51
|
Evans BJ, King AT, Katsifis A, Matesic L, Jamie JF. Methods to Enhance the Metabolic Stability of Peptide-Based PET Radiopharmaceuticals. Molecules 2020; 25:molecules25102314. [PMID: 32423178 PMCID: PMC7287708 DOI: 10.3390/molecules25102314] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022] Open
Abstract
The high affinity and specificity of peptides towards biological targets, in addition to their favorable pharmacological properties, has encouraged the development of many peptide-based pharmaceuticals, including peptide-based positron emission tomography (PET) radiopharmaceuticals. However, the poor in vivo stability of unmodified peptides against proteolysis is a major challenge that must be overcome, as it can result in an impractically short in vivo biological half-life and a subsequently poor bioavailability when used in imaging and therapeutic applications. Consequently, many biologically and pharmacologically interesting peptide-based drugs may never see application. A potential way to overcome this is using peptide analogues designed to mimic the pharmacophore of a native peptide while also containing unnatural modifications that act to maintain or improve the pharmacological properties. This review explores strategies that have been developed to increase the metabolic stability of peptide-based pharmaceuticals. It includes modifications of the C- and/or N-termini, introduction of d- or other unnatural amino acids, backbone modification, PEGylation and alkyl chain incorporation, cyclization and peptide bond substitution, and where those strategies have been, or could be, applied to PET peptide-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Brendan J. Evans
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew T. King
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew Katsifis
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia;
| | - Lidia Matesic
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia;
| | - Joanne F. Jamie
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
- Correspondence: ; Tel.: +61-2-9850-8283
| |
Collapse
|
52
|
Donat CK, Hansen HH, Hansen HD, Mease RC, Horti AG, Pomper MG, L’Estrade ET, Herth MM, Peters D, Knudsen GM, Mikkelsen JD. In Vitro and In Vivo Characterization of Dibenzothiophene Derivatives [ 125I]Iodo-ASEM and [ 18F]ASEM as Radiotracers of Homo- and Heteromeric α7 Nicotinic Acetylcholine Receptors. Molecules 2020; 25:molecules25061425. [PMID: 32245032 PMCID: PMC7144377 DOI: 10.3390/molecules25061425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7 nAChR) is involved in several cognitive and physiologic processes; its expression levels and patterns change in neurologic and psychiatric diseases, such as schizophrenia and Alzheimer’s disease, which makes it a relevant drug target. Development of selective radioligands is important for defining binding properties and occupancy of novel molecules targeting the receptor. We tested the in vitro binding properties of [125I]Iodo-ASEM [(3-(1,4-diazabycyclo[3.2.2]nonan-4-yl)-6-(125I-iododibenzo[b,d]thiopentene 5,5-dioxide)] in the mouse, rat and pig brain using autoradiography. The in vivo binding properties of [18F]ASEM were investigated using positron emission tomography (PET) in the pig brain. [125I]Iodo-ASEM showed specific and displaceable high affinity (~1 nM) binding in mouse, rat, and pig brain. Binding pattern overlapped with [125I]α-bungarotoxin, specific binding was absent in α7 nAChR gene-deficient mice and binding was blocked by a range of α7 nAChR orthosteric modulators in an affinity-dependent order in the pig brain. Interestingly, relative to the wild-type, binding in β2 nAChR gene-deficient mice was lower for [125I]Iodo-ASEM (58% ± 2.7%) than [125I]α-bungarotoxin (23% ± 0.2%), potentially indicating different binding properties to heteromeric α7β2 nAChR. [18F]ASEM PET in the pig showed high brain uptake and reversible tracer kinetics with a similar spatial distribution as previously reported for α7 nAChR. Blocking with SSR-180,711 resulted in a significant decrease in [18F]ASEM binding. Our findings indicate that [125I]Iodo-ASEM allows sensitive and selective imaging of α7 nAChR in vitro, with better signal-to-noise ratio than previous tracers. Preliminary data of [18F]ASEM in the pig brain demonstrated principal suitable kinetic properties for in vivo quantification of α7 nAChR, comparable to previously published data.
Collapse
Affiliation(s)
- Cornelius K. Donat
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Department of Brain Sciences, Imperial College London, London W12 0 LS, UK
- Correspondence: (C.K.D.); (J.D.M.); Tel.: +45-40205378 (J.D.M)
| | - Henrik H. Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Hanne D. Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Ronnie C. Mease
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Andrew G. Horti
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (R.C.M.); (A.G.H.); (M.G.P.)
| | - Elina T. L’Estrade
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark;
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark;
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | - Gitte M. Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
| | - Jens D. Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, DK-2100 Copenhagen, Denmark; (H.H.H.); (H.D.H.); (E.T.L.); (G.M.K.)
- Correspondence: (C.K.D.); (J.D.M.); Tel.: +45-40205378 (J.D.M)
| |
Collapse
|
53
|
Bai P, Bai S, Placzek MS, Lu X, Fiedler SA, Ntaganda B, Wey HY, Wang C. A New Positron Emission Tomography Probe for Orexin Receptors Neuroimaging. Molecules 2020; 25:molecules25051018. [PMID: 32106419 PMCID: PMC7179119 DOI: 10.3390/molecules25051018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 01/16/2023] Open
Abstract
The orexin receptor (OX) is critically involved in motivation and sleep−wake regulation and holds promising therapeutic potential in various mood disorders. To further investigate the role of orexin receptors (OXRs) in the living human brain and to evaluate the treatment potential of orexin-targeting therapeutics, we herein report a novel PET probe ([11C]CW24) for OXRs in the brain. CW24 has moderate binding affinity for OXRs (IC50 = 0.253 μM and 1.406 μM for OX1R and OX2R, respectively) and shows good selectivity to OXRs over 40 other central nervous system (CNS) targets. [11C]CW24 has high brain uptake in rodents and nonhuman primates, suitable metabolic stability, and appropriate distribution and pharmacokinetics for brain positron emission tomography (PET) imaging. [11C]CW24 warrants further evaluation as a PET imaging probe of OXRs in the brain.
Collapse
Affiliation(s)
- Ping Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (P.B.); (X.L.)
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sha Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
| | - Michael S. Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
| | - Xiaoxia Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; (P.B.); (X.L.)
| | - Stephanie A. Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
| | - Brenda Ntaganda
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (S.B.); (S.A.F.); (B.N.); (H.-Y.W.)
- Correspondence:
| |
Collapse
|
54
|
Uzuegbunam BC, Librizzi D, Hooshyar Yousefi B. PET Radiopharmaceuticals for Alzheimer's Disease and Parkinson's Disease Diagnosis, the Current and Future Landscape. Molecules 2020; 25:E977. [PMID: 32098280 PMCID: PMC7070523 DOI: 10.3390/molecules25040977] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Ironically, population aging which is considered a public health success has been accompanied by a myriad of new health challenges, which include neurodegenerative disorders (NDDs), the incidence of which increases proportionally to age. Among them, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common, with the misfolding and the aggregation of proteins being common and causal in the pathogenesis of both diseases. AD is characterized by the presence of hyperphosphorylated τ protein (tau), which is the main component of neurofibrillary tangles (NFTs), and senile plaques the main component of which is β-amyloid peptide aggregates (Aβ). The neuropathological hallmark of PD is α-synuclein aggregates (α-syn), which are present as insoluble fibrils, the primary structural component of Lewy body (LB) and neurites (LN). An increasing number of non-invasive PET examinations have been used for AD, to monitor the pathological progress (hallmarks) of disease. Notwithstanding, still the need for the development of novel detection tools for other proteinopathies still remains. This review, although not exhaustively, looks at the timeline of the development of existing tracers used in the imaging of Aβ and important moments that led to the development of these tracers.
Collapse
Affiliation(s)
| | - Damiano Librizzi
- Department of Nuclear Medicine, Philipps-University of Marburg, 35043 Marburg, Germany;
| | - Behrooz Hooshyar Yousefi
- Nuclear Medicine Department, and Neuroimaging Center, Technical University of Munich, 81675 Munich, Germany;
- Department of Nuclear Medicine, Philipps-University of Marburg, 35043 Marburg, Germany;
| |
Collapse
|
55
|
McCluskey SP, Plisson C, Rabiner EA, Howes O. Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development. Eur J Nucl Med Mol Imaging 2020; 47:451-489. [PMID: 31541283 PMCID: PMC6974496 DOI: 10.1007/s00259-019-04488-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE A limit on developing new treatments for a number of central nervous system (CNS) disorders has been the inadequate understanding of the in vivo pathophysiology underlying neurological and psychiatric disorders and the lack of in vivo tools to determine brain penetrance, target engagement, and relevant molecular activity of novel drugs. Molecular neuroimaging provides the tools to address this. This article aims to provide a state-of-the-art review of new PET tracers for CNS targets, focusing on developments in the last 5 years for targets recently available for in-human imaging. METHODS We provide an overview of the criteria used to evaluate PET tracers. We then used the National Institute of Mental Health Research Priorities list to identify the key CNS targets. We conducted a PubMed search (search period 1st of January 2013 to 31st of December 2018), which yielded 40 new PET tracers across 16 CNS targets which met our selectivity criteria. For each tracer, we summarised the evidence of its properties and potential for use in studies of CNS pathophysiology and drug evaluation, including its target selectivity and affinity, inter and intra-subject variability, and pharmacokinetic parameters. We also consider its potential limitations and missing characterisation data, but not specific applications in drug development. Where multiple tracers were present for a target, we provide a comparison of their properties. RESULTS AND CONCLUSIONS Our review shows that multiple new tracers have been developed for proteinopathy targets, particularly tau, as well as the purinoceptor P2X7, phosphodiesterase enzyme PDE10A, and synaptic vesicle glycoprotein 2A (SV2A), amongst others. Some of the most promising of these include 18F-MK-6240 for tau imaging, 11C-UCB-J for imaging SV2A, 11C-CURB and 11C-MK-3168 for characterisation of fatty acid amide hydrolase, 18F-FIMX for metabotropic glutamate receptor 1, and 18F-MNI-444 for imaging adenosine 2A. Our review also identifies recurrent issues within the field. Many of the tracers discussed lack in vivo blocking data, reducing confidence in selectivity. Additionally, late-stage identification of substantial off-target sites for multiple tracers highlights incomplete pre-clinical characterisation prior to translation, as well as human disease state studies carried out without confirmation of test-retest reproducibility.
