51
|
Terzaghi E, Raspa G, Zanardini E, Morosini C, Anelli S, Armiraglio S, Di Guardo A. Life cycle exposure of plants considerably affects root uptake of PCBs: Role of growth strategies and dissolved/particulate organic carbon variability. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126826. [PMID: 34396963 DOI: 10.1016/j.jhazmat.2021.126826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Plant roots can accumulate organic chemicals, including PCBs, and this could be relevant in spreading chemicals through the food chain. To estimate such uptake, several equations are available in the literature, mostly developed in lab conditions, to obtain the root concentration factor (RCF). Here, a long-term (18 months) greenhouse experiment, using an aged, contaminated soil, was performed to reproduce root uptake in field-like conditions and to account for the ecological variability of exposure during the entire life cycle. Specific growth strategies (i.e., annual vs. perennial), root development (e.g., timing of root production and decaying), and soil parameters (e.g., dissolved organic carbon (DOC), and the particulate organic carbon (POC)) may interfere with the uptake of contaminants into the roots of plants. In this study, we investigate the effects of these factors on the RCF, obtained for 79 PCBs. New predictive equations were calculated for 5 different plants species at four different growth times (from few months to 1.5 years) and stages (growing vs maturity). The relationships highlighted a species-specific and time-dependent accumulation of PCB in plants roots, with higher RCFs in summer than in fall for some species, and the relevant influence of DOC and POC in affecting root uptake.
Collapse
Affiliation(s)
- Elisa Terzaghi
- DiSAT, University of Insubria, Via Valleggio 11, Como, Italy
| | - Giuseppe Raspa
- DICMA, Sapienza University of Rome, Via Eudossiana 18, Rome, Italy
| | | | | | | | - Stefano Armiraglio
- Municipality of Brescia - Museum of Natural Sciences, Via Ozanam 4, Brescia, Italy
| | | |
Collapse
|
52
|
Gao F, Shen Y, Sallach JB, Li H, Liu C, Li Y. Direct Prediction of Bioaccumulation of Organic Contaminants in Plant Roots from Soils with Machine Learning Models Based on Molecular Structures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16358-16368. [PMID: 34859664 DOI: 10.1021/acs.est.1c02376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Root concentration factor (RCF) is an important characterization parameter to describe accumulation of organic contaminants in plants from soils in life cycle impact assessment (LCIA) and phytoremediation potential assessment. However, building robust predictive models remains challenging due to the complex interactions among chemical-soil-plant root systems. Here we developed end-to-end machine learning models to devolve the complex molecular structure relationship with RCF by training on a unified RCF data set with 341 data points covering 72 chemicals. We demonstrate the efficacy of the proposed gradient boosting regression tree (GBRT) model based on the extended connectivity fingerprints (ECFP) by predicting RCF values and achieved prediction performance with R-squared of 0.77 and mean absolute error (MAE) of 0.22 using 5-fold cross validation. In addition, our results reveal nonlinear relationships among properties of chemical, soil, and plant. Further in-depth analyses identify the key chemical topological substructures (e.g., -O, -Cl, aromatic rings and large conjugated π systems) related to RCF. Stemming from its simplicity and universality, the GBRT-ECFP model provides a valuable tool for LCIA and other environmental assessments to better characterize chemical risks to human health and ecosystems.
Collapse
Affiliation(s)
- Feng Gao
- Department of Genetics, School of Medicine, Yale University, New Haven, Connecticut 06510, United States
| | - Yike Shen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Jonathan Brett Sallach
- Department of Environment and Geography, University of York, Heslington, York YO10 5NG, United Kingdom
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, United States
| | - Cun Liu
- Key Laboratory o60f Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
53
|
Fan T, Chen X, Zhao M, Wang J, Meng Z, Dong S, Miao X, Wu Q. Uptake, translocation and subcellular distribution of chlorantraniliprole and tetrachlorantraniliprole in maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149429. [PMID: 34399342 DOI: 10.1016/j.scitotenv.2021.149429] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the uptake, translocation, and subcellular distribution of chlorantraniliprole (Cap) and tetrachlorantraniliprole (Tca) in maize (Zea mays L.) plants using a hydroponic experiment. Tca mainly accumulated in the roots and stems, while Cap showed better acropetal translocation capacity than Tca. The uptake of Cap was positively correlated with Tca uptake, particularly at the effect of plant transpiration force. Transpiration inhibitor treatments significantly reduced the acropetal translocation of Cap and Tca. The absorption of Cap and Tca in the dead and fresh roots showed a good linear relationship and mainly occurred via the apoplastic pathway. Regarding subcellular distribution, the cell wall was the dominant storage compartment for Cap and Tca. In the protoplast, Cap mainly accumulated in cell soluble fractions, while Tca accumulated in the organelles. This study provides information for the accurate application of maize pest management and is of great significance to environmental risk and food safety assessments.
Collapse
Affiliation(s)
- Tianle Fan
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu Yangzhou 225009, People's Republic of China
| | - Xiaojun Chen
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu Yangzhou 225009, People's Republic of China; School of Guangling, Yangzhou University, Jiangsu Yangzhou 225100, People's Republic of China.
| | - Ming Zhao
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu Yangzhou 225009, People's Republic of China
| | - Jianjun Wang
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu Yangzhou 225009, People's Republic of China
| | - Zhiyuan Meng
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu Yangzhou 225009, People's Republic of China
| | - Sa Dong
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu Yangzhou 225009, People's Republic of China
| | - Xinyi Miao
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu Yangzhou 225009, People's Republic of China
| | - Qinchao Wu
- School of Horticulture and Plant Protection, Yangzhou University/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Jiangsu Yangzhou 225009, People's Republic of China
| |
Collapse
|
54
|
Cao G, Wang R, Ju Y, Jing B, Duan X, Ao Z, Jiang J, Li F, Ho SH. Synchronous removal of emulsions and soluble organic contaminants via a microalgae-based membrane system: performance and mechanisms. WATER RESEARCH 2021; 206:117741. [PMID: 34655934 DOI: 10.1016/j.watres.2021.117741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
In this study, we applied a flexible strategy to manufacture a microalgal biochar-based membrane (MBCM). Due to the hierarchical surface topography on a micro-nano scale, the MBCM was found to have both underwater superoleophobic and underoil superhydrophobic properties. Combining an underoil superhydrophobic oil-containing region (OCR) with an underwater superoleophobic water-containing region (WCR) achieved the successive filtration of multiphase emulsions. The MBCM also served as a high-performance carbocatalyst for advanced oxidation processes (AOPs), due to the N functionalities (5.08%) of the graphene-like structure. This was caused by the high-temperature pyrolysis of rich proteins and alkaline salts in the algal residue. As a result, the MBCM/AOPs system achieved greater than 99.5% emulsions separation efficiency in different emulsion mixtures, while also achieving an outstanding degradation rate (99.8%) of soluble organic contaminants (SOCs). This in-depth exploration resulted in a low-cost and green strategy for developing multifunctional membranes to treat complex wastewater. The paper explains the mechanisms used by MBCM to synchronously remove emulsions and SOCs from wastewater.
Collapse
Affiliation(s)
- Guoliang Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, PR China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, PR China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Binghua Jing
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, PR China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zhimin Ao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, PR China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150040, PR China.
| |
Collapse
|
55
|
Liu H, Tang X, Xu X, Dai Y, Zhang X, Yang Y. Potential for phytoremediation of neonicotinoids by nine wetland plants. CHEMOSPHERE 2021; 283:131083. [PMID: 34182627 DOI: 10.1016/j.chemosphere.2021.131083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Broad-spectrum insecticides such as neonicotinoids tend to accumulate and detrimentally impact natural ecosystems. Accordingly, we aimed to assess the neonicotinoid phytoremediation abilities of nine wetland plant species commonly used in constructed wetland systems: Acorus calamus, Typha orientalis, Arundo donax, Thalia dealbata, Canna indica, Iris pseudacorus, Cyperus alternifolius, Cyperus papyrus and Juncus effusus. We assessed their removal of six neonicotinoids and explored the mechanisms responsible for the observed removal in a 28-day experiment. The planted systems effectively removed the neonicotinoids, with removal efficiencies of 9.5-99.9%. Compared with the other neonicotinoids, imidacloprid, thiacloprid and acetamiprid were most readily removed in the planted systems. C. alternifolius and C. papyrus exhibited the best removal performance for all six neonicotinoids. Based on our assessment of mass balance, the main removal processes were biodegradation and plant accumulation. Plants can enhance neonicotinoid removal through enhancing biodegradation. The differences in transport and accumulation behaviors may be related to plant species and physicochemical properties of neonicotinoids. Further research is merited on the toxicity of neonicotinoids to plants and microorganisms and the metabolic pathways by which neonicotinoids are broken down in wetland systems.
Collapse
Affiliation(s)
- Huanping Liu
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Xiaoyan Tang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China.
| | - Xiaomin Xu
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Yunv Dai
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Xiaomeng Zhang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
| | - Yang Yang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
56
|
Xiao S, Li Z, Fantke P. Improved plant bioconcentration modeling of pesticides: The role of periderm dynamics. PEST MANAGEMENT SCIENCE 2021; 77:5096-5108. [PMID: 34236751 PMCID: PMC8518939 DOI: 10.1002/ps.6549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND There is a continuous need to advance pesticide plant uptake models in support of improving pest control and reducing human exposure to pesticide residues. The periderm of harvested root and tuber crops may affect pesticide uptake, but is usually not considered in plant uptake models. To quantify the influence of the periderm on pesticide uptake from soil into potatoes, we propose a model that includes an explicit periderm compartment in the soil-plant mass balance for pesticides. RESULTS Our model shows that the potato periderm acts as an active barrier to the uptake of lipophilic pesticides with high KOW , while it lets more lipophobic pesticides accumulate in the medulla (pulp). We estimated bioconcentration factors (BCFs) for over 700 pesticides and proposed parameterizations for including the effects of the periderm into a full plant uptake modeling framework. A sensitivity analysis shows that both the degradation half-life inside the tuber and the lipophilicity drive the contributions of other aspects to the variability of BCFs, while highlighting distinct dynamics in the periderm and medulla compartments. Finally, we compare model estimates with measured data, showing that predictions agree with field observations for current-use pesticides and some legacy pesticides frequently found in potatoes. CONCLUSION Considering the periderm improves the accuracy of quantifying pesticide uptake and bioconcentration in potatoes as input for optimizing pest control and minimizing human exposure to pesticide residues in edible crops.
