51
|
Storer MC, Zator KJ, Reynolds DP, Hunter CA. An atomic surface site interaction point description of non-covalent interactions. Chem Sci 2023; 15:160-170. [PMID: 38131083 PMCID: PMC10732136 DOI: 10.1039/d3sc05690b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Molecular electrostatic potential surfaces (MEPS) calculated using density functional theory have been used to develop a simplified description of the non-covalent interaction properties of organic molecules. The Atomic Interaction Point (AIP) model introduced here represents an evolution of the Surface Site Interaction Point (SSIP) model described previously, in which a molecule is represented by a discrete set of interaction points that define sites of interaction with other molecules. The interaction sites are described by interaction parameters that are equivalent to the experimentally determined H-bond donor and acceptor parameters α and β. By using high electron density MEPS that lie inside the van der Waals surface, it is possible to obtain accurate interaction parameters and locations for polar sites (s-holes, H-bond donors and acceptors), which are identified as local maxima and minima on the MEPS. For non-polar sites that represent π-systems and halogens, an approach based on molecular orbitals was used to assign the locations of the AIPs, and the interaction parameters were obtained using a lower electron density MEPS that lies close to the van der Waals surface. The AIP descriptions can be implemented directly in the Surface Site Interaction Point Model for Liquids at Equilibrium (SSIMPLE) to calculate solvation free energies, and the free energy of transfer of 1504 compounds from n-hexadecane to water was predicted with a root mean square error of 5 kJ mol-1. AIPs also provide a useful tool for mapping non-covalent interactions in intermolecular complexes, and examples are provided showing how X-ray crystal structures can be converted into AIP interaction maps that allow quantification of the free energy contributions of both polar and non-polar interactions to the stabilities of complexes in solution.
Collapse
Affiliation(s)
- Maria Chiara Storer
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Katarzyna J Zator
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Derek P Reynolds
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
52
|
Ibrahim MAA, Shehata MNI, Abuelliel HAA, Moussa NAM, Sayed SRM, Ahmed MN, Abd El-Rahman MK, Dabbish E, Shoeib T. Hole interactions of aerogen oxides with Lewis bases: an insight into σ-hole and lone-pair-hole interactions. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231362. [PMID: 38094266 PMCID: PMC10716657 DOI: 10.1098/rsos.231362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/03/2023] [Indexed: 01/11/2024]
Abstract
σ-Hole and lone-pair (lp)-hole interactions of aerogen oxides with Lewis bases (LB) were comparatively inspected in terms of quantum mechanics calculations. The ZOn ⋯ LB complexes (where Z = Kr and Xe, n = 1, 2, 3 and 4, and LB = NH3 and NCH) showed favourable negative interaction energies. The complexation features were explained in light of σ-hole and lp-hole interactions within optimum distances lower than the sum of the respective van der Waals radii. The emerging findings outlined that σ-hole interaction energies generally enhanced according to the following order: KrO4 ⋯ < KrO⋯ < KrO3⋯ < KrO2⋯LB and XeO4⋯ < XeO⋯ < XeO2⋯ < XeO3⋯LB complexes with values ranging from -2.23 to -12.84 kcal mol-1. Lp-hole interactions with values up to -5.91 kcal mol-1 were shown. Symmetry-adapted perturbation theory findings revealed the significant contributions of electrostatic forces accounting for 50-65% of the total attractive forces within most of the ZOn⋯LB complexes. The obtained observations would be useful for the understanding of hole interactions, particularly for the aerogen oxides, with application in supramolecular chemistry and crystal engineering.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Mohammed N. I. Shehata
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hassan A. A. Abuelliel
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Shaban R. M. Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Mohamed K. Abd El-Rahman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Eslam Dabbish
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
53
|
Fang S, Zahl P, Wang X, Liu P, Stacchiola D, Hu YH. Direct Observation of Twin van der Waals Molecular Chains. J Phys Chem Lett 2023; 14:10710-10716. [PMID: 37988703 DOI: 10.1021/acs.jpclett.3c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The van der Waals (vdW) assemblies are the most common structures of materials. However, direct mapping of intermolecular electron clouds of a vdW assembly has never been obtained, even though the intramolecular electron clouds were visualized by atomic-resolution techniques. In this report, we unprecedentedly mapped the intermolecular electron cloud of the assemblies of ethanol molecules via ethyl groups with high-resolution atomic force microscopy and scanning tunneling microscopy at 5 K, leading to the first visualization of vdW molecular chains, in which ethanol molecules assemble into twin vdW molecular chains in a reverse parallel configuration on the Ag(111) plane. Furthermore, spontaneous order-disorder transitions in the chain were dynamically observed, suggesting its unusual properties different from those of 2D vdW materials. These findings provide an "eye" to see the atomic world of vdW materials.
Collapse
Affiliation(s)
- Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xuelong Wang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dario Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
54
|
Albrecht M. The Monomer-Dimer Equilibrium of Triscatechol Titanium(IV)-Based Hierarchical Helicates as a Tool for the Development of Molecular Balances and Molecular Switches. Acc Chem Res 2023; 56:3271-3281. [PMID: 37955356 DOI: 10.1021/acs.accounts.3c00525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
ConspectusHierarchical helicates are formed by noncovalent connection of two or more monomeric metal complex units, e.g., by bridging metal cations. A unique kind of hierarchical helicate is obtained from 3-carbonyl substituted catechol ligands with titanium(IV) ions in the presence of lithium cations. This kind of supramolecular complex shows in solution a "monomer-dimer" equilibrium. There are different possibilities (solvent, countercation, substituents at carbonyl unit, etc.) to shift this equilibrium to either the monomer or the dimer side. Thus, the lithium-bridged catecholate-based hierarchical helicates resemble a molecular switch. In this Account, different aspects are discussed of how this unique behavior of the dimeric titanium catecholates can be used for application.Thorough investigation of the energetics of the monomer-dimer equilibrium leads to a deeper understanding of the thermodynamic and kinetic effects of the dimerization (or dissociation) process. In this context, even weak interaction of substituents in the periphery of the complexes can be observed. Hereby on the one hand, solvent effects have an important influence and can be easily evaluated. The thorough understanding of the behavior of the monomer-dimer equilibrium allows one to develop some novel applications. In this respect, the use of the hierarchical helicate-based switch as a platform for reaction control and catalysis is described. Decent enantioselectivities up to ee = 58% can be found in Diels-Alder reactions in the periphery of the dimers, while switching to the monomer as a reaction platform still allows the cycloaddition reaction but turns the selectivity off. Additionally, it is described that catalytically important units can be introduced and hydrogenation reactions as well as Michael-type reactions are catalyzed at the helicates.Covalent connection of two catechol ester units leads to classical helicates. Depending on the alkaline metal cation, those can be switched from a compressed to an expanded form or vice versa. Hereby the monomer-dimer equilibrium is transformed into a structural switch. The switching process can be initiated by removal or addition of lithium cations (e.g., by addition of [2.1.1]cryptand). Alternative switching possibilities are based in the case of glycol bridged helicates on cation translocation isomerism and with thioester derivatives it occurs spontaneously in DMSO. Introduction of chiral tethers results in a three state switch allowing expansion/compression as well as switching of the helicity.
Collapse
Affiliation(s)
- Markus Albrecht
- Institut für Organische Chemie, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
55
|
Wang X, Li Q, Scheiner S. Cooperativity between H-bonds and tetrel bonds. Transformation of a noncovalent C⋯N tetrel bond to a covalent bond. Phys Chem Chem Phys 2023; 25:29738-29746. [PMID: 37885414 DOI: 10.1039/d3cp04430k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The dimers and trimers formed by imidazole (IM) and F2TO (T = C, Si, Ge) are studied by ab initio calculations. IM can engage in either a NH⋯O H-bond with F2TO or a T⋯N tetrel bond (TB) with the π-hole above the T atom. The latter is a true noncovalent TB for T = C but is a much shorter and stronger covalent bond with F2SiO or F2GeO. When a second IM is added, the cooperativity emerging from its H-bond with the first IM makes it a stronger nucleophile, leading to two minima with F2CO. The first structure contains a long noncovalent C⋯O TB and there is a much shorter covalent bond in the other, with a small energy barrier separating them. The same sort of double minimum occurs when the two IM units are situated parallel to one another in a stacked geometry.
