51
|
Lorente JA, Nin N, Villa P, Vasco D, Miguel-Coello AB, Rodriguez I, Herrero R, Peñuelas O, Ruiz-Cabello J, Izquierdo-Garcia JL. Metabolomic diferences between COVID-19 and H1N1 influenza induced ARDS. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:390. [PMID: 34781986 PMCID: PMC8591432 DOI: 10.1186/s13054-021-03810-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a type of respiratory failure characterized by lung inflammation and pulmonary edema. Coronavirus disease 2019 (COVID-19) is associated with ARDS in the more severe cases. This study aimed to compare the specificity of the metabolic alterations induced by COVID-19 or Influenza A pneumonia (IAP) in ARDS. METHODS Eighteen patients with ARDS due to COVID-19 and twenty patients with ARDS due to IAP, admitted to the intensive care unit. ARDS was defined as in the American-European Consensus Conference. As compared with patients with COVID-19, patients with IAP were younger and received more often noradrenaline to maintain a mean arterial pressure > 65 mm Hg. Serum samples were analyzed by Nuclear Magnetic Resonance Spectroscopy. Multivariate Statistical Analyses were used to identify metabolic differences between groups. Metabolic pathway analysis was performed to identify the most relevant pathways involved in ARDS development. RESULTS ARDS due to COVID-19 or to IAP induces a different regulation of amino acids metabolism, lipid metabolism, glycolysis, and anaplerotic metabolism. COVID-19 causes a significant energy supply deficit that induces supplementary energy-generating pathways. In contrast, IAP patients suffer more marked inflammatory and oxidative stress responses. The classificatory model discriminated against the cause of pneumonia with a success rate of 100%. CONCLUSIONS Our findings support the concept that ARDS is associated with a characteristic metabolomic profile that may discriminate patients with ARDS of different etiologies, being a potential biomarker for the diagnosis, prognosis, and management of this condition.
Collapse
Affiliation(s)
- Jose Angel Lorente
- CIBER de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| | | | - Palmira Villa
- Centro de Asistencia a La Investigación Bioimagen Complutense, Universidad Complutense de Madrid, Madrid, Spain
| | - Dovami Vasco
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Ana B Miguel-Coello
- CIBER de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain.,Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Ignacio Rodriguez
- CIBER de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Química en CC. Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Raquel Herrero
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Oscar Peñuelas
- Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Jesús Ruiz-Cabello
- CIBER de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain.,Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.,Departamento de Química en CC. Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose L Izquierdo-Garcia
- CIBER de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos III, Madrid, Spain. .,Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 1, Madrid, Spain. .,Departamento de Química en CC. Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
52
|
Kikuchi J, Yamada S. The exposome paradigm to predict environmental health in terms of systemic homeostasis and resource balance based on NMR data science. RSC Adv 2021; 11:30426-30447. [PMID: 35480260 PMCID: PMC9041152 DOI: 10.1039/d1ra03008f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
The environment, from microbial ecosystems to recycled resources, fluctuates dynamically due to many physical, chemical and biological factors, the profile of which reflects changes in overall state, such as environmental illness caused by a collapse of homeostasis. To evaluate and predict environmental health in terms of systemic homeostasis and resource balance, a comprehensive understanding of these factors requires an approach based on the "exposome paradigm", namely the totality of exposure to all substances. Furthermore, in considering sustainable development to meet global population growth, it is important to gain an understanding of both the circulation of biological resources and waste recycling in human society. From this perspective, natural environment, agriculture, aquaculture, wastewater treatment in industry, biomass degradation and biodegradable materials design are at the forefront of current research. In this respect, nuclear magnetic resonance (NMR) offers tremendous advantages in the analysis of samples of molecular complexity, such as crude bio-extracts, intact cells and tissues, fibres, foods, feeds, fertilizers and environmental samples. Here we outline examples to promote an understanding of recent applications of solution-state, solid-state, time-domain NMR and magnetic resonance imaging (MRI) to the complex evaluation of organisms, materials and the environment. We also describe useful databases and informatics tools, as well as machine learning techniques for NMR analysis, demonstrating that NMR data science can be used to evaluate the exposome in both the natural environment and human society towards a sustainable future.