Collapse
Affiliation(s)
- Shenglan Xiao
- School of Public Health (Shenzhen)Sun Yat‐sen UniversityShenzhenChina
| | - Zijian Li
- School of Public Health (Shenzhen)Sun Yat‐sen UniversityShenzhenChina
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and EconomicsTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
57
|
Yan Y, Deng Y, Li W, Du W, Gu Y, Li J, Xu X. Phytoremediation of antibiotic-contaminated wastewater: Insight into the comparison of ciprofloxacin absorption, migration, and transformation process at different growth stages of E. crassipes. CHEMOSPHERE 2021; 283:131192. [PMID: 34144294 DOI: 10.1016/j.chemosphere.2021.131192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/16/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The selection of aquatic plants at different growth stages and their absorption, migration, and transformation mechanisms has yet to be clarified. In this study, Eichhornia crassipes at the seedling and mature stages were selected to uptake antibiotics under hydroponic conditions. The results showed that the enrichment of ciprofloxacin (CIP) in roots at the seedling and mature stages were 7.72~2114.39 μg g-1 and 0.07~3711.33 μg g-1, respectively. The enrichment of CIP in aerial parts at the seedling and mature stages were 16.38~24.24 μg g-1 and 9.55~20.13 μg g-1, respectively. The translocation from roots to aerial parts at the seedling stage was high, as evidenced by the relatively higher transfer factor (TF). In addition, eight and ten major metabolic products were observed in the tissues of seeding and mature stage of E. crassipes, respectively. The metabolic pathway of CIP was short at the maturity stage, and CIP had a strong upward migration ability at the seedling stage, facilitating long-time photodegradation. However, E. crassipes exhibited a poor CIP tolerance at the mature stage and decayed relatively early. Therefore, the seedling stage of E. crassipes was proposed to be applied for phytoremediation, and these findings might improve the ability to phytoremediation of antibiotic-contaminated water.
Collapse
Affiliation(s)
- Yan Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yang Deng
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Wenjing Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Wei Du
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yangyang Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jiayi Li
- College of Zhong Bei, Nanjing Normal University, Zhenjiang, 210046, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
58
|
Zhang Q, Yao Y, Wang Y, Zhang Q, Cheng Z, Li Y, Yang X, Wang L, Sun H. Plant accumulation and transformation of brominated and organophosphate flame retardants: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117742. [PMID: 34329057 DOI: 10.1016/j.envpol.2021.117742] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/16/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Plants can take up and transform brominated flame retardants (BFRs) and organophosphate flame retardants (OPFRs) from soil, water and the atmosphere, which is of considerable significance to the geochemical cycle of BFRs and OPFRs and their human exposure. However, the current understanding of the plant uptake, translocation, accumulation, and metabolism of BFRs and OPFRs in the environment remains very limited. In this review, recent studies on the accumulation and transformation of BFRs and OPFRs in plants are summarized, the main factors affecting plant accumulation from the aspects of root uptake, foliar uptake, and plant translocation are presented, and the metabolites and metabolic pathways of BFRs and OPFRs in plants are analyzed. It was found that BFRs and OPFRs can be taken up by plants through partitioning to root lipids, as well as through gaseous and particle-bound deposition to the leaves. Their microscopic distribution in roots and leaves is important for understanding their accumulation behaviors. BFRs and OPFRs can be translocated in the xylem and phloem, but the specific transport pathways and mechanisms need to be further studied. BFRs and OPFRs can undergo phase I and phase II metabolism in plants. The identification, quantification and environmental fate of their metabolites will affect the assessment of their ecological and human exposure risks. Based on the issues mentioned above, some key directions worth studying in the future are proposed.
Collapse
Affiliation(s)
- Qing Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiaomeng Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
59
|
Hu B, Jiang L, Zheng Q, Luo C, Zhang D, Wang S, Xie Y, Zhang G. Uptake and translocation of organophosphate esters by plants: Impacts of chemical structure, plant cultivar and copper. ENVIRONMENT INTERNATIONAL 2021; 155:106591. [PMID: 33933901 DOI: 10.1016/j.envint.2021.106591] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Organophosphate esters (OPEs) are normally used as flame retardants, plasticizers and lubricants, but have become environmental pollutants. Because OPEs are normally present alongside heavy metals in soils, the effects of interactions between OPEs and heavy metals on plant uptake of OPEs need to be determined. In this study, we investigated the effects of OPEs chemical structure, plant cultivar and copper (Cu) on the uptake and translocation of OPEs by plants. The bioaccumulation of OPEs varied among plant cultivars. They were preferentially enriched in carrot, with the lowest concentrations observed in maize. OPEs with electron-ring substituents (ER-OPEs) exhibited a higher potential for root uptake than did OPEs with open-chain substituents (OC-OPEs), which could be attributed to the higher sorption of ER-OPEs onto root charged surfaces. This was explained by the stronger noncovalent interactions with the electron-rich structure of ER-OPEs. The presence of Cu slightly reduced the distinct difference in the ability of roots to take up OC-OPEs and ER-OPEs. This was explained by the interactions of Cu ions with the electron-rich structure of ER-OPEs, which suppressed the sorption of ER-OPEs on the root surface. A negative relationship between the logarithms of the translocation factor and octanol-water partition coefficient (Kow) was observed in treatments with either OPEs only or OPEs + Cu, implying the significant role of hydrophobicity in the OPEs acropetal translocation. The results will improve our understanding of the uptake and translocation of OPEs by plant cultivars as well as how the process is affected by the chemical structure of OPEs and Cu, leading to improvements in the ecological risk assessment of OPEs in the food chain.
Collapse
Affiliation(s)
- Beibei Hu
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Qian Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaorui Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yucheng Xie
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
60
|
Yu Q, He A, Shi D, Sheng GD. Translocation versus ion trapping in the root uptake of 2,4-dichlorophenol by wheat seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56392-56400. [PMID: 34050911 DOI: 10.1007/s11356-021-14627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Understanding of the plant uptake of ionizable organic compounds is critical to the evaluation of crop contamination, plant protection, and phytoremediation. This study investigated the time-dependent uptake of 2,4-dichlorophenol (DCP) by intact wheat seedling roots and subsequent translocation to shoots at pH 5.0 and 8.0. Sorption of DCP by cut roots and shoots at these two pHs was conducted to provide the uptake limits and the Donnan charge. For comparison, sorption was also conducted for 1,3-dichlorobenzene (DCB), a nonionizable compound having a structure similar to that of DCP. The DCB sorption isotherms were linear and independent of pH, yielding a consistent log Klip of 3.56 with both roots and shoots, reflective of the essential dominant role of lipids in plant partition uptake. Whereas the DCP sorption also showed a linear isotherm at pH 5.0 with log Klip = 2.88, the sorption at pH 8.0 was nonlinear with a concave downward shape, especially at low concentrations. With live wheat seedlings, the DCB uptake by roots and the DCB translocation to shoots rapidly approached a steady state, showing no obvious pH effect. On the DCP uptake by live plants, there was a rapid attainment of a steady state in roots at pH 5.0 coupled with a retarded transport to shoots due presumably to the polarity of DCP. At pH 8.0, the root uptake of DCP was comparatively slower and the translocation to shoots was completely inhibited due presumably to DCP ionization. At high pH, DCP was supposedly accumulated in an ionized form in root cells via an ion-trapping mechanism.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Anfei He
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dongjin Shi
- School of the Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - G Daniel Sheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
61
|
Tang J, Wang P, Xie Z, Wang Z, Hu B. Effect of iron plaque on antibiotic uptake and metabolism in water spinach (Ipomoea aquatic Forsk.) grown in hydroponic culture. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125981. [PMID: 33975166 DOI: 10.1016/j.jhazmat.2021.125981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Ferrous ion was added to the culture solution, followed by the introduction of tetracyclines (TCs), to explore the effect of iron plaque (IP) on the uptake and translocation of TCs by water spinach (Ipomoea aquatic Forsk.). The adsorption amount of TCs on the root surface positively correlated with the amount of IP, except for doxycycline and minocycline. The bioconcentration factor of TCs in roots increased and fitted well with the amount of IP. The concentration of TCs in acrial tissues was three to four orders of magnitude lower than that in roots, and the translocation factor of TCs also fitted well with the amount of IP in a negative linear relationship. Furthermore, IP significantly influenced the metabolism of TCs in water spinach. The accumulation of TC metabolites increased with the increment of IP in roots rather than in acrial tissues, which showed the significance of IP in the metabolism and accumulation of TCs in aquatic plants. Therefore, the metabolism of TCs should not be ignored if IP is induced on the root surface, and the distribution of metabolites should be taken into consideration for the risk assessment and antibiotic pollution control for aquatic plants.
