to the environment. This statistical meta-analysis of existing literature from the past 15 years focused on the significance of treatment type for PFAS removal efficiencies and the influence of PFAS sources (domestic vs. industrial) on their removal. Different sampling events, WWTPs across the world, different treatment technologies, configurations, and processes, as well as different PFAS classes and compounds were considered. This study evaluated 13 PFAS analyzed predominantly in 161 WWTPs across the world. The statistical test results revealed that these 13 frequently detected and reported PFAS can be divided into four groups based on their behavior during wastewater treatment, namely (1) C6-10 perfluorocarboxylic acids (PFCAs), (2) C4,5,11,12 PFCAs, (3) C4,6,8 perfluoroalkane sulfonic acids (PFSAs), and (4) C10 PFSA. In this study, biological treatments such as (1) membrane bioreactors, (2) combination of two or more biological treatments, and (3) biofilm processes revealed the highest PFAS removals, although the addition of a tertiary treatment actually had a nonbeneficial effect on PFAS removal. Moreover, a strong statistical correlation was observed between industrial wastewater sources and the presence of high influent PFAS concentrations in the receiving WWTPs. This indicates that industrial sources were the main contributors of the PFAS load in the analyzed WWTPs. Integr Environ Assess Manag 2024;20:59-69. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Zanina Ilieva
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Rania A Hamza
- Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Roxana Suehring
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
55
|
Umeh AC, Hassan M, Egbuatu M, Zeng Z, Al Amin M, Samarasinghe C, Naidu R. Multicomponent PFAS sorption and desorption in common commercial adsorbents: Kinetics, isotherm, adsorbent dose, pH, and index ion and ionic strength effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166568. [PMID: 37633378 DOI: 10.1016/j.scitotenv.2023.166568] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The adsorption and desorption of 9 PFAS, including 3 perfluoroalkyl sulphonic and 6 perfluoroalkyl carboxylic acids, in artificial groundwater was investigated using 3 commercial adsorbents that comprised a powdered activated carbon (PAC), a surface-modified organoclay (NMC+n), and a carbonaceous organic amendment (ROAC). Sorption kinetics and isotherms of PFAS, as well as the effects of adsorbent dose, pH, index ion and ionic strength on PFAS adsorption and desorption were investigated. Sorption of multicomponent PFAS in the adsorbents was rapid, especially for NMC+n and ROAC, regardless of PFAS chain length. The sorption and (and especially) desorption of PFAS in the adsorbents was impacted by the pH, index ion, and ionic strength of simulated groundwater, especially for the short chain PFAS, with only minimal impacts on NMC+n and PAC compared to ROAC. Although the potential mineral and charged constituents of the adsorbents contributed to the adsorption of short chain PFAS through electrostatic interactions, these interactions were susceptible to variable groundwater chemistry. Hydrophobic interactions also played a major role in facilitating and increasing PFAS sorption, especially in adsorbents with aliphatic functional groups. The desorption of PFAS from the adsorbents was below 8 % when the aqueous phase was deionised water, with no measurable desorption for NMC+n. In contrast, the desorption of short chain PFAS in simulated groundwater increased substantially (30-100 %) in the adsorbents, especially in ROAC and NMC+n, but more so with ROAC. In general, the three adsorbents exhibited strong stability for the long chain PFAS, especially the perfluoroalkyl sulphonic acids, with minimal to no sorption reversibility under different pH and ionic composition of simulated groundwater. This study highlights the importance of understanding not only the sorption of PFAS in groundwater using adsorbents, but also the desorption of PFAS, which may be useful for decision making during the ex-situ and in-situ treatment of PFAS-contaminated groundwater.
Collapse
Affiliation(s)
- Anthony C Umeh
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Masud Hassan
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Maureen Egbuatu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Zijun Zeng
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Al Amin
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Chamila Samarasinghe
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, NSW 2308, Australia; crcCARE, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
56
|
Yang Z, Shojaei M, Guelfo JL. Per- and polyfluoroalkyl substances (PFAS) in grocery store foods: method optimization, occurrence, and exposure assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2015-2030. [PMID: 37796493 DOI: 10.1039/d3em00268c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Dietary exposure to per- and polyfluoroalkyl substances (PFAS) is poorly understood. Evaluating PFAS in food is complicated by the need to evaluate varied matrices and a lack of a standard, matrix-specific sample extraction methods. Prior food studies implemented universal rather than matrix-specific extraction approaches, which may yield false negatives and an underestimation of PFAS dietary exposure if methods are not suitable to all matrices. Here the objectives were to screen and optimize PFAS extraction methods for plants, tissues, and dairy; apply optimized extraction methods to a grocery store food survey; and compare estimated exposure to published reference doses (RfDs). Optimized, matrix-specific extractions generally yielded internal standard recoveries of 50-150% and matrix spike recoveries of 70-130%. The frequency of PFAS detection in grocery store foods (16 of 22 products) was higher than in previous work. PFAS were detected at concentrations of 10 ng kgdw-1 (perfluorobutane sulfonate; washed green beans and perfluorohexanoic acid; unwashed tomato) to 2680 ng kgdw-1 (perfluorohexane sulfonate; radish). Concentrations of perfluorooctanoic acid (PFOA) in carrots, lettuce, radish, and canned green beans yielded median exposure intake (EI) values of 0.016-0.240 ng per kgbw-day, which exceeded the EPA RfD (0.0015 ng per kgbw-day). Washing reduced radish PFOA concentrations below detection, but EIs at the reporting limit still exceeded the RfD. The combination of improved data quality and greater frequency of PFAS detection vs. prior studies plus EI > RfD for some PFAS suggests a need for matrix-specific extractions and analysis of PFAS in additional grocery store foods from broader geographic regions.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Civil, Construction & Environmental Engineering, Texas Tech University, Lubbock, TX, USA.
| | - Marzieh Shojaei
- Department of Civil, Construction & Environmental Engineering, Texas Tech University, Lubbock, TX, USA.
- Department of Civil & Environmental Engineering, Duke University, Durham, NC, USA
| | - Jennifer L Guelfo
- Department of Civil, Construction & Environmental Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
57
|
Zhao M, Yao Y, Dong X, Baqar M, Fang B, Chen H, Sun H. Nontarget Identification of Novel Per- and Polyfluoroalkyl Substances (PFAS) in Soils from an Oil Refinery in Southwestern China: A Combined Approach with TOP Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20194-20205. [PMID: 37991390 DOI: 10.1021/acs.est.3c05859] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Oil refinery activity can be an emission source of perfluoroalkyl and polyfluoroalkyl substances (PFAS) to the environment, while the contamination profiles in soils remain unknown. This study investigated 44 target PFAS in soil samples collected from an oil refinery in Southeastern China, identified novel PFAS, and characterized their behaviors by assessing their changes before and after employing advanced oxidation using a combination of nontarget analysis and a total oxidizable precursor (TOP) assay. Thirty-four target PFAS were detected in soil samples. Trifluoroacetic acid (TFA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were the dominant PFAS. Twenty-three novel PFAS of 14 classes were identified, including 8 precursors, 11 products, and 4 stable PFAS characterized by the TOP assay. Particularly, three per-/polyfluorinated alcohols were identified for the first time, and hexafluoroisopropanol (HFIP) quantified up to 657 ng/g dw is a novel precursor for TFA. Bistriflimide (NTf2) potentially associated with an oil refinery was also reported for the first time in the soil samples. This study highlighted the advantage of embedding the TOP assay in nontarget analysis to reveal not only the presence of unknown PFAS but also their roles in environmental processes. Overall, this approach provides an efficient way to uncover contamination profiles of PFAS especially in source-impacted areas.
Collapse
Affiliation(s)
- Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaoyu Dong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
58
|
Li Z, Lu Y, Chen T, He A, Huang Y, Li L, Pan W, Li J, Zhu N, Wang Y, Jiang G. Generation Mechanism of Perfluorohexanesulfonic Acid from Polyfluoroalkyl Sulfonamide Derivatives During Chloramination in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18462-18472. [PMID: 36633968 DOI: 10.1021/acs.est.2c07881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs), including perfluorohexanesulfonic acid (PFHxS), as emerging persistent organic pollutants widely detected in drinking water, have drawn increasing concern. The PFHxS contamination of drinking water always results from direct and indirect sources, especially the secondary generations through environmental transformations of precursors. However, the mechanism of the transformation of precursors to PFHXS during the drinking water treatment processes remains unclear. Herein, the potential precursors and formation mechanisms of PFHxS were explored during drinking water disinfection. Simultaneously, the factors affecting PFHxS generation were also examined. This study found PFHxS could be generated from polyfluoroalkyl sulfonamide derivatives during chlorination and chloramination. The fate and yield of PFHxS varied from different precursors and disinfection processes. In particular, monochloramine more favorably formed PFHxS. Several perfluoroalkyl oxidation products and decarboxylation intermediates were detected and identified in the chloraminated samples using Fourier-transform ion cyclotron resonance mass spectrometry. Combined with density functional theory calculations, the results indicated that the indirect oxidation via the attack of the nitrogen atom in sulfonamide groups might be the dominant pathway for generating PFHxS during chloramination, and the process could be highly affected by the monochloramine dose, pH, and temperature. This study provides important evidence of the secondary formation of PFHxS during drinking water disinfection and scientific support for chemical management of PFHxS and PFHxS-related compounds.
Collapse
Affiliation(s)
- Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Yao Lu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Tianyu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Ying Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Science, Beijing100049, China
| |
Collapse
|
59
|
Chen F, Chen J, Liu X, Zhi Y, Qian S, Li W, Wang X. Removal of per- and polyfluoroalkyl substances by activated hydrochar derived from food waste: Sorption performance and desorption hysteresis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 340:122820. [PMID: 39491159 DOI: 10.1016/j.envpol.2023.122820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Carbonaceous materials, derived from waste biomass, have proven to be a viable and appealing alternative for removing emerging micro-pollutants, such as per- and polyfluoroalkyl substances (PFAS). To assess the feasibility and efficacy of using material derived from food waste to alleviate PFAS pollution, this study prepared activated hydrochar (AHC) for sorbing ten PFAS, including five perfluoroalkyl carboxylic acids (PFCA; C4-C8), three perfluoroalkyl sulfonic acids (PFSA; C4, C6, C8), and two emerging PFAS, namely hexafluoropropylene oxide dimer acid (commercial name GenX, an alternative to perfluorooctanoic acid (PFOA)) and 6:2 fluorotelomer sulfonic acid (6:2 FTS). The results demonstrated that AHC possessed a relatively high specific surface area (207 m2/g) and hydrophobic surface properties. At environmentally relevant concentrations (40 μg/L), the sorption partition coefficients (log Kd) of PFAS on AHC ranged from 2.33 to 6.49 L/kg. Notably, GenX exhibited a lower log Kd value (2.33 L/kg) than PFOA (3.88 L/kg). The AHC showed favorable sorption performance for all tested PFAS, with log Kd values surpassing other reported sorbents (e.g., 0.83 for GenX on pyrochar, and 2.83 for PFOA on commercial biochar). Additionally, desorption hysteresis was observed for all PFAS, except for PFOA, and was particularly pronounced in PFBA, GenX, and 6:2 FTS at high initial concentrations, with Hysteresis Index (HI) values varying from 0.31 to 1.45, 0.68 to 1.88, and 0.51 to 1.85, respectively. Given its robust sorption capacity and desorption hysteresis toward PFAS, AHC is expected to be a favorable candidate for remediating PFAS-contaminated water. This study underscores, for the first time, the potential of food waste-derived hydrochar as an efficient sorbent for alleviating PFAS contamination, and further study is needed to investigate the sorption and desorption behaviors of PFAS on AHC at various environmental conditions.