Collapse
Affiliation(s)
- Stuart P McCluskey
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK.
| | - Christophe Plisson
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Eugenii A Rabiner
- Invicro LLC, A Konica Minolta Company, Burlington Danes Building, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
56
|
L 'Estrade ET, Shalgunov V, Edgar FG, Strebl-Bantillo MG, Xiong M, Crestey F, Neelamegam R, Dyssegaard A, Lehel S, Erlandsson M, Ohlsson T, Hooker JM, Knudsen GM, Herth MM, Hansen HD. Radiosynthesis and preclinical evaluation of [ 11 C]Cimbi-701 - Towards the imaging of cerebral 5-HT 7 receptors. J Labelled Comp Radiopharm 2020; 63:46-55. [PMID: 31674045 DOI: 10.1002/jlcr.3808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/05/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
The serotonin 7 (5-HT7 ) receptor is suggested to be involved in a broad variety of CNS disorders, but very few in vivo tools exist to study this important target. Molecular imaging with positron emission tomography (PET) would enable an in vivo characterization of the 5-HT7 receptor. However, no clinical PET radiotracer exists for this receptor, and thus we aimed to develop such a tracer. In this study, we present the preclinical evaluation of [11 C]Cimbi-701. Cimbi-701 was synthesized in a one-step procedure starting from SB-269970. Its selectivity profile was determined using an academic screening platform (NIMH Psychoactive Drug Screening Program). Successful radiolabeling of [11 C]Cimbi-701 and subsequent in vivo evaluation was conducted in rats, pigs and baboon. In vivo specificity was investigated by 5-HT7 and σ receptor blocking studies. P-gp efflux transporter dependency was investigated using elacridar. [11 C]Cimbi-701 could successfully be synthesized. Selectivity profiling revealed high affinity for the 5-HT7 (Ki = 18 nM), σ-1 (Ki = 9.2 nM) and σ-2 (Ki = 1.6 nM) receptors. In rats, [11 C]Cimbi-701 acted as a strong P-gp substrate. After P-gp inhibition, rat brain uptake could specifically be blocked by 5-HT7 and σ receptor ligands. In pig, high brain uptake and specific 5-HT7 and σ-receptor binding was found for [11 C]Cimbi-701 without P-gp inhibition. Finally, low brain uptake was found in baboons. Both the specific σ-receptor binding and the low brain uptake of [11 C]Cimbi-701 displayed in baboon discouraged further translation to humans. Instead, we suggest exploration of this structural class as results indicate that selective 5-HT7 receptor imaging might be possible when more selective non-P-gp substrates are identified.
Collapse
Affiliation(s)
- Elina T L 'Estrade
- Neurobiology Research Unit and Center for Integrated Molecular Imaging, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Lund, Sweden
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fraser G Edgar
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin G Strebl-Bantillo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mengfei Xiong
- Neurobiology Research Unit and Center for Integrated Molecular Imaging, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - François Crestey
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ramesh Neelamegam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Agnete Dyssegaard
- Neurobiology Research Unit and Center for Integrated Molecular Imaging, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Szabolcs Lehel
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Maria Erlandsson
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Lund, Sweden
| | - Tomas Ohlsson
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Lund, Sweden
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gitte M Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Imaging, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Hanne D Hansen
- Neurobiology Research Unit and Center for Integrated Molecular Imaging, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
57
|
Poulie CBM, Jensen AA, Halberstadt AL, Kristensen JL. DARK Classics in Chemical Neuroscience: NBOMes. ACS Chem Neurosci 2019; 11:3860-3869. [PMID: 31657895 PMCID: PMC9191638 DOI: 10.1021/acschemneuro.9b00528] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
N-Benzylphenethylamines, commonly known as NBOMes, are synthetic psychedelic compounds derived from the phenethylamine class of psychedelics (2C-X compounds), which originally have been derived from the naturally occurring alkaloid mescaline. Analogously to their parent compounds and other classical psychedelics, such as psilocybin and lysergic acid diethylamide (LSD), NBOMes are believed to exert their main pharmacological effects through activation of serotonin 2A (5-HT2A) receptors. Since their introduction as New Psychoactive Substances (NPSs) in 2010, NBOMes have been widely used for recreational purposes; this has resulted in numerous cases of acute toxicity, sometimes with lethal outcomes, leading to the classification of several NBOMes as Schedule I substances in 2013. However, in addition to their recreational use, the NBOMe class has yielded several important biochemical tools, including [11C]Cimbi-36, which is now being used in positron emission tomography (PET) studies of the 5-HT2A and 5-HT2C receptors in the mammalian brain, and 25CN-NBOH, one of the most selective 5-HT2A receptor agonists developed to date. In this Review, the history, chemistry, structure-activity relationships, ADME (absorption, distribution, metabolism, and excretion) properties, and safety profiles of NBOMes will be outlined and discussed.
Collapse
|
58
|
Chemical Probes for the Adenosine Receptors. Pharmaceuticals (Basel) 2019; 12:ph12040168. [PMID: 31726680 PMCID: PMC6958474 DOI: 10.3390/ph12040168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Research on the adenosine receptors has been supported by the continuous discovery of new chemical probes characterized by more and more affinity and selectivity for the single adenosine receptor subtypes (A1, A2A, A2B and A3 adenosine receptors). Furthermore, the development of new techniques for the detection of G protein-coupled receptors (GPCR) requires new specific probes. In fact, if in the past radioligands were the most important GPCR probes for detection, compound screening and diagnostic purposes, nowadays, increasing importance is given to fluorescent and covalent ligands. In fact, advances in techniques such as fluorescence resonance energy transfer (FRET) and fluorescent polarization, as well as new applications in flow cytometry and different fluorescence-based microscopic techniques, are at the origin of the extensive research of new fluorescent ligands for these receptors. The resurgence of covalent ligands is due in part to a change in the common thinking in the medicinal chemistry community that a covalent drug is necessarily more toxic than a reversible one, and in part to the useful application of covalent ligands in GPCR structural biology. In this review, an updated collection of available chemical probes targeting adenosine receptors is reported.
Collapse
|
59
|
Lan Y, Bai P, Chen Z, Neelamegam R, Placzek MS, Wang H, Fiedler SA, Yang J, Yuan G, Qu X, Schmidt HR, Song J, Normandin MD, Ran C, Wang C. Novel radioligands for imaging sigma-1 receptor in brain using positron emission tomography (PET). Acta Pharm Sin B 2019; 9:1204-1215. [PMID: 31867166 PMCID: PMC6900558 DOI: 10.1016/j.apsb.2019.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 12/18/2022] Open
Abstract
The sigma-1 receptor (σ 1R) is a unique intracellular protein. σ 1R plays a major role in various pathological conditions in the central nervous system (CNS), implicated in several neuropsychiatric disorders. Imaging of σ 1R in the brain using positron emission tomography (PET) could serve as a noninvasively tool for enhancing the understanding of the disease's pathophysiology. Moreover, σ 1R PET tracers can be used for target validation and quantification in diagnosis. Herein, we describe the radiosynthesis, in vivo PET/CT imaging of novel σ 1R 11C-labeled radioligands based on 6-hydroxypyridazinone, [11C]HCC0923 and [11C]HCC0929. Two radioligands have high affinities to σ 1R, with good selectivity. In mice PET/CT imaging, both radioligands showed appropriate kinetics and distributions. Additionally, the specific interactions of two radioligands were reduced by compounds 13 and 15 (self-blocking). Of the two, [11C]HCC0929 was further investigated in positive ligands blocking studies, using classic σ 1R agonist SA 4503 and σ 1R antagonist PD 144418. Both σ 1R ligands could extensively decreased the uptake of [11C]HCC0929 in mice brain. Besides, the biodistribution of major brain regions and organs of mice were determined in vivo. These studies demonstrated that two radioligands, especially [11C]HCC0929, possessed ideal imaging properties and might be valuable tools for non-invasive quantification of σ 1R in brain.