Collapse
Affiliation(s)
- Jun Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Zhengxin Xie
- School of Resource and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zhiqiang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
62
|
Butkovskyi A, Jing Y, Bergheim H, Lazar D, Gulyaeva K, Odenmarck SR, Norli HR, Nowak KM, Miltner A, Kästner M, Eggen T. Retention and distribution of pesticides in planted filter microcosms designed for treatment of agricultural surface runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146114. [PMID: 34030358 DOI: 10.1016/j.scitotenv.2021.146114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Pesticides in agricultural surface water runoff cause a major threat to freshwater systems. Installation of filter systems or constructed wetlands in areas of preferential run-off is a possible measure for pesticides abatement. To develop such systems, combinations of filter materials suitable for retention of both hydrophilic and hydrophobic organic pesticides were tested for pesticide removal in planted microcosms. The retention of six pesticides frequently detected in surface waters (bentazone, MCPA, metalaxyl, propiconazole, pencycuron, and imidacloprid) was evaluated in unplanted and planted pot experiments with novel bed material mixtures consisting of pumice, vermiculite, water super-absorbent polymer (SAP) for retention of ionic and water soluble pesticides, and synthetic hydrophobic wool for adsorption of hydrophobic pesticides. The novel materials were compared to soil with high organic matter content. The highest retention of the pesticides was observed in the soil, with a considerable translocation of pesticides into the plants, and low leaching potential, in particular for the hydrophobic compounds. However, due to the high retention of pesticides in soil, environmental risks related to their long term mobilization cannot be excluded. Mixtures of pumice and vermiculite with SAP resulted in high retention of i) water and ii) both hydrophilic and hydrophobic pesticides but with much lower leaching potential compared to the mineral systems without SAP. Mixtures of such materials may provide near natural treatment options in riparian strips and also for treatment of rainwater runoff without the need for water containment systems.
Collapse
Affiliation(s)
- Andrii Butkovskyi
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Yuying Jing
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Hege Bergheim
- NIBIO Norwegian Institute of Bioeconomy Research, NIBIO, Fredrik A. Dahls vei 20, 1431 Ås, Norway
| | - Diana Lazar
- National Institute for R&D on Isotopic and Molecular Technologies INCDTIM, 67-103 Donat, PO 5 Box 700, 400293 Cluj-Napoca, Romania
| | - Ksenia Gulyaeva
- NIBIO Norwegian Institute of Bioeconomy Research, NIBIO, Fredrik A. Dahls vei 20, 1431 Ås, Norway
| | - Sven Roar Odenmarck
- NIBIO Norwegian Institute of Bioeconomy Research, NIBIO, Fredrik A. Dahls vei 20, 1431 Ås, Norway
| | - Hans Ragnar Norli
- NIBIO Norwegian Institute of Bioeconomy Research, NIBIO, Fredrik A. Dahls vei 20, 1431 Ås, Norway
| | - Karolina M Nowak
- Technische Universität Berlin, Institute of Biotechnology, Chair of Geobiotechnology, Ackerstraße 76, 13355 Berlin, Germany
| | - Anja Miltner
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Matthias Kästner
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Trine Eggen
- NIBIO Norwegian Institute of Bioeconomy Research, NIBIO, Fredrik A. Dahls vei 20, 1431 Ås, Norway
| |
Collapse
|
63
|
Chen Y, Nie E, Zheng X, Ye Q, Li H, Wang H. Uptake, subcellular distribution and metabolism of 14C-caffeine in leafy vegetables from water. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125501. [PMID: 33662793 DOI: 10.1016/j.jhazmat.2021.125501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/03/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Irrigation with treated wastewater could lead to the accumulation of caffeine in agricultural fresh. Caffeine is one of the most frequently detected compounds in treated wastewater; however, little is known about its subcellular distribution and metabolism in vegetables. This study reported the uptake, subcellular distribution, and metabolism of 14C-caffeine in Chinese flowering cabbage and water spinach. The results showed that 98% of caffeine lost from solution after 768 h of cultivation. Caffeine was taken up by vegetables and most 14C-activity was accumulated in the bottom leaves. At the subcellular level, 14C-activity was mainly distributed in the organelles in root and stem cells, while in the leafy cells it was dominant in the solution. The metabolism of caffeine was investigated using LC-QTOF-MS. Caffeine underwent demethylation forming xanthine and theobromine, and mineralization to release CO2. Approximately 40.2% of the initially applied caffeine was accumulated in Chinese flowering cabbage as the parent compound (28.3%) and metabolites (11.9%), and 50.9% of the added caffeine was mineralized to CO2 after 768 h of exposure. The knowledge obtained herein is key to evaluating potential risks of caffeine present in treated wastewater, and the quality and safety of agricultural fresh produced by irrigation with treated wastewater.
Collapse
Affiliation(s)
- Yan Chen
- College of Agriculture and Biotechnology, and Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Enguang Nie
- College of Agriculture and Biotechnology, and Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Zheng
- College of Agriculture and Biotechnology, and Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qingfu Ye
- College of Agriculture and Biotechnology, and Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States.
| | - Haiyan Wang
- College of Agriculture and Biotechnology, and Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
64
|
Oyinloye JA, Oyekunle JAO, Ogunfowokan AO, Msagati T, Adekunle AS, Nety SS. Human health risk assessments of organochlorine pesticides in some food crops from Esa-Oke farm settlement, Osun State, Nigeria. Heliyon 2021; 7:e07470. [PMID: 34286135 PMCID: PMC8273207 DOI: 10.1016/j.heliyon.2021.e07470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/13/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
Seasonal levels of organochlorine pesticides (OCPs) in yam, cassava, sweet potato and cocoyam samples collected from Esa-Oke Farm Settlement, Osun State, Nigeria were evaluated. Sampling regiment for three sites lasted four months each during the dry and wet seasons. The dried samples were extracted using Soxhlet extractor with dichloromethane (DCM) as the extraction solvent, while the identification and estimation of OCPs in the crop filtrates, after clean-up, were carried out with Gas Chromatography equipped with Time-of-Flight Mass Spectroscopy Detector (GC-TOFMS). Ten OCPs determined in the crops had the overall seasonal mean levels that ranged from 158 ng/g (dieldrin) to 544 ng/g (heptachlor) and the seasonal mean burden per OCP occurred in the order: heptachlor epoxide (518) > heptachlor (447) > p,p'-DDE (431) > dieldrin (349) > chlordane (327) > aldrin (321) > p,p'-DDD (313) > methoxychlor (303) > endosulfan I (287) > p,p'-DDT (284) for wet season while this order was not the same for dry season of the same crop with heptachlor epoxide (415) > p,p'-DDE (373) > aldrin (305) > heptachlor (307) > methoxychlor (288) > chlordane (274) > p,p'-DDT (263) > p,p'-DDD (263) > endosulfan I (260) > dieldrin (246). For all of the OCPs, the estimated daily intake (EDI) and health risk indices (HRI) were significantly higher than the recommended values. Thus, a regular large-scale consumption of crop products from the farm settlement could result in grave public health concern in the course of time.
Collapse
Affiliation(s)
- J A Oyinloye
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - J A O Oyekunle
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - A O Ogunfowokan
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - T Msagati
- Nanotechnology and Water Sustainability, University of South Africa, Florida Science Campus, South Africa
| | - A S Adekunle
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - S S Nety
- Chemistry Department, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, South Africa
| |
Collapse
|
65
|
Esmaeili A, Knox O, Juhasz A, Wilson SC. Advancing prediction of polycyclic aromatic hydrocarbon bioaccumulation in plants for historically contaminated soils using Lolium multiflorum and simple chemical in-vitro methodologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144783. [PMID: 33581513 DOI: 10.1016/j.scitotenv.2020.144783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
This study compared chemical extraction methods for the prediction of PAH bioaccumulation in ryegrass (Lolium multiflorum) roots in four Manufactured Gas Plant (MGP) historically (>50 years) contaminated soils. The in-vitro methods compared were butanol (BuOH), non-buffered and buffered 2-hydroxypropyl-β-cyclodextrin extractions (HPCD, Buf-HPCD), potassium persulfate oxidation (KPS), solid phase extraction using Tenax resin (Tenax), and polyoxymethylene solid-phase extraction (POM). Extractions were directly compared with bioaccumulation and modelled using equilibrium partitioning theory (EqPT) with a combination of different partitioning parameters (KOC and KOW values) that aimed to improve predictions. The PAH accumulation in plant roots showed good correlation with concentrations in soils, and higher concentrations of the 4-6 ring PAHs compared with 2-3 ring PAHs. Plant accumulation of 16 PAHs in L. multiflorum was estimated within a factor of 5 using direct comparison for all bioaccessibility extraction methods. Accumulation values predicted using the calculation approach depended on the combination of KOC, KOW parameters and root components (total lipid vs total dry weight) used in calculations. Using KOC values derived from historically contaminated soils improved accuracy of predicted total root accumulation although precision was low. The combined contribution of PAH in lipid and carbohydrate root components (total dry weight) overestimated accumulation and a lipid only approach using generic partitioning parameters provided more accurate and precise approximation of bioaccumulation in roots of L. multiflorum in the soils. Overall, Tenax, POM and HPCD-based extractions showed promising results for predicting L. multiflorum root accumulation using the different approaches. This work significantly extends current knowledge for integrating simple chemical extractions into ecological risk assessment frameworks for the prediction of plant PAH bioavailability in historically contaminated soils.