Collapse
Affiliation(s)
- Fan Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Jiangliang Chen
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Xuemei Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Yue Zhi
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Shenhua Qian
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Wei Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Xiaoming Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment Under Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
60
|
Nyström-Kandola J, Ahrens L, Glynn A, Johanson G, Benskin JP, Gyllenhammar I, Lignell S, Vogs C. Low concentrations of perfluoroalkyl acids (PFAAs) in municipal drinking water associated with serum PFAA concentrations in Swedish adolescents. ENVIRONMENT INTERNATIONAL 2023; 180:108166. [PMID: 37708812 DOI: 10.1016/j.envint.2023.108166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
While highly contaminated drinking water (DW) is a major source of exposure to perfluoroalkyl acids (PFAAs), the contribution of low-level contaminated DW (i.e. < 10 ng/L of individual PFAAs) to PFAA body burdens has rarely been studied. To address this knowledge gap, we evaluated the association between concentrations of perflurooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS) and perfluorooctane sulfonic acid (PFOS), and their sum (∑4PFAAs) in DW and serum in Swedish adolescents using weighted least squares regression. We paired serum PFAA concentrations in adolescents (age 10-21 years, n = 790) from the dietary survey Riksmaten Adolescents 2016-17 (RMA) with mean PFAA concentrations in water samples collected in 2018 from waterworks (n = 45) supplying DW to the participant residential and school addresses. The median concentrations of individual PFAAs in DW were < 1 ng/L. Median concentrations of PFNA and PFHxS in serum were < 1 ng/g, while those of PFOA and PFOS were 1-2 ng/g. Significant positive associations between PFAA concentrations in DW and serum were found for all four PFAAs and ∑4PFAAs, with estimated serum/DW concentration ratios ranging from 210 (PFOA) to 670 (PFHxS), taking exposure from sources other than DW (background) into consideration. The mean concentrations of PFHxS and ∑4PFAA in DW that would likely cause substantially elevated serum concentrations above background variation were estimated to 0.9 ng/L and 2.4 ng/L, respectively. The European Food Safety Authority has determined a health concern concentration of 6.9 ng ∑4PFAAs/mL serum. This level was to a large degree exceeded by RMA participants with DW ∑4PFAA concentrations above the maximum limits implemented in Denmark (2 ng ∑4PFAAs/L) and Sweden (4 ng ∑4PFAAs/L) than by RMA participants with DW concentrations below the maximum limits. In conclusion, PFAA exposure from low-level contaminated DW must be considered in risk assessment for adolescents.
Collapse
Affiliation(s)
- Jennifer Nyström-Kandola
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, SE-750 07 Uppsala, Sweden.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Anders Glynn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, SE-750 07 Uppsala, Sweden
| | - Gunnar Johanson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, SE-750 07 Uppsala, Sweden; Unit of Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, P.O. Box 210, SE 171 77 Stockholm, Sweden
| | - Jonathan P Benskin
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Irina Gyllenhammar
- Department of Risk and Benefit Assessment, Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Sanna Lignell
- Department of Risk and Benefit Assessment, Swedish Food Agency, P.O. Box 622, SE-751 26 Uppsala, Sweden
| | - Carolina Vogs
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), P.O. Box 7028, SE-750 07 Uppsala, Sweden
| |
Collapse
|
61
|
Zhang W, Liang Y. The wide presence of fluorinated compounds in common chemical products and the environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108393-108410. [PMID: 37775629 DOI: 10.1007/s11356-023-30033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
The C-F bonds, due to their many unique features, have been incorporated into numerous compounds in countless products and applications. These fluorinated compounds eventually are disposed of and released into the environment through different pathways. In this review, we analyzed the occurrence of these fluorinated compounds in seven types of products (i.e., refrigerants/propellants, aqueous film-forming foam, cosmetics, food packaging, agrochemicals, pharmaceuticals, coating materials) and discussed their fate in the environment. This is followed by describing the quantity of fluorinated compounds from each source based on available data. Total on- and off-site disposal or other releases of 536 fluorinated compounds in 2021 were analyzed using the data sourced from the U.S. EPA Toxics Release Inventory (TRI). Among the chemicals examined, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) were the primary contributors in terms of total mass. Upon examining the seven sources of fluorinated compounds, it became evident that additional contributors are also responsible for the presence of organofluorine compounds in the environment. Although various toxic degradation products of fluorinated compounds could form in the environment, trifluoroacetic acid (TFA) was specifically highlighted in this review given the fact that it is a common dead-end degradation product of > 1 million chemicals. This paper ended with a discussion of several questions raised from this study. The path forward was elaborated as well for the purpose of protecting the environment and human health.
Collapse
Affiliation(s)
- Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA.
- , Albany, USA.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
62
|
Joseph NT, Schwichtenberg T, Cao D, Jones GD, Rodowa AE, Barlaz MA, Charbonnet JA, Higgins CP, Field JA, Helbling DE. Target and Suspect Screening Integrated with Machine Learning to Discover Per- and Polyfluoroalkyl Substance Source Fingerprints. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14351-14362. [PMID: 37696050 DOI: 10.1021/acs.est.3c03770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
This study elucidates per- and polyfluoroalkyl substance (PFAS) fingerprints for specific PFAS source types. Ninety-two samples were collected from aqueous film-forming foam impacted groundwater (AFFF-GW), landfill leachate, biosolids leachate, municipal wastewater treatment plant effluent (WWTP), and wastewater effluent from the pulp and paper and power generation industries. High-resolution mass spectrometry operated with electrospray ionization in negative mode was used to quantify up to 50 target PFASs and screen and semi-quantify up to 2,266 suspect PFASs in each sample. Machine learning classifiers were used to identify PFASs that were diagnostic of each source type. Four C5-C7 perfluoroalkyl acids and one suspect PFAS (trihydrogen-substituted fluoroethernonanoic acid) were diagnostic of AFFF-GW. Two target PFASs (5:3 and 6:2 fluorotelomer carboxylic acids) and two suspect PFASs (4:2 fluorotelomer-thia-acetic acid and N-methylperfluoropropane sulfonamido acetic acid) were diagnostic of landfill leachate. Biosolids leachates were best classified along with landfill leachates and N-methyl and N-ethyl perfluorooctane sulfonamido acetic acid assisted in that classification. WWTP, pulp and paper, and power generation samples contained few target PFASs, but fipronil (a fluorinated insecticide) was diagnostic of WWTP samples. Our results provide PFAS fingerprints for known sources and identify target and suspect PFASs that can be used for source allocation.
Collapse
Affiliation(s)
- Nayantara T Joseph
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Trever Schwichtenberg
- Chemistry Department, Oregon State University, Corvallis, Oregon 97331, United States
| | - Dunping Cao
- Chemistry Department, Oregon State University, Corvallis, Oregon 97331, United States
| | - Gerrad D Jones
- Department of Biological & Ecological Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Alix E Rodowa
- National Institutes of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Morton A Barlaz
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Joseph A Charbonnet
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
63
|
Jia Y, Shan C, Fu W, Wei S, Pan B. Occurrences and fates of per- and polyfluoralkyl substances in textile dyeing wastewater along full-scale treatment processes. WATER RESEARCH 2023; 242:120289. [PMID: 37413748 DOI: 10.1016/j.watres.2023.120289] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Industrial wastewater is a substantial source of per- and polyfluoroalkyl substances (PFASs) in the environment. However, very limited information is available on the occurrences and fates of PFASs along industrial wastewater treatment processes, particularly for the textile dyeing industry where PFASs occur extensively. Herein, the occurrences and fates of 27 legacy and emerging PFASs were investigated along the processes of three full-scale textile dyeing wastewater treatment plants (WWTPs) based on UHPLC-MS/MS in combination with self-developed solid extraction protocol featuring selective enrichment for ultrasensitive analysis. The total PFASs ranged at 630-4268 ng L-1 in influents, 436-755 ng L-1 in effluents, and 91.5-1182 μg kg-1 in the resultant sludge. PFAS species distribution varied among WWTPs, with one WWTP dominated by legacy perfluorocarboxylic acids while the other two dominated by emerging PFASs. Perfluorooctane sulfonate (PFOS) was trivial in the effluents from all the three WWTPs, indicating its diminished use in textile industry. Various emerging PFASs were detected at different abundances, demonstrating their use as alternatives to legacy PFASs. Most conventional processes of the WWTPs were inefficient in removing PFASs, especially for the legacy PFASs. The microbial processes could remove the emerging PFASs to different extents, whereas commonly elevated the concentrations of legacy PFASs. Over 90% of most PFASs could be removed by reverse osmosis (RO) and was enriched into the RO concentrate accordingly. The total oxidizable precursors (TOP) assay revealed that the total concentration of PFASs was increased by 2.3-4.1 times after oxidation, accompanied by formation of terminal perfluoroalkyl acids (PFAAs) and degradation of emerging alternatives to various extents. This study is believed to shed new light on the monitoring and management of PFASs in industries.
Collapse
Affiliation(s)
- Yuqian Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
64
|
Shen Y, Wang L, Ding Y, Liu S, Li Y, Zhou Z, Liang Y. Trends in the Analysis and Exploration of per- and Polyfluoroalkyl Substances (PFAS) in Environmental Matrices: A Review. Crit Rev Anal Chem 2023; 54:3171-3195. [PMID: 37410543 DOI: 10.1080/10408347.2023.2231535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) is an emerging class of organic pollutants of concern and is now prevalent in environmental matrices including water, soil, air, and biological. So far, several standard analytical methods have been developed to systematically analyze PFAS in different environmental matrices. However, the complexity of environmental matrices makes the effective extraction of PFAS difficult, and the legacy PFAS is gradually changing into a new PFAS with short chain and unknown structure in production, which makes the analysis of PFAS challenging. In this review, the following aspects are summarized: (1) the advances in standard analytical methods for PFAS in different environmental matrices, and further generalizes the updating novel extraction and detection methods; (2) the analysis of unknown PFAS, the suspect and non-targeted screening analysis method of PFAS based on high-resolution mass spectrometry (HRMS) is systematically described.
Collapse
Affiliation(s)
- Yunxiang Shen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
| | - Yi Ding
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
| | - Shunman Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
| | - Yuan Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
- Department of Chemistry, Wuhan University, Wuhan, PR China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, PR China
| |
Collapse
|
65
|
Carrizo JC, Munoz G, Vo Duy S, Liu M, Houde M, Amé MV, Liu J, Sauvé S. PFAS in fish from AFFF-impacted environments: Analytical method development and field application at a Canadian international civilian airport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163103. [PMID: 36972881 DOI: 10.1016/j.scitotenv.2023.163103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Methods targeting anionic per- and polyfluoroalkyl substances (PFAS) in aquatic biota are well established, but commonly overlook many PFAS classes present in aqueous film-forming foams (AFFFs). Here, we developed an analytical method for the expanded analysis of negative and positive ion mode PFAS in fish tissues. Eight variations of extraction solvents and clean-up protocols were first tested to recover 70 AFFF-derived PFAS from the fish matrix. Anionic, zwitterionic, and cationic PFAS displayed the best responses with methanol-based ultrasonication methods. The response of long-chain PFAS was improved for extracts submitted to graphite filtration alone compared with those involving solid-phase extraction. The validation included an assessment of linearity, absolute recovery, matrix effects, accuracy, intraday/interday precision, and trueness. The method was applied to a set of freshwater fish samples collected in 2020 in the immediate vicinity (creek, n = 15) and downstream (river, n = 15) of an active fire-training area at an international civilian airport in Ontario, Canada. While zwitterionic fluorotelomer betaines were major components of the subsurface AFFF source zone, they were rarely detected in fish, suggesting limited bioaccumulation potential. PFOS largely dominated the PFAS profile, with record-high concentrations in brook sticklebacks (Culaea inconstans) from the creek (16000-110,000 ng/g wet weight whole-body). These levels exceeded the Canadian Federal Environmental Quality Guidelines (FEQG) for PFOS pertaining to the Federal Fish Tissue Guideline (FFTG) for fish protection and Federal Wildlife Diet Guidelines (FWiDG) for the protection of mammalian and avian consumers of aquatic biota. Perfluorohexane sulfonamide and 6:2 fluorotelomer sulfonate were among the precursors detected at the highest levels (maximum of ∼340 ng/g and ∼1100 ng/g, respectively), likely reflecting extensive degradation and/or biotransformation of C6 precursors originally present in AFFF formulations.