Collapse
Key Words
- 11C-labeled radioligand
- 3D, three-dimensional
- 6-Hydroxypyridazinone
- AF, ammonium formate
- BBB, brain blood barrier
- BP, binding potential
- Brain imaging
- CNS, center nervous systems
- CRPS, complex regional pain syndrome
- DMF, dimethyl formamide
- DMSO, dimethylsulfoxide
- ER, endoplasmic reticulum
- LCP, lipidic cubic phase
- MAM, mitochondria-associated ER membrane
- PCP, phencyclidine
- PET
- PET, positron emission tomography
- TFA, trifluoroacetic acid
- σ1R
- σ1R, sigma-1 receptor
- σ2R, sigma-2 receptor
Collapse
Affiliation(s)
- Yu Lan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zude Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ramesh Neelamegam
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael S. Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hao Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Stephanie A. Fiedler
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Gengyang Yuan
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Xiying Qu
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hayden R. Schmidt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02129, USA
| | - Jinchun Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
60
|
L'Estrade ET, Erlandsson M, Edgar FG, Ohlsson T, Knudsen GM, Herth MM. Towards selective CNS PET imaging of the 5-HT 7 receptor system: Past, present and future. Neuropharmacology 2019; 172:107830. [PMID: 31669129 DOI: 10.1016/j.neuropharm.2019.107830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/24/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022]
Abstract
Since its discovery in 1993, the serotonin receptor subtype 7 (5-HT7) has attracted significant attention as a potential drug target; due to its elucidated roles in conditions such as insomnia, schizophrenia, and more. Therefore, it is unsurprising that there has been relatively early efforts undertaken to develop a positron emission tomography (PET) imaging agent for said receptor system. PET can be clinically used to probe receptor systems in vivo, permitting information such as a drug's occupancy against this system to be investigated. This review focuses on the efforts towards the development of a 5-HT7R selective PET CNS tracer over the last 20 years, critically reflecting on applied strategies and commonly employed chemical frameworks and suggests future considerations that are needed to successfully develop a PET tracer for this clinically relevant target. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Elina T L'Estrade
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetesparken 2, 2100, Copenhagen, Denmark; Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42, Lund, Sweden
| | - Maria Erlandsson
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42, Lund, Sweden
| | - Fraser G Edgar
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetesparken 2, 2100, Copenhagen, Denmark
| | - Tomas Ohlsson
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42, Lund, Sweden
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Matthias M Herth
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark; Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetesparken 2, 2100, Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
61
|
Colom M, Vidal B, Zimmer L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front Mol Neurosci 2019; 12:255. [PMID: 31680859 PMCID: PMC6813225 DOI: 10.3389/fnmol.2019.00255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France
| | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Lyon, France.,CERMEP, Hospices Civils de Lyon, Bron, France.,Institut National des Sciences et Techniques Nucléaires, CEA Saclay, Gif-sur-Yvette, France
| |
Collapse
|
62
|
Tampio L’Estrade E, Xiong M, Shalgunov V, Edgar FG, Volk B, Baerentzen SL, Palner M, Erlandsson M, Ohlsson T, Knudsen GM, Herth MM. Development and Evaluation of Two Potential 5-HT 7 Receptor PET Tracers: [ 18F]ENL09 and [ 18F]ENL10. ACS Chem Neurosci 2019; 10:3961-3968. [PMID: 30973705 DOI: 10.1021/acschemneuro.9b00132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The latest addition to the serotonin (5-HT) receptor family is the 5-HT7 receptor (5-HT7R). This receptor has gained interest as a drug target due to its involvement in various disorders such as depression or schizophrenia. There is currently no clinically validated positron emission tomography (PET) tracer for the 5-HT7R available. But, the (arylpiperazinyl-butyl)oxindole scaffold provides a promising lead structure for this purpose. Here, we synthesized 12 (arylpiperazinyl-butyl)oxindole derivatives and in vitro affinity screening identified two structures with suitable affinity and selectivity to be radiolabeled and tested as 5-HT7R selective PET tracers. Next, the radiolabeled products [18F]ENL09 and [18F]ENL10 were evaluated as PET tracers in rats. Both tracers were found to be P-gp substrates, but after P-gp inhibition the brain uptake showed a regional distribution in line with the known 5-HT7R distribution. The [18F]ENL10 brain binding was displaceable with a 5-HT7R selective ligand, whereas [18F]ENL09 was not. We find that [18F]ENL10 is a promising 5-HT7R selective PET tracer candidate that should be investigated in higher species.
Collapse
Affiliation(s)
- Elina Tampio L’Estrade
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Mengfei Xiong
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Fraser G. Edgar
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest, Hungary
| | - Simone L. Baerentzen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Mikael Palner
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Center of Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1017 Copenhagen, Denmark
| | - Maria Erlandsson
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Tomas Ohlsson
- Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Gitte M. Knudsen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1017 Copenhagen, Denmark
| | - Matthias M. Herth
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
63
|
Vermeulen K, Vandamme M, Bormans G, Cleeren F. Design and Challenges of Radiopharmaceuticals. Semin Nucl Med 2019; 49:339-356. [PMID: 31470930 DOI: 10.1053/j.semnuclmed.2019.07.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review describes general concepts with regard to radiopharmaceuticals for diagnostic or therapeutic applications that help to understand the specific challenges encountered during the design, (radio)synthesis, in vitro and in vivo evaluation and clinical translation of novel radiopharmaceuticals. The design of a radiopharmaceutical requires upfront decisions with regard to combining a suitable vector molecule with an appropriate radionuclide, considering the type and location of the molecular target, the desired application, and the time constraints imposed by the relatively short half-life of radionuclides. Well-designed in vitro and in vivo experiments allow nonclinical validation of radiotracers. Ultimately, in combination with a limited toxicology package, the radiotracer becomes a radiopharmaceutical for clinical evaluation, produced in compliance with regulatory requirements for medicines for intravenous (IV) injection.
Collapse
Affiliation(s)
- Koen Vermeulen
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Mathilde Vandamme
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium.
| | - Frederik Cleeren
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
64
|
Stadulytė A, Alcaide-Corral CJ, Walton T, Lucatelli C, Tavares AAS. Analysis of PK11195 concentrations in rodent whole blood and tissue samples by rapid and reproducible chromatographic method to support target-occupancy PET studies. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:33-39. [PMID: 31005772 PMCID: PMC6522057 DOI: 10.1016/j.jchromb.2019.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/24/2022]
Abstract
In Positron Emission Tomography (PET) research, it is important to assess not only pharmacokinetics of a radiotracer in vivo, but also of the drugs used in blocking/displacement PET studies. Typically, pharmacokinetic/pharmacodynamic (PK/PD) analyses of drugs used in rodent PET studies are based on population average pharmacokinetic profiles of the drugs due to limited blood volume withdrawal while simultaneously maintaining physiological homeostasis. This likely results in bias of PET data quantification, including unknown bias of target occupancy (TO) measurements. This study aimed to develop a High Performance Liquid Chromatography (HPLC) method for PK/PD quantification of drugs used in preclinical rodent PET research, specifically the translocator 18 kDa protein (TSPO) selective drug, PK11195, that used sub-millilitre blood volumes. The lowest detection limit for the proposed HPLC method ranged between 7.5 and 10 ng/mL depending on the method used to calculate the limit of detection, and the measured average relative standard deviation for intermediate precision was equal to 17.2%. Most importantly, we were able to demonstrate a significant difference between calculated PK11195 concentrations at 0.5, 1, 2, 3, 5, 15 and 30 min post-administration and individually measured whole blood levels (significance level range from p < 0.05 to p < 0.001; one-way ANOVA, Dunnet's post hoc test, p < 0.05). The HPLC method developed here uses sub-millilitre sample volumes to reproducibly assess PK/PD of PK11195 in rodent blood. This study highlights the importance of individually measured PK/PD drug concentrations when quantifying the TO from blocking/displacement rodent PET experiments.
Collapse
Affiliation(s)
- Agnė Stadulytė
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK.
| | - Carlos José Alcaide-Corral
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK
| | - Tashfeen Walton
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Christophe Lucatelli
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Adriana Alexandre S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, UK; Edinburgh Preclinical Imaging (EPI), University of Edinburgh, UK
| |
Collapse
|
65
|
Xu Y, Li Z. Imaging metabotropic glutamate receptor system: Application of positron emission tomography technology in drug development. Med Res Rev 2019; 39:1892-1922. [DOI: 10.1002/med.21566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Youwen Xu
- Independent Consultant and Contractor, Radiopharmaceutical Development, Validation and Bio-Application; Philadelphia Pennsylvania
| | - Zizhong Li
- Pharmaceutical Research and Development, SOFIE Biosciences; Somerset New Jersey
| |
Collapse
|
66
|
Evaluation of the Feasibility of Screening Tau Radiotracers Using an Amyloid Biomathematical Screening Methodology. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2018:6287913. [PMID: 30662517 PMCID: PMC6314003 DOI: 10.1155/2018/6287913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022]
Abstract
The purpose of this study is to evaluate the feasibility of extending a previously developed amyloid biomathematical screening methodology to support the screening of tau radiotracers during compound development. 22 tau-related PET radiotracers were investigated. For each radiotracer, in silico MLogP, V x, and in vitro K D were input into the model to predict the in vivo K 1, k 2, and BPND under healthy control (HC), mild cognitive impaired (MCI), and Alzheimer's disease (AD) conditions. These kinetic parameters were used to simulate the time activity curves (TACs) in the target regions of HC, MCI, and AD and a reference region. Standardized uptake value ratios (SUVR) were determined from the integrated area under the TACs of the target region over the reference region within a default time window of 90-110 min. The predicted K 1, k 2, and BPND values were compared with the clinically observed values. The TACs and SUVR distributions were also simulated with population variations and noise. Finally, the clinical usefulness index (CUI) ranking was compared with clinical comparison results. The TACs and SUVR distributions differed for tau radiotracers with lower tau selectivity. The CUI values ranged from 0.0 to 16.2, with 6 out of 9 clinically applied tau radiotracers having CUI values higher than the recommend CUI value of 3.0. The differences between the clinically observed TACs and SUVR results showed that the evaluation of the clinical usefulness of tau radiotracer based on single target binding could not fully reflect in vivo tau binding. The screening methodology requires further study to improve the accuracy of screening tau radiotracers. However, the higher CUI rankings of clinically applied tau radiotracers with higher signal-to-noise ratio supported the use of the screening methodology in radiotracer development by allowing comparison of candidate radiotracers with clinically applied radiotracers based on SUVR, with respect to binding to a single target.