Collapse
Affiliation(s)
- Atefeh Esmaeili
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| | - Oliver Knox
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Susan C Wilson
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
66
|
Dong Y, Song Z, Liu Y, Gao M. Polystyrene particles combined with di-butyl phthalate cause significant decrease in photosynthesis and red lettuce quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116871. [PMID: 33714058 DOI: 10.1016/j.envpol.2021.116871] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/10/2021] [Accepted: 03/02/2021] [Indexed: 05/06/2023]
Abstract
Microplastics, an emerging pollutant in the environment, have attracted extensive attention in recent years for their possible negative impact on organisms. However, direct and indirect effects of polystyrene (PS) microplastics on vegetables are still not completely known. In this study, we used red lettuce (Lactuca sativa L. Red Sails) in a hydroponic system to investigate the effects of nano- and micro-sized PS and dibutyl phthalate (DBP) on the photosynthesis and red lettuce quality. The results clearly indicated that PS reduced the bioavailability of DBP while causing a decrease in the photosynthetic parameters as well as the total chorophyll content compared to DBP alone by affecting the crystalline structure of the water-soluble chlorophyll protein. Compared with DBP monotherapy, the presence of PS significantly increased hydrogen peroxide and malondialdehyde content in the lettuce treated with DBP, indicating serious oxidative damage. Furthermore, the soluble protein and sugar content in lettuce leaves decreased with higher PS concentration and smaller PS size. It may be due to PS inhibited lettuce root and ribulose-1,5-bisphosphate carboxylase/oxygenase activities. In contrast, nitrite content increased significantly with the induction of the glutathione-ascorbic acid cycle, indicating that the presence of PS reduced the quality of DBP-treated-red lettuce. Additionally, the nano-sized PS greatly inhibited lettuce growth and quality more than the micro-sized PS. This study described the interactions between microplastics and phthalates using molecular simulation and experimental validation to highlight the potential risks of microplastics on vegetable crop production.
Collapse
Affiliation(s)
- Youming Dong
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zhengguo Song
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province, 515063, China
| | - Yu Liu
- School of Environmental Science and Engineering, Tiangong University, No. 399 Binshui West Road, Xiqing District, Tianjin, 300387, China
| | - Minling Gao
- Department of Civil and Environmental Engineering, Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province, 515063, China.
| |
Collapse
|
67
|
Tao Y. Eutrophication-induced regime shifts reduced sediment burial ability for polycyclic aromatic hydrocarbons: Evidence from Lake Taihu in China. CHEMOSPHERE 2021; 271:129709. [PMID: 33550098 DOI: 10.1016/j.chemosphere.2021.129709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Regime shifts from a vegetated state with clear water to a turbid state with high contents of phytoplankton and suspended particles have been found in numerous waters worldwide. The fate and risks of hydrophobic organic contaminants (HOCs) in such waters may be altered, and the effects on burial ability of HOCs remain unknown. Influences of regime shifts on sediment burial ability for 16 polycyclic aromatic hydrocarbons (PAHs) (defined as burial/emission ratio) were investigated based on the evidence from the third largest freshwater lake (Lake Taihu) in China. The results of δ13C, δ15N, atomic ratio of Corg/N, and the content of total organic carbon testing and historical data suggested that the regime shifted abruptly from macrophytes to phytoplankton dominance in Lake Taihu in the late 1980s. The annual burial ability for the PAHs decreased gradually over time by 63.2%-98.9% in the period from 1980 to 2016. Meanwhile, the decrease rates of PAH burial ability varied from -1.65% y-1 to -2.98% y-1, depending on the hydrophobicity of the compound. The PAH burial ability varied with the dominant primary producers associated with the trophic level index of the water column. Regime shifts had a stronger influence on the burial ability of PAHs with higher hydrophobicity. This study helps to understand the fate and potential risks of HOCs in waters due to eutrophication-induced regime shifts.
Collapse
Affiliation(s)
- Yuqiang Tao
- Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, 210098, China; College of Oceanography, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
68
|
Letsyo E, Adams ZS, Dzikunoo J, Asante-Donyinah D. Uptake and accumulation of pyrrolizidine alkaloids in the tissues of maize (Zea mays L.) plants from the soil of a 4-year-old Chromolaena odorata dominated fallow farmland. CHEMOSPHERE 2021; 270:128669. [PMID: 33097231 DOI: 10.1016/j.chemosphere.2020.128669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/27/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
In an attempt to maximize yields of food crops, smallholder farmers have, over the years, increasingly employed agricultural practices such as slash-and-burn and slash-and-mulch on Chromolaena odorata dominated fallow farmlands. However, owing to recently introduced "Horizontal Natural Product Transfer" concept, concerns have been raised over how these common agricultural practices could potentially lead to toxic pyrrolizidine alkaloids (PAs), from decaying or burnt C. odorata residues, taken up by food crops and subsequently accumulate in the food chain. A field experiment was therefore conducted to analyze the PA contents in the tissues of maize (Zea mays L.) plants grown on slash-and-burn and slash-and-mulch plots, previously dominated with Chromolaena odorata, using liquid chromatography mass spectroscopy (LC-ESI-MS/MS). The results revealed, in general, trace amounts of PAs in the maize tissues (i.e. roots, leaves and grains) at maturity while significantly higher levels were detected in the surface soils sampled before sowing (for both plots), 45 days after sowing (slash-and-burn plot) and 90 days after sowing (slash-and-mulch plot). These findings demonstrate, for the first time, the leaching out of PAs from C. odorata residues (e.g. mulch and ash particles) and taken up by maize tissues. In spite of its air polluting and farmland degrading effects, slash-and-burn agricultural practices could lead, in the long term, to relatively lower accumulation of PAs in maize cultivated on PA-plant dominated fallow farmlands, hence smallholder farmers are encouraged to frequently employ this farming system.
Collapse
Affiliation(s)
- Emmanuel Letsyo
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106, Braunschweig, Germany.
| | - Zeenatu Suglo Adams
- Department of Food Science and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| | - John Dzikunoo
- Department of Food Science and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| | - David Asante-Donyinah
- Department of Food Science and Technology, Ho Technical University, P.O Box HP 217, Ho, Ghana
| |
Collapse
|
69
|
Liu Q, Liu Y, Dong F, Sallach JB, Wu X, Liu X, Xu J, Zheng Y, Li Y. Uptake kinetics and accumulation of pesticides in wheat (Triticum aestivum L.): Impact of chemical and plant properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116637. [PMID: 33582637 DOI: 10.1016/j.envpol.2021.116637] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/13/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Plant uptake is an important process in determining the transfer of pesticides through a food chain. Understanding how crops take up and translocate pesticides is critical in developing powerful models to predict pesticide accumulation in agricultural produce and potential human exposure. Herein, wheat was selected as a model plant species to investigate the uptake and distribution of eleven widely used pesticides in a hydroponic system as a function of time for 144 h. The time-dependent uptake kinetics of these pesticides were fitted with a first-order 1-compartment kinetic model. During 144 h, flusilazole and difenoconazole, with relative high log Kow (3.87 and 4.36, respectively), displayed higher root uptake rate constants (k). To clarify the role of root lipid content (flip) in plant accumulation of pesticides, we conducted a lipid normalization meta-analysis using data from this and previous studies, and found that the flip value was an important factor in predicting the root concentration factor (RCF) of pesticides. An improved correlation was observed between log RCF and log flipKow (R2 = 0.748, N = 26, P < 0.001), compared with the correlation between log RCF and log Kow (R2 = 0.686, N = 26, P < 0.001). Furthermore, the hydrophilic pesticides (e.g. log Kow < 2) were found to reach partition equilibrium faster than lipophilic pesticides (e.g. log Kow > 3) during the uptake process. The quasi-equilibrium factor (αpt) was inversely related to log Kow (R2 = 0.773, N = 11, P < 0.001) suggesting a hydrophobicity-regulated uptake equilibrium. Findings from this study could facilitate crop-uptake model optimization.
Collapse
Affiliation(s)
- Qianyu Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China; College of Plant Protection, Hebei Agricultural University, Baoding, 071000, PR China
| | - Yingchao Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, PR China
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - J Brett Sallach
- Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, United Kingdom
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Xingang Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Jun Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Yuanbo Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China.
| |
Collapse
|
70
|
Tao Y, Jia C, Jing J, Zhao M, Yu P, He M, Chen L, Zhao E. Uptake, Translocation, and Biotransformation of Neonicotinoid Imidaclothiz in Hydroponic Vegetables: Implications for Potential Intake Risks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4064-4073. [PMID: 33787257 DOI: 10.1021/acs.jafc.0c07006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Imidaclothiz is a novel and systemic neonicotinoid pesticide with excellent insecticidal efficacy. However, knowledge of its uptake, translocation, and biotransformation within plants is still largely unknown, restricting work on its accurate and comprehensive risk assessment. Here, we systematically investigated the behavior of imidaclothiz in three plant-water systems via hydroponic experiments. The results showed that imidaclothiz was readily taken up by plant roots and translocated upward, resulting in relative enrichment in leaves. The recoveries of imidaclothiz in plant-water systems decreased with increasing exposure time, and approximately 31.8-45.6% mass loss was measured at the end of exposure. Ultimately, imidaclothiz yielded five products in celery leaves, three products in lettuce leaves, and two products in radish leaves. Multiple metabolic reactions including hydroxylation, hydrolysis of nitrate ester, and methylation occurred within plants. This is the first report on the fate of imidaclothiz within plants and suggests increasing concerns about the risk assessment of imidaclothiz.