Collapse
Affiliation(s)
- Juan Cruz Carrizo
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada; CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Min Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC, Canada
| | - María Valeria Amé
- CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
66
|
Alinezhad A, Shao H, Litvanova K, Sun R, Kubatova A, Zhang W, Li Y, Xiao F. Mechanistic Investigations of Thermal Decomposition of Perfluoroalkyl Ether Carboxylic Acids and Short-Chain Perfluoroalkyl Carboxylic Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8796-8807. [PMID: 37195265 PMCID: PMC10269594 DOI: 10.1021/acs.est.3c00294] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
In this study, we investigated the thermal decomposition mechanisms of perfluoroalkyl ether carboxylic acids (PFECAs) and short-chain perfluoroalkyl carboxylic acids (PFCAs) that have been manufactured as replacements for phased-out per- and polyfluoroalkyl substances (PFAS). C-C, C-F, C-O, O-H, and C═C bond dissociation energies were calculated at the M06-2X/Def2-TZVP level of theory. The α-C and carboxyl-C bond dissociation energy of PFECAs declines with increasing chain length and the attachment of an electron-withdrawing trifluoromethyl (-CF3) group to the α-C. Experimental and computational results show that the thermal transformation of hexafluoropropylene oxide dimer acid to trifluoroacetic acid (TFA) occurs due to the preferential cleavage of the C-O ether bond close to the carboxyl group. This pathway produces precursors of perfluoropropionic acid (PFPeA) and TFA and is supplemented by a minor pathway (CF3CF2CF2OCFCF3COOH → CF3CF2CF2· + ·OCFCF3COOH) through which perfluorobutanoic acid (PFBA) is formed. The weakest C-C bond in PFPeA and PFBA is the one connecting the α-C and the β-C. The results support (1) the C-C scission in the perfluorinated backbone as an effective PFCA thermal decomposition mechanism and (2) the thermal recombination of radicals through which intermediates are formed. Additionally, we detected a few novel thermal decomposition products of studied PFAS.
Collapse
Affiliation(s)
- Ali Alinezhad
- Department
of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - Heng Shao
- Key
Laboratory of Water and Sediment Sciences of Ministry of Education,
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Katerina Litvanova
- Department
of Chemistry, The University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Runze Sun
- Department
of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - Alena Kubatova
- Department
of Chemistry, The University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Wen Zhang
- John
A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yang Li
- Key
Laboratory of Water and Sediment Sciences of Ministry of Education,
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Feng Xiao
- Department
of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
67
|
Zheng Y, Bao M, Yao Y, Zhao M, Chen H, Sun H, Sun C, Zhao H, Pan Y. Discovery of 35 novel classes of per- and polyfluoroalkyl substances in representative commercial fluorinated products in China. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131780. [PMID: 37290352 DOI: 10.1016/j.jhazmat.2023.131780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/28/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have received increasing scientific and regulatory attention due to their global distribution and health hazards. However, little is known about the PFAS composition of fluorinated products commercially available in China. In this study, a sensitive and robust analytical method was proposed for the comprehensive characterization of PFAS in aqueous film-forming foam and fluorocarbon surfactants in the domestic market based on liquid chromatography-high resolution mass spectrometry in full scan acquisition mode followed by parallel reaction monitoring mode. Consequently, a total of 102 PFAS from 59 classes were elucidated, of which 35 classes are reported for the first time, including 27 classes of anionic, seven classes of zwitterionic, and one class of cationic PFAS. The anionic-type products are mainly C6 fluorotelomerization-based (FT-based) PFAS. Perfluorooctanoic acid and perfluorooctane sulfonate are negligible, while some known electrochemical fluorination-based long-chain precursors in zwitterionic products are worthy of concern because of their high abundance and potential degradation. New precursors detected in zwitterionic products are FT-based PFAS, for example, 6:2 FTSAPr-AHOE and 6:2 FTSAPr-diMeAmPrC. The structural elucidation of PFAS in commercial products facilitates a better assessment of human exposure and environmental release.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Mian Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Cuirong Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China.
| |
Collapse
|
68
|
Gonda N, Choyke S, Schaefer C, Higgins CP, Voelker B. Hydroxyl Radical Transformations of Perfluoroalkyl Acid (PFAA) Precursors in Aqueous Film Forming Foams (AFFFs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8053-8064. [PMID: 37200532 DOI: 10.1021/acs.est.2c08689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Historical releases of aqueous film forming foam (AFFF) are significant sources of poly- and perfluoroalkyl substances (PFASs), including perfluoroalkyl acids (PFAAs) and their precursors, to the environment. While several studies have focused on microbial biotransformation of polyfluorinated precursors to PFAAs, the role of abiotic transformations at AFFF-impacted sites is less clear. Herein, we use photochemically generated hydroxyl radical to demonstrate that environmentally relevant concentrations of hydroxyl radical (•OH) can play a significant role in these transformations. High-resolution mass spectrometry (HRMS) was used to perform targeted analysis, suspect screening, and nontargeted analyses, which were used to identify the major products of AFFF-derived PFASs as perfluorocarboxylic acids, though several potentially semi-stable intermediates were also observed. Using competition kinetics in a UV/H2O2 system, hydroxyl radical rate constants (kOH) for 24 AFFF-derived polyfluoroalkyl precursors were measured to be 0.28 to 3.4 × 109 M-1 s-1. Differences in kOH were observed for compounds with differing headgroups and perfluoroalkyl chain lengths. Also, differences in kOH measured for the only relevant precursor standard available, n-[3-propyl]tridecafluorohexanesulphonamide (AmPr-FHxSA), as compared to AmPr-FHxSA present in AFFF suggest that intermolecular associations in the AFFF matrix may affect kOH. Considering environmentally relevant [•OH]ss, polyfluoroalkyl precursors are expected to exhibit half-lives of ∼8 days in sunlit surface waters and possibly as short as ∼2 h during oxygenation of Fe(II)-rich subsurface systems.
Collapse
Affiliation(s)
- Nicholas Gonda
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Sarah Choyke
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | | | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Bettina Voelker
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
69
|
Schaefer CE, Hooper JL, Strom LE, Abusallout I, Dickenson ERV, Thompson KA, Mohan GR, Drennan D, Wu K, Guelfo JL. Occurrence of quantifiable and semi-quantifiable poly- and perfluoroalkyl substances in united states wastewater treatment plants. WATER RESEARCH 2023; 233:119724. [PMID: 36801573 DOI: 10.1016/j.watres.2023.119724] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Both quantifiable and semi-quantifiable poly- and perfluoroalkyl substances (PFAS) were evaluated in the influent, effluent, and biosolids of 38 wastewater treatment plants. PFAS were detected in all streams at all facilities. For the means of the sums of detected, quantifiable PFAS concentrations were 98 ± 28 ng/L, 80 ± 24 ng/L, and 160,000 ± 46,000 ng/kg (dry weight basis) in the influent, effluent, and biosolids (respectively). In the aqueous influent and effluent streams this quantifiable PFAS mass was typically associated with perfluoroalkyl acids (PFAAs). In contrast, quantifiable PFAS in the biosolids were primarily polyfluoroalkyl substances that potentially serve as precursors to the more recalcitrant PFAAs. Results of the total oxidizable precursor (TOP) assay on select influent and effluent samples showed that semi-quantified (or, unidentified) precursors accounted for a substantial portion (21 to 88%) of the fluorine mass compared to that associated with quantified PFAS, and that this fluorine precursor mass was not appreciably transformed to perfluoroalkyl acids within the WWTPs, as influent and effluent precursor concentrations via the TOP assay were statistically identical. Evaluation of semi-quantified PFAS, consistent with results of the TOP assay, showed the presence of several classes of precursors in the influent, effluent, and biosolids; perfluorophosphonic acids (PFPAs) and fluorotelomer phosphate diesters (di-PAPs) occurred in 100 and 92% of biosolid samples, respectively. Analysis of mass flows showed that, for both quantified (on a fluorine mass basis) and semi-quantified PFAS, the majority of PFAS exited WWTPs through the aqueous effluent compared to the biosolids stream. Overall, these results highlight the importance of semi-quantified PFAS precursors in WWTPs, and the need to further understand the impacts of their ultimate fate in the environment.
Collapse
Affiliation(s)
| | | | - Laurel E Strom
- CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA 98007, USA
| | | | - Eric R V Dickenson
- Water Quality Research and Development, Southern Nevada Water Authority, 1299 Burkholder Blvd., Henderson, NV, 89015, USA
| | - Kyle A Thompson
- Water Quality Research and Development, Southern Nevada Water Authority, 1299 Burkholder Blvd., Henderson, NV, 89015, USA; Carollo Engineers, 8911N Capital of Texas Hwy, Austin, TX 78759, USA
| | - Gayathri Ram Mohan
- Gwinnett County Department of Water Resources, Lawrenceville, GA 30045, USA
| | - Dina Drennan
- CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA 98007, USA
| | - Ke Wu
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Jennifer L Guelfo
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
70
|
Ruyle BJ, Schultes L, Akob DM, Harris CR, Lorah MM, Vojta S, Becanova J, McCann S, Pickard HM, Pearson A, Lohmann R, Vecitis CD, Sunderland EM. Nitrifying Microorganisms Linked to Biotransformation of Perfluoroalkyl Sulfonamido Precursors from Legacy Aqueous Film-Forming Foams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5592-5602. [PMID: 36972708 PMCID: PMC10100541 DOI: 10.1021/acs.est.2c07178] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 05/28/2023]
Abstract
Drinking water supplies across the United States have been contaminated by firefighting and fire-training activities that use aqueous film-forming foams (AFFF) containing per- and polyfluoroalkyl substances (PFAS). Much of the AFFF is manufactured using electrochemical fluorination by 3M. Precursors with six perfluorinated carbons (C6) and non-fluorinated amine substituents make up approximately one-third of the PFAS in 3M AFFF. C6 precursors can be transformed through nitrification (microbial oxidation) of amine moieties into perfluorohexane sulfonate (PFHxS), a compound of regulatory concern. Here, we report biotransformation of the most abundant C6 sulfonamido precursors in 3M AFFF with available commercial standards (FHxSA, PFHxSAm, and PFHxSAmS) in microcosms representative of the groundwater/surface water boundary. Results show rapid (<1 day) biosorption to living cells by precursors but slow biotransformation into PFHxS (1-100 pM day-1). The transformation pathway includes one or two nitrification steps and is supported by the detection of key intermediates using high-resolution mass spectrometry. Increasing nitrate concentrations and total abundance of nitrifying taxa occur in parallel with precursor biotransformation. Together, these data provide multiple lines of evidence supporting microbially limited biotransformation of C6 sulfonamido precursors involving ammonia-oxidizing archaea (Nitrososphaeria) and nitrite-oxidizing bacteria (Nitrospina). Further elucidation of interrelationships between precursor biotransformation and nitrogen cycling in ecosystems would help inform site remediation efforts.
Collapse
Affiliation(s)
- Bridger J. Ruyle
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
| | - Lara Schultes
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
| | - Denise M. Akob
- U.S.
Geological Survey, Geology, Energy and Minerals
Science Center, Reston, Virginia 20192, United
States
| | - Cassandra R. Harris
- U.S.
Geological Survey, Geology, Energy and Minerals
Science Center, Reston, Virginia 20192, United
States
| | - Michelle M. Lorah
- U.S.