Collapse
|
67
|
Chang CP, Huang HL, Huang JK, Hung MS, Wu CH, Song JS, Lee CJ, Yu CS, Shia KS. Fluorine-18 isotope labeling for positron emission tomography imaging. Direct evidence for DBPR211 as a peripherally restricted CB1 inverse agonist. Bioorg Med Chem 2018; 27:216-223. [PMID: 30528163 DOI: 10.1016/j.bmc.2018.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
The [18F] isotope-labelled CB1 inverse agonist 3 was elaborated and synthesized for positron emission tomography scanning studies. After immediate purification and calibration with its unlabeled counterpart, compound 3 was intravenously injected in mice and revealed that its distribution percentage in brain over 90-min scans among five region of interests, including brain, liver, heart, thigh muscle and kidney was lower than 1%, thus providing direct evidence to justify itself as a peripherally restricted CB1 antagonist.
Collapse
Affiliation(s)
- Chun-Ping Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Ho-Lien Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Jing-Kai Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Ming-Shiu Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Chia-Jui Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Chung-Shan Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC; Institute of Nuclear Engineering and Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC.
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC.
| |
Collapse
|
68
|
Sowa AR, Brooks AF, Shao X, Henderson BD, Sherman P, Arteaga J, Stauff J, Lee AC, Koeppe RA, Scott PJH, Kilbourn MR. Development of Positron Emission Tomography Radiotracers for the GABA Transporter 1. ACS Chem Neurosci 2018; 9:2767-2773. [PMID: 29763549 DOI: 10.1021/acschemneuro.8b00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In vivo positron emission tomography (PET) imaging of the γ-aminobutyric acid (GABA) receptor complex has been accomplished using radiolabeled benzodiazepine derivatives, but development of specific presynaptic radioligands targeting the neuronal membrane GABA transporter type 1 (GAT-1) has been less successful. The availability of new structure-activity studies of GAT-1 inhibitors and the introduction of a GAT-1 inhibitor (tiagabine, Gabatril) into clinical use prompted us to reinvestigate the syntheses of PET ligands for this transporter. Initial synthesis and rodent PET studies of N-[11C]methylnipecotic acid confirmed the low brain uptake of that small and polar molecule. The common design approach to improve blood-brain barrier permeability of GAT-1 inhibitors is the attachment of a large lipophilic substituent. We selected an unsymmetrical bis-aromatic residue attached to the ring nitrogen by a vinyl ether spacer from a series recently reported by Wanner and coworkers. Nucleophilic aromatic substitution of an aryl chloride precursor with [18F]fluoride was used to prepare the desired candidate radiotracer ( R, E/ Z)-1-(2-((4-fluoro-2-(4-[18F]fluorobenzoyl)styryl)oxy)ethyl)piperidine-3-carboxylic acid (( R, E/ Z)-[18F]10). PET studies in rats showed no brain uptake, which was not altered by pretreatment of animals with the P-glycoprotein inhibitor cyclosporine A, indicating efflux by Pgp was not responsible. Subsequent PET imaging studies of ( R, E/ Z)-[18F]10 in rhesus monkey brain showed very low brain uptake. Finally, to test if the free carboxylic acid group was the likely cause of poor brain uptake, PET studies were done using the ethyl ester derivative of ( R, E/ Z)-[18F]10. Rapid and significant monkey brain uptake of the ester was observed, followed by a slow washout over 90 min. The blood-brain barrier permeability of the ester supports a hypothesis that the free acid function limits brain uptake of nipecotic acid-based GAT-1 radioligands, and future radiotracer efforts should investigate the use of carboxylic acid bioisosteres.
Collapse
Affiliation(s)
- Alexandra R. Sowa
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Allen F. Brooks
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Bradford D. Henderson
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Philip Sherman
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Janna Arteaga
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jenelle Stauff
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Adam C. Lee
- E.I. du Pont de Nemours and Company, DuPont Haskell Global Center for Health Sciences, P.O. Box 30, Newark, Delaware 19714, United States
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Michael R. Kilbourn
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
69
|
Shalgunov V, van Waarde A, Booij J, Michel MC, Dierckx RAJO, Elsinga PH. Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging. Med Res Rev 2018; 39:1014-1052. [PMID: 30450619 PMCID: PMC6587759 DOI: 10.1002/med.21552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
The concept of the high‐affinity state postulates that a certain subset of G‐protein‐coupled receptors is primarily responsible for receptor signaling in the living brain. Assessing the abundance of this subset is thus potentially highly relevant for studies concerning the responses of neurotransmission to pharmacological or physiological stimuli and the dysregulation of neurotransmission in neurological or psychiatric disorders. The high‐affinity state is preferentially recognized by agonists in vitro. For this reason, agonist tracers have been developed as tools for the noninvasive imaging of the high‐affinity state with positron emission tomography (PET). This review provides an overview of agonist tracers that have been developed for PET imaging of the brain, and the experimental paradigms that have been developed for the estimation of the relative abundance of receptors configured in the high‐affinity state. Agonist tracers appear to be more sensitive to endogenous neurotransmitter challenge than antagonists, as was originally expected. However, other expectations regarding agonist tracers have not been fulfilled. Potential reasons for difficulties in detecting the high‐affinity state in vivo are discussed.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine, Ghent University, University Hospital, Ghent, Belgium
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
70
|
Abstract
Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.
Collapse
Affiliation(s)
- Brian P Rempel
- 1 Department of Science, Augustana Faculty, University of Alberta, Edmonton, Alberta, Canada
| | - Eric W Price
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher P Phenix
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,3 Biomarker Discovery, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
71
|
Auberson YP, Briard E, Rudolph B, Kaupmann K, Smith P, Oberhauser B. PET Imaging of T Cells: Target Identification and Feasibility Assessment. ChemMedChem 2018; 13:1566-1579. [DOI: 10.1002/cmdc.201800241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Yves P. Auberson
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 141 Klybeckstrasse 4057 Basel Switzerland
| | - Emmanuelle Briard
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 141 Klybeckstrasse 4057 Basel Switzerland
| | - Bettina Rudolph
- Translational Medicine, Pharmacokinetics Sciences Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Klemens Kaupmann
- Autoimmunity, Transplantation & Inflammation Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Paul Smith
- Autoimmunity, Transplantation & Inflammation Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Berndt Oberhauser
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 141 Klybeckstrasse 4057 Basel Switzerland
| |
Collapse
|
72
|
Li Y, Xu D, Chan HN, Poon CY, Ho SL, Li HW, Wong MS. Dual-Modal NIR-Fluorophore Conjugated Magnetic Nanoparticle for Imaging Amyloid-β Species In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800901. [PMID: 29882247 DOI: 10.1002/smll.201800901] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/15/2018] [Indexed: 06/08/2023]
Abstract
Senile plaques, the extracellular deposit of amyloid-β (Aβ) peptides, are one of the neuropathological hallmarks found in Alzheimer's disease (AD) brain. The current method of brain imaging of amyloid plaques based on positron emission tomography (PET) is expensive and invasive with low spatial resolution. Thus, the development of sensitive and nonradiative amyloid-β (Aβ)-specific contrast agents is highly important and beneficial to achieve early AD detection, monitor the disease progression, and evaluate the effectiveness of potential AD drugs. Here a neuroprotective dual-modal nanoprobe developed by integrating highly Aβ-specific and turn-on fluorescence cyanine sensors with superparamagnetic iron oxide nanoparticles as an effective near-infrared imaging (NIRI)/magnetic resonance imaging (MRI) contrast agent for imaging of Aβ species in vivo is reported. This Aβ-specific probe is found not only nontoxic and noninvasive, but also highly blood brain barrier permeable. It also shows a potent neuroprotective effect against Aβ-induced toxicities. This nanoprobe is successfully applied for in vivo fluorescence imaging with high sensitivity and selectivity to Aβ species, and MRI with high spatial resolution in an APP/PS1 transgenic mice model. Its potential as a powerful in vivo dual-modal imaging tool for early detection and diagnosis of AD in humans is affirmed.