Collapse
Affiliation(s)
- Yan Tao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
- Beijing Key Laboratory of Environment Friendly Management of Diseases and Pests of North China Fruits, Haidian, Beijing 100081, P. R. China
| | - Chunhong Jia
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
- Beijing Key Laboratory of Environment Friendly Management of Diseases and Pests of North China Fruits, Haidian, Beijing 100081, P. R. China
| | - Junjie Jing
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
- Beijing Key Laboratory of Environment Friendly Management of Diseases and Pests of North China Fruits, Haidian, Beijing 100081, P. R. China
| | - Mingyu Zhao
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330000, P. R. China
| | - Pingzhong Yu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
- Beijing Key Laboratory of Environment Friendly Management of Diseases and Pests of North China Fruits, Haidian, Beijing 100081, P. R. China
| | - Min He
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
- Beijing Key Laboratory of Environment Friendly Management of Diseases and Pests of North China Fruits, Haidian, Beijing 100081, P. R. China
| | - Li Chen
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
- Beijing Key Laboratory of Environment Friendly Management of Diseases and Pests of North China Fruits, Haidian, Beijing 100081, P. R. China
| | - Ercheng Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
- Beijing Key Laboratory of Environment Friendly Management of Diseases and Pests of North China Fruits, Haidian, Beijing 100081, P. R. China
| |
Collapse
|
71
|
Li Y, Xie T, Zha Y, Du W, Yin Y, Guo H. Urea-enhanced phytoremediation of cadmium with willow in pyrene and cadmium contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124257. [PMID: 33127193 DOI: 10.1016/j.jhazmat.2020.124257] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The phytoremediation of cadmium (Cd) and pyrene (PYR) in agricultural soil with willow was investigated by carrying out a pot-culture experiment in a greenhouse. The soil was incubated with urea 60 days before it was used for this experiment. The concentrations of Cd and PYR in soil and willow, the bioconcentration and transfer factors, the physiological and biochemical responses, and plant biomass production were determined at the end of the experiment. The phytoremediation with willow based on urea application was effective for enhancing the phytoremediation of Cd and PYR contaminated soil. Urea application did not affect the available Cd but increased the accumulation of soil Cd and the plant biomass of different parts of the willow. The removal rate (77.1-89.5%) of PYR in soil was not significantly affected although urea application decreased the accumulation of PYR in willow root and bark. Urea application significantly promoted the uptake of chlorophyll, carotenoid and malondialdehyde by willow leaves. The results of this study will provide scientific information for the effective phytoremediation of Cd in Cd and PYR contaminated soil.
Collapse
Affiliation(s)
- Yepu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tanchun Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yidi Zha
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
72
|
Chen X, Li Y, Jiang L, Hu B, Wang L, An S, Zhang X. Uptake, accumulation, and translocation mechanisms of steroid estrogens in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141979. [PMID: 32890876 DOI: 10.1016/j.scitotenv.2020.141979] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/23/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Applying sewage sludge or animal manure onto agricultural land can result in estrogen pollution, which increases the risk of human exposure to steroid estrogens (SEs) via the food chain. However, the uptake and accumulation mechanism of SEs by plants is still unclear. In this study, the uptake, accumulation, and translocation of 17β-E2, a representative SE, were investigated through a series of wheat hydroponic experiments. Various inhibitors were applied to explore the uptake pathways of 17β-E2 by wheat. In addition, the effects of exposure concentrations, coexisting 17α-ethynylestradiol (EE2) and plant properties on the uptake of 17β-E2 were examined. The results indicated that the accumulation of 17β-E2 in wheat roots mainly resulted from adsorption and active uptake that involved aquaporins and anion channels transport. The chlorophyll and protein contents of plants were positively correlated with the uptake of 17β-E2, whereas competitive inhibition occurred when 17β-E2 and EE2 coexisted in the same solution. Nevertheless, the results of a split-root experiment showed that 17β-E2 absorbed by wheat could further migrate in plant via long-distance transport and ultimately was discharged from plants, suggesting that 17β-E2 was still at risk of being released even though it had been absorbed by plants. These results could provide valuable insights into the risk assessment and risk control of the uptake of SEs by plants.
Collapse
Affiliation(s)
- Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875 Beijing, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875 Beijing, China.
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing 102206, China
| | - Baiyang Hu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875 Beijing, China
| | - Lin Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875 Beijing, China
| | - Siyu An
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875 Beijing, China
| | - Xuelian Zhang
- Beijing Soil and Fertilizer Extension Service Station, Beijing 100029, China
| |
Collapse
|
73
|
Huang S, Sheng GD. Lindane uptake and translocation by rice seedlings (Oryza sativa L.) under different culture patterns and triggered biomass re-allocation. CHEMOSPHERE 2021; 262:127831. [PMID: 32791367 DOI: 10.1016/j.chemosphere.2020.127831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The study was conducted to investigate the influence of the culture pattern on plant uptake and translocation of an organic chemical and the resultant acute response of plants, and to further reveal the interconnection. Plant exposure experiments were performed using a conventional rice seedling (Oryza sativa L. subsp. indica) under two kinds of culture patterns (viz., hydroponics and soil-based culture) with various culture matrices for a period of 7 days. The exposure concentration of lindane was ∼450 μg L-1 in the aqueous-phase matrices, and 200.1-756.0 μg kg-1 in the solid matrices. Lindane accumulation and its distribution in plant tissues were quantified, as well as the tissue biomass. The results showed the accumulation of lindane in all exposure groups were comparatively close over the period, confirming that the soil-bound lindane was scarcely available to plants. Similar trend of lindane uptake and translocation in seedlings was found among the groups under the same kind of cultivation pattern. In the hydroponic groups, lindane was mostly distributed in roots (about 60% at the end of exposure), whereas more lindane was translocated to shoots (approximate 70%) under the soil-based culture pattern. Allometric analysis demonstrated that the tissue part (root or shoot) with more lindane accumulation had a relatively higher growth rate over 7 days. Correspondingly, biomass allocation presented a slight trend of mutual proximity to lindane distribution. It was inferred that plants altered their allometric growth pattern to realize biomass re-allocation in response to the short-term lindane exposure, which could be considered as a plant defense strategy.
Collapse
Affiliation(s)
- Shidi Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - G Daniel Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
74
|
Wei B, Liu C, Bao J, Wang Y, Hu J, Qi M, Jin J, Wei Y. Uptake and distributions of polycyclic aromatic hydrocarbons in cultivated plants around an E-waste disposal site in Southern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2696-2706. [PMID: 32892280 DOI: 10.1007/s11356-020-10642-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) in air, soil, and cultivated plants at e-waste disposal sites in Taizhou, Zhejiang Province, were determined to allow PAH uptake by and distributions in plants to be investigated. The PAH distributions in air, rhizosphere soil, and surface soil were markedly different. This indicated that root morphology variations and root exudates may affect PAH compositions in soil around plants. The PAH concentrations in the plant samples were 29.7-2170 ng/g. The lowest PAH concentration was found in a peeled taproot sample. The PAH concentration gradients from the plant shoots to roots suggested that PAHs entered the plants through various pathways. The three- and four-ring PAHs were found to be absorbed more readily than the higher-molecular-weight (five- and six-ring) PAHs. This indicated that high-molecular-weight PAHs in soil can be prevented from entering plants, particularly taproots, via root exudates and the root peel. For most plants, the highest PAH concentrations were found in leaves, indicating that atmospheric deposition may strongly affect PAH concentrations in aerial plant parts. High-molecular-weight PAHs are more readily absorbed from ambient air by leaves than other parts. Lower PAH concentrations were found in fruits than other plant parts. This and the differences in PAH distributions between fruits and other aerial parts indicated that PAHs may be selectively absorbed by fruits.
Collapse
Affiliation(s)
- Baokai Wei
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Chen Liu
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Junsong Bao
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Jicheng Hu
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Min Qi
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, No. 27, South Road, Zhongguancun, Haidian District, Beijing, 100081, China.
- Engineering Research Center of Food Environment and Public Health, Beijing, 100081, China.
| | - Yongjie Wei
- Chinese Research Academy of Environmental Science, Beijing, 100012, China
| |
Collapse
|
75
|
Ju C, Li X, He S, Shi L, Yu S, Wang F, Xu S, Cao D, Fang H, Yu Y. Root Uptake of Imidacloprid and Propiconazole Is Affected by Root Composition and Soil Characteristics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15381-15389. [PMID: 33320669 DOI: 10.1021/acs.jafc.0c02170] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Residual pesticides in soil may be taken up by crops and negatively affect food safety. The uptake mechanism of imidacloprid and propiconazole was studied using wheat roots. The factors affecting root uptake were also studied with different crops and in different soils. Imidacloprid and propiconazole were taken up by wheat roots mainly through the symplastic and apoplastic pathways, respectively. Root protein and lipid contents were the main factors affecting the uptake and accumulation of imidacloprid and propiconazole by different crop roots, respectively. The uptake of imidacloprid and propiconazole in soil by wheat plants was linearly correlated with their concentrations in soil pore water, which were governed by soil characteristics. These results are helpful for understanding and estimating crop uptake of residual pesticides in soils.
Collapse
|
76
|
Zhao P, Wang W, Whalen JK, Zhang S, Ye Q. Transportation and degradation of decabrominated diphenyl ether in sequential anoxic and oxic crop rotation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115082. [PMID: 32629310 DOI: 10.1016/j.envpol.2020.115082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
This work evaluated the debromination and uptake of 14C-labeled BDE-209 in rice cultivars grown in anoxic soil for 120 days (d) followed by cultivation of vegetables (peanut, eggplant and pepper) in oxic soil (120 d). Degradation of BDE-209 to lower polybrominated diphenyl ethers (PBDEs) occurred in cultivated soils, and more metabolites were released in oxic soil than in anoxic soil. The crop rotation from anoxic to oxic greatly enhanced the dissipation of BDE-209 in the soil (P < 0.05), in which the dissipation in anoxic soil planted with Huanghuazhan (HHZ, indica) and Yudao 1 (YD1, indica) were 6.8% and 2.4%, respectively, while in oxic soil with peanut and pepper were increased to 25.8% and 21.7%, respectively. The crop rotation also enhanced the degradation of BDE-209 in the soil, the recovered BDE-209 in soil after 120 d anoxic incubation with YD1 was 81.1%, but it decreased to 47.8% and 45.8% after another 120 d oxic incubation. Bioconcentration factors were between 0.23 and 0.36 for rice, eggplant and pepper but reached to 0.5 in peanut, which contains more lipids in the edible portion than the other test crops. The estimated daily intake for vegetables was 0.01-0.07 μg BDE-209-equivalent kg-1 bw day-1, which is at least two orders of magnitude below the maximum acceptable oral dose (7 μg kg-1 bw day-1). Our work confirms that crop rotation from rice to vegetable enhanced the dissipation and debromination of BDE-209 in the soil, and indicate that sequential anoxic-oxic rotation practice is considered to be effective in remediation of environmental pollutants.