Collapse
Affiliation(s)
- Xin Wang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| |
Collapse
|
56
|
Carter-Fenk K, Liu M, Pujal L, Loipersberger M, Tsanai M, Vernon RM, Forman-Kay JD, Head-Gordon M, Heidar-Zadeh F, Head-Gordon T. The Energetic Origins of Pi-Pi Contacts in Proteins. J Am Chem Soc 2023; 145. [PMID: 37917924 PMCID: PMC10655088 DOI: 10.1021/jacs.3c09198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Accurate potential energy models of proteins must describe the many different types of noncovalent interactions that contribute to a protein's stability and structure. Pi-pi contacts are ubiquitous structural motifs in all proteins, occurring between aromatic and nonaromatic residues and play a nontrivial role in protein folding and in the formation of biomolecular condensates. Guided by a geometric criterion for isolating pi-pi contacts from classical molecular dynamics simulations of proteins, we use quantum mechanical energy decomposition analysis to determine the molecular interactions that stabilize different pi-pi contact motifs. We find that neutral pi-pi interactions in proteins are dominated by Pauli repulsion and London dispersion rather than repulsive quadrupole electrostatics, which is central to the textbook Hunter-Sanders model. This results in a notable lack of variability in the interaction profiles of neutral pi-pi contacts even with extreme changes in the dielectric medium, explaining the prevalence of pi-stacked arrangements in and between proteins. We also find interactions involving pi-containing anions and cations to be extremely malleable, interacting like neutral pi-pi contacts in polar media and like typical ion-pi interactions in nonpolar environments. Like-charged pairs such as arginine-arginine contacts are particularly sensitive to the polarity of their immediate surroundings and exhibit canonical pi-pi stacking behavior only if the interaction is mediated by environmental effects, such as aqueous solvation.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Meili Liu
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Leila Pujal
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Matthias Loipersberger
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Maria Tsanai
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert M. Vernon
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Julie D. Forman-Kay
- Molecular
Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Martin Head-Gordon
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Farnaz Heidar-Zadeh
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Center
for Molecular Modeling (CMM), Ghent University, 9052 Zwijnaarde, Belgium
| | - Teresa Head-Gordon
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
57
|
Haketa Y, Yamasumi K, Maeda H. π-Electronic ion pairs: building blocks for supramolecular nanoarchitectonics viaiπ- iπ interactions. Chem Soc Rev 2023; 52:7170-7196. [PMID: 37795542 DOI: 10.1039/d3cs00581j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The pairing of charged π-electronic systems and their ordered arrangement have been achieved by iπ-iπ interactions that are derived from synergetically worked electrostatic and dispersion forces. Charged π-electronic systems that provide ion pairs as building blocks for assemblies have been prepared by diverse strategies for introducing charge in the core π-electronic systems. One method to prepare charged π-electronic systems is the use of covalent bonding that makes π-electronic ions and valence-mismatched metal complexes as well as protonated and deprotonated states. Noncovalent ion complexation is another method used to create π-electronic ions, particularly for anion binding, producing negatively charged π-electronic systems. Charged π-electronic systems afford various ion pairs, consisting of both cationic and anionic π-systems, depending on their combinations. Geometries and electronic states of the constituents in π-electronic ion pairs affect the photophysical properties and assembling modes. Recent progress in π-electronic ion pairs has revealed intriguing characteristics, including the transformation into radical pairs through electron transfer and the magnetic properties influenced by the countercations. Furthermore, the assembly states exhibit diversity as observed in crystals and soft materials including liquid-crystal mesophases. While the chemistry of ion pairs (salts) is well-established, the field of π-electronic ion pairs is relatively new; however, it holds great promise for future applications in novel materials and devices.
Collapse
Affiliation(s)
- Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Kazuhisa Yamasumi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| |
Collapse
|
58
|
Anisimov AA, Ananyev IV. Electron density-based protocol to recover the interacting quantum atoms components of intermolecular binding energy. J Chem Phys 2023; 159:124113. [PMID: 38127385 DOI: 10.1063/5.0167874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/11/2023] [Indexed: 12/23/2023] Open
Abstract
A new approach for obtaining interacting quantum atoms-defined components of binding energy of intermolecular interactions, which bypasses the use of standard six-dimensional integrals and two-particle reduced density matrix (2-RDM) reconstruction, is proposed. To examine this approach, three datasets calculated within the density functional theory framework using the def2-TZVP basis have been explored. The first two, containing 53 weakly bound bimolecular associates and 13 molecular clusters taken from the crystal, were used in protocol refinement, and the third one containing other 20 bimolecular and three cluster systems served as a validation reference. In addition, to verify the performance of the proposed approach on an exact 2-RDM, calculations within the coupled cluster formalism were performed for part of the first set systems using the cc-pVTZ basis set. The process of optimization of the proposed parametric model is considered, and the role of various energy contributions in the formation of non-covalent interactions is discussed with regard to the obtained trends.
Collapse
Affiliation(s)
- Aleksei A Anisimov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, GSP-1, Moscow 119334, Russian Federation
- National Research University Higher School of Economics, Myasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Ivan V Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prospect 31, Moscow 119991, Russian Federation
| |
Collapse
|
59
|
Ibrahim MAA, Saeed RRA, Shehata MNI, Moussa NAM, Tawfeek AM, Ahmed MN, Abd El-Rahman MK, Shoeib T. Sigma-Hole and Lone-Pair-Hole Site-Based Interactions of Seesaw Tetravalent Chalcogen-Bearing Molecules with Lewis Bases. ACS OMEGA 2023; 8:32828-32837. [PMID: 37720791 PMCID: PMC10500585 DOI: 10.1021/acsomega.3c03981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023]
Abstract
For the first time, sigma (σ)- and lone-pair (lp)-hole site-based interactions of SF4 and SeF4 molecules in seesaw geometry with NH3 and FH Lewis bases were herein comparatively investigated. The obtained findings from the electrostatic potential analysis outlined the emergence of sundry holes on the molecular entity of the SF4 and SeF4 molecules, dubbed the σ- and lp-holes. The energetic viewpoint announced splendid negative binding energy values for σ-hole site-based interactions succeeded by lp-hole analogues, which were found to be -9.21 and -0.50 kcal/mol, respectively, for SeF4···NH3 complex as a case study. Conspicuously, a proper concurrence between the strength of chalcogen σ-hole site-based interactions and the chalcogen's atomic size was obtained, whereas a reverse pattern was proclaimed for the lp-hole counterparts. Further, a higher preference for the YF4···NH3 complexes with elevated negative binding energy was promulgated over the YF4···FH ones, indicating the eminent role of Lewis basicity. The indications of the quantum theory of atoms in molecules generally asserted the closed-shell nature of all the considered interactions. The observation of symmetry-adapted perturbation theory revealed the substantial contributing role of the electrostatic forces beyond the occurrence of σ-hole site-based interactions. In comparison, the dispersion forces were specified to govern the lp-hole counterparts. Such emerging findings would be a gate for the fruitful forthcoming applications of chalcogen bonding interactions in crystal engineering and biological systems.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Rehab R. A. Saeed
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mohammed N. I. Shehata
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ahmed M. Tawfeek
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Muhammad Naeem Ahmed
- Department
of Chemistry, The University of Azad Jammu
and Kashmir, Muzaffarabad 13100, Pakistan
| | - Mohamed K. Abd El-Rahman
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| | - Tamer Shoeib
- Department
of Chemistry, The American University in
Cairo, New Cairo 11835, Egypt
| |
Collapse
|
60
|
Das A, Arunan E. Unified classification of non-covalent bonds formed by main group elements: a bridge to chemical bonding. Phys Chem Chem Phys 2023; 25:22583-22594. [PMID: 37435670 DOI: 10.1039/d3cp00370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Using correlation plots of binding energy and electron density at the bond critical point, we investigated the nature of intermolecular non-covalent bonds (D-X⋯A, where D = O/S/F/Cl/Br/H, mostly, X = main group elements (except noble gases), A = H2O, NH3, H2S, PH3, HCHO, C2H4, HCN, CO, CH3OH, and CH3OCH3). The binding energies were calculated at the MP2 level of theory, followed by Atoms in Molecules (AIM) analysis of the ab initio wave functions to obtain the electron density at the bond critical point (BCP). For each non-covalent bond, the slopes of the binding energy versus electron density plot have been determined. Based on their slopes, non-covalent bonds are classified as non-covalent bond closed-shell (NCB-C) or non-covalent bond shared-shell (NCB-S). Intriguingly, extrapolating the slopes of the NCB-C and NCB-S cases leads to intramolecular "ionic" and "covalent" bonding regimes, establishing a link between such intermolecular non-covalent and intramolecular chemical bonds. With this new classification, hydrogen bonds and other non-covalent bonds formed by a main-group atom in a covalent molecule are classified as NCB-S. Atoms found in ionic molecules generally form NCB-C type bonds, with the exception of carbon which also forms NCB-C type bonds. Molecules with a tetravalent carbon do behave like ions in ionic molecules such as NaCl and interact with other molecules through NCB-C type bonds. As with the chemical bonds, there are some non-covalent bonds that are intermediate cases.