Collapse
Affiliation(s)
- Yinhui Li
- Department Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry, Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR China
| | - Di Xu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR China
| | - Hei-Nga Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR China
| | | | - See-Lok Ho
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR China
| | - Man Shing Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR China
| |
Collapse
|
73
|
Huang YC, Farn SS, Chou YC, Yeh CN, Chang CW, Chung YH, Chen TW, Huang WS, Yu CS. Synthesis of para
-[ 18
F]Fluorofenbufen Octylamide for PET Imaging of Brain Tumors. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ying-Cheng Huang
- Department of Neurosurgery, Chang-Gung Memorial Hospital at Linkou; Chang Gung University; Taiwan
| | - Shiou-Shiow Farn
- Department of Biomedical Engineering and Environmental Sciences; National Tsinghua University; Hsinchu 300 Taiwan
- Isotope Application Division; Institute of Nuclear Energy Research; Taoyuan 32546 Taiwan
| | - Yo-Cheng Chou
- Department of Biomedical Engineering and Environmental Sciences; National Tsinghua University; Hsinchu 300 Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang-Gung Memorial Hospital at Linkou; Chang Gung University; Taiwan
| | - Chi-Wei Chang
- Department of Nuclear Medicine; Veterans General Hospital at Taipei; Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation; Chang Gung Memorial Hospital; Taiwan
| | - Tsong-Wen Chen
- Department of Surgery, Chang-Gung Memorial Hospital at Linkou; Chang Gung University; Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine; Veterans General Hospital at Taipei; Taiwan
| | - Chung-Shan Yu
- Department of Biomedical Engineering and Environmental Sciences; National Tsinghua University; Hsinchu 300 Taiwan
- Institute of Nuclear Engineering and Science; National Tsing-Hua University; Hsinchu 300 Taiwan
| |
Collapse
|
74
|
Johansen A, Hansen HD, Svarer C, Lehel S, Leth-Petersen S, Kristensen JL, Gillings N, Knudsen GM. The importance of small polar radiometabolites in molecular neuroimaging: A PET study with [ 11C]Cimbi-36 labeled in two positions. J Cereb Blood Flow Metab 2018; 38:659-668. [PMID: 29215308 PMCID: PMC5888860 DOI: 10.1177/0271678x17746179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022]
Abstract
[11C]Cimbi-36, a 5-HT2A receptor agonist PET radioligand, contains three methoxy groups amenable to [11C]-labeling. In pigs, [11C]Cimbi-36 yields a polar (M1) and a less polar (M2) radiometabolite fraction, while changing the labeling to [11C]Cimbi-36_5 yields only the M1 fraction. We investigate whether changing the labeling position of [11C]Cimbi-36 eliminates M2 in humans, and if this changes the signal-to-background ratio. Six healthy volunteers each underwent two dynamic PET scans; after injection of [11C]Cimbi-36, both the M1 and M2 fraction appeared in plasma, whereas only the M1 appeared after [11C]Cimbi-36_5 injection. [11C]Cimbi-36_5 generated higher uptake than [11C]Cimbi-36 in both neocortex and cerebellum. With the simplified reference tissue model mean neocortical non-displaceable binding potential for [11C]Cimbi-36 was 1.38 ± 0.07, whereas for [11C]Cimbi-36_5, it was 1.18 ± 0.14. This significant difference can be explained by higher non-displaceable binding caused by demethylation products in the M1 fraction such as [11C]formaldehyde and/or [11C]carbon dioxide/bicarbonate. Although often considered without any impact on binding measures, we show that small polar radiometabolites can substantially decrease the signal-to-background ratio of PET radioligands for neuroimaging. Further, we find that [11C]Cimbi-36 has a better signal-to-background ratio than [11C]Cimbi-36_5, and thus will be more sensitive to changes in 5-HT2A receptor levels in the brain.
Collapse
Affiliation(s)
- Annette Johansen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne D Hansen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark
| | - Szabolcs Lehel
- PET & Cyclotron Unit, Rigshospitalet, Copenhagen, Denmark
| | - Sebastian Leth-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper L Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nic Gillings
- PET & Cyclotron Unit, Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
75
|
Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET Radiotracers and Targets for Imaging of Neuroinflammation in Neurodegenerative Diseases: Outlook Beyond TSPO. Mol Imaging 2018; 17:1536012118792317. [PMID: 30203712 PMCID: PMC6134492 DOI: 10.1177/1536012118792317] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Vadim Bernard-Gauthier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Cumming
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
76
|
Kilbourn MR, Scott PJ. Is logP truly dead? Nucl Med Biol 2017; 54:41-42. [DOI: 10.1016/j.nucmedbio.2017.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022]
|
77
|
Bernard-Gauthier V, Bailey JJ, Mossine AV, Lindner S, Vomacka L, Aliaga A, Shao X, Quesada CA, Sherman P, Mahringer A, Kostikov A, Grand’Maison M, Rosa-Neto P, Soucy JP, Thiel A, Kaplan DR, Fricker G, Wängler B, Bartenstein P, Schirrmacher R, Scott PJH. A Kinome-Wide Selective Radiolabeled TrkB/C Inhibitor for in Vitro and in Vivo Neuroimaging: Synthesis, Preclinical Evaluation, and First-in-Human. J Med Chem 2017; 60:6897-6910. [DOI: 10.1021/acs.jmedchem.7b00396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vadim Bernard-Gauthier
- Department of Oncology,
Division of Oncological Imaging, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Justin J. Bailey
- Department of Oncology,
Division of Oncological Imaging, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Andrew V. Mossine
- Division of Nuclear Medicine, Department
of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Simon Lindner
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, Munich 81377, Germany
| | - Lena Vomacka
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, Munich 81377, Germany
| | - Arturo Aliaga
- Translational Neuroimaging Laboratory, McGill Centre
for Studies in Aging, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, Quebec H4H 1R3, Canada
| | - Xia Shao
- Division of Nuclear Medicine, Department
of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Carole A. Quesada
- Division of Nuclear Medicine, Department
of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Phillip Sherman
- Division of Nuclear Medicine, Department
of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Anne Mahringer
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg 69120, Germany
| | - Alexey Kostikov
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | | | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre
for Studies in Aging, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, Quebec H4H 1R3, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Alexander Thiel
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec HT3 1E2, Canada
| | - David R. Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular
Genetics, University of Toronto, Toronto, Ontario M5S1A8, Canada
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg 69120, Germany
| | - Björn Wängler
- Molecular
Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear
Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer
1-3, Mannheim 68167, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, Munich 81377, Germany
| | - Ralf Schirrmacher
- Department of Oncology,
Division of Oncological Imaging, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Peter J. H. Scott
- Division of Nuclear Medicine, Department
of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- The Interdepartmental Program in Medicinal
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
78
|
Choi Y, Ha S, Lee YS, Kim YK, Lee DS, Kim DJ. Development of tau PET Imaging Ligands and their Utility in Preclinical and Clinical Studies. Nucl Med Mol Imaging 2017; 52:24-30. [PMID: 29391909 DOI: 10.1007/s13139-017-0484-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/10/2017] [Accepted: 05/22/2017] [Indexed: 12/16/2022] Open
Abstract
The pathological features of Alzheimer's disease are senile plaques which are aggregates of β-amyloid peptides and neurofibrillary tangles in the brain. Neurofibrillary tangles are aggregates of hyperphosphorylated tau proteins, and these induce various other neurodegenerative diseases, such as progressive supranuclear palsy, corticobasal degeneration, frontotemporal lobar degeneration, frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and chronic traumatic encephalopathy. In the case of Alzheimer's disease, the measurement of neurofibrillary tangles associated with cognitive decline is suitable for differential diagnosis, disease progression assessment, and to monitor the effects of therapeutic treatment. This review discusses considerations for the development of tau ligands for imaging and summarizes the results of the first-in-human and preclinical studies of the tau tracers that have been developed thus far. The development of tau ligands for imaging studies will be helpful for differential diagnosis and for the development of therapeutic treatments for tauopathies including Alzheimer's disease.
Collapse
Affiliation(s)
- Yoori Choi
- 1Department of Nuclear Medicine, College of Medicine, Seoul National University, 110-744, 28 Yongon-Dong, Jongno-Gu, Seoul, South Korea.,2Department of Nuclear Medicine, Seoul National University Hospital, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-744 South Korea
| | - Seunggyun Ha
- 1Department of Nuclear Medicine, College of Medicine, Seoul National University, 110-744, 28 Yongon-Dong, Jongno-Gu, Seoul, South Korea.,3Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, 03080, 103 Daehak-ro, Jongno-gu, Seoul, South Korea
| | - Yun-Sang Lee
- 1Department of Nuclear Medicine, College of Medicine, Seoul National University, 110-744, 28 Yongon-Dong, Jongno-Gu, Seoul, South Korea.,3Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, 03080, 103 Daehak-ro, Jongno-gu, Seoul, South Korea
| | - Yun Kyung Kim
- 4Institute of Brain Science, Korean Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 136-791 South Korea
| | - Dong Soo Lee
- 1Department of Nuclear Medicine, College of Medicine, Seoul National University, 110-744, 28 Yongon-Dong, Jongno-Gu, Seoul, South Korea.,2Department of Nuclear Medicine, Seoul National University Hospital, 28 Yongon-Dong, Jongno-Gu, Seoul, 110-744 South Korea.,3Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, 03080, 103 Daehak-ro, Jongno-gu, Seoul, South Korea
| | - Dong Jin Kim
- 4Institute of Brain Science, Korean Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 136-791 South Korea
| |
Collapse
|
79
|
Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG. Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 2017; 48:506-532. [PMID: 28481715 DOI: 10.1080/00498254.2017.1328148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Efflux proteins at the blood-brain barrier provide a mechanism for export of waste products of normal metabolism from the brain and help to maintain brain homeostasis. They also prevent entry into the brain of a wide range of potentially harmful compounds such as drugs and xenobiotics. 2. Conversely, efflux proteins also hinder delivery of therapeutic drugs to the brain and central nervous system used to treat brain tumours and neurological disorders. For bypassing efflux proteins, a comprehensive understanding of their structures, functions and molecular mechanisms is necessary, along with new strategies and technologies for delivery of drugs across the blood-brain barrier. 3. We review efflux proteins at the blood-brain barrier, classified as either ATP-binding cassette (ABC) transporters (P-gp, BCRP, MRPs) or solute carrier (SLC) transporters (OATP1A2, OATP1A4, OATP1C1, OATP2B1, OAT3, EAATs, PMAT/hENT4 and MATE1). 4. This includes information about substrate and inhibitor specificity, structural organisation and mechanism, membrane localisation, regulation of expression and activity, effects of diseases and conditions and the principal technique used for in vivo analysis of efflux protein activity: positron emission tomography (PET). 5. We also performed analyses of evolutionary relationships, membrane topologies and amino acid compositions of the proteins, and linked these to structure and function.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Fatemeh Karimi Dermani
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Sareh Sohrabi
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds , UK
| |
Collapse
|
80
|
Mossine AV, Brooks AF, Ichiishi N, Makaravage KJ, Sanford MS, Scott PJH. Development of Customized [ 18F]Fluoride Elution Techniques for the Enhancement of Copper-Mediated Late-Stage Radiofluorination. Sci Rep 2017. [PMID: 28331174 DOI: 10.1038/s41598‐017‐00110‐1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In a relatively short period of time, transition metal-mediated radiofluorination reactions have changed the PET radiochemistry landscape. These reactions have enabled the radiofluorination of a wide range of substrates, facilitating access to radiopharmaceuticals that were challenging to synthesize using traditional fluorine-18 radiochemistry. However, the process of adapting these new reactions for automated radiopharmaceutical production has revealed limitations in fitting them into the confines of traditional radiochemistry systems. In particular, the presence of bases (e.g. K2CO3) and/or phase transfer catalysts (PTC) (e.g. kryptofix 2.2.2) associated with fluorine-18 preparation has been found to be detrimental to reaction yields. We hypothesized that these limitations could be addressed through the development of alternate techniques for preparing [18F]fluoride. This approach also opens the possibility that an eluent can be individually tailored to meet the specific needs of a metal-catalyzed reaction of interest. In this communication, we demonstrate that various solutions of copper salts, bases, and ancillary ligands can be utilized to elute [18F]fluoride from ion exchange cartridges. The new procedures are effective for fluorine-18 radiochemistry and, as proof of concept, have been used to optimize an otherwise base-sensitive copper-mediated radiofluorination reaction.