Geological Survey, Maryland-Delaware-DC
Water Science Center, Baltimore, Maryland 21228, United States
| | - Simon Vojta
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Jitka Becanova
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Shelley McCann
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Heidi M. Pickard
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
| | - Ann Pearson
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Rainer Lohmann
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Chad D. Vecitis
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
| | - Elsie M. Sunderland
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02134, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
- Department
of Environmental Health, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
71
|
Wanzek T, Stults JF, Johnson MG, Field JA, Kleber M. Role of Mineral-Organic Interactions in PFAS Retention by AFFF-Impacted Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5231-5242. [PMID: 36947878 PMCID: PMC10764056 DOI: 10.1021/acs.est.2c08806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A comprehensive, generalized approach to predict the retention of per- and polyfluoroalkyl substances (PFAS) from aqueous film-forming foam (AFFF) by a soil matrix as a function of PFAS molecular and soil physiochemical properties was developed. An AFFF with 34 major PFAS (12 anions and 22 zwitterions) was added to uncontaminated soil in one-dimensional saturated column experiments and PFAS mass retained was measured. PFAS mass retention was described using an exhaustive statistical approach to generate a poly-parameter quantitative structure-property relationship (ppQSPR). The relevant predictive properties were PFAS molar mass, mass fluorine, number of nitrogens in the PFAS molecule, poorly crystalline Fe oxides, organic carbon, and specific (BET-N2) surface area. The retention of anionic PFAS was nearly independent of soil properties and largely a function of molecular hydrophobicity, with the size of the fluorinated side chain as the main predictor. Retention of nitrogen-containing zwitterionic PFAS was related to poorly crystalline metal oxides and organic carbon content. Knowledge of the extent to which a suite of PFAS may respond to variations in soil matrix properties, as developed here, paves the way for the development of reactive transport algorithms with the ability to capture PFAS dynamics in source zones over extended time frames.
Collapse
Affiliation(s)
- Thomas Wanzek
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - John F. Stults
- Department Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, 80401, United States
| | - Mark G. Johnson
- U.S. Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, Oregon 97333, United States
| | - Jennifer A. Field
- Department Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Markus Kleber
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
72
|
Jia X, Li X, Zhou L, Hui Y, Li W, Cai Y, Shi Y. Variations of the Level, Profile, and Distribution of PFAS around POSF Manufacturing Facilities in China: An Overlooked Source of PFCA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5264-5274. [PMID: 36939348 DOI: 10.1021/acs.est.2c08995] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The occurrence of per- and polyfluoroalkyl substances (PFAS) was investigated inside two manufacturing facilities in China. Levels, profiles, and spatial distribution of the detected PFAS were found to be distinctly site-specific and influenced by the area's historic function, production structure of the plant, downpour-induced accidental pollution, and variations in the adsorption and transport of compounds. Very high concentrations of PFAS [mainly C4 and C8 perfluoroalkyl sulfonic acids (PFSAs)] were found in topsoil and groundwater from both plants, with the highest values of 4.89 × 106 μg/kg dw and 1.10 × 104 μg/L, respectively. Elevated concentrations of perfluoroalkyl carboxylic acids (PFCAs) in this study were attributed to their unintentional formation during the electrochemical fluorination process, which might be an overlooked source of PFCA. PFAS generally showed decreasing trends from shallow layers to the bottom of the soil core and demonstrated some downward migrations at different soil depths with time, and C4-C8 PFAS presented a deeper seepage than their long-chain homologues. Total organic carbon appeared to be more important for PFAS sorption to the topsoil than to the soil core. Workers were at potential risk of exposure to perfluorooctanesulfonic acid via soil at production and storage related sites. This study provides a critical reference for the systematic control of PFAS pollution around manufacturing facilities and a proof for an overlooked source of PFCA.
Collapse
Affiliation(s)
- Xuan Jia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfei Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yamei Hui
- CSD IDEA (Beijing) Environmental Test & Analysis Co., Ltd., Beijing 100192, China
| | - Wenchao Li
- CSD IDEA (Beijing) Environmental Test & Analysis Co., Ltd., Beijing 100192, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
73
|
Nickerson A, Maizel AC, Schaefer CE, Ranville JF, Higgins CP. Effect of geochemical conditions on PFAS release from AFFF-impacted saturated soil columns. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:405-414. [PMID: 36629138 DOI: 10.1039/d2em00367h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are frequently found at high concentrations in the subsurface of aqueous film forming foam (AFFF)-impacted sites. Geochemical parameters affect the release of PFASs from source area soils into groundwater but have not been extensively studied for soils that have been historically impacted with AFFF. This study investigated the effects of pH and salt concentrations on release of anionic and zwitterionic PFASs from AFFF-impacted soils in flow-through saturated columns. High pH (10) columns with elevated sodium concentrations had higher cumulative masses eluted of several PFASs compared to pH 3 and pH 7 columns with lower sodium concentrations, likely caused by changes to soil organic matter surface charge. Four PFASs (e.g. 4:2 fluorotelomer sulfonate, perfluorobutane sulfonamido acetic acid) eluted significantly earlier in both pH 3 and pH 10/high NaCl columns compared to pH 7 columns. The results of this study suggest that shifts in pH for soils located at AFFF-impacted sites - particularly raising the pH - may mobilize sorbed PFASs, specifically longer-chain and zwitterionic compounds that are typically strongly sorbed to soil.
Collapse
Affiliation(s)
- Anastasia Nickerson
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, USA.
| | - Andrew C Maizel
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, USA.
| | | | - James F Ranville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, USA.
| |
Collapse
|
74
|
Morgan S, Mottaleb MA, Kraemer MP, Moser DK, Worley J, Morris AJ, Petriello MC. Effect of lifestyle-based lipid lowering interventions on the relationship between circulating levels of per-and polyfluoroalkyl substances and serum cholesterol. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104062. [PMID: 36621559 PMCID: PMC9992109 DOI: 10.1016/j.etap.2023.104062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Exposure to certain per-and polyfluoroalkyl substances (PFAS) has been shown to be positively associated with total and/or low-density lipoprotein cholesterol. Examining this association in lipid lowering interventions may provide additional evidence linking PFAS to cardiovascular risk. We examined the relationship of 6 PFAS with cholesterol in a 6-month lifestyle-based intervention. We quantitated PFAS in 350 individuals at baseline and post intervention and examined associations of PFAS with cholesterol before and after intervention. Food frequency questionnaires and GIS analyses were used to investigate PFAS hotspots and possible exposure routes. Cholesterol significantly decreased following intervention and in parallel, PFOS, PFOA, PFHxS, and PFHpA significantly decreased. PFOS was positively correlated with total cholesterol only post-intervention. We observed that PFOS was distributed among both non-albumin and albumin lipoprotein fractions pre-intervention, but entirely in albumin fraction post-intervention. Our results indicate that lipid-lowering via lifestyle modification may impact on circulating levels or distribution of PFAS.
Collapse
Affiliation(s)
- Stephanie Morgan
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - M Abdul Mottaleb
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Maria P Kraemer
- Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Debra K Moser
- College of Nursing, University of Kentucky, Lexington, KY 40536, USA
| | - Jessica Worley
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Andrew J Morris
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA; Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
75
|
Xing Y, Li Q, Chen X, Huang B, Ji L, Zhang Q, Fu X, Li T, Wang J. PFASs in Soil: How They Threaten Human Health through Multiple Pathways and Whether They Are Receiving Adequate Concern. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1259-1275. [PMID: 36622935 DOI: 10.1021/acs.jafc.2c06283] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been mass-produced and widely applied in consumer and industrial products, resulting in their widespread presence in the environment. Features such as environmental persistence, bioaccumulation, and high toxicity even at low doses have made PFASs an increasing concern. This brief review focuses on soil PFASs, especially the effect of soil PFASs on other environmental media and their potential threats to human health through daily diet. Specifically, soil PFASs contamination caused by different pathways was first investigated. Soil pollution from application of aqueous film-forming foams (AFFFs) is generally more severe than that from fluorochemical manufacturing plants, followed by biosolid land use, landfill, and irrigation. Factors, such as carbon chain length of PFASs, wastewater treatment technology, geographical conditions, and regional development level, are related to soil PFASs' pollution. Then, the migration, bioaccumulation, and toxicity characteristics of soil PFASs were analyzed. Short-chain PFASs have higher solubility, mobility, and bioavailability, while long-chain PFASs have higher bioaccumulation potential and are more toxic to organisms. Factors such as soil texture, solution chemistry conditions, enzymes, and fertilization conditions also influence the environmental behavior of PFASs. The risk of human exposure to PFASs through agricultural and animal products is difficult to control and varies depending on living region, age, eating habits, lifestyle, ethnicity, etc. Soil PFASs threaten drinking water safety, affect soil function, and enter food webs, threatening human health. Knowledge gaps and perspectives in these research fields are also included in current work to assist future research to effectively investigate and understand the environmental risks of soil PFASs, thereby reducing human exposure.
Collapse
Affiliation(s)
- Yingna Xing
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qi Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bin Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Tianyuan Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
76
|
Richardson MJ, Kabiri S, Grimison C, Bowles K, Corish S, Chapman M, McLaughlin MJ. Per- and Poly-Fluoroalkyl Substances in Runoff and Leaching from AFFF-Contaminated Soils: a Rainfall Simulation Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16857-16865. [PMID: 36354276 DOI: 10.1021/acs.est.2c05377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mobilization and transport of per- and poly-fluoroalkyl substances (PFASs) via surface runoff (runoff) from aqueous film-forming foam (AFFF)-contaminated soils during rainfall, flooding, or irrigation has not been thoroughly evaluated, and the effectiveness of carbonaceous sorbents in limiting PFASs in runoff is similarly unquantified. Here, laboratory-scale rainfall simulations evaluate PFAS losses in runoff and in leaching to groundwater (leachate) from AFFF-contaminated soils varying in texture, PFAS composition and concentration, and remediation treatment. Leaching dominated PFAS losses in soils with a concentration of ∑PFAS = 0.2-2 mg/kg. However, with higher soil PFAS concentrations (∑PFAS = 31 mg/kg), leachate volumes were negligible and runoff dominated losses. The concentration and variety of PFASs were far greater in leachates regardless of the initial concentrations in soil. Losses of PFASs were dependent on the C-chain length for leachates and more on the initial concentration in soil for runoff. Suspended materials did not meaningfully contribute to runoff losses. While concentrations of most PFASs declined significantly after the first rainfall event, desorption and transport in both runoff and leachates persisted over several rainfall events. Finally, results showed that sorption to AC mostly occurred during, not prior to, rainfall events and that 1% w/w AC substantially reduced losses in runoff and leachates from all soils.
Collapse
Affiliation(s)
- Matthew J Richardson
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia5064, Australia
| | - Shervin Kabiri
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia5064, Australia
| | - Charles Grimison
- Ventia Proprietary Limited, North Sydney,, New South Wales2060, Australia
| | - Karl Bowles
- RPS AAP Consulting Proprietary Limited, Sydney, New South Wales2000, Australia
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Queensland4102, Australia
| | - Stephen Corish
- Treo Environment Proprietary Limited, Bondi Junction, Woolloongabba, New South Wales2022, Australia
| | - Mark Chapman
- Aecom Australia, Adelaide, South Australia5000, Australia
| | - Michael J McLaughlin
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia5064, Australia
| |
Collapse
|
77
|
Pickard HM, Ruyle BJ, Thackray CP, Chovancova A, Dassuncao C, Becanova J, Vojta S, Lohmann R, Sunderland EM. PFAS and Precursor Bioaccumulation in Freshwater Recreational Fish: Implications for Fish Advisories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15573-15583. [PMID: 36280234 PMCID: PMC9670858 DOI: 10.1021/acs.est.2c03734] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 05/08/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse class of fluorinated anthropogenic chemicals that include perfluoroalkyl acids (PFAA), which are widely used in modern commerce. Many products and environmental samples contain abundant precursors that can degrade into terminal PFAA associated with adverse health effects. Fish consumption is an important dietary exposure source for PFAS that bioaccumulate in food webs. However, little is known about bioaccumulation of PFAA precursors. Here, we identify and quantify PFAS in recreational fish species collected from surface waters across New Hampshire, US, using a toolbox of analytical methods. Targeted analysis of paired water and tissue samples suggests that many precursors below detection in water have a higher bioaccumulation potential than their terminal PFAA. Perfluorobutane sulfonamide (FBSA), a short-chain precursor produced by electrochemical fluorination, was detected in all fish samples analyzed for this compound. The total oxidizable precursor assay interpreted using Bayesian inference revealed fish muscle tissue contained additional, short-chain precursors in high concentration samples. Suspect screening analysis indicated these were perfluoroalkyl sulfonamide precursors with three and five perfluorinated carbons. Fish consumption advisories are primarily being developed for perfluorooctane sulfonate (PFOS), but this work reinforces the need for risk evaluations to consider additional bioaccumulative PFAS, including perfluoroalkyl sulfonamide precursors.