Collapse
Affiliation(s)
- Arijit Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Elangannan Arunan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
61
|
Puttreddy R, Rautiainen JM, Yu S, Rissanen K. N-X⋅⋅⋅O-N Halogen Bonds in Complexes of N-Haloimides and Pyridine-N-oxides: A Large Data Set Study. Angew Chem Int Ed Engl 2023; 62:e202307372. [PMID: 37314001 DOI: 10.1002/anie.202307372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
N-X⋅⋅⋅- O-N+ halogen-bonded systems formed by 27 pyridine N-oxides (PyNOs) as halogen-bond (XB) acceptors and two N-halosuccinimides, two N-halophthalimides, and two N-halosaccharins as XB donors are studied in silico, in solution, and in the solid state. This large set of data (132 DFT optimized structures, 75 crystal structures, and 168 1 H NMR titrations) provides a unique view to structural and bonding properties. In the computational part, a simple electrostatic model (SiElMo) for predicting XB energies using only the properties of halogen donors and oxygen acceptors is developed. The SiElMo energies are in perfect accord with energies calculated from XB complexes optimized with two high-level DFT approaches. Data from in silico bond energies and single-crystal X-ray structures correlate; however, data from solution do not. The polydentate bonding characteristic of the PyNOs' oxygen atom in solution, as revealed by solid-state structures, is attributed to the lack of correlation between DFT/solid-state and solution data. XB strength is only slightly affected by the PyNO oxygen properties [(atomic charge (Q), ionization energy (Is,min ) and local negative minima (Vs,min )], as the σ-hole (Vs,max ) of the donor halogen is the key determinant leading to the sequence N-halosaccharin>N-halosuccinimide>N-halophthalimide on the XB strength.
Collapse
Affiliation(s)
- Rakesh Puttreddy
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, 40014, Jyväskylä, Finland
| | - J Mikko Rautiainen
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, 40014, Jyväskylä, Finland
| | - Shilin Yu
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, 40014, Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. BOX 35, 40014, Jyväskylä, Finland
| |
Collapse
|
62
|
Mallada B, Ondráček M, Lamanec M, Gallardo A, Jiménez-Martín A, de la Torre B, Hobza P, Jelínek P. Visualization of π-hole in molecules by means of Kelvin probe force microscopy. Nat Commun 2023; 14:4954. [PMID: 37587123 PMCID: PMC10432393 DOI: 10.1038/s41467-023-40593-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Submolecular charge distribution significantly affects the physical-chemical properties of molecules and their mutual interaction. One example is the presence of a π-electron-deficient cavity in halogen-substituted polyaromatic hydrocarbon compounds, the so-called π-holes, the existence of which was predicted theoretically, but the direct experimental observation is still missing. Here we present the resolution of the π-hole on a single molecule using the Kelvin probe force microscopy, which supports the theoretical prediction of its existence. In addition, experimental measurements supported by theoretical calculations show the importance of π-holes in the process of adsorption of molecules on solid-state surfaces. This study expands our understanding of the π-hole systems and, at the same time, opens up possibilities for studying the influence of submolecular charge distribution on the chemical properties of molecules and their mutual interaction.
Collapse
Affiliation(s)
- B Mallada
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 78371, Olomouc, Czech Republic
- Department of Physical Chemistry, Palacký University Olomouc, Tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - M Ondráček
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - M Lamanec
- Department of Physical Chemistry, Palacký University Olomouc, Tr. 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Námĕstí 542/2, 16000, Prague, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. Listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - A Gallardo
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - A Jiménez-Martín
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - B de la Torre
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 78371, Olomouc, Czech Republic.
| | - P Hobza
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Námĕstí 542/2, 16000, Prague, Czech Republic.
- IT4Innovations, VŠB - Technical University of Ostrava, 17. Listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
| | - P Jelínek
- Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, 78371, Olomouc, Czech Republic.
| |
Collapse
|
63
|
Louis H, Benjamin I, Iloanya AC, Ubah CB, Essien AE, Okon GA, Adeyinka AS. Functionalized (–HCO, –OH, –NH2) Iridium-doped graphene (Ir@Gp) nanomaterials for enhanced delivery of Piroxicam: Insights from quantum chemical calculations. J Mol Liq 2023; 383:122068. [DOI: 10.1016/j.molliq.2023.122068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
|
64
|
Turelli M, Ciofini I, Wang Q, Ottochian A, Labat F, Adamo C. Organic compounds for solid state luminescence enhancement/aggregation induced emission: a theoretical perspective. Phys Chem Chem Phys 2023; 25:17769-17786. [PMID: 37377211 DOI: 10.1039/d3cp02364h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Organic luminophores displaying one or more forms of luminescence enhancement in solid state are extremely promising for the development and performance optimization of functional materials essential to many modern key technologies. Yet, the effort to harness their huge potential is riddled with hurdles that ultimately come down to a limited understanding of the interactions that result in the diverse molecular environments responsible for the macroscopic response. In this context, the benefits of a theoretical framework able to provide mechanistic explanations to observations, supported by quantitative predictions of the phenomenon, are rather apparent. In this perspective, we review some of the established facts and recent developments about the current theoretical understanding of solid-state luminescence enhancement (SLE) with an accent on aggregation-induced emission (AIE). A description of the macroscopic phenomenon and the questions it raises is accompanied by a discussion of the approaches and quantum chemistry methods that are more apt to model these molecular systems with the inclusion of an accurate yet efficient simulation of the local environment. A sketch of a general framework, building from the current available knowledge, is then attempted via the analysis of a few varied SLE/AIE molecular systems from literature. A number of fundamental elements are identified offering the basis for outlining design rules for molecular architectures exhibiting SLE that involve specific structural features with the double role of modulating the optical response of the luminophores and defining the environment they experience in solid state.
Collapse
Affiliation(s)
- Michele Turelli
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Qinfan Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Alistar Ottochian
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Frédéric Labat
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Carlo Adamo
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
65
|
Mohamed SK, El Bakri Y, Alfayomy AM, Karthikeyan S, Saravanan K, Abdel-Aziz SA, Abou-Seri SM, Ragab FA, Mague JT, Aboelmagd M. Insights into the crystal structure and computational studies of newly synthesized thiazolopyrimidine derivatives against adenosine receptor (Thermostabilised HUMAN A2a). J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
66
|
Adhav V, Saikrishnan K. The Realm of Unconventional Noncovalent Interactions in Proteins: Their Significance in Structure and Function. ACS OMEGA 2023; 8:22268-22284. [PMID: 37396257 PMCID: PMC10308531 DOI: 10.1021/acsomega.3c00205] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Proteins and their assemblies are fundamental for living cells to function. Their complex three-dimensional architecture and its stability are attributed to the combined effect of various noncovalent interactions. It is critical to scrutinize these noncovalent interactions to understand their role in the energy landscape in folding, catalysis, and molecular recognition. This Review presents a comprehensive summary of unconventional noncovalent interactions, beyond conventional hydrogen bonds and hydrophobic interactions, which have gained prominence over the past decade. The noncovalent interactions discussed include low-barrier hydrogen bonds, C5 hydrogen bonds, C-H···π interactions, sulfur-mediated hydrogen bonds, n → π* interactions, London dispersion interactions, halogen bonds, chalcogen bonds, and tetrel bonds. This Review focuses on their chemical nature, interaction strength, and geometrical parameters obtained from X-ray crystallography, spectroscopy, bioinformatics, and computational chemistry. Also highlighted are their occurrence in proteins or their complexes and recent advances made toward understanding their role in biomolecular structure and function. Probing the chemical diversity of these interactions, we determined that the variable frequency of occurrence in proteins and the ability to synergize with one another are important not only for ab initio structure prediction but also to design proteins with new functionalities. A better understanding of these interactions will promote their utilization in designing and engineering ligands with potential therapeutic value.
Collapse
Affiliation(s)
- Vishal
Annasaheb Adhav
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
67
|
Parra RD. Bracelet-like Complexes of Lithium Fluoride with Aromatic Tetraamides, and Their Potential for LiF-Mediated Self-Assembly: A DFT Study. Molecules 2023; 28:4812. [PMID: 37375366 DOI: 10.3390/molecules28124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Geometries and binding energies of complexes between a LiF molecule and a model aromatic tetraamide are obtained using various DFT methods. The tetraamide consists of a benzene ring and four amides positioned so that the LiF molecule can bind via Li⋯O=C or N-H⋯F interactions. The complex with both interactions is the most stable one, followed by the complex with only N-H⋯F interactions. Doubling the size of the former resulted in a complex with a LiF dimer sandwiched between the model tetraamides. In turn, doubling the size of the latter resulted in a more stable tetramer with bracelet-like geometry having the two LiF molecules also sandwiched but far apart from each other. Additionally, all methods show that the energy barrier to transition to the more stable tetramer is small. The self-assembly of the bracelet-like complex mediated by the interactions of adjacent LiF molecules is demonstrated by all computational methods employed.