Collapse
Affiliation(s)
- Andrew V Mossine
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI, 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI, 48109, USA
| | - Naoko Ichiishi
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Katarina J Makaravage
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA.
| | - Peter J H Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI, 48109, USA. .,Interdepartmental Program in Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
81
|
Mossine AV, Brooks AF, Ichiishi N, Makaravage KJ, Sanford MS, Scott PJH. Development of Customized [ 18F]Fluoride Elution Techniques for the Enhancement of Copper-Mediated Late-Stage Radiofluorination. Sci Rep 2017; 7:233. [PMID: 28331174 PMCID: PMC5427906 DOI: 10.1038/s41598-017-00110-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
In a relatively short period of time, transition metal-mediated radiofluorination reactions have changed the PET radiochemistry landscape. These reactions have enabled the radiofluorination of a wide range of substrates, facilitating access to radiopharmaceuticals that were challenging to synthesize using traditional fluorine-18 radiochemistry. However, the process of adapting these new reactions for automated radiopharmaceutical production has revealed limitations in fitting them into the confines of traditional radiochemistry systems. In particular, the presence of bases (e.g. K2CO3) and/or phase transfer catalysts (PTC) (e.g. kryptofix 2.2.2) associated with fluorine-18 preparation has been found to be detrimental to reaction yields. We hypothesized that these limitations could be addressed through the development of alternate techniques for preparing [18F]fluoride. This approach also opens the possibility that an eluent can be individually tailored to meet the specific needs of a metal-catalyzed reaction of interest. In this communication, we demonstrate that various solutions of copper salts, bases, and ancillary ligands can be utilized to elute [18F]fluoride from ion exchange cartridges. The new procedures are effective for fluorine-18 radiochemistry and, as proof of concept, have been used to optimize an otherwise base-sensitive copper-mediated radiofluorination reaction.
Collapse
Affiliation(s)
- Andrew V Mossine
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI, 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI, 48109, USA
| | - Naoko Ichiishi
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Katarina J Makaravage
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 48109, USA.
| | - Peter J H Scott
- Department of Radiology, University of Michigan Medical School, 1301 Catherine St., Ann Arbor, MI, 48109, USA.
- Interdepartmental Program in Medicinal Chemistry, University of Michigan, 428 Church St., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
82
|
Van de Bittner GC, Riley MM, Cao L, Ehses J, Herrick SP, Ricq EL, Wey HY, O’Neill MJ, Ahmed Z, Murray TK, Smith JE, Wang C, Schroeder FA, Albers MW, Hooker JM. Nasal neuron PET imaging quantifies neuron generation and degeneration. J Clin Invest 2017; 127:681-694. [PMID: 28112682 PMCID: PMC5272198 DOI: 10.1172/jci89162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/01/2016] [Indexed: 01/31/2023] Open
Abstract
Olfactory dysfunction is broadly associated with neurodevelopmental and neurodegenerative diseases and predicts increased mortality rates in healthy individuals. Conventional measurements of olfactory health assess odor processing pathways within the brain and provide a limited understanding of primary odor detection. Quantification of the olfactory sensory neurons (OSNs), which detect odors within the nasal cavity, would provide insight into the etiology of olfactory dysfunction associated with disease and mortality. Notably, OSNs are continually replenished by adult neurogenesis in mammals, including humans, so OSN measurements are primed to provide specialized insights into neurological disease. Here, we have evaluated a PET radiotracer, [11C]GV1-57, that specifically binds mature OSNs and quantifies the mature OSN population in vivo. [11C]GV1-57 monitored native OSN population dynamics in rodents, detecting OSN generation during postnatal development and aging-associated neurodegeneration. [11C]GV1-57 additionally measured rates of neuron regeneration after acute injury and early-stage OSN deficits in a rodent tauopathy model of neurodegenerative disease. Preliminary assessment in nonhuman primates suggested maintained uptake and saturable binding of [18F]GV1-57 in primate nasal epithelium, supporting its translational potential. Future applications for GV1-57 include monitoring additional diseases or conditions associated with olfactory dysregulation, including cognitive decline, as well as monitoring effects of neuroregenerative or neuroprotective therapeutics.
Collapse
Affiliation(s)
| | - Misha M. Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
| | - Luxiang Cao
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Janina Ehses
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
| | - Scott P. Herrick
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Emily L. Ricq
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
| | - Michael J. O’Neill
- Eli Lilly and Co. Ltd., Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, United Kingdom
| | - Zeshan Ahmed
- Eli Lilly and Co. Ltd., Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, United Kingdom
| | - Tracey K. Murray
- Eli Lilly and Co. Ltd., Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, United Kingdom
| | - Jaclyn E. Smith
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
| | | | - Mark W. Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
| |
Collapse
|
83
|
Lever SZ, Fan KH, Lever JR. Tactics for preclinical validation of receptor-binding radiotracers. Nucl Med Biol 2017; 44:4-30. [PMID: 27755986 PMCID: PMC5161541 DOI: 10.1016/j.nucmedbio.2016.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Aspects of radiopharmaceutical development are illustrated through preclinical studies of [125I]-(E)-1-(2-(2,3-dihydrobenzofuran-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-BF-PE-PIPZE), a radioligand for sigma-1 (σ1) receptors, coupled with examples from the recent literature. Findings are compared to those previously observed for [125I]-(E)-1-(2-(2,3-dimethoxy-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-DM-PE-PIPZE). METHODS Syntheses of E-IA-BF-PE-PIPZE and [125I]-E-IA-BF-PE-PIPZE were accomplished by standard methods. In vitro receptor binding studies and autoradiography were performed, and binding potential was predicted. Measurements of lipophilicity and protein binding were obtained. In vivo studies were conducted in mice to evaluate radioligand stability, as well as specific binding to σ1 sites in brain, brain regions and peripheral organs in the presence and absence of potential blockers. RESULTS E-IA-BF-PE-PIPZE exhibited high affinity and selectivity for σ1 receptors (Ki = 0.43 ± 0.03 nM, σ2/σ1 = 173). [125I]-E-IA-BF-PE-PIPZE was prepared in good yield and purity, with high specific activity. Radioligand binding provided dissociation (koff) and association (kon) rate constants, along with a measured Kd of 0.24 ± 0.01 nM and Bmax of 472 ± 13 fmol/mg protein. The radioligand proved suitable for quantitative autoradiography in vitro using brain sections. Moderate lipophilicity, Log D7.4 2.69 ± 0.28, was determined, and protein binding was 71 ± 0.3%. In vivo, high initial whole brain uptake, >6% injected dose/g, cleared slowly over 24 h. Specific binding represented 75% to 93% of total binding from 15 min to 24 h. Findings were confirmed and extended by regional brain biodistribution. Radiometabolites were not observed in brain (1%). CONCLUSIONS Substitution of dihydrobenzofuranylethyl for dimethoxyphenethyl increased radioligand affinity for σ1 receptors by 16-fold. While high specific binding to σ1 receptors was observed for both radioligands in vivo, [125I]-E-IA-BF-PE-PIPZE displayed much slower clearance kinetics than [125I]-E-IA-DM-PE-PIPZE. Thus, minor structural modifications of σ1 receptor radioligands lead to major differences in binding properties in vitro and in vivo.