Collapse
Affiliation(s)
- Heidi M. Pickard
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Bridger J. Ruyle
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Colin P. Thackray
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Adela Chovancova
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Clifton Dassuncao
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
- Eastern
Research Group, Inc., Arlington, Virginia 22201, United States
| | - Jitka Becanova
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Simon Vojta
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Rainer Lohmann
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Elsie M. Sunderland
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
- Department
of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
78
|
Abraham JEF, Mumford KG, Patch DJ, Weber KP. Retention of PFOS and PFOA Mixtures by Trapped Gas Bubbles in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15489-15498. [PMID: 36279175 DOI: 10.1021/acs.est.2c00882] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The transport of per- and polyfluoroalkyl substances (PFAS) in soil and groundwater is important for site investigation, risk characterization, and remediation planning. The adsorption of PFAS at air-water interfaces has been shown to significantly contribute to PFAS retention, with subsequent effects on concentrations and the time scales of transport. In this study, column experiments were conducted to investigate the transport of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and 6:2 fluorotelomer sulfonate (6:2 FTS) individually and in binary mixtures in the presence of a trapped gas phase, using clean sands to isolate adsorption to air-water interfaces. Consistent with previous studies, the transport of PFOS, PFOA, and 6:2 FTS was retarded by adsorption at the air-water interface, with greater retention of PFOS due to its higher affinity for the air-water interface. Chromatographic separation occurred in the experiments using binary mixtures of PFOS and PFOA, with greater retention at lower influent concentrations. The mixture experiments also showed enhanced breakthrough of PFOA in the presence of PFOS, where effluent concentrations of PFOA were temporarily greater than the influent concentration prior to the breakthrough of PFOS. This enhanced breakthrough was attributed to competition between PFOS and PFOA for adsorption to the air-water interface.
Collapse
Affiliation(s)
- Justine E F Abraham
- Department of Civil Engineering, Queen's University, Kingston, OntarioCanada, K7L 3N6
| | - Kevin G Mumford
- Department of Civil Engineering, Queen's University, Kingston, OntarioCanada, K7L 3N6
| | - David J Patch
- Environmental Sciences Group, Royal Military College of Canada, Kingston, OntarioCanada, 7K7 7B4
| | - Kela P Weber
- Environmental Sciences Group, Royal Military College of Canada, Kingston, OntarioCanada, 7K7 7B4
| |
Collapse
|
79
|
Liu T, Hu LX, Han Y, Dong LL, Wang YQ, Zhao JH, Liu YS, Zhao JL, Ying GG. Non-target and target screening of per- and polyfluoroalkyl substances in landfill leachate and impact on groundwater in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157021. [PMID: 35777559 DOI: 10.1016/j.scitotenv.2022.157021] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Landfills are the main destination of many urban wastes containing per- and polyfluoroalkyl substances (PFAS), and PFAS may leach out from the waste and contaminate the surrounding groundwater. Here we investigated the occurrence of PFAS in leachate and surrounding groundwater from three landfills in Guangzhou, China by using a combined target and non-target approach. Non-target screening showed that a total of 651 PFAS with 96 classes were identified, including 17 legacy PFAS and 637 emerging PFAS. The quantitative target analysis of some PFAS revealed that the average removal rate of PFAS from the raw leachates were ranged between 62 % and 99 %. Statistical analysis and source analysis suggested that landfill leachate was a major source of PFAS in the groundwater within the landfills and downstream sites. The results from the combined target and non-target analyses demonstrated that PFAS in landfills could leach into the surrounding groundwater, and may affect the sustainable use of groundwater as a source of drinking water and pose a potential risk to human health.
Collapse
Affiliation(s)
- Ting Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu Han
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Li Dong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Qing Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jia-Hui Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
80
|
Shojaei M, Kumar N, Guelfo JL. An Integrated Approach for Determination of Total Per- and Polyfluoroalkyl Substances (PFAS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14517-14527. [PMID: 36197695 DOI: 10.1021/acs.est.2c05143] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are difficult to analyze in environmental media due challenges such as extraction recovery and lack of analytical standards. The total oxidizable precursor (TOP) assay and suspect screening analysis coupled with semiquantitative (SQ) concentration estimates are two approaches to assess total PFAS in environmental media, but studies are needed to optimize workstreams for total PFAS analysis. This study applied two soil extraction methods, TOP assay, and SQ analysis to three aqueous film-forming foams (AFFFs) and three AFFF-impacted soils. In soils, the total PFAS estimated with results from an extraction method utilizing sequential acidic and basic solvents led to a 35% increase in precursors during TOP assay relative to results from a basic solvent only extraction in one of three soils tested, but concentrations did not increase significantly in remaining soils. Furthermore, sample-specific dilution schemes were required to overcome matrix effects caused by the acidic extraction step that influenced estimates of total PFAS by SQ analysis. The results highlight that there is not an advantage to routine application of an acid extraction step in PFAS-impacted soils. In three AFFFs, suspect screening of post-TOP samples identified eight classes of PFAS present after oxidation. Concentrations of three classes increased, suggesting they are new TOP end points. Concentrations of the remaining five classes either remained constant after TOP or exhibited slight decreases. As a result, combined TOP and SQ workstreams may yield the most representative assessment of total PFAS composition and concentration. The eight classes of PFAS present after TOP did not degrade in harsh conditions. Some are structurally similar to PFCAs and PFSAs and are known to occur in the environment, suggesting a similar degree of persistence and a need for more routine monitoring.
Collapse
Affiliation(s)
- Marzieh Shojaei
- Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, Texas79409, United States
| | - Naveen Kumar
- Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, Texas79409, United States
| | - Jennifer L Guelfo
- Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, Texas79409, United States
| |
Collapse
|
81
|
Harris KJ, Munoz G, Woo V, Sauvé S, Rand AA. Targeted and Suspect Screening of Per- and Polyfluoroalkyl Substances in Cosmetics and Personal Care Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14594-14604. [PMID: 36178710 DOI: 10.1021/acs.est.2c02660] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals reported in cosmetics and personal care products as ingredients, possible impurities in the raw material manufacturing process, or degradation products. The purpose of this study was to further delineate contributions of these varying PFAS sources to these products. Thirty-eight cosmetics and personal care products were selected and analyzed for polyfluoroalkyl phosphates (PAPs), perfluoroalkyl carboxylic acids (PFCAs), fluorotelomer sulfonic acids (FTSAs), and perfluoroalkyl sulfonic acids (PFSAs) using targeted liquid chromatography tandem mass spectrometry (LC-MS/MS). A subset of products was also subjected to suspect screening using LC-high resolution mass spectrometry (HRMS) for >200 compounds. Results of LC-MS/MS and LC-HRMS indicated a predominant and ubiquitous presence of PAPs (detection frequency 99.7%, mean and median ΣPAPs 1 080 000 and 299 ng/g). Total median PFCA and PFSA concentrations were 3 and 38 times lower, respectively. There were significant correlations (Spearman's correlation coefficients = 0.60-0.81, p < 0.05) between 6:2 PAPs and their biotransformation products. Low levels of other PFAS classes were detected, including those previously measured in wastewater and human blood (e.g., hydrido-PFCAs), and five compounds associated with aqueous film-forming foams. Overall, these data highlight that cosmetics and personal care products can contain a breadth of PFAS at extremely high levels, leading to human and environmental exposure.
Collapse
Affiliation(s)
- Keegan J Harris
- Department of Chemistry and Institute of Biochemistry, Carleton University, Ottawa K1S 5B6, Canada
| | - Gabriel Munoz
- Department of Chemistry, University of Montréal, Montréal H2V 0B3, Canada
| | - Vivian Woo
- Department of Chemistry and Institute of Biochemistry, Carleton University, Ottawa K1S 5B6, Canada
| | - Sébastien Sauvé
- Department of Chemistry, University of Montréal, Montréal H2V 0B3, Canada
| | - Amy A Rand
- Department of Chemistry and Institute of Biochemistry, Carleton University, Ottawa K1S 5B6, Canada
| |
Collapse
|
82
|
Jin X, Wang Z, Hong R, Chen Z, Wu B, Ding S, Zhu W, Lin Y, Gu C. Supramolecular assemblies of a newly developed indole derivative for selective adsorption and photo-destruction of perfluoroalkyl substances. WATER RESEARCH 2022; 225:119147. [PMID: 36206684 DOI: 10.1016/j.watres.2022.119147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Per-/polyfluoroalkyl substances (PFASs) contamination has caused worldwide health concerns, and increased demand for effective elimination strategies. Herein, we developed a new indole derivative decorated with a hexadecane chain and a tertiary amine center (named di-indole hexadecyl ammonium, DIHA), which can form stable nanospheres (100-200 nm) in water via supramolecular assembly. As the DIHA nanospheres can induce electrostatic, hydrophobic and van der Waals interactions (all are long-ranged) that operative cooperatively, in addition to the nano-sized particles with large surface area, the DIHA nanocomposite exhibited extremely fast adsorption rates (in seconds), high adsorption capacities (0.764-0.857 g g-1) and selective adsorption for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), outperformed the previous reported high-end PFASs adsorbents. Simultaneously, the DIHA nanospheres can produce hydrated electron (eaq-) when subjected to UV irradiation, with the virtue of constraining the photo-generated eaq- and the adsorbed PFOA/PFOS molecules entirely inside the nanocomposite. As such, the UV/DIHA system exhibits extremely high degradation/defluorination efficiency for PFOA/PFOS, even under ambient conditions, especially with the advantages of low chemical dosage requirement (μM level) and robust performance against environmental variables. Therefore, it is a new attempt of using supramolecular approach to construct an indole-based nanocomposite, which can elegantly combine adsorption and degradation functions. The novel DIHA nanoemulsion system would shed light on the treatment of PFAS-contaminated wastewater.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China
| | - Zhe Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China.
| |
Collapse
|
83
|
Sörengård M, Bergström S, McCleaf P, Wiberg K, Ahrens L. Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119981. [PMID: 35988673 DOI: 10.1016/j.envpol.2022.119981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Use of per- and polyfluoroalkyl substance (PFAS)-containing aqueous film-forming foams (AFFF) at firefighting training sites (FFTS) has been linked to PFAS contamination of drinking water. This study investigated PFAS transport and distribution in an urban groundwater aquifer used for drinking water production that has been affected by PFAS-containing AFFF. Soil, sediment, surface water and drinking water were sampled. In soil (n = 12) at a FFTS with high perfluorooctane sulfonate (PFOS) content (87% of ∑PFAS), the ∑PFAS concentration (n = 26) ranged from below detection limit to 560 ng g-1 dry weight. In groundwater (n = 28), the ∑PFAS concentration near a military airbase FFTS reached 1000 ng L-1. Principal component analysis (PCA) identified the military FFTS as the main source of PFAS contamination in drinking water wellfields >10 km down-gradient. Groundwater samples taken close to the military FFTS site showed no ∑PFAS concentration change between 2013 and 2021, while a location further down-gradient showed a transitory 99.6% decrease. Correlation analysis on PFAS composition profile indicated that this decrease was likely caused by dilution from an adjacent conflating aquifer. ∑PFAS concentration reached 15 ng L-1 (PFOS 47% and PFHxS 41% of ∑PFAS) in surface river water (n = 6) and ranged between 1 ng L-1 and 8 ng L-1 (PFHxS 73% and PFBS 17% of ∑PFAS) in drinking water (n = 4). Drinking water had lower PFAS concentrations than the wellfields due to PFAS removal at the water treatment plant. This demonstrates the importance of monitoring PFAS concentrations throughout a groundwater aquifer, to better understand variations in transport from contamination sources and resulting impacts on PFAS concentrations in drinking water extraction areas.