Collapse
Affiliation(s)
- Pengfei Zhao
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China; Department of Natural Resource Science, Macdonald Campus, McGill University, Ste Anne de Bellevue, QC, H9X 3V9, Canada
| | - Wei Wang
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China
| | - Joann K Whalen
- Department of Natural Resource Science, Macdonald Campus, McGill University, Ste Anne de Bellevue, QC, H9X 3V9, Canada
| | - Sufen Zhang
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Science, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
77
|
Zhao L, Li Y, Ren W, Huang Y, Wang X, Fu Z, Ma W, Teng Y, Luo Y. Pesticide residues in soils planted with Panax notoginseng in south China, and their relationships in Panax notoginseng and soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110783. [PMID: 32534333 DOI: 10.1016/j.ecoenv.2020.110783] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, 73 samples from soils planted with Panax notoginseng and six P. notoginseng samples were collected in Yunnan Province to investigate the residual levels of six pesticides and their relationships with P. notoginseng and soil. All six pesticides were detected in the soils planted with P. notoginseng located in three regions of Shilin, Kaiyuan, and Yanshan. The detection frequencies of the pesticides in the soils followed the order: quintozene (100%) > iprodione (96%) > procymidone (69%) > chlorothalonil (51%) > pyrimethanil (49%) > pyraclostrobin (29%). The median concentrations of iprodione, pyraclostrobin, pyrimethanil, quintozene, procymidone, and chlorothalonil were 46.40, 6.4, 3.1, 2.86, 2.69, and 0.24 μg/kg, respectively. The mean concentrations of pesticides in the three regions followed the order: Kaiyuan > Shilin > Yanshan, except for iprodione. Furthermore, the concentrations of pesticide residues in soils in each region followed the order: soils never planted with P. notoginseng < soils previously planted with P. notoginseng < soils currently planted with P. notoginseng. The concentration of chlorothalonil in P. notoginseng followed the order: root > stem > leaf, whereas those of the other five pesticides followed the opposite order: root < stem < leaf. There were significant positive correlations between the mean concentrations of pesticides in P. notoginseng and those in the corresponding soils. These results indicate that the rational application of pesticides in P. notoginseng cultivation would be effective for reducing the accumulation of pesticides in P. notoginseng to protect people from the harmful effects of residual pesticides.
Collapse
Affiliation(s)
- Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhaocong Fu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wenting Ma
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
78
|
Chen Y, Lu Y, Nie E, Akhtar K, Zhang S, Ye Q, Wang H. Uptake, translocation and accumulation of the fungicide benzene kresoxim-methyl in Chinese flowering cabbage (Brassica campastris var. parachinensis) and water spinach (Ipomoea aquatica). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114815. [PMID: 32559858 DOI: 10.1016/j.envpol.2020.114815] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Benzene kresoxim-methyl (BKM) is an important methoxyacrylate-based strobilurin fungicide widely used against various phytopathogenic fungi in crops. Uptake, translocation and accumulation of BKM in vegetables remain unknown. This study was designed to investigate uptake, translocation, and accumulation of 14C-BKM and/or its potential metabolites in Chinese flowering cabbage and water spinach. 14C-BKM can be gradually taken up to reach a maximum of 44.4% of the applied amount by Chinese flowering cabbage and 34.6% by water spinach at 32 d after application. The 14CO2 fractions released from the hydroponic plant system reached 37.8% for cabbage and 45.8% for water spinach, respectively. Concentrations of 14C in leaves, stems and roots all gradually increased as vegetables growing, with relative 44.9% (cabbage) and 26.8% (water spinach) of translocated from roots to edible leaves. In addition, 14C in leaves was mainly accumulated in the bottom leaves, which was visualized by quantitative radioautographic imaging. The bioconcentration factor of 14C ranged from 7.1 to 38.2 mL g-1 for the cabbage and from 8.6 to 24.6 mL g-1 for the water spinach. The translocation factor of BKM ranged from 0.10 to 2.04 for the cabbage and 0.10-0.46 for the water spinach throughout the whole cultivation period, indicating that the cabbage is easier to translocate BKM from roots to leaves and stems than water spinach. In addition, the daily human exposure values of BKM in both vegetables were much lower than the limited dose of 0.15 mg day-1. The results help assess potential accumulation of BMK in vegetables and potential risk.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Yuhui Lu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Enguang Nie
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Kashif Akhtar
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Sufen Zhang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
79
|
Wang TT, Ying GG, He LY, Liu YS, Zhao JL. Uptake mechanism, subcellular distribution, and uptake process of perfluorooctanoic acid and perfluorooctane sulfonic acid by wetland plant Alisma orientale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139383. [PMID: 32446090 DOI: 10.1016/j.scitotenv.2020.139383] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl substances (PFASs) are of particular environmental concern due to their environmental persistence and potential toxicity. Phytoremediation may be used to remove PFASs from wastewater. Here we investigated the uptake mechanism, subcellular distribution, and uptake process of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate acid (PFOS) in the wetland plant Alisma orientale by using a series of hydroponic experiments. Active uptake facilitated by water transporters and anion channels was involved in the uptake of PFASs by plant roots. PFOA and PFOS were mainly distributed in the water-soluble fraction (46.2-70.8%) and in cell walls (45.6-58.4%), respectively. The uptake process was proposed as follows: PFOS and PFOA were first distributed in the soluble fraction; a proportion of PFOS and PFOA were adsorbed gradually by the cell wall, and a proportion of PFOS and PFOA in the cell wall passed through the cell wall and plasmalemma and bind with organelles. PFOS and PFOA were transported from the external solution to the vascular bundle of the plant root through both symplastic and apoplastic routes.
Collapse
Affiliation(s)
- Tuan-Tuan Wang
- The Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Guo Ying
- The Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Liang-Ying He
- The Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - You-Sheng Liu
- The Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jian-Liang Zhao
- The Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
80
|
The Role of Mangroves in the Retention of Heavy Metal (Chromium): A Simulation Study in the Thi Vai River Catchment, Vietnam. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165823. [PMID: 32806495 PMCID: PMC7460317 DOI: 10.3390/ijerph17165823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/23/2022]
Abstract
In this study, chromium (Cr) retention by the mangroves in the Thi Vai catchment located in the south of Vietnam was simulated using a coupled model of the hydrodynamic model Delft3D with Cr transport and a model for the uptake of Cr by mangroves. This coupled model was calibrated and validated using data from four hydrodynamic stations and data from phytoremediation studies. To analyze the effect of mangroves on reducing Cr pollution, three scenarios were run by the model. Scenario 1 (SC1) is based on the actual situation concerning discharges and the distribution of mangroves. Scenario 2 (SC2) simulates the deterioration of the actual situation by deforestation on the west bank and the establishment of more industrial zones on the east bank. Scenario 3 (SC3) simulates an eco-friendly development comprising the channeling of wastewater through constructed wetlands with mangroves prior to the discharge into the river. Simulation results showed that the total Cr uptake by mangroves in SC3 was higher than in the other two scenarios. In total, 33 kg Cr in water were absorbed by the constructed wetlands in SC3 within one month. The simulation results helped in overcoming the difficulties and challenges in assessing the capacity of mangrove forests on the retention of chromium at catchment scale.
Collapse
|
81
|
Wei L, Li Z, Sun J, Zhu L. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:137978. [PMID: 32481218 DOI: 10.1016/j.scitotenv.2020.137978] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
As an important environmental reservoir of phthalate esters (PAEs), soil-plant system constitutes a key exposure pathway to human health. In this study, agricultural soil and vegetable samples were collected from the Yangtze River Delta (approximately 211,700 km2), one of the most developed regions in China, to determine the contamination characteristics of priority PAEs. The total concentrations of six PAEs ranged from 5.42 to 1580 ng·g-1 dry weight in soils and from 10.9 to 16,400 ng·g-1 dry weight in vegetables. Di-(2-ethylhexyl) phthalate (DEHP) accounted for 88.3% and 61.9% of the total PAEs in soils and vegetables, respectively. The spatial distribution of PAEs in the soils was as follows: Shanghai city (70.8-1583 ng·g-1 dw) > Anhui province (46.8-1530 ng·g-1 dw) > Jiangsu province (14.4-558 ng·g-1 dw) > Zhejiang province (5.40-488 ng·g-1 dw). Non-cancer risks exist for adults and children in 6.5% and 7.8% of the sites, respectively. Carcinogenic risks were regarded unacceptable in 5.6% and 1.3% of the sites for adults and children, respectively. The bioconcentration factor (BCF) of PAEs showed positive correlation with lipid content of vegetables. A basic reference of the lipid-content threshold to guarantee the safety of leafy vegetables was proposed based on partition-limited model. We suggested to cultivate vegetables with lipid content <0.21% in most heavily contaminated area in the region. This study provides information for effectively controlling PAEs contamination in soil-plant system in developed districts.