Collapse
Affiliation(s)
- Rubén D Parra
- Department of Chemistry and Biochemistry, DePaul University, Chicago, IL 60614, USA
| |
Collapse
|
68
|
Tang L, Qin F, Gong D, Dong Y, Pan L, Zhou C, Yin Q, Song X, Ling R, Huang J, Fan Q, Yi W, Wu F, Wu X, Zhang W, Yang J, Wang JY. Long-term sciatic nerve block led by a supramolecular arrangement of self-delivery local anesthetic nano systems. Chem Commun (Camb) 2023. [PMID: 37326382 DOI: 10.1039/d3cc02269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Classical local anesthetics are unsuitable to treat regional pain lasting several days due to their limited duration and systemic toxicity. Self-delivery nano systems without excipients were designed for long-term sensory blocks. 1a self-assembled into different vehicles with different fractions of intermolecular π-π stacking, transported itself into nerve cells, and released single molecules slowly to achieve long-term duration for rats' sciatic nerve block for 11.6 h in water, 12.1 h in water with CO2 and 3.4 h in NS (normal saline). After the counter ions were changed to SO42-, 1e can self-assemble into vesicles and prolong the duration to 43.2 h, which was much longer than the 3.8 h led by (s)-bupivacaine hydrocloride (0.75%). This was mainly caused by the enhancement of self-release and counter ion exchange inside nerve cells, which were affected by the gemini surfactant structure, pKa of the counter ions and π-π stacking interactions.
Collapse
Affiliation(s)
- Lei Tang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Feng Qin
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Deying Gong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yu Dong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China
| | - LiLi Pan
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Changcui Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Qinqin Yin
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Xinghai Song
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Rui Ling
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Junlong Huang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Qin Fan
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Wenhao Yi
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Fengbo Wu
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoai Wu
- West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Weiyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
| | - Jun Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ji-Yu Wang
- Department of Chemistry, Xihua University, Chengdu, P. R. China.
| |
Collapse
|
69
|
Tobajas-Curiel G, Sun Q, Sanders JKM, Ballester P, Hunter CA. Substituent effects on aromatic interactions in water. Chem Sci 2023; 14:6226-6236. [PMID: 37325132 PMCID: PMC10266462 DOI: 10.1039/d3sc01027a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
Molecular recognition in water involves contributions due to polar functional group interactions, partial desolvation of polar and non-polar surfaces and changes in conformational flexibility, presenting a challenge for rational design and interpretation of supramolecular behaviour. Conformationally well-defined supramolecular complexes that can be studied in both water and non-polar solvents provide a platform for disentangling these contributions. Here 1 : 1 complexes formed between four different calix[4]pyrrole receptors and thirteen different pyridine N-oxide guests have been used to dissect the factors that govern substituent effects on aromatic interactions in water. H-bonding interactions between the receptor pyrrole donors and the guest N-oxide acceptor at one end of the complex lock the geometrical arrangement of a cluster of aromatic interactions at the other end of the complex, so that a phenyl group on the guest makes two edge-to-face and two stacking interactions with the four aromatic side-walls of the receptor. The thermodynamic contribution of these aromatic interactions to the overall stability of the complex was quantified by chemical double mutant cycles using isothermal titration calorimetry and 1H NMR competition experiments. Aromatic interactions between the receptor and a phenyl group on the guest stabilise the complex by a factor of 1000, and addition of substituents to the guest phenyl group further stabilises the complex by an additional factor of up to 1000. When a nitro substituent is present on the guest phenyl group, the complex has a sub-picomolar dissociation constant (370 fM). The remarkable substituent effects observed in water for these complexes can be rationalised by comparison with the magnitude of the corresponding substituent effects measured in chloroform. In chloroform, the double mutant cycle free energy measurements of the aromatic interactions correlate well with the substituent Hammett parameters. Electron-withdrawing substituents increase the strength of the interactions by a factor of up to 20, highlighting the role of electrostatics in stabilising both the edge-to-face and stacking interactions. The enhanced substituent effects observed in water are due to entropic contributions associated with the desolvation of hydrophobic surfaces on the substituents. The flexible alkyl chains that line the open end of the binding site assist the desolvation of the non-polar π-surfaces of polar substituents, like nitro, but at the same time allow water to interact with the polar H-bond acceptor sites on the substituent. This flexibility allows polar substituents to maximise non-polar interactions with the receptor and polar interactions with the solvent, leading to remarkably high binding affinities.
Collapse
Affiliation(s)
| | - Qingqing Sun
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans, 16, 43007 Tarragona Spain
- Yangzhou University, School of Chemistry and Chemical Engineering Yangzhou 225002 Jiangsu China
| | - Jeremy K M Sanders
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans, 16, 43007 Tarragona Spain
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
70
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
71
|
Liu M, Han X, Chen H, Peng Q, Huang H. A molecular descriptor of intramolecular noncovalent interaction for regulating optoelectronic properties of organic semiconductors. Nat Commun 2023; 14:2500. [PMID: 37127693 PMCID: PMC10151346 DOI: 10.1038/s41467-023-38078-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
In recent years, intramolecular noncovalent interaction has become an important means to modulate the optoelectronic performances of organic/polymeric semiconductors. However, it lacks a deep understanding and a direct quantitative relationship among the molecular geometric structure, strength of noncovalent interaction, and optoelectronic properties in organic/polymeric semiconductors. Herein, upon systematical theoretical calculations on 56 molecules with and without noncovalent interactions (X···Y, X = O, S, Se, Te; Y = C, F, O, S, Cl), we reveal the essence of the interactions and the dependence of its strength on the molecular geometry. Importantly, a descriptor S is established as a function of several basic geometric parameters to well characterize the noncovalent interaction energy, which exhibits a good inverse correlation with the reorganization energies of the photo-excited states or electron-pumped charged states in organic/polymeric semiconductors. In particular, the experimental 1H, 77Se, and 125Te NMR, the optical absorption and emission spectra, and single crystal structures of eight compounds fully confirm the theoretical predictions. This work provides a simple descriptor to characterize the strength of noncovalent intramolecular interactions, which is significant for molecular design and property prediction.
Collapse
Affiliation(s)
- Meihui Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Han
- College of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Chen
- College of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
72
|
Perrella F, Coppola F, Rega N, Petrone A. An Expedited Route to Optical and Electronic Properties at Finite Temperature via Unsupervised Learning. Molecules 2023; 28:3411. [PMID: 37110644 PMCID: PMC10144358 DOI: 10.3390/molecules28083411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Electronic properties and absorption spectra are the grounds to investigate molecular electronic states and their interactions with the environment. Modeling and computations are required for the molecular understanding and design strategies of photo-active materials and sensors. However, the interpretation of such properties demands expensive computations and dealing with the interplay of electronic excited states with the conformational freedom of the chromophores in complex matrices (i.e., solvents, biomolecules, crystals) at finite temperature. Computational protocols combining time dependent density functional theory and ab initio molecular dynamics (MD) have become very powerful in this field, although they require still a large number of computations for a detailed reproduction of electronic properties, such as band shapes. Besides the ongoing research in more traditional computational chemistry fields, data analysis and machine learning methods have been increasingly employed as complementary approaches for efficient data exploration, prediction and model development, starting from the data resulting from MD simulations and electronic structure calculations. In this work, dataset reduction capabilities by unsupervised clustering techniques applied to MD trajectories are proposed and tested for the ab initio modeling of electronic absorption spectra of two challenging case studies: a non-covalent charge-transfer dimer and a ruthenium complex in solution at room temperature. The K-medoids clustering technique is applied and is proven to be able to reduce by ∼100 times the total cost of excited state calculations on an MD sampling with no loss in the accuracy and it also provides an easier understanding of the representative structures (medoids) to be analyzed on the molecular scale.
Collapse
Affiliation(s)
- Fulvio Perrella
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
| | - Federico Coppola
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, via Cintia 21, I-80126 Napoli, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy; (F.P.); (F.C.); (N.R.)
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, via Cintia 21, I-80126 Napoli, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di M.S. Angelo ed. 6, via Cintia 21, I-80126 Napoli, Italy
| |
Collapse
|
73
|
Karachi SS, Eskandari K. Bonding in the high spin lithium clusters: Non-nuclear attractors play a crucial role. J Comput Chem 2023; 44:962-968. [PMID: 36573786 DOI: 10.1002/jcc.27056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022]
Abstract
The bonding in lithium high-spin clusters contradicts the usual chemical bonding concept since there are no electron pairs between the atoms, and they are bound with parallel spin electrons. Quantum theory of atoms in molecules and interacting quantum atom analysis (IQA) were used to investigate the nature of bonding in the high-spin Li n n + 1 n = 2 - 5 clusters. Our findings demonstrate that the non-nuclear attractors (NNAs) are an essential component of the high-spin lithium clusters and play a key role in keeping them stable. Based on IQA energy terms, an electrostatic destabilizing interaction between the lithium atoms works against the cluster formation. On the other hand, the interactions between lithium atoms and NNA basins are stabilizing and outweigh the lithium-lithium destabilizing effects. In fact, NNAs tend to draw lithium atoms together and stabilize the resulting cluster. The high-spin clusters of lithium can be regarded as electrostatically driven compounds since the electrostatic components are primarily responsible for the stabilizing interactions between NNAs and Li atoms. The only exception is 3 Li2 , which lacks NNA and has a non-repellent lithium-lithium interaction. Indeed, in the 3 Li2 , the interatomic electrostatic component is negligibly small, and the exchange-correlation term leads to a weak bonding interaction.