Collapse
Affiliation(s)
- Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Shunji Yamada
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
- Prediction Science Laboratory, RIKEN Cluster for Pioneering Research 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
- Data Assimilation Research Team, RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
53
|
Luo JW, Hu Y, Liu J, Yang H, Huang P. Interleukin-22: a potential therapeutic target in atherosclerosis. Mol Med 2021; 27:88. [PMID: 34388961 PMCID: PMC8362238 DOI: 10.1186/s10020-021-00353-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Atherosclerosis is recognized as a chronic immuno-inflammatory disease that is characterized by the accumulation of immune cells and lipids in the vascular wall. In this review, we focus on the latest advance regarding the regulation and signaling pathways of IL-22 and highlight its impacts on atherosclerosis. MAIN BODY IL-22, an important member of the IL-10 family of cytokines, is released by cells of the adaptive and innate immune system and plays a key role in the development of inflammatory diseases. The binding of IL-22 to its receptor complex can trigger a diverse array of downstream signaling pathways, in particular the JAK/STAT, to induce the expression of chemokines and proinflammatory cytokines. Recently, numerous studies suggest that IL-22 is involved in the pathogenesis of atherosclerosis by regulation of VSMC proliferation and migration, angiogenesis, inflammatory response, hypertension, and cholesterol metabolism. CONCLUSION IL-22 promotes the development of atherosclerosis by multiple mechanisms, which may be a promising therapeutic target in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Jin-Wen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Yuan Hu
- Department of Ultrasound Medicine, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Jian Liu
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China
| | - Huan Yang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, Hunan, 410001, People's Republic of China.
| | - Peng Huang
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, 410007, People's Republic of China.
| |
Collapse
|
54
|
Tsoukalas D, Sarandi E, Georgaki S. The snapshot of metabolic health in evaluating micronutrient status, the risk of infection and clinical outcome of COVID-19. Clin Nutr ESPEN 2021; 44:173-187. [PMID: 34330463 PMCID: PMC8234252 DOI: 10.1016/j.clnesp.2021.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
COVID-19 has re-established the significance of analyzing the organism through a metabolic perspective to uncover the dynamic interconnections within the biological systems. The role of micronutrient status and metabolic health emerge as pivotal in COVID-19 pathogenesis and the immune system's response. Metabolic disruption, proceeding from modifiable factors, has been proposed as a significant risk factor accounting for infection susceptibility, disease severity and risk for post-COVID complications. Metabolomics, the comprehensive study and quantification of intermediates and products of metabolism, is a rapidly evolving field and a novel tool in biomarker discovery. In this article, we propose that leveraging insulin resistance biomarkers along with biomarkers of micronutrient deficiencies, will allow for a diagnostic window and provide functional therapeutic targets. Specifically, metabolomics can be applied as: a. At-home test to assess the risk of infection and propose nutritional support, b. A screening tool for high-risk COVID-19 patients to develop serious illness during hospital admission and prioritize medical support, c(i). A tool to match nutritional support with specific nutrient requirements for mildly ill patients to reduce the risk for hospitalization, and c(ii). for critically ill patients to reduce recovery time and risk of post-COVID complications, d. At-home test to monitor metabolic health and reduce post-COVID symptomatology. Metabolic rewiring offers potential virtues towards disease prevention, dissection of high-risk patients, taking actionable therapeutic measures, as well as shielding against post-COVID syndrome.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- European Institute of Nutritional Medicine, 00198 Rome, Italy; Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece.
| | - Evangelia Sarandi
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece; Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece.
| | - Spyridoula Georgaki
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece.
| |
Collapse
|
55
|
Molecular Phenomic Approaches to Deconvolving the Systemic Effects of SARS-CoV-2 Infection and Post-acute COVID-19 Syndrome. PHENOMICS 2021; 1:143-150. [PMID: 35233558 PMCID: PMC8295979 DOI: 10.1007/s43657-021-00020-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 11/09/2022]
Abstract
SARS COV-2 infection causes acute and frequently severe respiratory disease with associated multi-organ damage and systemic disturbances in many biochemical pathways. Metabolic phenotyping provides deep insights into the complex immunopathological problems that drive the resulting COVID-19 disease and is also a source of novel metrics for assessing patient recovery. A multiplatform metabolic phenotyping approach to studying the pathology and systemic metabolic sequelae of COVID-19 is considered here, together with a framework for assessing post-acute COVID-19 Syndrome (PACS) that is a major long-term health consequence for many patients. The sudden emergence of the disease presents a biological discovery challenge as we try to understand the pathological mechanisms of the disease and develop effective mitigation strategies. This requires technologies to measure objectively the extent and sub-phenotypes of the disease at the molecular level. Spectroscopic methods can reveal metabolic sub-phenotypes and new biomarkers that can be monitored during the acute disease phase and beyond. This approach is scalable and translatable to other pathologies and provides as an exemplar strategy for the investigation of other emergent zoonotic diseases with complex immunological drivers, multi-system involvements and diverse persistent symptoms.