Collapse
Affiliation(s)
- Luyun Wei
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Zhiheng Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jianteng Sun
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
82
|
Removal Efficiencies of Constructed Wetland Planted with Phragmites and Vetiver in Treating Synthetic Wastewater Contaminated with High Concentration of PAHs. SUSTAINABILITY 2020. [DOI: 10.3390/su12083357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to evaluate the capability of horizontal subsurface flow constructed wetlands (HSFCWs) in treating contaminated wastewater with a high concentration of polycyclic aromatic hydrocarbons (PAHs) (Phenanthrene, Pyrene, and Benzo[a]Pyrene), using two plants, namely Phragmites and Vetiver. The investigated parameters were (1) PAHs uptake by the plants, (2) PAHs removal efficiencies, (3) accumulated PAHs in the soil of CWs, (4) shoot/root concentration factor, (5) translocation factor, and (6) PAHs correlation to lipid contains in the plants. During the treatment period, the results showed that the highest concentration of Phenanthrene in the shoot and the root systems of Phragmites, was 229.3 and 192 μg/g; Pyrene was 69.1 and 59.2 µg/g; and Benzo[a]Pyrene 25.1 and 20.2 µg/g, respectively. Meanwhile, in the Vetiver shoot and root systems were Phenanthrene 87.5 and 64.1 µg/g; Pyrene 63.2 and 42.1 µg/g; and Benzo[a]Pyrene 21.3 and 27.3 µg/g, respectively. The removal rates of Phenanthrene, Pyrene, and Benzo[a]Pyrene (PAHs compounds) by the CW planted with Phragmites were found to be 83%, 71%, and 81%, respectively, while the removal rates by CW planted with Vetiver were found to be 67%, 66%, and 73%, respectively. Moreover, the removal rates by unplanted CW were found to be 62%, 58%, and 55%, respectively. The results indicated that the HSFCW planted with Phragmites has an effective pathway to remove high concentrations of PAHs.
Collapse
|
83
|
Ju C, Zhang H, Wu R, Dong S, Yao S, Wang F, Cao D, Xu S, Fang H, Yu Y. Upward translocation of acetochlor and atrazine in wheat plants depends on their distribution in roots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135636. [PMID: 31771841 DOI: 10.1016/j.scitotenv.2019.135636] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Residual acetochlor and atrazine in soils, resulting from their extensive application to maize plants, may affect product safety of the ultimate wheat crop. To determine the potential uptake and accumulation of acetochlor and atrazine by wheat plants, the uptake mechanism, translocation, and subcellular distribution of these two herbicides were studied through hydroponic experiments (10 mg L-1). The results indicated that acetochlor can be taken up through the apoplastic pathway and can accumulate in wheat roots with little upward translocation. However, atrazine could be taken up by roots through the symplastic pathway and subsequently transported to the stems and leaves. Little upward translocation of acetochlor in wheat plants was due to its preferential distribution into root organelles with higher lipid contents. Conversely, the low bioconcentration of atrazine in root organelles and cell walls after uptake led to its easy upward translocation. Uptake of acetochlor and atrazine by wheat roots and the distribution of atrazine to the stems and leaves were predicted well by using the partition-limited model. The obtained results indicated that residual atrazine in soil may be taken up by wheat roots and acropetally translocated, thereby posing a threat to product safety of wheat.
Collapse
Affiliation(s)
- Chao Ju
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Hongchao Zhang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Ruilin Wu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China
| | - Suxia Dong
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Shijie Yao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Feiyan Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China
| | - Duantao Cao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China
| | - Shiji Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, China; The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
84
|
Yan Y, Pengmao Y, Xu X, Zhang L, Wang G, Jin Q, Chen L. Migration of antibiotic ciprofloxacin during phytoremediation of contaminated water and identification of transformation products. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 219:105374. [PMID: 31862549 DOI: 10.1016/j.aquatox.2019.105374] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Phytoremediation is an effective and environmentally friendly approach to treat antibiotic contaminated water, however, the mechanisms of migration and transformation of antibiotics in plant tissues are still far from clear. In this study, the floating macrophyte Eichhornia crassipes was exposed to a series of antibiotic ciprofloxacin (CIP) concentrations. The results showed that the CIP was taken up and accumulated in the roots, which were the major accumulative tissue. CIP content increased with lipid content. During cultivation, the root bioconcentration factor (RCF) gradually increased. The average CIP content detected in aerial parts was 12.80 μg g-1, an order of magnitude lower than in the roots. At low CIP concentrations, the highest leaf bioconcentration factor (LCF) and transfer factor (TF) indicated highly efficient translocation from roots to aerial parts. The soluble protein growth rate of leaves, which is associated with metabolic activity, increased following CIP exposure. Overall, eight major transformation products in E. crassipes tissues were identified, and three possible transformation pathways were proposed involving the processes of desethylation, dehydroxylation, oxidation, hydroxylation and cleavage of the piperazine and quinoline rings. These findings could prove beneficial for improving the management or amelioration methods used for treating water contaminated with antibiotics.
Collapse
Affiliation(s)
- Yan Yan
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yangzang Pengmao
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Qiu Jin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Liangang Chen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| |
Collapse
|
85
|
Waigi MG, Wang J, Yang B, Gudda FO, Ling W, Liu J, Gao Y. Endophytic Bacteria in in planta Organopollutant Detoxification in Crops. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 252:1-50. [PMID: 31451946 DOI: 10.1007/398_2019_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microbe-assisted organopollutant removal, or in planta crop decontamination, is based on an interactive system between organopollutant-degrading endophytic bacteria (DEBOP) and crops in alleviating organic toxins in plants. This script focuses on the fast-growing body of literature that has recently bloomed in organopollutant control in agricultural plants. The various facets of DEBOP under study include their colonization, distribution, plant growth-promoting mechanisms, and modes of action in the detoxification process in plants. Also, an assessment of the biotechnological advances, advantages, and bottlenecks in accelerating the implementation of this decontamination strategy will be undertaken. The highlighted key research directions from this review will shape the future of agro-environmental sustainability and preservation of human health.
Collapse
Affiliation(s)
- Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
86
|
Uptake and Effects of Pharmaceuticals in the Soil-Plant-Earthworm System. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
87
|
Chen J, Xia X, Wang H, Zhai Y, Xi N, Lin H, Wen W. Uptake pathway and accumulation of polycyclic aromatic hydrocarbons in spinach affected by warming in enclosed soil/water-air-plant microcosms. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120831. [PMID: 31271938 DOI: 10.1016/j.jhazmat.2019.120831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 05/13/2023]
Abstract
The partition of polycyclic aromatic hydrocarbons (PAHs) among water-soil-air is temperature-dependent. Thus, we hypothesized that climate warming will affect the accumulation and uptake pathway of PAHs in plants. To test this hypothesis, enclosed soil/water-air-plant microcosm experiments were conducted to investigate the impact of warming on the uptake and accumulation of four PAHs in spinach (Spinacia oleracea L.). The results showed that root uptake was the predominant pathway and its contribution increased with temperature due to the promoted acropetal translocation. Owing to the increase in freely dissolved concentrations of PAHs in soil pore water, the four PAH concentrations in roots increased by 60.8-111.5% when temperature elevated from 15/10 to 21/16 °C. A model was established to describe the relationship between bioconcentration factor of PAHs in root and temperature. Compared with 15/10 °C, the PAH concentrations in leaves at both 18/13 and 21/16 °C elevated due to the increase in PAH concentrations in air, while slightly decreased when temperature elevated from 18/13 to 21/16 °C because the PAH concentrations in air decreased, resulting from accelerated biodegradation of PAHs in topsoil. This study suggests that warming will generally enhance the PAH accumulation in plant, but the effect will differ among different plant tissues.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Haotian Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yawei Zhai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Nannan Xi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Hui Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Wu Wen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
88
|
Chuang YH, Liu CH, Sallach JB, Hammerschmidt R, Zhang W, Boyd SA, Li H. Mechanistic study on uptake and transport of pharmaceuticals in lettuce from water. ENVIRONMENT INTERNATIONAL 2019; 131:104976. [PMID: 31336255 DOI: 10.1016/j.envint.2019.104976] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/05/2019] [Accepted: 06/27/2019] [Indexed: 05/12/2023]
Abstract
The dissemination of pharmaceuticals in agroecosystems originating from land application of animal manure/sewage sludge and irrigation with treated wastewater in agricultural production has raised concern about the accumulation of pharmaceuticals in food products. The pathways of pharmaceutical entries via plant roots, transport to upper fractions, and the factors influencing these processes have yet been systematically elucidated, thus impeding the development of effective measures to mitigate pharmaceutical contamination in food crops. In this study, lettuce uptake of thirteen commonly used pharmaceuticals was investigated using a hydroponic experimental setting. Pharmaceutical sorption by lettuce roots was measured in order to evaluate the influence on pharmaceutical transport from roots to shoots. Small-sized pharmaceuticals e.g., caffeine and carbamazepine with molecular weight (MW) <300 g mol-1 and a low affinity to lettuce roots (sorption coefficient Kp < 0.05 L g-1) manifested substantial transport to shoots. Small-sized molecules lamotrigine and trimethoprim had a relatively strong affinity to lettuce roots (Kp > 12.0 L g-1) and demonstrated a reduced transport to shoots. Large-sized pharmaceuticals (e.g. MW >400 g mol-1) including lincomycin, monensin sodium, and tylosin could be excluded from cell membranes, resulting in the predominant accumulation in lettuce roots. Large-sized oxytetracycline existed as zwitterionic species that could slowly enter lettuce roots; however, the relatively strong interaction with lettuce roots limits its transport to shoots. The mass balance analysis revealed that acetaminophen, β-estradiol, carbadox, estrone and triclosan were readily metabolized in lettuce with >90% loss during 144-h exposure period. A scheme was proposed to describe pharmaceutical uptake and transport in plant, which could reasonably elucidate many literature-reported results. Molecular size, reactivity and ionic speciation of pharmaceuticals, as well as plant physiology, collectively determine their uptake, transport and accumulation in plants.