Collapse
Affiliation(s)
- Mattias Sörengård
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Sofia Bergström
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Philip McCleaf
- Uppsala Water and Waste Ltd., P.O. Box 1444, SE-751 44, Uppsala, Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
84
|
Johnson GR, Brusseau ML, Carroll KC, Tick GR, Duncan CM. Global distributions, source-type dependencies, and concentration ranges of per- and polyfluoroalkyl substances in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156602. [PMID: 35690215 PMCID: PMC9653090 DOI: 10.1016/j.scitotenv.2022.156602] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 04/13/2023]
Abstract
A meta-analysis was conducted of published literature reporting concentrations of per- and polyfluoroalkyl substances (PFAS) in groundwater for sites distributed in 20 countries across the globe. Data for >35 PFAS were aggregated from 96 reports published from 1999 to 2021. The final data set comprises approximately 21,000 data points after removal of time-series and duplicate samples as well as non-detects. The reported concentrations range over many orders of magnitude, from ng/L to mg/L levels. Distinct differences in concentration ranges are observed between sites located within or near sources versus those that are not. Perfluorooctanoic acid (PFOA), ranging from <0.03 ng/L to ~7 mg/L, and perfluorooctanesulfonic acid (PFOS), ranging from 0.01 ng/L to ~5 mg/L, were the two most reported PFAS. The highest PFAS concentration in groundwater is ~15 mg/L reported for the replacement-PFAS 6:2 fluorotelomer sulfonate (6:2 FTS). Maximum reported groundwater concentrations for PFOA and PFOS were compared to concentrations reported for soils, surface waters, marine waters, and precipitation. Soil concentrations are generally significantly higher than those reported for the other media. This accrues to soil being the primary entry point for PFAS release into the environment for many sites, as well as the generally significantly greater retention capacity of soil compared to the other media. The presence of PFAS has been reported for all media in all regions tested, including areas that are far removed from specific PFAS sources. This gives rise to the existence of a "background" concentration of PFAS that must be accounted for in both regional and site-specific risk assessments. The presence of this background is a reflection of the large-scale use of PFAS, their general recalcitrance, and the action of long-range transport processes that distribute PFAS across regional and global scales. This ubiquitous distribution has the potential to significantly impact the quality and availability of water resources in many regions. In addition, the pervasive presence of PFAS in the environment engenders concerns for impacts to ecosystem and human health.
Collapse
|
85
|
Li J, Peng G, Xu X, Liang E, Sun W, Chen Q, Yao L. Per- and polyfluoroalkyl substances (PFASs) in groundwater from a contaminated site in the North China Plain: Occurrence, source apportionment, and health risk assessment. CHEMOSPHERE 2022; 302:134873. [PMID: 35551938 DOI: 10.1016/j.chemosphere.2022.134873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Per-and polyfluoroalkyl substances (PFASs) are manmade chemicals that have wide industrial and commercial application. However, little research has been carried out on PFASs pollution in groundwater from a previously contaminated site. Here, we investigated 43 PFASs in a monitoring campaign from two different aquifers in the North China Plain. Our results revealed that total PFASs concentrations (∑43PFASs) ranged from 0.22 to 3,776.76 ng/L, with no spatial or compositional differences. Moreover, perfluorooctanoic acid (PFOA) and perfluoroheptane sulfonate (PFHpS) were the dominant pollutants with mean concentrations of 177.33 ng/L and 51 ng/L, respectively. ∑43PFAS decreased with well depth due to the adsorption of PFASs to the aquifer materials. Water temperature, total organic carbon, dissolved oxygen, and total phosphorus concentrations were correlated to the PFAS concentrations. Principal component analysis indicated that the main sources of PFASs in groundwater were untreated industrial discharge, untreated domestic wastewater, food packaging, aqueous film forming foams and metal plating, and surface runoff, which overlapped with the industries that previously existed in a nearby city. Human health risks from drinking contaminated groundwater were low to the local residents, with children aged 1-2 years being the most sensitive group. One specific site with a high PFOA concentration was of concern, as it was several orders higher than the 70 ng/L recommended by US Environmental Protection Agency health advisory. This study provided baseline data for PFASs in a previously-contaminated site, which will help in the development of effective strategies for controlling PFASs pollution in the North China Plain.
Collapse
Affiliation(s)
- Jie Li
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Guyu Peng
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| | - Lei Yao
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
86
|
Niarchos G, Ahrens L, Kleja DB, Fagerlund F. Per- and polyfluoroalkyl substance (PFAS) retention by colloidal activated carbon (CAC) using dynamic column experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119667. [PMID: 35750303 DOI: 10.1016/j.envpol.2022.119667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Developing effective remediation methods for per- and polyfluoroalkyl substance (PFAS)-contaminated soils is a substantial step towards counteracting their widespread occurrence and protecting our ecosystems and drinking water sources. Stabilisation of PFAS in the subsurface using colloidal activated carbon (CAC) is an innovative, yet promising technique, requiring better understanding. In this study, dynamic soil column tests were used to assess the retardation of 10 classical perfluoroalkyl acids (PFAAs) (C5-C11 perfluoroalkyl carboxylic acids (PFCAs) and C4, C6, C8 perfluoroalkane sulfonates (PFSAs)) as well as two alternative PFAS (6:2 and 8:2 fluorotelomer sulfonates) using CAC at 0.03% w/w, to investigate the fate and transport of PFAS under CAC treatment applications. Results showed high retardation rates for long-chain PFAS and eight times higher retardation for the CAC-treated soil compared to the non-treated reference soil for the ∑PFAS. Replacement of shorter chain perfluorocarboxylic acids (PFCAs), such as perfluoropentanoic acid (PFPeA), by longer chained PFAS was observed, indicating competition effects. Partitioning coefficients (Kd values) were calculated for the CAC fraction at ∼103-105 L kg-1 for individual PFAS, while there was a significant positive correlation (p < 0.05) between perfluorocarbon chain length and Kd. Mass balance calculations showed 37% retention of ∑PFAS in treated soil columns after completion of the experiments and 99.7% higher retention rates than the reference soil. Redistribution and elution of CAC were noticed and quantified through organic carbon analysis, which showed a 23% loss of carbon during the experiments. These findings are a step towards better understanding the extent of CAC's potential for remediation of PFAS-contaminated soil and groundwater and the limitations of its applications.
Collapse
Affiliation(s)
- Georgios Niarchos
- Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05, Uppsala, Sweden.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Dan Berggren Kleja
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), P. O. Box 7090, SE-750 07, Uppsala, Sweden
| | - Fritjof Fagerlund
- Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05, Uppsala, Sweden
| |
Collapse
|
87
|
Liu L, Lu M, Cheng X, Yu G, Huang J. Suspect screening and nontargeted analysis of per- and polyfluoroalkyl substances in representative fluorocarbon surfactants, aqueous film-forming foams, and impacted water in China. ENVIRONMENT INTERNATIONAL 2022; 167:107398. [PMID: 35841727 DOI: 10.1016/j.envint.2022.107398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Massive usage of aqueous film-forming foams (AFFF) containing fluorocarbon surfactants (FS) is one of the major sources of per- and polyfluoroalkyl substances (PFAS) contamination, which poses negative environmental and health effects. However, there is a critical knowledge gap regarding PFAS chemical compositions in high consumption FS products which were used in AFFFs on the Chinese market and in water impacted by such products. This study firstly applied a comprehensive suspect screening and nontargeted analysis (NTA) workflow to investigate the main ionic and neutral PFAS in FS products from the largest Chinese vendor and compared with two international brands to unveil the PFAS used in AFFF. Overall, 24 classes of PFAS, including 69 compounds, were tentatively identified in FS products, and high concentrations of neutral PFAS were found in polymer-based products, indicating potential environmental risk. In addition, we applied a simplified data mining process to capture 36 PFAS from the impacted water, and the relationship among FS, AFFF concentrates and impacted water was explored. This study parsed the PFAS characteristics in AFFF-related industrial products and impacted water in China, which is instrumental for managing and controlling prioritized PFAS in this field.
Collapse
Affiliation(s)
- Liquan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Meiling Lu
- Agilent Technologies (China) Co. Ltd, Beijing 100102, China
| | - Xue Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
88
|
Brusseau ML, Guo B. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces. CHEMOSPHERE 2022; 302:134938. [PMID: 35568214 PMCID: PMC9667730 DOI: 10.1016/j.chemosphere.2022.134938] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 05/14/2023]
Abstract
Determining the risk posed by PFAS leaching from soil to groundwater requires quantification of the magnitude and temporal/spatial variability of PFAS mass discharge from the vadose zone, which is governed in part by the concentrations of PFAS in soil porewater. Porewater concentrations are impacted and mediated by the properties of the PFAS and soil, multiple transport and fate processes, and site conditions. The objective of this research was to delineate the relationship between soil porewater concentrations and soil concentrations, based on a comprehensive model of PFAS mass distribution within a soil sample volume. Measured parameters representing solid-phase sorption and air-water interfacial adsorption are used to illustrate the impact of soil and PFAS properties on the distribution of representative PFAS between soil and soil porewater. Literature data reported for soil and soil porewater concentrations of several PFAS obtained from outdoor lysimeter experiments are used to test the distribution model. Soil-to-porewater concentration ratios predicted with the model compared very well to the measured concentration ratios. The nondimensional distribution coefficient that describes the distribution of PFAS mass amongst all domains within a soil sample was observed to be a function of PFAS molecular size. Numerical simulations conducted for a model fire-training source area were used to illustrate the ranges in magnitude of soil versus porewater concentrations for representative field conditions. The results of the measured and simulated data sets demonstrated the importance of air-water interfacial adsorption for the distribution of the longer-chain PFAS within soil samples. PFAS soil porewater concentrations are anticipated to range from ng/L to mg/L depending upon soil concentrations, which in turn depend upon the nature of the site.
Collapse
Affiliation(s)
- M L Brusseau
- Environmental Science Department, The University of Arizona, Tucson, AZ, 85721, United States; Hydrology and Atmospheric Sciences Department, The University of Arizona, Tucson, AZ, 85721, United States.
| | - B Guo
- Hydrology and Atmospheric Sciences Department, The University of Arizona, Tucson, AZ, 85721, United States
| |
Collapse
|
89
|
Battye NJ, Patch DJ, Roberts DMD, O'Connor NM, Turner LP, Kueper BH, Hulley ME, Weber KP. Use of a horizontal ball mill to remediate per- and polyfluoroalkyl substances in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155506. [PMID: 35483472 DOI: 10.1016/j.scitotenv.2022.155506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
There is a need for destructive technologies for per- and polyfluoroalkyl substances (PFAS) in soil. While planetary ball mill have been shown successful degradation of PFAS, there are issues surrounding scale up (maximum size is typically 0.5 L cylinders). While having lower energy outputs, horizontal ball mills, for which scale up is not a limiting factor, already exist at commercial/industrial sizes from the mining, metallurgic and agricultural industries, which could be re-purposed. This study evaluated the effectiveness of horizontal ball mills in degrading perfluorooctanesulfonate (PFOS), 6:2 fluorotelomer sulfonate (6:2 FTSA), and aqueous film forming foam (AFFF) spiked on nepheline syenite sand. Horizontal ball milling was also applied to two different soil types (sand dominant and clay dominant) collected from a firefighting training area (FFTA). Liquid chromatography tandem mass spectrometry was used to track 21 target PFAS throughout the milling process. High-resolution accurate mass spectrometry was also used to identify the presence and degradation of 19 non-target fluorotelomer substances, including 6:2 fluorotelomer sulfonamido betaine (FtSaB), 7:3 fluorotelomer betaine (FtB), and 6:2 fluorotelomer thioether amido sulfonate (FtTAoS). In the presence of potassium hydroxide (KOH), used as a co-milling reagent, PFOS, 6:2 FTSA, and the non-target fluorotelomer substances in the AFFF were found to undergo upwards of 81%, 97%, and 100% degradation, respectively. Despite the inherent added complexity associated with field soils, better PFAS degradation was observed on the FFTA soils over the spiked NSS, and more specifically, on the FFTA clay over the FFTA sand. These results held through scale-up, going from the 1 L to the 25 L cylinders. The results of this study support further scale-up in preparation for on-site pilot tests.