Collapse
|
56
|
Gray N, Lawler NG, Zeng AX, Ryan M, Bong SH, Boughton BA, Bizkarguenaga M, Bruzzone C, Embade N, Wist J, Holmes E, Millet O, Nicholson JK, Whiley L. Diagnostic Potential of the Plasma Lipidome in Infectious Disease: Application to Acute SARS-CoV-2 Infection. Metabolites 2021; 11:467. [PMID: 34357361 PMCID: PMC8306636 DOI: 10.3390/metabo11070467] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
Improved methods are required for investigating the systemic metabolic effects of SARS-CoV-2 infection and patient stratification for precision treatment. We aimed to develop an effective method using lipid profiles for discriminating between SARS-CoV-2 infection, healthy controls, and non-SARS-CoV-2 respiratory infections. Targeted liquid chromatography-mass spectrometry lipid profiling was performed on discovery (20 SARS-CoV-2-positive; 37 healthy controls; 22 COVID-19 symptoms but SARS-CoV-2negative) and validation (312 SARS-CoV-2-positive; 100 healthy controls) cohorts. Orthogonal projection to latent structure-discriminant analysis (OPLS-DA) and Kruskal-Wallis tests were applied to establish discriminant lipids, significance, and effect size, followed by logistic regression to evaluate classification performance. OPLS-DA reported separation of SARS-CoV-2 infection from healthy controls in the discovery cohort, with an area under the curve (AUC) of 1.000. A refined panel of discriminant features consisted of six lipids from different subclasses (PE, PC, LPC, HCER, CER, and DCER). Logistic regression in the discovery cohort returned a training ROC AUC of 1.000 (sensitivity = 1.000, specificity = 1.000) and a test ROC AUC of 1.000. The validation cohort produced a training ROC AUC of 0.977 (sensitivity = 0.855, specificity = 0.948) and a test ROC AUC of 0.978 (sensitivity = 0.948, specificity = 0.922). The lipid panel was also able to differentiate SARS-CoV-2-positive individuals from SARS-CoV-2-negative individuals with COVID-19-like symptoms (specificity = 0.818). Lipid profiling and multivariate modelling revealed a signature offering mechanistic insights into SARS-CoV-2, with strong predictive power, and the potential to facilitate effective diagnosis and clinical management.
Collapse
Affiliation(s)
- Nicola Gray
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Nathan G. Lawler
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Annie Xu Zeng
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
| | - Monique Ryan
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
| | - Sze How Bong
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
| | - Berin A. Boughton
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Maider Bizkarguenaga
- Centro de Investigación Cooperativa en Biociencias—CIC bioGUNE, Precision Medicine and Metabolism Laboratory, Basque Research and Technology Alliance, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Spain; (M.B.); (C.B.); (N.E.)
| | - Chiara Bruzzone
- Centro de Investigación Cooperativa en Biociencias—CIC bioGUNE, Precision Medicine and Metabolism Laboratory, Basque Research and Technology Alliance, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Spain; (M.B.); (C.B.); (N.E.)
| | - Nieves Embade
- Centro de Investigación Cooperativa en Biociencias—CIC bioGUNE, Precision Medicine and Metabolism Laboratory, Basque Research and Technology Alliance, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Spain; (M.B.); (C.B.); (N.E.)
| | - Julien Wist
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Chemistry Department, Universidad del Valle, Cali 76001, Colombia
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Department of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Oscar Millet
- Centro de Investigación Cooperativa en Biociencias—CIC bioGUNE, Precision Medicine and Metabolism Laboratory, Basque Research and Technology Alliance, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Spain; (M.B.); (C.B.); (N.E.)
| | - Jeremy K. Nicholson
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Institute of Global Health Innovation, Faculty Building South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia; (N.G.); (N.G.L.); (A.X.Z.); (M.R.); (S.H.B.); (B.A.B.); (J.W.); (E.H.)
- Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
57
|
Masuda R, Lodge S, Nitschke P, Spraul M, Schaefer H, Bong SH, Kimhofer T, Hall D, Loo RL, Bizkarguenaga M, Bruzzone C, Gil-Redondo R, Embade N, Mato JM, Holmes E, Wist J, Millet O, Nicholson JK. Integrative Modeling of Plasma Metabolic and Lipoprotein Biomarkers of SARS-CoV-2 Infection in Spanish and Australian COVID-19 Patient Cohorts. J Proteome Res 2021; 20:4139-4152. [PMID: 34251833 DOI: 10.1021/acs.jproteome.1c00458] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantitative plasma lipoprotein and metabolite profiles were measured on an autonomous community of the Basque Country (Spain) cohort consisting of hospitalized COVID-19 patients (n = 72) and a matched control group (n = 75) and a Western Australian (WA) cohort consisting of (n = 17) SARS-CoV-2 positives and (n = 20) healthy controls using 600 MHz 1H nuclear magnetic resonance (NMR) spectroscopy. Spanish samples were measured in two laboratories using one-dimensional (1D) solvent-suppressed and T2-filtered methods with in vitro diagnostic quantification of lipoproteins and metabolites. SARS-CoV-2 positive patients and healthy controls from both populations were modeled and cross-projected to estimate the biological similarities and validate biomarkers. Using the top 15 most discriminatory variables enabled construction of a cross-predictive model with 100% sensitivity and specificity (within populations) and 100% sensitivity and 82% specificity (between populations). Minor differences were observed between the control metabolic variables in the two cohorts, but the lipoproteins were virtually indistinguishable. We observed highly significant infection-related reductions in high-density lipoprotein (HDL) subfraction 4 phospholipids, apolipoproteins A1 and A2,that have previously been associated with negative regulation of blood coagulation and fibrinolysis. The Spanish and Australian diagnostic SARS-CoV-2 biomarkers were mathematically and biologically equivalent, demonstrating that NMR-based technologies are suitable for the study of the comparative pathology of COVID-19 via plasma phenotyping.