Collapse
Affiliation(s)
- Susan Z Lever
- Department of Chemistry, University of Missouri, Columbia, MO, USA; University of Missouri Research Reactor Center, Columbia, MO, USA.
| | - Kuo-Hsien Fan
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - John R Lever
- Department of Radiology, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| |
Collapse
|
84
|
Matsuoka K, Yasuno F, Shinkai T, Miyasaka T, Takahashi M, Kiuchi K, Kosaka J, Inoue M, Kichikawa K, Hasegawa M, Kishimoto T. Test-retest reproducibility of extrastriatal binding with 123I-FP-CIT SPECT in healthy male subjects. Psychiatry Res Neuroimaging 2016; 258:10-15. [PMID: 27814458 DOI: 10.1016/j.pscychresns.2016.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/23/2016] [Accepted: 10/12/2016] [Indexed: 01/21/2023]
Abstract
123I-labeled 2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane (123I-FP-CIT) is used to assess striatal dopamine transporter (DAT) expression, but it can also quantify extrastriatal serotonin transporter (SERT) expressions. While FP-CIT uptake in extrastriatal regions has been quantified, no information exists on the reproducibility of the 123I-FP-CIT specific uptake ratio (SUR) in extrastriatal regions. We investigated test-retest reproducibility of 123I-FP-CIT binding in the striatum, the midbrain, and cortical regions in eight healthy male subjects. All subjects underwent two 123I-FP-CIT SPECT scans, and SUR was calculated using the cerebellum as the reference. We found good test-retest reproducibility of 123I-FP-CIT SUR in the midbrain, and in the lateral frontal/temporal cortex and combined cortical regions. The overall variability and intraclass correlation of SUR were, respectively, 4.9-7.8% and 0.90-0.96 in striatal regions, 8.6% and 0.79 in the midbrain, and 3.6-9.1% and 0.84-0.95 in the lateral frontal/temporal cortex and combined cortical regions. Our results provide evidence that 123I-FP-CIT SPECT is a valid technique for analyzing striatal DAT, as well as extrastriatal SERT in areas such as the SERT-enriched midbrain. In addition, our data suggest that 123I-FP-CIT could be used for analyzing SERT in regions with relatively low SERT expression (e.g., temporal or frontal cortices).
Collapse
Affiliation(s)
- Kiwamu Matsuoka
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Fumihiko Yasuno
- Department of Psychiatry, Nara Medical University, Kashihara, Japan.
| | - Takayuki Shinkai
- Department of Radiation Oncology, Nara Medical University, Kashihara, Japan
| | | | - Masato Takahashi
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Kuniaki Kiuchi
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Jun Kosaka
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Makoto Inoue
- Department of Psychiatry, National Hospital Organization Yamato Mental Medical Center, Yamatokoriyama, Japan
| | | | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, Kashihara, Japan
| | | |
Collapse
|
85
|
Wagner S, Teodoro R, Deuther-Conrad W, Kranz M, Scheunemann M, Fischer S, Wenzel B, Egerland U, Hoefgen N, Steinbach J, Brust P. Radiosynthesis and biological evaluation of the new PDE10A radioligand [ 18 F]AQ28A. J Labelled Comp Radiopharm 2016; 60:36-48. [PMID: 27896836 DOI: 10.1002/jlcr.3471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/19/2016] [Accepted: 10/12/2016] [Indexed: 01/10/2023]
Abstract
Cyclic nucleotide phosphodiesterase 10A (PDE10A) regulates the level of the second messengers cAMP and cGMP in particular in brain regions assumed to be associated with neurodegenerative and psychiatric diseases. A better understanding of the pathophysiological role of the expression of PDE10A could be obtained by quantitative imaging of the enzyme by positron emission tomography (PET). Thus, in this study we developed, radiolabeled, and evaluated a new PDE10A radioligand, 8-bromo-1-(6-[18 F]fluoropyridin-3-yl)-3,4-dimethylimidazo[1,5-a]quinoxaline ([18 F]AQ28A). [18 F]AQ28A was radiolabeled by both nucleophilic bromo-to-fluoro or nitro-to-fluoro exchange using K[18 F]F-K2.2.2 -carbonate complex with different yields. Using the superior nitro precursor, we developed an automated synthesis on a Tracerlab FX F-N module and obtained [18 F]AQ28A with high radiochemical yields (33 ± 6%) and specific activities (96-145 GBq·μmol-1 ) for further evaluation. Initially, we investigated the binding of [18 F]AQ28A to the brain of different species by autoradiography and observed the highest density of binding sites in striatum, the brain region with the highest PDE10A expression. Subsequent dynamic PET studies in mice revealed a region-specific accumulation of [18 F]AQ28A in this region, which could be blocked by preinjection of the selective PDE10A ligand MP-10. In conclusion, the data suggest [18 F]AQ28A is a suitable candidate for imaging of PDE10A in rodent brain by PET.
Collapse
Affiliation(s)
- Sally Wagner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Matthias Scheunemann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | | | | | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Department of Neuroradiopharmaceuticals, Leipzig, Germany
| |
Collapse
|
86
|
Abstract
PET has deep roots in neuroscience stemming from its first application in brain tumor and brain metabolism imaging. PET emerged over the past few decades and continues to play a prominent role in the study of neurochemistry in the living human brain. Over time, neurochemical imaging with PET has been expanded to address a host of research questions related to, among many others, protein density, drug occupancy, and endogenous neurochemical release. Each of these imaging modes has distinct design and analysis considerations that are critical for enabling quantitative measurements. The number of considerations required for a neurochemical PET study can make it unapproachable. This article aims to orient those interested in neurochemical PET imaging to three of the common imaging modes and to provide some perspective on needs that exist for expansion of neurochemical PET imaging.
Collapse
Affiliation(s)
- Michael S Placzek
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA; Department of Psychiatry, McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA
| | - Wenjun Zhao
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Hsiao-Ying Wey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | | | - Jacob M Hooker
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA.
| |
Collapse
|
87
|
Nebel N, Maschauer S, Kuwert T, Hocke C, Prante O. In Vitro and In Vivo Characterization of Selected Fluorine-18 Labeled Radioligands for PET Imaging of the Dopamine D3 Receptor. Molecules 2016; 21:molecules21091144. [PMID: 27589704 PMCID: PMC6272905 DOI: 10.3390/molecules21091144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 02/07/2023] Open
Abstract
Cerebral dopamine D3 receptors seem to play a key role in the control of drug-seeking behavior. The imaging of their regional density with positron emission tomography (PET) could thus help in the exploration of the molecular basis of drug addiction. A fluorine-18 labeled D3 subtype selective radioligand would be beneficial for this purpose; however, as yet, there is no such tracer available. The three candidates [18F]1, [18F]2a and [18F]2b were chosen for in vitro and in vivo characterization as radioligands suitable for selective PET imaging of the D3 receptor. Their evaluation included the analysis of radiometabolites and the assessment of non-specific binding by in vitro rat brain autoradiography. While [18F]1 and [18F]2a revealed high non-specific uptake in in vitro rat brain autoradiography, the D3 receptor density was successfully determined on rat brain sections (n = 4) with the candidate [18F]2b offering a Bmax of 20.38 ± 2.67 pmol/g for the islands of Calleja, 19.54 ± 1.85 pmol/g for the nucleus accumbens and 16.58 ± 1.63 pmol/g for the caudate putamen. In PET imaging studies, the carboxamide 1 revealed low signal/background ratios in the rat brain and relatively low uptake in the pituitary gland, while the azocarboxamides [18F]2a and [18F]2b showed binding that was blockable by the D3 receptor ligand BP897 in the ventricular system and the pituitary gland in PET imaging studies in living rats.
Collapse
Affiliation(s)
- Natascha Nebel
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine, Friedrich Alexander University (FAU), Erlangen 91054, Germany.
| | - Simone Maschauer
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine, Friedrich Alexander University (FAU), Erlangen 91054, Germany.
| | - Torsten Kuwert
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine, Friedrich Alexander University (FAU), Erlangen 91054, Germany.
| | - Carsten Hocke
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine, Friedrich Alexander University (FAU), Erlangen 91054, Germany.
| | - Olaf Prante
- Molecular Imaging and Radiochemistry, Department of Nuclear Medicine, Friedrich Alexander University (FAU), Erlangen 91054, Germany.
| |
Collapse
|
88
|
Rotstein BH, Placzek MS, Krishnan HS, Pekošak A, Collier TL, Wang C, Liang SH, Burstein ES, Hooker JM, Vasdev N. Preclinical PET Neuroimaging of [11C]Bexarotene. Mol Imaging 2016; 15:15/0/1536012116663054. [PMID: 27553293 PMCID: PMC5011434 DOI: 10.1177/1536012116663054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022] Open
Abstract
Activation of retinoid X receptors (RXRs) has been proposed as a therapeutic mechanism for the treatment of neurodegeneration, including Alzheimer's and Parkinson's diseases. We previously reported radiolabeling of a Food and Drug Administration-approved RXR agonist, bexarotene, by copper-mediated [11C]CO2 fixation and preliminary positron emission tomography (PET) neuroimaging that demonstrated brain permeability in nonhuman primate with regional binding distribution consistent with RXRs. In this study, the brain uptake and saturability of [11C]bexarotene were studied in rats and nonhuman primates by PET imaging under baseline and greater target occupancy conditions. [11C]Bexarotene displays a high proportion of nonsaturable uptake in the brain and is unsuitable for RXR occupancy measurements in the central nervous system.