Collapse
Affiliation(s)
- Sara Sadat Karachi
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Kiamars Eskandari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
74
|
Sun H, Wang H, Chen Q, Dong W, Gao C, Song H, Peng H, Li R, Wu H, Hou L, Chang Y, Luo H. Cation affinity purification of histidine-tagged proteins. Appl Microbiol Biotechnol 2023; 107:2639-2651. [PMID: 36810625 DOI: 10.1007/s00253-023-12425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023]
Abstract
Protein purification is a basic technology in both biological research and industrial production, and efficient, convenient, economical, and environmentally friendly purification methods have always been pursued. In this study, it was found that alkaline earth metal cations (Mg2+, Ca2+) and alkali metal cations (Li+, Na+, K+) and even nonmetal cations (e.g., NH4+, imidazole, guanidine, arginine, lysine) can precipitate multi-histidine-tagged proteins (at least two tags in a whole protein) at low salts concentrations that are 1-3 orders of magnitude lower than salting-out, and precipitated proteins could be dissolved at moderate concentration of corresponding cation. Based on this finding, a novel cation affinity purification method was developed, which requires only three centrifugal separations to obtain highly purified protein with purification fold similar to that of immobilized metal affinity chromatography. The study also provides a possible explanation for unexpected protein precipitation and reminds researchers to consider the influence of cations on the experimental results. The interaction between histidine-tagged proteins and cations may also have broad application prospects. KEY POINTS: • Histidine-tagged proteins can be precipitated by low-concentrations common cations • A novel nonchromatographic protein purification method was developed • Purified protein can be obtained in pellet form by only three centrifugations.
Collapse
Affiliation(s)
- Hongxu Sun
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Hongrui Wang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Qiwei Chen
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Wenge Dong
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Chao Gao
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Haiyan Song
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hui Peng
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Ren Li
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hao Wu
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Liangyu Hou
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China
| | - Yanhong Chang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology, Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Hui Luo
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology, Beijing, Beijing, 100083, China.
| |
Collapse
|
75
|
Wang Z, Mei L, Guo C, Huang S, Shi WQ, Li X, Feng W, Li X, Yang C, Yuan L. Supramolecular Shish Kebabs: Higher Order Dimeric Structures from Ring-in-Rings Complexes with Conformational Adaptivity. Angew Chem Int Ed Engl 2023; 62:e202216690. [PMID: 36652350 DOI: 10.1002/anie.202216690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring-in-ring(s) system comprising a hydrogen-bonded macrocycle and cyclobis(paraquat-o-phenylene) tetracation (o-Box) or cyclobis(paraquat-p-phenylene) tetracation (CBPQT4+ , p-Box) that assembles to construct discrete higher order structures with adaptive conformation. As indicated by mass spectrometry, computational modeling, NMR spectroscopy, and single-crystal X-ray diffraction analysis, this ring-in-ring(s) system features the box-directed aggregation of multiple macrocycles, leading to generation of several stable species such as H4G (1 a/o-Box) and H5G (1 a/o-Box). Remarkably, a dimeric shish-kebab-like ring-in-rings superstructure H7G2 (1 a/o-Box) or H8G2 (1 a/p-Box) is formed from the coaxial stacking of two ring-in-rings units. The formation of such unique dimeric superstructures is attributed to the large π-surface of this 2D planar macrocycle and the conformational variation of both host and guest.
Collapse
Affiliation(s)
- Zhenwen Wang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Song Huang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, China.,University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Cheng Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| |
Collapse
|
76
|
Wojtkowiak K, Jezierska A. Role of Non-Covalent Interactions in Carbonic Anhydrase I-Topiramate Complex Based on QM/MM Approach. Pharmaceuticals (Basel) 2023; 16:ph16040479. [PMID: 37111236 PMCID: PMC10146004 DOI: 10.3390/ph16040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 04/29/2023] Open
Abstract
Carbonic anhydrase (CA) I with a Topiramate (TPM) complex was investigated on the basis of a Quantum Mechanics/Molecular Mechanics (QM/MM) approach. The QM part was treated using Density Functional Theory (DFT) while the MM was simulated using Amberff14SB and GAFF force fields. In addition, the TIP3P model was applied to reproduce the polar environment influence on the studied complex. Next, three snapshots (after 5 ps, 10 ps, and 15 ps of the simulation time) were taken from the obtained trajectory to provide an insight into the non-covalent interactions present between the ligand and binding pocket of the protein. Our special attention was devoted to the binding site rearrangement, which is known in the literature concerning the complex. This part of the computations was performed using ωB97X functional with Grimme D3 dispersion corrections as well as a Becke-Johnson damping function (D3-BJ). Two basis sets were applied: def2-SVP (for larger models) and def2-TZVPD (for smaller models), respectively. In order to detect and describe non-covalent interactions between amino acids of the binding pocket and the ligand, Independent Gradient Model based on Hirshfeld partitioning (IGMH), Interaction Region Indicator (IRI), Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbitals (NBO) methods were employed. Finally, Symmetry-Adapted Perturbation Theory (SAPT) was applied for energy decomposition between the ligand and protein. It was found that during the simulation time, the ligand position in the binding site was preserved. Nonetheless, amino acids interacting with TPM were exchanging during the simulation, thus showing the binding site reorganization. The energy partitioning revealed that dispersion and electrostatics are decisive factors that are responsible for the complex stability.
Collapse
Affiliation(s)
- Kamil Wojtkowiak
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
77
|
Yin C, Lu H, Ye H, Feng Z, Zou H, Zhang M, You L. Double n→π* Interactions with One Electron Donor: Structural and Mechanistic Insights. Org Lett 2023; 25:1470-1475. [PMID: 36856609 DOI: 10.1021/acs.orglett.3c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Double n→π* interactions between one common electron donor of the carbonyl oxygen and two individual acceptor aldehyde/imine units are presented. The structural and mechanistic insights were revealed through a collection of experimental and computational evidence. The orientation and further energetic dependence of orbital interactions were facilely regulated by the size of cyclic urea scaffolds, the bulkiness of aldehydes/imines, and the flexibility of imine macrocycles.
Collapse
Affiliation(s)
- Chaowei Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zelin Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Meilan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
78
|
DFT calculations predict that inverted geometries at carbon can be stabilized within multi-component co-crystals. Theor Chem Acc 2023. [DOI: 10.1007/s00214-023-02966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
79
|
Pang J, Mehandzhiyski AY, Zozoulenko I. A computational study of cellulose regeneration: Coarse-grained molecular dynamics simulations. Carbohydr Polym 2023; 313:120853. [PMID: 37182953 DOI: 10.1016/j.carbpol.2023.120853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
Understanding the microscopic mechanisms of regeneration of cellulose is prerequisite for engineering and controlling its material properties. In this paper, we performed coarse-grained Martini 3 molecular dynamics simulations of cellulose regeneration at a scale comparable to the experiments. The X-ray diffraction (XRD) curves were monitored to follow the structural changes of regenerated cellulose and trace formation of cellulose sheets and crystallites. The calculated coarse-grained morphologies of regenerated cellulose were backmapped to atomistic ones. After the backmapping we find that the regenerated coarse-grained cellulose structures calculated for both topology parameters of cellulose Iβ and cellulose II/III, are transformed to cellulose II, where the calculated XRD curves exhibit the main peak at approximately 20-21 degrees, corresponding to the (110)/(020) planes of cellulose II. This result is in good quantitative agreement with the available experimental observations.
Collapse
Affiliation(s)
- Jiu Pang
- Laboratory of Organic Electronics and Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Aleksandar Y Mehandzhiyski
- Laboratory of Organic Electronics and Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics and Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden.
| |
Collapse
|
80
|
Nazari N, Bernard S, Fortin D, Marmin T, Gendron L, Dory YL. Triple Thorpe-Ingold Effect in the Synthesis of 18-Membered C 3 Symmetric Lactams Stacking as Endless Supramolecular Tubes. Chemistry 2023; 29:e202203717. [PMID: 36469732 DOI: 10.1002/chem.202203717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Three C3 symmetric macrolactams were very efficiently cyclized from their linear precursors. Adequately located substituents are responsible for the enhancement of reactivity that is not observed in the unsubstituted parent. DFT calculations show that the properly folded cyclization precursor, the reactive conformer, is more populated than other conformers, leading to a decrease of free energy of activation. The crystal structure of the ring substituted with three very bulky esters indicates that tubular stacking is preserved.