Collapse
Affiliation(s)
- Reika Masuda
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Samantha Lodge
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Philipp Nitschke
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen, Ettlingen 76275, Germany
| | | | - Sze-How Bong
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Torben Kimhofer
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Drew Hall
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Ruey Leng Loo
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Maider Bizkarguenaga
- CIC bioGUNE, Asociación Centro de Investigación Cooperativa en Biociencias, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Chiara Bruzzone
- CIC bioGUNE, Asociación Centro de Investigación Cooperativa en Biociencias, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Rubén Gil-Redondo
- CIC bioGUNE, Asociación Centro de Investigación Cooperativa en Biociencias, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Nieves Embade
- CIC bioGUNE, Asociación Centro de Investigación Cooperativa en Biociencias, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - José M Mato
- CIC bioGUNE, Asociación Centro de Investigación Cooperativa en Biociencias, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia.,Section for Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, U.K
| | - Julien Wist
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia.,Chemistry Department, Universidad del Valle, 76001 Cali, Colombia
| | - Oscar Millet
- CIC bioGUNE, Asociación Centro de Investigación Cooperativa en Biociencias, Bizkaia Science and Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia.,Institute of Global Health Innovation, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, U.K
| |
Collapse
|
58
|
Holmes E, Wist J, Masuda R, Lodge S, Nitschke P, Kimhofer T, Loo RL, Begum S, Boughton B, Yang R, Morillon AC, Chin ST, Hall D, Ryan M, Bong SH, Gay M, Edgar DW, Lindon JC, Richards T, Yeap BB, Pettersson S, Spraul M, Schaefer H, Lawler NG, Gray N, Whiley L, Nicholson JK. Incomplete Systemic Recovery and Metabolic Phenoreversion in Post-Acute-Phase Nonhospitalized COVID-19 Patients: Implications for Assessment of Post-Acute COVID-19 Syndrome. J Proteome Res 2021; 20:3315-3329. [PMID: 34009992 PMCID: PMC8147448 DOI: 10.1021/acs.jproteome.1c00224] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/15/2022]
Abstract
We present a multivariate metabotyping approach to assess the functional recovery of nonhospitalized COVID-19 patients and the possible biochemical sequelae of "Post-Acute COVID-19 Syndrome", colloquially known as long-COVID. Blood samples were taken from patients ca. 3 months after acute COVID-19 infection with further assessment of symptoms at 6 months. Some 57% of the patients had one or more persistent symptoms including respiratory-related symptoms like cough, dyspnea, and rhinorrhea or other nonrespiratory symptoms including chronic fatigue, anosmia, myalgia, or joint pain. Plasma samples were quantitatively analyzed for lipoproteins, glycoproteins, amino acids, biogenic amines, and tryptophan pathway intermediates using Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry. Metabolic data for the follow-up patients (n = 27) were compared with controls (n = 41) and hospitalized severe acute respiratory syndrome SARS-CoV-2 positive patients (n = 18, with multiple time-points). Univariate and multivariate statistics revealed variable patterns of functional recovery with many patients exhibiting residual COVID-19 biomarker signatures. Several parameters were persistently perturbed, e.g., elevated taurine (p = 3.6 × 10-3 versus controls) and reduced glutamine/glutamate ratio (p = 6.95 × 10-8 versus controls), indicative of possible liver and muscle damage and a high energy demand linked to more generalized tissue repair or immune function. Some parameters showed near-complete normalization, e.g., the plasma apolipoprotein B100/A1 ratio was similar to that of healthy controls but significantly lower (p = 4.2 × 10-3) than post-acute COVID-19 patients, reflecting partial reversion of the metabolic phenotype (phenoreversion) toward the healthy metabolic state. Plasma neopterin was normalized in all follow-up patients, indicative of a reduction in the adaptive immune activity that has been previously detected in active SARS-CoV-2 infection. Other systemic inflammatory biomarkers such as GlycA and the kynurenine/tryptophan ratio remained elevated in some, but not all, patients. Correlation analysis, principal component analysis (PCA), and orthogonal-partial least-squares discriminant analysis (O-PLS-DA) showed that the follow-up patients were, as a group, metabolically distinct from controls and partially comapped with the acute-phase patients. Significant systematic metabolic differences between asymptomatic and symptomatic follow-up patients were also observed for multiple metabolites. The overall metabolic variance of the symptomatic patients was significantly greater than that of nonsymptomatic patients for multiple parameters (χ2p = 0.014). Thus, asymptomatic follow-up patients including those with post-acute COVID-19 Syndrome displayed a spectrum of multiple persistent biochemical pathophysiology, suggesting that the metabolic phenotyping approach may be deployed for multisystem functional assessment of individual post-acute COVID-19 patients.