Collapse
Affiliation(s)
- Benjamin H Rotstein
- Division of Nuclear Medicine and Molecular Imaging, Gordon Center for Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Michael S Placzek
- Department of Radiology, Harvard Medical School, Boston, MA, USA Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA Department of Psychiatry, McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Hema S Krishnan
- Division of Nuclear Medicine and Molecular Imaging, Gordon Center for Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Aleksandra Pekošak
- Division of Nuclear Medicine and Molecular Imaging, Gordon Center for Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Thomas Lee Collier
- Division of Nuclear Medicine and Molecular Imaging, Gordon Center for Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA Department of Radiology, Harvard Medical School, Boston, MA, USA Advion, Inc, Ithaca, NY, USA
| | - Changning Wang
- Department of Radiology, Harvard Medical School, Boston, MA, USA Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Gordon Center for Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | - Jacob M Hooker
- Department of Radiology, Harvard Medical School, Boston, MA, USA Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Gordon Center for Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
89
|
Rotstein BH, Liang SH, Placzek MS, Hooker JM, Gee AD, Dollé F, Wilson AA, Vasdev N. (11)C[double bond, length as m-dash]O bonds made easily for positron emission tomography radiopharmaceuticals. Chem Soc Rev 2016; 45:4708-26. [PMID: 27276357 PMCID: PMC5000859 DOI: 10.1039/c6cs00310a] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The positron-emitting radionuclide carbon-11 ((11)C, t1/2 = 20.3 min) possesses the unique potential for radiolabeling of any biological, naturally occurring, or synthetic organic molecule for in vivo positron emission tomography (PET) imaging. Carbon-11 is most often incorporated into small molecules by methylation of alcohol, thiol, amine or carboxylic acid precursors using [(11)C]methyl iodide or [(11)C]methyl triflate (generated from [(11)C]carbon dioxide or [(11)C]methane). Consequently, small molecules that lack an easily substituted (11)C-methyl group are often considered to have non-obvious strategies for radiolabeling and require a more customized approach. [(11)C]Carbon dioxide itself, [(11)C]carbon monoxide, [(11)C]cyanide, and [(11)C]phosgene represent alternative reactants to enable (11)C-carbonylation. Methodologies developed for preparation of (11)C-carbonyl groups have had a tremendous impact on the development of novel PET tracers and provided key tools for clinical research. (11)C-Carbonyl radiopharmaceuticals based on labeled carboxylic acids, amides, carbamates and ureas now account for a substantial number of important imaging agents that have seen translation to higher species and clinical research of previously inaccessible targets, which is a testament to the creativity, utility and practicality of the underlying radiochemistry.
Collapse
Affiliation(s)
| | - Steven H Liang
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael S Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA and McLean Hospital, Belmont, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA
| | | | - Frédéric Dollé
- CEA - Institut d'imagerie biomédicale, Service hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Alan A Wilson
- Centre for Addiction and Mental Health, Toronto, Canada
| | - Neil Vasdev
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
90
|
Strebl MG, Wang C, Schroeder FA, Placzek MS, Wey HY, Van de Bittner GC, Neelamegam R, Hooker JM. Development of a Fluorinated Class-I HDAC Radiotracer Reveals Key Chemical Determinants of Brain Penetrance. ACS Chem Neurosci 2016; 7:528-33. [PMID: 26675505 PMCID: PMC5784429 DOI: 10.1021/acschemneuro.5b00297] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite major efforts, our knowledge about many brain diseases remains remarkably limited. Epigenetic dysregulation has been one of the few leads toward identifying the causes and potential treatments of psychiatric disease over the past decade. A new positron emission tomography radiotracer, [(11)C]Martinostat, has enabled the study of histone deacetylase in living human subjects. A unique property of [(11)C]Martinostat is its profound brain penetrance, a feature that is challenging to engineer intentionally. In order to understand determining factors for the high brain-uptake of Martinostat, a series of compounds was evaluated in rodents and nonhuman primates. The study revealed the major structural contributors to brain uptake, as well as a more clinically relevant fluorinated HDAC radiotracer with comparable behavior to Martinostat, yet longer half-life.
Collapse
Affiliation(s)
- Martin G. Strebl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
| | - Frederick A. Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
| | - Michael S. Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
- Department of Psychiatry, McLean Imaging Center, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts 02478, United States
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
| | - Genevieve C. Van de Bittner
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
| | - Ramesh Neelamegam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 13th Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
91
|
Synthesis and Biological Evaluation of an (18)Fluorine-Labeled COX Inhibitor--[(18)F]Fluorooctyl Fenbufen Amide--For Imaging of Brain Tumors. Molecules 2016; 21:387. [PMID: 27007363 PMCID: PMC6273898 DOI: 10.3390/molecules21030387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
Molecular imaging of brain tumors remains a great challenge, despite the advances made in imaging technology. An anti-inflammatory compound may be a useful tool for this purpose because there is evidence of inflammatory processes in brain tumor micro-environments. Fluorooctylfenbufen amide (FOFA) was prepared from 8-chlorooctanol via treatment with potassium phthalimide, tosylation with Ts2O, fluorination with KF under phase transfer catalyzed conditions, deprotection using aqueous hydrazine, and coupling with fenbufen. The corresponding radiofluoro product [18F]FOFA, had a final radiochemical yield of 2.81 mCi and was prepared from activated [18F]F− (212 mCi) via HPLC purification and concentration. The radiochemical purity was determined to be 99%, and the specific activity was shown to exceed 22 GBq/μmol (EOS) based on decay-corrected calculations. Ex-vivo analysis of [18F]FOFA in plasma using HPLC showed that the agent had a half-life of 15 min. PET scanning showed significant accumulation of [18F]FOFA over tumor loci with reasonable contrast in C6-glioma bearing rats. These results suggest that this molecule is a promising agent for the visualization of brain tumors. Further investigations should focus on tumor micro-environments.
Collapse
|
92
|
He J, Bonnet CS, Eliseeva SV, Lacerda S, Chauvin T, Retailleau P, Szeremeta F, Badet B, Petoud S, Tóth É, Durand P. Prototypes of Lanthanide(III) Agents Responsive to Enzymatic Activities in Three Complementary Imaging Modalities: Visible/Near-Infrared Luminescence, PARACEST-, and T1-MRI. J Am Chem Soc 2016; 138:2913-6. [PMID: 26727374 DOI: 10.1021/jacs.5b12084] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report first prototypes of responsive lanthanide(III) complexes that can be monitored independently in three complementary imaging modalities. Through the appropriate choice of lanthanide(III) cations, the same reactive ligand can be used to form complexes providing detection by (i) visible (Tb(3+)) and near-infrared (Yb(3+)) luminescence, (ii) PARACEST- (Tb(3+), Yb(3+)), or (iii) T1-weighted (Gd(3+)) MRI. The use of lanthanide(III) ions of different natures for these imaging modalities induces only a minor change in the structure of complexes that are therefore expected to have a single biodistribution and cytotoxicity.
Collapse
Affiliation(s)
- Jiefang He
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay , 1, av.de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Célia S Bonnet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans , Rue Charles Sadron, F-45071 Orléans 2, France
| | - Svetlana V Eliseeva
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans , Rue Charles Sadron, F-45071 Orléans 2, France
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans , Rue Charles Sadron, F-45071 Orléans 2, France
| | - Thomas Chauvin
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans , Rue Charles Sadron, F-45071 Orléans 2, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay , 1, av.de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Frederic Szeremeta
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans , Rue Charles Sadron, F-45071 Orléans 2, France
| | - Bernard Badet
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay , 1, av.de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans , Rue Charles Sadron, F-45071 Orléans 2, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans , Rue Charles Sadron, F-45071 Orléans 2, France
| | - Philippe Durand
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay , 1, av.de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
93
|
Pike VW. Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging. Curr Med Chem 2016; 23:1818-69. [PMID: 27087244 PMCID: PMC5579844 DOI: 10.2174/0929867323666160418114826] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
The development of reversibly binding radioligands for imaging brain proteins in vivo, such as enzymes, neurotransmitter transporters, receptors and ion channels, with positron emission tomography (PET) is keenly sought for biomedical studies of neuropsychiatric disorders and for drug discovery and development, but is recognized as being highly challenging at the medicinal chemistry level. This article aims to compile and discuss the main considerations to be taken into account by chemists embarking on programs of radioligand development for PET imaging of brain protein targets.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
94
|
Recent Advances in the Development and Application of Radiolabeled Kinase Inhibitors for PET Imaging. Molecules 2015; 20:22000-27. [PMID: 26690113 PMCID: PMC6332294 DOI: 10.3390/molecules201219816] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
Over the last 20 years, intensive investigation and multiple clinical successes targeting protein kinases, mostly for cancer treatment, have identified small molecule kinase inhibitors as a prominent therapeutic class. In the course of those investigations, radiolabeled kinase inhibitors for positron emission tomography (PET) imaging have been synthesized and evaluated as diagnostic imaging probes for cancer characterization. Given that inhibitor coverage of the kinome is continuously expanding, in vivo PET imaging will likely find increasing applications for therapy monitoring and receptor density studies both in- and outside of oncological conditions. Early investigated radiolabeled inhibitors, which are mostly based on clinically approved tyrosine kinase inhibitor (TKI) isotopologues, have now entered clinical trials. Novel radioligands for cancer and PET neuroimaging originating from novel but relevant target kinases are currently being explored in preclinical studies. This article reviews the literature involving radiotracer design, radiochemistry approaches, biological tracer evaluation and nuclear imaging results of radiolabeled kinase inhibitors for PET reported between 2010 and mid-2015. Aspects regarding the usefulness of pursuing selective vs. promiscuous inhibitor scaffolds and the inherent challenges associated with intracellular enzyme imaging will be discussed.
Collapse
|
95
|
Abstract
The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, (18)F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography.
Collapse
Affiliation(s)
- Eric P Gillis
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kyle J Eastman
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Matthew D Hill
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - David J Donnelly
- Discovery Chemistry Platforms, PET Radiochemical Synthesis, Bristol-Myers Squibb Research and Development , P.O. Box 4000, Princeton, New Jersey 08543, United States
| | - Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|