Collapse
Affiliation(s)
- Niousha Nazari
- Laboratoire de Synthèse Supramoléculaire Département de Chimie, Université de Sherbrooke 2500, boulevard Université, Sherbrooke, Québec, J1K 2R1, Canada.,Institut de Pharmacologie et Centre de Recherche du CHUS, Université de Sherbrooke 3001, 12e avenue nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Sylvain Bernard
- Laboratoire de Synthèse Supramoléculaire Département de Chimie, Université de Sherbrooke 2500, boulevard Université, Sherbrooke, Québec, J1K 2R1, Canada.,Institut de Pharmacologie et Centre de Recherche du CHUS, Université de Sherbrooke 3001, 12e avenue nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Daniel Fortin
- Laboratoire de cristallographie, Université de Sherbrooke 2500, boulevard Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Thomas Marmin
- Laboratoire de Synthèse Supramoléculaire Département de Chimie, Université de Sherbrooke 2500, boulevard Université, Sherbrooke, Québec, J1K 2R1, Canada.,Institut de Pharmacologie et Centre de Recherche du CHUS, Université de Sherbrooke 3001, 12e avenue nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Louis Gendron
- Département de Pharmacologie-Biophysique 3001, 12e avenue nord, Sherbrooke, Québec, J1H 5N4, Canada.,Institut de Pharmacologie et Centre de Recherche du CHUS, Université de Sherbrooke 3001, 12e avenue nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Yves L Dory
- Laboratoire de Synthèse Supramoléculaire Département de Chimie, Université de Sherbrooke 2500, boulevard Université, Sherbrooke, Québec, J1K 2R1, Canada.,Institut de Pharmacologie et Centre de Recherche du CHUS, Université de Sherbrooke 3001, 12e avenue nord, Sherbrooke, Québec, J1H 5N4, Canada
| |
Collapse
|
81
|
Tang HF, Zhong H, Zhang LL, Gong MX, Song SQ, Tian QP. A theoretical investigation on the synergetic effect of hydrogen-bonding interactions and thermodynamic property in the 1: 2 (azacyclopentane-2-one: N-methylolacetamide) ternary complex. J Mol Model 2023; 29:68. [PMID: 36792837 DOI: 10.1007/s00894-023-05469-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
CONTEXT Using chemical penetration enhancers to improve the penetration effect is one kind of important strategies in transdermal drug delivery system. Azone is a widely used transdermal absorption enhancer for transdermal drug delivery. To shed light on the permeation-promoting mechanism of azone, we selected ternary systems formed by azacyclopentane-2-one and N-methylolacetamide (1: 2) and explored the synergetic effect of hydrogen-bonding interactions among them and their thermodynamic properties. The findings indicate that the synergetic effects can enhance the ability of azone to change the original conformation of ceramides and even break the original hydrogen bonds, which is more beneficial for azone to destroy the 3D network structure of ceramides. When azone interacts with ceramide, the order of action tends to interact with one molecule of ceramide first and then with another molecule of ceramide. METHODS The synergetic effects of hydrogen-bonding interactions in ternary systems were computed at the B3LYP/6-311 + + G** and MP2(full)/6-311 + + G** levels. Thermodynamic parameters for two ternary-complex routes were worked out at the B3LYP/aug-cc-pVDZ level. The shift of the electron density occurring simultaneously with trimer formation was analyzed at the MP2(full)/6-311 + + G** level. The above calculations were carried out using the Gaussian 03 program packages. Atoms in molecules (AIM) method and the AIMPAC program showed the topological charge density at the MP2(full)/6-311 + + G** level. The synergetic effects of hydrogen-bonding interactions and thermodynamic property in the 1: 2 (azacyclopentane-2-one: N-methylolacetamide) ternary systems were investigated using the B3LYP and MP2(full) methods.
Collapse
Affiliation(s)
- Hai-Fei Tang
- Xiangtan Medicine & Health Vocational College, Xiangtan, 411104, China
| | - Hua Zhong
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Ling-Ling Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Ming-Xing Gong
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Shu-Qin Song
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Qing-Ping Tian
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
82
|
Saha B, Bhattacharyya PK. Exploring alkali metal cation⋯hydrogen interaction in the formation half sandwich complexes with cycloalkanes: a DFT approach. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2022-1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Abstract
Gas and solvent phase stability of half sandwich complexes between cycloalkanes viz. cyclopropane, cyclobutane, cyclopentane, cyclohexane, bicyclo[2.2.2]octane and adamantane with alkali metal cations (Li+, Na+ and K+) are analysed using density functional theory (DFT). M06-2X/6-31++G(d,p) level is primarily used for the study. The studied half sandwich complexes are stable in gas phase (stabilization energy upto 26.55 kcal mol−1). Presence of solvent phase irrespective of its dielectric, imparts negative impact on the stability of the chosen complexes. The formation of the complexes is exothermic in nature. The process of complexation is both enthalpy (ΔH) and free energy (ΔG) driven. Variation in HOMO (highest occupied molecular orbital) energy also indicates towards the chemical stability of complexes. The interaction is non-covalent with primary contribution from induction component. NBO analysis indicates that C–H bond is the donor and antibonding metal orbital is the acceptor site in the process of complexation. Stability of the complexes depends on the size of the interacting monomers.
Collapse
Affiliation(s)
- Bapan Saha
- Department of Chemistry, Handique Girls’ College , Gauhati University , Guwahati 781001 , India
| | | |
Collapse
|
83
|
Mazumder LJ, Sharma R, Yashmin F, Sharma PK. Beryllium bonding with noble gas atoms. J Comput Chem 2023; 44:644-655. [PMID: 36394306 DOI: 10.1002/jcc.27028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022]
Abstract
Quantum chemical calculations were carried out to investigate the nature of the bonding between a neutral Be3 ring and noble gas atom. Electronic structure calculation for these complexes was carried out at different computational levels in association with natural bond orbital, quantum theory of atoms in molecules, electron localization function, symmetry adapted perturbation theory, and molecular electrostatic potential surface analysis of Be3 complexes. The Be atoms in the Be3 moiety are chemically bonded to one another, with the BeBe bond dissociation energy being ~125 kJ mol-1 . The Be3 ring interacts with the noble gases through non-covalent interactions. The binding energies of the noble gas atoms with the Be3 ring increases with increase in their atomic number. The non-covalent interaction index, density overlap region indicator and independent gradient model analyses reveal the presence of non-covalent inter-fragment interactions in the complexes. Energy decomposition analysis reveals that dispersion plays the major role towards stabilizing these systems.
Collapse
Affiliation(s)
| | - Rohan Sharma
- Department of Chemistry, Cotton University, Guwahati, Assam, India
| | - Farnaz Yashmin
- Department of Chemistry, Cotton University, Guwahati, Assam, India
| | | |
Collapse
|
84
|
Makhlouf J, Bakri YE, Saravanan K, Valkonen A, Smirani W. Self-assembly, physico-chemical characterization, biological and computational approach of novel 2-Amino pyridine derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
85
|
Zaib S, Ibrar A, Khan I, Gomila RM, Tariq MU, Simpson J, McAdam CJ, Alrbyawi H, Pashameah RA, Alzahrani E, Farouk AE, Frontera A. Unraveling the impact of hydrogen bonding and C‒H…π(CN) interactions in crystal engineering of cyclic aminobenzonitriles: A combined X-ray crystallographic and computational investigation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
86
|
Khodia S, Jarupula R, Maity S. Accurate measurement of sequential Ar desorption energies from the dispersion-dominated Ar 1-3 complexes of aromatic molecules. Phys Chem Chem Phys 2023; 25:2510-2516. [PMID: 36602110 DOI: 10.1039/d2cp04676h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present experimental determination of the energies associated with the gradual desorption of Ar atoms from the aromatic molecular surface. Non-covalently bound 2,2'-pyridylbenzimidazole-Ar1-3 complexes were produced in the gas phase and characterized using resonant two-photon ionization (R2PI) spectroscopy. The single Ar desorption from the PBI-Ar, PBI-Ar2 and PBI-Ar3 complexes were measured as 581 ± 18, 656 ± 30 and 537 ± 31 cm-1, respectively. The energies were bracketed between the last observed band in the respective R2PI spectra and the disappeared intramolecular modes of PBI. The Arn dissociation energies in the S1 state were measured as 581 ± 18, 1237 ± 48 and 1774 ± 79 cm-1, respectively, for n = 1, 2 and 3. The calculated dissociation energies of the respective complexes, obtained using three computational methods, show excellent agreement with the experimental data. The ground state dissociation energies were estimated by subtracting the Δν shift of the origin band, and the respective values are 541 ± 18, 1160 ± 48 and 1634 ± 79 cm-1. Overall, the calculated values resulted in scaling factors ranging from 0.956 to 1.017, which depict the predictive power of the methods to determine dispersion energies. The current investigation describes a unique methodology to accurately determine the dissociation and desorption energies of Ar atoms from the surfaces of bio-relevant aromatic molecules.