Collapse
Affiliation(s)
- Elaine Holmes
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
- Center for Computational and Systems Medicine, Health
Futures Institute, Murdoch University, 5 Robin Warren Drive,
Perth, WA 6150, Australia
- Department of Metabolism, Digestion, and Reproduction,
Faculty of Medicine, Imperial College London, Sir Alexander
Fleming Building, South Kensington, London SW7 2AZ, U.K.
| | - Julien Wist
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
- Center for Computational and Systems Medicine, Health
Futures Institute, Murdoch University, 5 Robin Warren Drive,
Perth, WA 6150, Australia
- Chemistry Department, Universidad del
Valle, 76001 Cali, Colombia
| | - Reika Masuda
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
| | - Samantha Lodge
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
- Center for Computational and Systems Medicine, Health
Futures Institute, Murdoch University, 5 Robin Warren Drive,
Perth, WA 6150, Australia
| | - Philipp Nitschke
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
| | - Torben Kimhofer
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
- Center for Computational and Systems Medicine, Health
Futures Institute, Murdoch University, 5 Robin Warren Drive,
Perth, WA 6150, Australia
| | - Ruey Leng Loo
- Center for Computational and Systems Medicine, Health
Futures Institute, Murdoch University, 5 Robin Warren Drive,
Perth, WA 6150, Australia
| | - Sofina Begum
- Department of Metabolism, Digestion, and Reproduction,
Faculty of Medicine, Imperial College London, Sir Alexander
Fleming Building, South Kensington, London SW7 2AZ, U.K.
| | - Berin Boughton
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
- Center for Computational and Systems Medicine, Health
Futures Institute, Murdoch University, 5 Robin Warren Drive,
Perth, WA 6150, Australia
| | - Rongchang Yang
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
| | - Aude-Claire Morillon
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
| | - Sung-Tong Chin
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
| | - Drew Hall
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
| | - Monique Ryan
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
| | - Sze-How Bong
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
| | - Melvin Gay
- Bruker Pty. Ltd., Preston,
VIC 3072, Australia
| | - Dale W. Edgar
- State Adult Burn Unit, Fiona Stanley
Hospital, Murdoch, WA 6150, Australia
- Burn Injury Research Node, The University
of Notre Dame, Fremantle, WA 6160, Australia
| | - John C. Lindon
- Department of Surgery and Cancer, Faculty of
Medicine, Imperial College London, London SW7 2AZ,
U.K.
| | - Toby Richards
- Department of Surgery, Fiona Stanley Hospital, Medical
School, University of Western Australia,Harry Perkins Building,
Murdoch, Perth, WA 6150, Australia
| | - Bu B. Yeap
- Department of Endocrinology and Diabetes, Fiona
Stanley Hospital, Medical School, University of Western
Australia, Harry Perkins Building, Murdoch, Perth, WA 6150,
Australia
| | - Sven Pettersson
- Singapore National NeuroScience
Centre, Mandalay Road, Singapore 308232,
Singapore
- Lee Kong Chian School of Medicine.