Collapse
Affiliation(s)
- Nicholas J Battye
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - David J Patch
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Dylan M D Roberts
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Natalia M O'Connor
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Lauren P Turner
- Department of Civil Engineering, Queen's University, Kingston, ON, Canada
| | - Bernard H Kueper
- Department of Civil Engineering, Queen's University, Kingston, ON, Canada
| | - Michael E Hulley
- Environmental Sciences Group, Department of Civil Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Kela P Weber
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada; Department of Civil Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
90
|
Juhasz AL, Kastury F, Herde C, Tang W. Application of soil amendments for reducing PFAS leachability and bioavailability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119498. [PMID: 35618144 DOI: 10.1016/j.envpol.2022.119498] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
In this study, changes in PFAS leachability and bioavailability were determined following the application of RemBind®100 (R100) and RemBind®300 (R300; 1-10% w/w) to PFAS-contaminated soil (Ʃ28 PFAS 3.093-32.78 mg kg-1). Small differences were observed in PFAS immobilization efficacy when soil was amended with RemBind® products although adding 5% w/w of either product resulted in a >98% reduction in ASLP PFAS leachability. Variability in immobilization efficacy was attributed to differences in activated carbon composition which influenced physicochemical properties of RemBind® formulations and PFAS sorption. PFOS, PFHxS and PFOA relative bioavailability was also assessed in unamended and amended soil (5% w/w) using an in vivo mouse model. In unamended soil, PFAS relative bioavailability was >60% with differences attributed to physicochemical properties of soil which influenced electrostatic and hydrophobic interactions. However, when PFAS relative bioavailability was assessed in soil amended with 5% w/w R100, individual PFAS relative bioavailability was reduced to 16.1 ± 0.8% to 26.1 ± 0.9% with similar results observed when R300 (5% w/w) was utilised (14.4 ± 1.6% to 24.3 ± 0.8%). Results from this study highlight that soil amendments have the potential to reduce both PFAS leachability and relative bioavailability thereby decreasing mobility and potential exposure to soil-borne contaminants.
Collapse
Affiliation(s)
- Albert L Juhasz
- Future Industries Institute, University of South Australia, Adelaide, Australia.
| | - Farzana Kastury
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Carina Herde
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Wayne Tang
- Future Industries Institute, University of South Australia, Adelaide, Australia
| |
Collapse
|
91
|
Chen H, Qiu W, Yang X, Chen F, Chen J, Tang L, Zhong H, Magnuson JT, Zheng C, Xu EG. Perfluorooctane Sulfonamide (PFOSA) Induces Cardiotoxicity via Aryl Hydrocarbon Receptor Activation in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8438-8448. [PMID: 35652794 DOI: 10.1021/acs.est.1c08875] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perfluorooctane sulfonamide (PFOSA), a precursor of perfluorooctanesulfonate (PFOS), is widely used during industrial processes, though little is known about its toxicity, particularly to early life stage organisms that are generally sensitive to xenobiotic exposure. Here, following exposure to concentrations of 0.01, 0.1, 1, 10, and 100 μg/L PFOSA, transcriptional, morphological, physiological, and biochemical assays were used to evaluate the potential effects on aquatic organisms. The top Tox functions in exposed zebrafish were related to cardiac diseases predicted by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Ingenuity Pathway Analysis (IPA) analysis. Consistent with impacts predicted by transcriptional changes, abnormal cardiac morphology, disordered heartbeat signals, as well as reduced heart rate and cardiac output were observed following the exposure of 0.1, 1, 10, or 100 μg/L PFOSA. Furthermore, these PFOSA-induced cardiac effects were either prevented or alleviated by supplementation with an aryl hydrocarbon receptor (AHR) antagonist or ahr2-morpholino knock-down, uncovering a seminal role of AHR in PFOSA-induced cardiotoxicity. Our results provide the first evidence in fish that PFOSA can impair proper heart development and function and raises concern for PFOSA analogues in the natural environment.
Collapse
Affiliation(s)
- Honghong Chen
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuanjun Yang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaying Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hanbing Zhong
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
| | - Chunmiao Zheng
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| |
Collapse
|
92
|
Zhao H, Yang L, Yang X, Zhao S. Behaviors of 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) in wheat seedlings: Bioaccumulation, biotransformation and ecotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113585. [PMID: 35525114 DOI: 10.1016/j.ecoenv.2022.113585] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
As a new alternative to perfluorooctane sulfonate (PFOS), 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) has been currently used in industrial and consumer applications, which has been frequently detected in environment media. However, the behaviors of 6:2 FTAB in plants are still unclear. This study investigated the bioaccumulation, biotransformation and ecotoxicity of 6:2 FTAB in wheat (Triticum aestivum L.) by hydroponic exposure. 6:2 FTAB was easily taken up by roots with the root concentration factor (RCF) as high as 94.8, but difficult to be acropetally translocated in the shoots with the translocation factor (TF) as low as 0.058. Two intermediates and six terminal perfluorocarboxylic acid (PFCA) metabolites were detected in roots and shoots. The detected metabolites included 6:2 fluorotelomer sulfonic acid (6:2 FTSA), 6:2 fluorotelomer carboxylic acid (6:2 FTCA), perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), perfluorobutyric acid (PFBA), pentafluoropropionic acid (PFPrA) and trifluoroacetic acid (TFA), and 6:2 FTSA was the main metabolite. 6:2 FTAB significantly reduced the biomass of plant and prevented chlorophyll (Chl) accumulation, while caused no significant change in malondialdehyde (MDA) content. Significant reduction in glutathione (GSH) contents, excess production of reactive oxygen species (ROS), and obvious inhibition of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-s-transferase (GST) activities were observed, suggesting damage of antioxidant defense systems and failure to detoxication of 6:2 FTAB in wheat. These findings provide important knowledge for the fate of 6:2 FTAB in plants.
Collapse
Affiliation(s)
- Huanting Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning 124221, PR China
| | - Liping Yang
- School of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xiaojing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning 124221, PR China
| | - Shuyan Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning 124221, PR China.
| |
Collapse
|
93
|
Choi YJ, Helbling DE, Liu J, Olivares CI, Higgins CP. Microbial biotransformation of aqueous film-forming foam derived polyfluoroalkyl substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153711. [PMID: 35149076 DOI: 10.1016/j.scitotenv.2022.153711] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) used in aqueous film-forming foam (AFFF) comprise some perfluoroalkyl substances but a larger variety of polyfluoroalkyl substances. Despite their abundance in AFFF, information is lacking on the potential transformation of these polyfluoroalkyl substances. Due to the biological and chemical stability of the repeating perfluoroalkyl -(CF2)n- moiety common to all known AFFF-derived PFASs, it is not immediately evident whether the microbial biotransformation mechanisms observed for other organic contaminants also govern the microbial biotransformation of polyfluoroalkyl substances. Herein, we aim to: 1) review the literature on the aerobic or anaerobic microbial biotransformation of AFFF-derived polyfluoroalkyl substances in environmental media; 2) compile and summarize proposed microbial biotransformation pathways for major classes of polyfluoroalkyl substances; 3) identify the dominant biotransformation intermediates and terminal biotransformation products; and 4) discuss these findings in the context of environmental monitoring and source allocation. This analysis revealed that much more is currently known about aerobic microbial biotransformation of polyfluoroalkyl substances, as compared to anaerobic biotransformation. Further, there are some similarities in microbial biotransformations of fluorotelomer and electrochemical fluorination-derived polyfluoroalkyl substances, but differences may be largely due to head group composition. Dealkylation, oxidation, and hydrolytic reactions appear to be particularly important for microbial biotransformation of AFFF-derived polyfluoroalkyl substances, and these biotransformations may lead to formation of some semi-stable intermediates. Finally, this review discusses key knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Youn Jeong Choi
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA; Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec, Canada
| | - Christopher I Olivares
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
94
|
Munoz G, Michaud AM, Liu M, Vo Duy S, Montenach D, Resseguier C, Watteau F, Sappin-Didier V, Feder F, Morvan T, Houot S, Desrosiers M, Liu J, Sauvé S. Target and Nontarget Screening of PFAS in Biosolids, Composts, and Other Organic Waste Products for Land Application in France. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6056-6068. [PMID: 34668380 DOI: 10.1021/acs.est.1c03697] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zwitterionic, cationic, and anionic per- and polyfluoroalkyl substances (PFAS) are increasingly reported in terrestrial and aquatic environments, but their inputs to agricultural lands are not fully understood. Here, we characterized PFAS in 47 organic waste products (OWP) applied in agricultural fields of France, including historical and recent materials. Overall, 160 PFAS from 42 classes were detected from target screening and homologue-based nontarget screening. Target PFAS were low in agriculture-derived wastes such as pig slurry, poultry manure, or dairy cattle manure (median ∑46PFAS: 0.66 μg/kg dry matter). Higher PFAS levels were reported in urban and industrial wastes, paper mill sludge, sewage sludge, or residual household waste composts (median ∑46PFAS: 220 μg/kg). Historical municipal biosolids and composts (1976-1998) were dominated by perfluorooctanesulfonate (PFOS), N-ethyl perfluorooctanesulfonamido acetic acid (EtFOSAA), and cationic and zwitterionic electrochemical fluorination precursors to PFOS. Contemporaneous urban OWP (2009-2017) were rather dominated by zwitterionic fluorotelomers, which represented on average 55% of ∑160PFAS (max: 97%). The fluorotelomer sulfonamidopropyl betaines (X:2 FTSA-PrB, median: 110 μg/kg, max: 1300 μg/kg) were the emerging class with the highest occurrence and prevalence in contemporary urban OWP. They were also detected as early as 1985. The study informs for the first time that urban sludges and composts can be a significant repository of zwitterionic and cationic PFAS.
Collapse
Affiliation(s)
- Gabriel Munoz
- Département de Chimie, Université de Montréal, Montréal, Quebec H2 V 0B3, Canada
| | - Aurélia Marcelline Michaud
- INRAE, UMR ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
- INRAE, UMR SAS, Sol Agro et hydrosystème Spatialisation, 35000 Rennes, France
| | - Min Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Sung Vo Duy
- Département de Chimie, Université de Montréal, Montréal, Quebec H2 V 0B3, Canada
| | - Denis Montenach
- INRAE, UE UEAV, Unité d'expérimentation agronomique et viticole, 68000 Colmar, France
| | - Camille Resseguier
- INRAE, UMR ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Françoise Watteau
- INRAE, Laboratoire Sols et Environnement, Université de Lorraine, 54000 Nancy, France
| | - Valérie Sappin-Didier
- INRAE, UMR ISPA, Interactions Sol Plante Atmosphère, Bordeaux Sciences Agro, 33140 Villenave d'Ornon, France
| | - Frédéric Feder
- CIRAD, UPR Recyclage et risque, 97408 Saint-Denis, Réunion France
- CIRAD, UPR Recyclage et risque, Université de Montpellier, 34398 Montpellier, France
| | - Thierry Morvan
- INRAE, UMR SAS, Sol Agro et hydrosystème Spatialisation, 35000 Rennes, France
| | - Sabine Houot
- INRAE, UMR ECOSYS, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Mélanie Desrosiers
- Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, QC G1P 3W8, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Sébastien Sauvé
- Département de Chimie, Université de Montréal, Montréal, Quebec H2 V 0B3, Canada
| |
Collapse
|
95
|
Dixit F, Munoz G, Mirzaei M, Barbeau B, Liu J, Duy SV, Sauvé S, Kandasubramanian B, Mohseni M. Removal of Zwitterionic PFAS by MXenes: Comparisons with Anionic, Nonionic, and PFAS-Specific Resins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6212-6222. [PMID: 35533009 DOI: 10.1021/acs.est.1c03780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Zwitterionic per- and polyfluoroalkyl substances are increasingly detected in aquatic environments. The magnitude of their concentration and increased frequency of detection worldwide raise questions on their presence in drinking water and associated health risk. Scientific knowledge on the identification of treatment technologies to effectively capture such zwitterionic PFAS from contaminated water sources remains largely unknown. In this study, we investigated the application of anionic organic scavenger ion exchange (IX) resins (A860), nonionic IX resins (XAD 4 and XAD 7), PFAS-specific resins (A694 and A592), and Ti3C2 MXenes (novel two-dimensional metal carbides) for the removal of select fluorotelomer zwitterionic PFAS from natural waters. The cumulative removal of zwitterionic PFAS at pH ∼ 7 follows the order: Ti3C2 MXenes > A694 > A592 > A860 > XAD 4 ∼ XAD 7. Ti3C2 MXenes were able to capture >75% of the total influent zwitterionic PFAS and the performance remained consistent in natural and synthetic water. Ti3C2 MXenes also exhibited efficient regeneration (>90% recovery) with 0.4 M Na2SO3 solution, while the regeneration efficacy of other IX resins generally remained below 20%. Treatment with ∼180 J/cm2 UV dosage in the 0.4 M Na2SO3 regenerant brine solution yielded >99.9% reduction in the zwitterionic PFAS concentration indicating that UV-sulfite systems exhibit promising potential for the treatment of zwitterionic PFAS concentrates.