Collapse
Affiliation(s)
- Saurabh Khodia
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, India.
| | - Ramesh Jarupula
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, India.
| | - Surajit Maity
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, India.
| |
Collapse
|
87
|
Unraveling the Nature of Hydrogen Bonds of "Proton Sponges" Based on Car-Parrinello and Metadynamics Approaches. Int J Mol Sci 2023; 24:ijms24021542. [PMID: 36675059 PMCID: PMC9860969 DOI: 10.3390/ijms24021542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
The nature of intra- and intermolecular non-covalent interactions was studied in four naphthalene derivatives commonly referred to as "proton sponges". Special attention was paid to an intramolecular hydrogen bond present in the protonated form of the compounds. The unsubstituted "proton sponge" served as a reference structure to study the substituent influence on the hydrogen bond (HB) properties. We selected three compounds substituted by methoxy, amino, and nitro groups. The presence of the substituents either retained the parent symmetry or rendered the compounds asymmetric. In order to reveal the non-covalent interaction properties, the Hirshfeld surface (HS) was computed for the crystal structures of the studied compounds. Next, quantum-chemical simulations were performed in vacuo and in the crystalline phase. Car-Parrinello molecular dynamics (CPMD), Path Integral Molecular Dynamics (PIMD), and metadynamics were employed to investigate the time-evolution changes of metric parameters and free energy profile in both phases. Additionally, for selected snapshots obtained from the CPMD trajectories, non-covalent interactions and electronic structure were studied. Quantum theory of atoms in molecules (QTAIM) and the Density Overlap Regions Indicator (DORI) were applied for this purpose. It was found based on Hirshfeld surfaces that, besides intramolecular hydrogen bonds, other non-covalent interactions are present and have a strong impact on the crystal structure organization. The CPMD results obtained in both phases showed frequent proton transfer phenomena. The proton was strongly delocalized in the applied time-scale and temperature, especially in the PIMD framework. The use of metadynamics allowed for tracing the free energy profiles and confirming that the hydrogen bonds present in "proton sponges" are Low-Barrier Hydrogen Bonds (LBHBs). The electronic and topological analysis quantitatively described the temperature dependence and time-evolution changes of the electronic structure. The covalency of the hydrogen bonds was estimated based on QTAIM analysis. It was found that strong hydrogen bonds show greater covalency, which is additionally determined by the proton position in the hydrogen bridge.
Collapse
|
88
|
Liu X. The intermolecular interactions of ammonia with chlorine and bromine oxides: a theoretical study. J Mol Model 2023; 29:11. [DOI: 10.1007/s00894-022-05415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
|
89
|
Zhang X, Wu J, Yan H, Chen H, Mao W, Dai G. Insight into the nature of the noncovalent interactions of furan, pyridine, and pyrazine with AtX. J Mol Model 2023; 29:13. [DOI: 10.1007/s00894-022-05411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
|
90
|
Patkar D, Bharati Ahirwar M, Deshmukh MM. A Tug of War between the Self- and Cross-associating Hydrogen Bonds in Neutral Ammonia-Water Clusters: Energetic Insights by Molecular Tailoring Approach. Chemphyschem 2022; 23:e202200476. [PMID: 36127809 DOI: 10.1002/cphc.202200476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/09/2022] [Indexed: 01/05/2023]
Abstract
In the present work, the energies of various types of individual HBs observed in neutral (NH3 )m (H2 O)n , (m+n=2 to 7) clusters were estimated using the molecular tailoring approach (MTA)-based method. The calculated individual HB energies suggest that the O-H…N HBs are the strongest (1.21 to 12.49 kcal mol-1 ). The next ones are the O-H…O (3.97 to 9.30 kcal mol-1 ) HBs. The strengths of N-H…N (1.09 to 5.29 kcal mol-1 ) and N-H…O (2.85 to 5.56 kcal mol-1 ) HBs are the weakest. The HB energies in dimers also follow this rank ordering. However, the HB energies in dimers are much smaller than those obtained by the MTA-based method due to the loss in cooperativity contribution in the dimers. Thus, the calculated cooperativity contributions, for different types of HBs, fall in the range 0.64 to 5.73 kcal mol-1 . We wish to emphasize based on the energetic rank ordering obtained by the MTA-based method that the O-H of water is a better HB donor than the N-H of ammonia. The reasons for the observed energetic rank ordering are two folds: (i) intrinsically stronger O-H…N HBs than the O-H…O ones as revealed by dimer energies and (ii) the higher cooperativity contribution in the former than the later ones. Indeed, the MTA-based method is useful in providing the missing energetic rank ordering of various type of HBs in neutral (NH3 )m (H2 O)n clusters, in the literature.
Collapse
Affiliation(s)
- Deepak Patkar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, (A Central University), 470003, Sagar, India
| | - Mini Bharati Ahirwar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, (A Central University), 470003, Sagar, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya, (A Central University), 470003, Sagar, India
| |
Collapse
|
91
|
Storer MC, Hunter CA. The surface site interaction point approach to non-covalent interactions. Chem Soc Rev 2022; 51:10064-10082. [PMID: 36412990 DOI: 10.1039/d2cs00701k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The functional properties of molecular systems are generally determined by the sum of many weak non-covalent interactions, and therefore methods for predicting the relative magnitudes of these interactions is fundamental to understanding the relationship between function and structure in chemistry, biology and materials science. This review focuses on the Surface Site Interaction Point (SSIP) approach which describes molecules as a set of points that capture the properties of all possible non-covalent interactions that the molecule might make with another molecule. The first half of the review focuses on the empirical non-covalent interaction parameters, α and β, and provides simple rules of thumb to estimate free energy changes for interactions between different types of functional group. These parameters have been used to have been used to establish a quantitative understanding of the role of solvent in solution phase equilibria, and to describe non-covalent interactions at the interface between macroscopic surfaces as well as in the solid state. The second half of the review focuses on a computational approach for obtaining SSIPs and applications in multi-component systems where many different interactions compete. Ab initio calculation of the Molecular Electrostatic Potential (MEP) surface is used to derive an SSIP description of a molecule, where each SSIP is assigned a value equivalent to the corresponding empirical parameter, α or β. By considering the free energies of all possible pairing interactions between all SSIPs in a molecular ensemble, it is possible to calculate the speciation of all intermolecular interactions and hence predict thermodynamic properties using the SSIMPLE algorithm. SSIPs have been used to describe both the solution phase and the solid state and provide accurate predictions of partition coefficients, solvent effects on association constants for formation of intermolecular complexes, and the probability of cocrystal formation. SSIPs represent a simple and intuitive tool for describing the relationship between chemical structure and non-covalent interactions with sufficient accuracy to understand and predict the properties of complex molecular ensembles without the need for computationally expensive simulations.
Collapse
Affiliation(s)
- Maria Chiara Storer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
92
|
Hassanzadeh M, Abdouss M. Essential role of structure, architecture, and intermolecular interactions of asphaltene molecules on properties (self-association and surface activity). Heliyon 2022; 8:e12170. [PMID: 36582717 PMCID: PMC9792798 DOI: 10.1016/j.heliyon.2022.e12170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/11/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
One of the important challenges of the oil industry is the formation of asphaltene deposits and emulsions, which cause many operational and economic problems. Asphaltenes are heavy and polar fractions of petroleum with a mixture of diverse molecules. Their structural complexity makes the understanding of their properties puzzling. The purpose of this review is to understand the self-association and surface activity properties of asphaltenes. There are some popular models for the mechanism of asphaltene aggregation; each alone is not complete and without defects. Experimental studies and molecular dynamics demonstrate that the mechanism of aggregation is influenced by asphaltene' structure, architecture, and intermolecular forces. Factors such as oil composition, temperature, and pressure affect its intensity. In this article, these issues and their impact on the self-assembly of asphaltenes and ways to prevent it, especially chemical inhibitors, have been discussed in detail.
Collapse
|
93
|
Jyoti Bora H, Paul C, Sen Sarma N, Kalita A. Facile Synthesis of Regenerative Framework Adsorbent for Organic Dyes: Experimental and Artificial Neural Modeling Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202203766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Hridoy Jyoti Bora
- Physical Sciences Division Institute of Advanced Study in Science and Technology Paschim Boragaon Guwahati 781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Chayan Paul
- Department of Artificial Intelligence and Data Science Koneru Lakshmaiah Education Foundation Vaddeswaram 522302 Andhra Pradesh India
| | - Neelotpal Sen Sarma
- Physical Sciences Division Institute of Advanced Study in Science and Technology Paschim Boragaon Guwahati 781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Anamika Kalita
- Physical Sciences Division Institute of Advanced Study in Science and Technology Paschim Boragaon Guwahati 781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
94
|
Wang H, Chen J, Cheng W, Zheng Y, Zou S, Du W, Xu X, Gou Q. Rotational spectrum of anisole-CO 2: Cooperative C···O tetrel bond and CH···O hydrogen bond. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121677. [PMID: 35908502 DOI: 10.1016/j.saa.2022.121677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Rotational spectrum of the 1:1 anisole-CO2 complex has been investigated using a pulsed jet Fourier transform microwave spectrometer supplemented with quantum chemical calculations. In the pulsed jet, only one isomer has been observed which is characterized by a dominant C···O tetrel bond and two CH···OCO2 weak hydrogen bonds. Different theoretical methods predict different orders of relative energies of plausible conformations. The experimental observation is most consistent with the theoretical estimation at the B3LYP-D3(BJ)/6-311++G(d,p) level of theory. Johnson's non-covalent interaction, quantum theory of atoms in molecules and natural bond orbital analyses have been applied to better understand the nature of non-covalent interactions at play in the anisole-CO2 complex.