Nanyang Technological University, Mandalay Road, Singapore
308232, Singapore
- Department of Life Science Centre,
Sunway University, Kuala Lumpur 47500,
Malaysia
| | | | | | - Nathan G. Lawler
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
- Center for Computational and Systems Medicine, Health
Futures Institute, Murdoch University, 5 Robin Warren Drive,
Perth, WA 6150, Australia
| | - Nicola Gray
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
- Center for Computational and Systems Medicine, Health
Futures Institute, Murdoch University, 5 Robin Warren Drive,
Perth, WA 6150, Australia
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
- Perron Institute for Neurological and
Translational Science, Nedlands, WA 6009,
Australia
| | - Jeremy K. Nicholson
- Australian National Phenome Centre, Health Futures
Institute, Murdoch University, Harry Perkins Building, 5 Robin
Warren Drive, Perth, WA 6150, Australia
- Center for Computational and Systems Medicine, Health
Futures Institute, Murdoch University, 5 Robin Warren Drive,
Perth, WA 6150, Australia
- Institute of Global Health Innovation,
Imperial College London, Level 1, Faculty Building, South
Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
59
|
Chen X, Gu M, Li T, Sun Y. Metabolite reanalysis revealed potential biomarkers for COVID-19: a potential link with immune response. Future Microbiol 2021; 16:577-588. [PMID: 33973485 PMCID: PMC8112156 DOI: 10.2217/fmb-2021-0047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To understand the pathological progress of COVID-19 and to
explore the potential biomarkers. Background: The COVID-19 pandemic
is ongoing. There is metabolomics research about COVID-19 indicating the
rich information of metabolomics is worthy of further data mining.
Methods: We applied bioinformatics technology to reanalyze the
published metabolomics data of COVID-19. Results: Benzoate,
β-alanine and 4-chlorobenzoic acid were first reported to be used
as potential biomarkers to distinguish COVID-19 patients from healthy
individuals; taurochenodeoxycholic acid 3-sulfate, glucuronate
and N,N,N-trimethyl-alanylproline betaine TMAP are the top classifiers in
the receiver operating characteristic curve of COVID-severe and
COVID-nonsevere patients. Conclusion: These unique metabolites
suggest an underlying immunoregulatory treatment strategy for COVID-19.
Collapse
Affiliation(s)
- Xin Chen
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Princeton High School, Princeton, NJ 08540, USA
| | - Mingli Gu
- Department of Laboratory Diagnosis, Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China
| | - Tengda Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yi Sun
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
60
|
Lawler NG, Gray N, Kimhofer T, Boughton B, Gay M, Yang R, Morillon AC, Chin ST, Ryan M, Begum S, Bong SH, Coudert JD, Edgar D, Raby E, Pettersson S, Richards T, Holmes E, Whiley L, Nicholson JK. Systemic Perturbations in Amine and Kynurenine Metabolism Associated with Acute SARS-CoV-2 Infection and Inflammatory Cytokine Responses. J Proteome Res 2021; 20:2796-2811. [PMID: 33724837 PMCID: PMC7986977 DOI: 10.1021/acs.jproteome.1c00052] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 01/06/2023]
Abstract
We performed quantitative metabolic phenotyping of blood plasma in parallel with cytokine/chemokine analysis from participants who were either SARS-CoV-2 (+) (n = 10) or SARS-CoV-2 (-) (n = 49). SARS-CoV-2 positivity was associated with a unique metabolic phenotype and demonstrated a complex systemic response to infection, including severe perturbations in amino acid and kynurenine metabolic pathways. Nine metabolites were elevated in plasma and strongly associated with infection (quinolinic acid, glutamic acid, nicotinic acid, aspartic acid, neopterin, kynurenine, phenylalanine, 3-hydroxykynurenine, and taurine; p < 0.05), while four metabolites were lower in infection (tryptophan, histidine, indole-3-acetic acid, and citrulline; p < 0.05). This signature supports a systemic metabolic phenoconversion following infection, indicating possible neurotoxicity and neurological disruption (elevations of 3-hydroxykynurenine and quinolinic acid) and liver dysfunction (reduction in Fischer's ratio and elevation of taurine). Finally, we report correlations between the key metabolite changes observed in the disease with concentrations of proinflammatory cytokines and chemokines showing strong immunometabolic disorder in response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nathan G. Lawler
- Australian National Phenome Centre, Computational and
Systems Medicine, Health Futures Institute, Murdoch University,
Harry Perkins Building, Perth, WA 6150, Australia
| | - Nicola Gray
- Australian National Phenome Centre, Computational and
Systems Medicine, Health Futures Institute, Murdoch University,
Harry Perkins Building, Perth, WA 6150, Australia
| | - Torben Kimhofer
- Australian National Phenome Centre, Computational and
Systems Medicine, Health Futures Institute, Murdoch University,
Harry Perkins Building, Perth, WA 6150, Australia
| | - Berin Boughton
- Australian National Phenome Centre, Computational and
Systems Medicine, Health Futures Institute, Murdoch University,
Harry Perkins Building, Perth, WA 6150, Australia
| | - Melvin Gay
- Bruker Pty Ltd., Preston,
VIC 3072, Australia
| | - Rongchang Yang
- Australian National Phenome Centre, Computational and
Systems Medicine, Health Futures Institute, Murdoch University,
Harry Perkins Building, Perth, WA 6150, Australia
| | - Aude-Claire Morillon
- Australian National Phenome Centre, Computational and
Systems Medicine, Health Futures Institute, Murdoch University,
Harry Perkins Building, Perth, WA 6150, Australia
| | - Sung-Tong Chin
- Australian National Phenome Centre, Computational and
Systems Medicine, Health Futures Institute, Murdoch University,
Harry Perkins Building, Perth, WA 6150, Australia
| | - Monique Ryan
- Australian National Phenome Centre, Computational and
Systems Medicine, Health Futures Institute, Murdoch University,
Harry Perkins Building, Perth, WA 6150, Australia
| | - Sofina Begum
- Australian National Phenome Centre, Computational and
Systems Medicine, Health Futures Institute, Murdoch University,
Harry Perkins Building, Perth, WA 6150, Australia
- Department of Metabolism Digestion and Reproduction,
Faculty of Medicine, Imperial College London, Sir Alexander
Fleming Building, South Kensington, London SW7 2AZ, U.K.