Collapse
Affiliation(s)
- Fuhar Dixit
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Mahboubeh Mirzaei
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Benoit Barbeau
- Department of Civil, Geological and Mining Engineering, Ecole Polytechnique Montreal, Montreal, Quebec H3C 3A7, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, Quebec H3A 0G4, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), 411025 Pune, India
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
96
|
McDonough CA, Li W, Bischel HN, De Silva AO, DeWitt JC. Widening the Lens on PFASs: Direct Human Exposure to Perfluoroalkyl Acid Precursors (pre-PFAAs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6004-6013. [PMID: 35324171 PMCID: PMC10782884 DOI: 10.1021/acs.est.2c00254] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Determining health risks associated with per-/polyfluoroalkyl substances (PFASs) is a highly complex problem requiring massive efforts for scientists, risk assessors, and regulators. Among the most poorly understood pressing questions is the relative importance of pre-PFAAs, which are PFASs that degrade to highly persistent perfluoroalkyl acids. How many of the vast number of existing pre-PFAAs are relevant for direct human exposure, and what are the predominant exposure pathways? What evidence of direct exposure to pre-PFAAs is provided by human biomonitoring studies? How important are pre-PFAAs and their biotransformation products for human health risk assessment? This article outlines recent progress and recommendations toward widening the lens on human PFAS exposure to include the pre-PFAA subclass.
Collapse
Affiliation(s)
- Carrie A. McDonough
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wenting Li
- Department of Civil & Environmental Engineering, University of California Davis, Davis, CA 95616 USA
| | - Heather N. Bischel
- Department of Civil & Environmental Engineering, University of California Davis, Davis, CA 95616 USA
| | - Amila O. De Silva
- Aquatic Contaminants Research Division, Water Science Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Jamie C. DeWitt
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
97
|
Kulkarni PR, Adamson DT, Popovic J, Newell CJ. Modeling a well-characterized perfluorooctane sulfonate (PFOS) source and plume using the REMChlor-MD model to account for matrix diffusion. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 247:103986. [PMID: 35279484 DOI: 10.1016/j.jconhyd.2022.103986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Two of the most important retention processes for per- and polyfluoroalkyl substances (PFAS) in groundwater likely are sorption and matrix diffusion. The objective of this study was to model concentration and mass discharge of one PFAS, perfluorooctane sulfonate (PFOS), with matrix diffusion processes incorporated using data from a highly chemically- and geologically-characterized site. When matrix diffusion is incorporated into the REMChlor-MD model for PFOS at this research site, it easily reproduces the field data for three key metrics (concentration, mass discharge, and total mass). However, the no-matrix diffusion model produced a much poorer match. Additionally, after about 40 years of groundwater transport, field data and the REMChlor-MD model both showed the majority (80%) of the measured PFOS mass that exited the source zones was located in downgradient low permeability zones due to matrix diffusion. As such, most of the PFOS mass is not available to immediately migrate downgradient via advection in the more permeable sands at this site, which has important implications for monitored natural attenuation (MNA). Plume expansion over the next 50 years is forecasted to be limited, from a 350-m plume length in 2017 to 550 m in 2070, as matrix diffusion will attenuate groundwater plumes by slowing their expansion. This phenomenon is important for constituents that do not degrade, such as PFOS, compared to those susceptible to degradation. Overall, this work shows that matrix diffusion is a relevant process in environmental PFAS persistence and slows the rate of plume expansion over time.
Collapse
Affiliation(s)
| | | | - Jovan Popovic
- Naval Facilities Engineering and Expeditionary Warfare Center, Port Hueneme, CA 93041, USA.
| | | |
Collapse
|
98
|
Metcalfe CD, Bayen S, Desrosiers M, Muñoz G, Sauvé S, Yargeau V. An introduction to the sources, fate, occurrence and effects of endocrine disrupting chemicals released into the environment. ENVIRONMENTAL RESEARCH 2022; 207:112658. [PMID: 34990614 DOI: 10.1016/j.envres.2021.112658] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Many classes of compounds are known or suspected to disrupt the endocrine system of vertebrate and invertebrate organisms. This review of the sources and fate of selected endocrine disrupting chemicals (EDCs) in the environment includes classes of compounds that are "legacy" contaminants, as well as contaminants of emerging concern. EDCs included for discussion are organochlorine compounds, halogenated aromatic hydrocarbons, brominated flame retardants, per- and polyfluoroalkyl substances, alkylphenols, phthalates, bisphenol A and analogues, pharmaceuticals, drugs of abuse and steroid hormones, personal care products, and organotins. An exhaustive survey of the fate of these contaminants in all environmental media (e.g., air, water, soil, biota, foods and beverages) is beyond the scope of this review, so the priority is to highlight the fate of EDCs in environmental media for which there is a clear link between exposure and endocrine effects in humans or in biota from other taxa. Where appropriate, linkages are also made between the fate of EDCs and regulatory limits such as environmental quality guidelines for water and sediments and total daily intake values for humans.
Collapse
Affiliation(s)
| | - S Bayen
- McGill University, Montréal, QC, Canada
| | - M Desrosiers
- Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques du Québec. Québec City, QC, Canada
| | - G Muñoz
- Université de Montréal, Montréal, QC, Canada
| | - S Sauvé
- Université de Montréal, Montréal, QC, Canada
| | - V Yargeau
- McGill University, Montréal, QC, Canada
| |
Collapse
|
99
|
Farhat SK, Newell CJ, Lee SA, Looney BB, Falta RW. Impact of matrix diffusion on the migration of groundwater plumes for Perfluoroalkyl acids (PFAAs) and other non-degradable compounds. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 247:103987. [PMID: 35286952 DOI: 10.1016/j.jconhyd.2022.103987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/19/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Groundwater fate and transport modeling results demonstrate that matrix diffusion plays a role in attenuating the expansion of groundwater plumes of "non-degrading" or highly recalcitrant compounds. This is especially significant for systems where preferred destructive attenuation processes, such as biological and abiotic degradation, are weak or ineffective for plume control. Under these conditions, models of nondestructive physical attenuation processes, traditionally dispersion or sorption, do not demonstrate sufficient plume control unless matrix diffusion is considered. Matrix diffusion has been shown to be a notable emergent impact of geological heterogeneity, typically associated with back diffusion and extending remediation timeframes through concentration tailing of the trailing edge of a plume. However, less attention has been placed on evaluating how matrix diffusion can serve as an attenuation mechanism for the leading edge of a plume of non-degrading compounds like perfluoroalkyl acids (PFAAs), including perfluorooctane sulfonate (PFOS). In this study, the REMChlor-MD model was parametrically applied to a generic unconsolidated and heterogeneous geologic site with a constant PFOS source and no degradation of PFOS in the downgradient edge of the plume. Low levels of mechanical dispersion and retardation were used in the model for three different geologic heterogeneity cases ranging from no matrix diffusion (e.g., sand only) to considerable matrix diffusion using low permeability ("low-k") layers/lenses and/or aquitards. Our analysis shows that, in theory, many non-degrading plumes may expand for significant time periods before dispersion alone would eventually stabilize the plume; however, matrix diffusion can significantly slow the rate and degree of this migration. For one 100-year travel time scenario, consideration of matrix diffusion results in a simulated PFOS plume length that is over 80% shorter than the plume length simulated without matrix diffusion. Although many non-degrading plumes may continue to slowly expand over time, matrix diffusion resulted in lower concentrations and smaller plume footprints. Modeling multiple hydrogeologic settings showed that the effect of matrix diffusion is more significant in transmissive zones containing multiple low-k lenses/layers than transmissive zones underlain and overlain by low-k aquitards. This study found that at sites with significant matrix diffusion, groundwater plumes will be shorter, will expand more slowly, and may be amenable to a physical, retention-based, Monitored Natural Attenuation (MNA) paradigm. In this case, a small "Plume Assimilative Capacity Zone" in front of the existing plume could be reserved for slow, de minimus, future expansion of a non-degrading plume. If potential receptors are protected in this scenario, then this approach is similar to allowances for expanding plumes under some existing environmental regulatory programs. Accounting for matrix diffusion may support new strategic approaches and alternative paradigms for remediation even for sites and conditions with "non-degrading" constituents such as PFAAs, metals/metalloids, and radionuclides.
Collapse
Affiliation(s)
- Shahla K Farhat
- GSI Environmental Inc, 2211 Norfolk St Suite 1000, Houston, TX, United States.
| | - Charles J Newell
- GSI Environmental Inc, 2211 Norfolk St Suite 1000, Houston, TX, United States.
| | - Sophia A Lee
- Naval Facilities Engineering and Expeditionary Warfare Center, 1000 23rd Avenue, Port Hueneme, CA 93043, United States.
| | - Brian B Looney
- Savannah River National Laboratory, Aiken, 773-42A, SC 29808, United States.
| | - Ronald W Falta
- Department of Environmental Engineering and Earth Sciences, 336 Brackett Hall, Clemson University, SC 29634, United States.
| |
Collapse
|
100
|
Jarjour J, Yan B, Munoz G, Desrosiers M, Sauvé S, Liu J. Reduced bioaccumulation of fluorotelomer sulfonates and perfluoroalkyl acids in earthworms (Eisenia fetida) from soils amended with modified clays. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126999. [PMID: 34461538 DOI: 10.1016/j.jhazmat.2021.126999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Soils contaminated by per- and polyfluoroalkyl substances (PFAS) pose long-term sources to adjacent water bodies and soil invertebrates. The study investigated the stabilization using a modified clay adsorbent (FLUORO-SORB100®) in reducing the bioaccumulation of 13 anionic PFAS by earthworms (Eisenia fetida), as compared to coal-based granular activated carbon. The target PFAS included four perfluoroalkyl sulfonates such as perfluorooctane sulfonate (PFOS), six perfluoroalkyl carboxylates (e.g., perfluorooctanoate PFOA), and three (X:2) fluorotelomer sulfonates. Laboratory-spiked surface soil and the soil collected from a site contaminated by aqueous film-forming foams were examined. Both adsorbents resulted in reduced earthworm PFAS body burdens at the end of the 28-day uptake phase. The highest adsorbent amendment concentration (4 w/w%) was most effective, achieving >95% reduction of PFAS body burden. Soil leaching tests indicated better immobilization performance by the clay adsorbent for most analytes; in comparison, the activated carbon performed better at reducing total PFAS body burdens, possibly owing to the avoidance of larger-sized particles by earthworms. Strong positive logarithm relationships were observed between leachate concentrations and earthworm body burdens for most PFAS in the spiked soil. The study demonstrated that stabilization of PFAS using modified clay adsorbents can achieve concurrent benefits of lowering leachability and reducing bioaccumulation.
Collapse
Affiliation(s)
- Julie Jarjour
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Bei Yan
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Mélanie Desrosiers
- Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la Lutte contre les changements climatiques, Québec, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada.
| |
Collapse
|