Collapse
Affiliation(s)
- Hao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Junhua Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Wanying Cheng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Yang Zheng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Siyu Zou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Weiping Du
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China; Chongqing Key Laboratory of Theoretical and Computational Chemistry, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| |
Collapse
|
95
|
Lone pair-π interaction induced regioselective sulfonation of ethers under light irradiation. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
96
|
Alirezapour F, Keshavarz Y, Minaeifar AA, Khanmohammadi A. Structural analysis and electronic properties of transition metal ions (Ni2+, Fe2+, Mn+ and Co+) with psoralen biomolecule as an anticancer drug. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
97
|
Different phosphoric triamide [HN]3-nP(O)[N]n (n = 1, 2) skeletons lead to identical non-covalent interactions assemblies: X-ray crystallography investigation, Hirshfeld surface analysis and molecular docking study against SARS-CoV-2. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
98
|
Xia X, Zhou F, Xu J, Wang Z, Lan J, Fan Y, Wang Z, Liu W, Chen J, Feng S, Tu Y, Yang Y, Chen L, Fang H. Unexpectedly efficient ion desorption of graphene-based materials. Nat Commun 2022; 13:7247. [PMID: 36434112 PMCID: PMC9700706 DOI: 10.1038/s41467-022-35077-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
Ion desorption is extremely challenging for adsorbents with superior performance, and widely used conventional desorption methods involve high acid or base concentrations and large consumption of reagents. Here, we experimentally demonstrate the rapid and efficient desorption of ions on magnetite-graphene oxide (M-GO) by adding low amounts of Al3+. The corresponding concentration of Al3+ used is reduced by at least a factor 250 compared to conventional desorption method. The desorption rate reaches ~97.0% for the typical radioactive and bivalent ions Co2+, Mn2+, and Sr2+ within ~1 min. We achieve effective enrichment of radioactive 60Co and reduce the volume of concentrated 60Co solution by approximately 10 times compared to the initial solution. The M-GO can be recycled and reused easily without compromising its adsorption efficiency and magnetic performance, based on the unique hydration anionic species of Al3+ under alkaline conditions. Density functional theory calculations show that the interaction of graphene with Al3+ is stronger than with divalent ions, and that the adsorption probability of Al3+ is superior than that of Co2+, Mn2+, and Sr2+ ions. This suggests that the proposed method could be used to enrich a wider range of ions in the fields of energy, biology, environmental technology, and materials science.
Collapse
Affiliation(s)
- Xinming Xia
- grid.203507.30000 0000 8950 5267School of Physical Science and Technology, Ningbo University, 315211 Ningbo, China ,grid.443483.c0000 0000 9152 7385Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, College of Environmental and Resource Sciences, Zhejiang A&F University, 311300 Hangzhou, China ,grid.268415.cSchool of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, 225009 Yangzhou, China
| | - Feng Zhou
- Radiation Monitoring Technical Center of Ministry of Environmental Protection, State Environmental Protection Key Laboratory of Radiation monitoring, Key Laboratory of Radiation Monitoring of Zhejiang Province, 310012 Hangzhou, China
| | - Jing Xu
- grid.443483.c0000 0000 9152 7385Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, College of Environmental and Resource Sciences, Zhejiang A&F University, 311300 Hangzhou, China
| | - Zhongteng Wang
- grid.443483.c0000 0000 9152 7385Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, College of Environmental and Resource Sciences, Zhejiang A&F University, 311300 Hangzhou, China
| | - Jian Lan
- grid.443483.c0000 0000 9152 7385Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, College of Environmental and Resource Sciences, Zhejiang A&F University, 311300 Hangzhou, China
| | - Yan Fan
- grid.443483.c0000 0000 9152 7385Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, College of Environmental and Resource Sciences, Zhejiang A&F University, 311300 Hangzhou, China
| | - Zhikun Wang
- grid.443483.c0000 0000 9152 7385Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, College of Environmental and Resource Sciences, Zhejiang A&F University, 311300 Hangzhou, China
| | - Wei Liu
- grid.443483.c0000 0000 9152 7385Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, College of Environmental and Resource Sciences, Zhejiang A&F University, 311300 Hangzhou, China
| | - Junlang Chen
- grid.443483.c0000 0000 9152 7385Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, College of Environmental and Resource Sciences, Zhejiang A&F University, 311300 Hangzhou, China
| | - Shangshen Feng
- grid.443483.c0000 0000 9152 7385Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, College of Environmental and Resource Sciences, Zhejiang A&F University, 311300 Hangzhou, China
| | - Yusong Tu
- grid.268415.cSchool of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, 225009 Yangzhou, China
| | - Yizhou Yang
- grid.28056.390000 0001 2163 4895Department of Physics, East China University of Science and Technology, 200237 Shanghai, China
| | - Liang Chen
- grid.203507.30000 0000 8950 5267School of Physical Science and Technology, Ningbo University, 315211 Ningbo, China
| | - Haiping Fang
- grid.28056.390000 0001 2163 4895Department of Physics, East China University of Science and Technology, 200237 Shanghai, China ,grid.410726.60000 0004 1797 8419Wenzhou Institute, University of Chinese Academy of Sciences, 325000 Wenzhou, Zhejiang China
| |
Collapse
|
99
|
Zhang YL, Li B. Reliability of Computing van der Waals Bond Lengths of Some Rare Gas Diatomics. Int J Mol Sci 2022; 23:ijms232213944. [PMID: 36430420 PMCID: PMC9696166 DOI: 10.3390/ijms232213944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
When the bond lengths of 11 molecules containing van der Waals bonds are optimized by 572 methods and 20 basis sets, it is found that the best mean absolute deviations (MADs) of density-functional theory (DFT) methods are 0.005 Å (shown by APFD/6-311++G**), 0.007 Å (B2PLYPD3(Full)/aug-cc-pVQZ), and 0.010 Å (revDSDPBEP86/aug-cc-pVQZ), while the best MADs of ab initio methods are 0.008 Å (BD(T)/aug-cc-pVTZ) and 0.016 Å (MP4/aug-cc-pVQZ). Moreover, the best MADs calculated by 54 selected methods in combination with 60 other basis sets (such as 6-311++G, 6-31++G(3d'f,3p'd), and UGBS1V++) are not better. Therefore, these bond lengths can be calculated with extremely high accuracy by some special methods and basis sets, and CCSD(T) is also not as good as expected because its best MAD is only 0.023 Å (CCSD(T)/aug-cc-pVQZ).
Collapse
|
100
|
Chalcogen Bond as a Factor Stabilizing Ligand Conformation in the Binding Pocket of Carbonic Anhydrase IX Receptor Mimic. Int J Mol Sci 2022; 23:ijms232213701. [PMID: 36430173 PMCID: PMC9691181 DOI: 10.3390/ijms232213701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
It is postulated that the overexpression of Carbonic Anhydrase isozyme IX in some cancers contributes to the acidification of the extracellular matrix. It was proved that this promotes the growth and metastasis of the tumor. These observations have made Carbonic Anhydrase IX an attractive drug target. In the light of the findings and importance of the glycoprotein in the cancer treatment, we have employed quantum-chemical approaches to study non-covalent interactions in the binding pocket. As a ligand, the acetazolamide (AZM) molecule was chosen, being known as a potential inhibitor exhibiting anticancer properties. First-Principles Molecular Dynamics was performed to study the chalcogen and other non-covalent interactions in the AZM ligand and its complexes with amino acids forming the binding site. Based on Density Functional Theory (DFT) and post-Hartree-Fock methods, the metric and electronic structure parameters were described. The Non-Covalent Interaction (NCI) index and Atoms in Molecules (AIM) methods were applied for qualitative/quantitative analyses of the non-covalent interactions. Finally, the AZM-binding pocket interaction energy decomposition was carried out. Chalcogen bonding in the AZM molecule is an important factor stabilizing the preferred conformation. Free energy mapping via metadynamics and Path Integral molecular dynamics confirmed the significance of the chalcogen bond in structuring the conformational flexibility of the systems. The developed models are useful in the design of new inhibitors with desired pharmacological properties.
Collapse
|