| | - Sze How Bong
- Australian National Phenome Centre, Computational and
Systems Medicine, Health Futures Institute, Murdoch University,
Harry Perkins Building, Perth, WA 6150, Australia
| | - Jerome D. Coudert
- Centre for Molecular Medicine & Innovative
Therapeutics, Murdoch University, Perth, WA 6150,
Australia
| | - Dale Edgar
- State Adult Burn Unit, Fiona Stanley
Hospital, Murdoch, WA 6150, Australia
- Burn Injury Research Node, The University of
Notre Dame, Fremantle, WA 6160, Australia
- Fiona Wood Foundation,
Murdoch, WA 6150, Australia
| | - Edward Raby
- Department of Microbiology, PathWest
Laboratory Medicine, Perth, WA 6009, Australia
- Department of Infectious Diseases, Fiona
Stanley Hospital, Perth, WA 6150, Australia
| | - Sven Pettersson
- Singapore National Neuro Science
Centre, Singapore Mandalay Road, Singapore 308232,
Singapore
- Lee Kong Chian School of Medicine,
Nanyang Technological University, Mandalay Road, Singapore
308232, Singapore
- Department of Life Science Centre,
Sunway University, 55100 Kuala Lumpur,
Malaysia
| | - Toby Richards
- Medical School, Faculty of Health and Medical
Sciences, University of Western Australia, Nedlands, WA 6009,
Australia
| | - Elaine Holmes
- Australian National Phenome Centre, Computational and
Systems Medicine, Health Futures Institute, Murdoch University,
Harry Perkins Building, Perth, WA 6150, Australia
- Department of Metabolism Digestion and Reproduction,
Faculty of Medicine, Imperial College London, Sir Alexander
Fleming Building, South Kensington, London SW7 2AZ, U.K.
| | - Luke Whiley
- Australian National Phenome Centre, Computational and
Systems Medicine, Health Futures Institute, Murdoch University,
Harry Perkins Building, Perth, WA 6150, Australia
- Perron Institute for Neurological and
Translational Science, Nedlands, WA 6009,
Australia
| | - Jeremy K. Nicholson
- Australian National Phenome Centre, Computational and
Systems Medicine, Health Futures Institute, Murdoch University,
Harry Perkins Building, Perth, WA 6150, Australia
- Medical School, Faculty of Health and Medical
Sciences, University of Western Australia, Nedlands, WA 6009,
Australia
- Institute of Global Health Innovation,
Imperial College London, Level 1, Faculty Building South
Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
61
|
Lodge S, Nitschke P, Kimhofer T, Wist J, Bong SH, Loo RL, Masuda R, Begum S, Richards T, Lindon JC, Bermel W, Reinsperger T, Schaefer H, Spraul M, Holmes E, Nicholson JK. Diffusion and Relaxation Edited Proton NMR Spectroscopy of Plasma Reveals a High-Fidelity Supramolecular Biomarker Signature of SARS-CoV-2 Infection. Anal Chem 2021; 93:3976-3986. [PMID: 33577736 PMCID: PMC7908063 DOI: 10.1021/acs.analchem.0c04952] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
We have applied nuclear magnetic resonance spectroscopy based plasma phenotyping to reveal diagnostic molecular signatures of SARS-CoV-2 infection via combined diffusional and relaxation editing (DIRE). We compared plasma from healthy age-matched controls (n = 26) with SARS-CoV-2 negative non-hospitalized respiratory patients and hospitalized respiratory patients (n = 23 and 11 respectively) with SARS-CoV-2 rRT-PCR positive respiratory patients (n = 17, with longitudinal sampling time-points). DIRE data were modelled using principal component analysis and orthogonal projections to latent structures discriminant analysis (O-PLS-DA), with statistical cross-validation indices indicating excellent model generalization for the classification of SARS-CoV-2 positivity for all comparator groups (area under the receiver operator characteristic curve = 1). DIRE spectra show biomarker signal combinations conferred by differential concentrations of metabolites with selected molecular mobility properties. These comprise the following: (a) composite N-acetyl signals from α-1-acid glycoprotein and other glycoproteins (designated GlycA and GlycB) that were elevated in SARS-CoV-2 positive patients [p = 2.52 × 10-10 (GlycA) and 1.25 × 10-9 (GlycB) vs controls], (b) two diagnostic supramolecular phospholipid composite signals that were identified (SPC-A and SPC-B) from the -+N-(CH3)3 choline headgroups of lysophosphatidylcholines carried on plasma glycoproteins and from phospholipids in high-density lipoprotein subfractions (SPC-A) together with a phospholipid component of low-density lipoprotein (SPC-B). The integrals of the summed SPC signals (SPCtotal) were reduced in SARS-CoV-2 positive patients relative to both controls (p = 1.40 × 10-7) and SARS-CoV-2 negative patients (p = 4.52 × 10-8) but were not significantly different between controls and SARS-CoV-2 negative patients. The identity of the SPC signal components was determined using one and two dimensional diffusional, relaxation, and statistical spectroscopic experiments. The SPCtotal/GlycA ratios were also significantly different for control versus SARS-CoV-2 positive patients (p = 1.23 × 10-10) and for SARS-CoV-2 negatives versus positives (p = 1.60 × 10-9). Thus, plasma SPCtotal and SPCtotal/GlycA are proposed as sensitive molecular markers for SARS-CoV-2 positivity that could effectively augment current COVID-19 diagnostics and may have value in functional assessment of the disease recovery process in patients with long-term symptoms.
Collapse
Affiliation(s)
- Samantha Lodge
- Australian
National Phenome Center, and Center for Computational and Systems
Medicine, Health Futures Institute, Murdoch
University, Harry Perkins Building, Perth WA6150, Australia
| | - Philipp Nitschke
- Australian
National Phenome Center, and Center for Computational and Systems
Medicine, Health Futures Institute, Murdoch
University, Harry Perkins Building, Perth WA6150, Australia
| | - Torben Kimhofer
- Australian
National Phenome Center, and Center for Computational and Systems
Medicine, Health Futures Institute, Murdoch
University, Harry Perkins Building, Perth WA6150, Australia
| | - Julien Wist
- Australian
National Phenome Center, and Center for Computational and Systems
Medicine, Health Futures Institute, Murdoch
University, Harry Perkins Building, Perth WA6150, Australia
- Chemistry
Department, Universidad del Valle, Cali 76001, Colombia
| | - Sze-How Bong
- Australian
National Phenome Center, and Center for Computational and Systems
Medicine, Health Futures Institute, Murdoch
University, Harry Perkins Building, Perth WA6150, Australia
| | - Ruey Leng Loo
- Australian
National Phenome Center, and Center for Computational and Systems
Medicine, Health Futures Institute, Murdoch
University, Harry Perkins Building, Perth WA6150, Australia
| | - Reika Masuda
- Australian
National Phenome Center, and Center for Computational and Systems
Medicine, Health Futures Institute, Murdoch
University, Harry Perkins Building, Perth WA6150, Australia
| | - Sofina Begum
- Australian
National Phenome Center, and Center for Computational and Systems
Medicine, Health Futures Institute, Murdoch
University, Harry Perkins Building, Perth WA6150, Australia
- Department
of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, U.K.
| | - Toby Richards
- Division
of Surgery, Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Harry Perkins Building, Murdoch, Perth WA6150, Australia
| | - John C. Lindon
- Department
of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, U.K.
| | - Wolfgang Bermel
- Bruker
Biospin GmbH, Silberstreifen, Ettlingen 76275, Germany
| | | | | | - Manfred Spraul
- Bruker
Biospin GmbH, Silberstreifen, Ettlingen 76275, Germany
| | - Elaine Holmes
- Australian
National Phenome Center, and Center for Computational and Systems
Medicine, Health Futures Institute, Murdoch
University, Harry Perkins Building, Perth WA6150, Australia
- Department
of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, U.K.
| | - Jeremy K. Nicholson
- Australian
National Phenome Center, and Center for Computational and Systems
Medicine, Health Futures Institute, Murdoch
University, Harry Perkins Building, Perth WA6150, Australia
- Division
of Surgery, Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Harry Perkins Building, Murdoch, Perth WA6150, Australia
- Institute
of Global Health Innovation, Faculty of Medicine, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, U.K.
| |
Collapse
|