Collapse
Affiliation(s)
- Ya-Hui Chuang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Department of Soil and Environmental Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Cheng-Hua Liu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Environmental Science and Policy Program, Michigan State University, East Lansing, MI 48824, USA
| | - J Brett Sallach
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Raymond Hammerschmidt
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; Environmental Science and Policy Program, Michigan State University, East Lansing, MI 48824, USA
| | - Stephen A Boyd
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
89
|
Wang J, Odinga ES, Zhang W, Zhou X, Yang B, Waigi MG, Gao Y. Polyaromatic hydrocarbons in biochars and human health risks of food crops grown in biochar-amended soils: A synthesis study. ENVIRONMENT INTERNATIONAL 2019; 130:104899. [PMID: 31203030 DOI: 10.1016/j.envint.2019.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 05/25/2023]
Abstract
Soil amendment with biochars is currently being studied worldwide as a sustainable agricultural practice to improve soil and water quality, increase crop productivity, and augment soil carbon storage. However, the formation of polyaromatic hydrocarbons (PAHs) during biochar production is inevitable. Therefore, it is crucial to assess the risks in food safety and human health of crops grown in biochar-amended soils. This paper performed a synthesis study of PAH concentrations in biochars and estimated the risks of soils amended with biochars, based on refereed articles published between 2012 and 2018. The PAH concentrations in biochars ranged greatly, with the dominant proportion being 2-3 ringed PAHs (40%-71%). Biochar application increased the PAH levels in soils at drastically varying extents (0.02-3574 μg/kg), which led to a broad range of PAH concentrations in food crops grown in biochar-amended soils. A five-step method was then introduced to assess the toxicity of biochar-borne PAHs to human health. The total mean incremental lifetime cancer risk for adults was estimated to range between 2.0 × 10-6-1.9 × 10-5 via direct contact with and ingestion (inhalation) of contaminated soils or consumption of tainted crops. These results indicated that biochar amendment in soils might pose potential risks to food safety and human health, but the overall cancer risks through exposure to biochar-borne PAHs in soils and food crops were low. Higher application rates (e.g. ≥20 t/ha) of biochars with high PAH contents can be avoided to minimize human cancer risks. Although biochar application in arable farmlands has many environmental and agronomic benefits, holistic and systematic approaches are required to fully assess the benefits and risks before their large-scale adoption. PAHs in biochar may be reduced by improving the biochar production process and developing a cost-effective post-manufacturing treatment.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
90
|
Guarino C, Zuzolo D, Marziano M, Conte B, Baiamonte G, Morra L, Benotti D, Gresia D, Stacul ER, Cicchella D, Sciarrillo R. Investigation and Assessment for an effective approach to the reclamation of Polycyclic Aromatic Hydrocarbon (PAHs) contaminated site: SIN Bagnoli, Italy. Sci Rep 2019; 9:11522. [PMID: 31395938 PMCID: PMC6687822 DOI: 10.1038/s41598-019-48005-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/26/2019] [Indexed: 02/05/2023] Open
Abstract
Native plant species were screened for their remediation potential for the removal of Polycyclic Aromatic Hydrocarbons (PAHs) contaminated soil of Bagnoli brownfield site (Southern Italy). Soils at this site contain all of the PAHs congeners at concentration levels well above the contamination threshold limits established by Italian environmental legislation for residential/recreational land use, which represent the remediation target. The concentration of 13 High Molecular Weight Polycyclic Aromatic Hydrocarbons in soil rhizosphere, plants roots and plants leaves was assessed in order to evaluate native plants suitability for a gentle remediation of the study area. Analysis of soil microorganisms are provides important knowledge about bioremediation approach. Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria are the main phyla of bacteria observed in polluted soil. Functional metagenomics showed changes in dioxygenases, laccase, protocatechuate, and benzoate-degrading enzyme genes. Indolacetic acid production, siderophores release, exopolysaccharides production and ammonia production are the key for the selection of the rhizosphere bacterial population. Our data demonstrated that the natural plant-bacteria partnership is the best strategy for the remediation of a PAHs-contaminated soil.
Collapse
Affiliation(s)
- Carmine Guarino
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Mario Marziano
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Barbara Conte
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Giuseppe Baiamonte
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | | | | | | | | | - Domenico Cicchella
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy.
| |
Collapse
|
91
|
Tai Y, Fung-Yee Tam N, Ruan W, Yang Y, Yang Y, Tao R, Zhang J. Specific metabolism related to sulfonamide tolerance and uptake in wetland plants. CHEMOSPHERE 2019; 227:496-504. [PMID: 31004816 DOI: 10.1016/j.chemosphere.2019.04.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Wetland plants are proven to perform well in water treatment. However, the phytoremediation capability of wetland plants for antibiotics, especially the uptake and metabolism involved in vivo, is poorly understood. In this study, we investigated the removal, uptake, and specific metabolism by Canna indica and Iris pseudacorus of five sulfonamides (SAs) using hydroponic experiments for seven days. The removal of SAs ranged from 15.2% to 98.4% in the planted groups, whereas that in the unplanted control group was much lower (12.6%-39.9%). The accumulation of SAs in plants was in a concentration-dependent manner via an active process and is not a major removal mechanism (constituted 0.31%-3.62% of the total removal load in plant system). The results also showed differences in the removal and accumulation by plant species of SAs. The acetyl conjugates (N-acetyl SA) were formed, which significantly enhanced the uptake of SAs (P < 0.001) except sulfapyridine. The concentrations of N-acetyl SA accounted for only 0.4%-23.8% of the total SAs distribution in plants, suggesting the involvement of other metabolism pathways. Methylation and oxidation metabolites were identified in plant tissues and no SA-induced growth stress occurred, revealing that antibiotic metabolism in vivo should be associated with the ability of wetland plants to accumulate antibiotic and tolerate antibiotic stress.
Collapse
Affiliation(s)
- Yiping Tai
- Research Center of Hydrobiology, Jinan University, Guangzhou, 510632, PR China; Research Centre of Tropic and Subtropic Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, PR China
| | - Nora Fung-Yee Tam
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR999077, PR China
| | - Weifeng Ruan
- Research Center of Hydrobiology, Jinan University, Guangzhou, 510632, PR China; Research Centre of Tropic and Subtropic Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, PR China
| | - Yufen Yang
- Research Center of Hydrobiology, Jinan University, Guangzhou, 510632, PR China; Research Centre of Tropic and Subtropic Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, PR China
| | - Yang Yang
- Research Center of Hydrobiology, Jinan University, Guangzhou, 510632, PR China; Research Centre of Tropic and Subtropic Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, PR China.
| | - Ran Tao
- Research Center of Hydrobiology, Jinan University, Guangzhou, 510632, PR China; Research Centre of Tropic and Subtropic Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, PR China
| | - Jingfan Zhang
- Research Center of Hydrobiology, Jinan University, Guangzhou, 510632, PR China; Research Centre of Tropic and Subtropic Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, PR China
| |
Collapse
|
92
|
Ju C, Zhang H, Yao S, Dong S, Cao D, Wang F, Fang H, Yu Y. Uptake, Translocation, and Subcellular Distribution of Azoxystrobin in Wheat Plant ( Triticum aestivum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6691-6699. [PMID: 31135152 DOI: 10.1021/acs.jafc.9b00361] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The uptake mechanism, translocation, and subcellular distribution of azoxystrobin (5 mg kg-1) in wheat plants was investigated under laboratory conditions. The wheat-water system reached equilibrium after 96 h. Azoxystrobin concentrations in roots were much higher than those in stems and leaves under different exposure times. Azoxystrobin uptake by roots was highly linear at different exposure concentrations, while the bioconcentration factors and translocation factors were independent of the exposed concentration at the equilibrium state. Dead roots adsorbed a larger amount of azoxystrobin than fresh roots, which was measured at different concentrations. Azoxystrobin preferentially accumulated in organelles, and the highest distribution proportion was detected in the soluble cell fractions. This study elucidated that the passive transport and apoplastic pathway dominated the uptake of azoxystrobin by wheat roots. Azoxystrobin primarily accumulated in roots and could be acropetally translocated, but its translocation capacity from roots to stems was limited. Additionally, the uptake and distribution of azoxystrobin by wheat plants could be predicted well by a partition-limited model.
Collapse
Affiliation(s)
- Chao Ju
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Hongchao Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Shijie Yao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Suxia Dong
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Duantao Cao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Feiyan Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou 310029 , China
| |
Collapse
|
93
|
Liu Q, Wang X, Yang R, Yang L, Sun B, Zhu L. Uptake Kinetics, Accumulation, and Long-Distance Transport of Organophosphate Esters in Plants: Impacts of Chemical and Plant Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4940-4947. [PMID: 30942573 DOI: 10.1021/acs.est.8b07189] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The uptake, accumulation, and long-distance transport of organophosphate esters (OPEs) in four kinds of plants were investigated by hydroponic experiments. The uptake kinetics ( k1,root) of OPEs in plant roots were determined by the binding of OPEs with the proteins in plant roots and apoplastic sap for the hydrophobic compounds, which correlated well with the transpiration capacity of the plants for the hydrophilic compounds. However, the accumulation capacity of OPEs in plant root was controlled by the partition of OPEs to plant lipids. As a consequence, OPEs were taken up the fastest in wheat root as a result of its highest protein content but least accumulated as a result of its lowest lipid content. The translocation factor of the OPEs decreased quickly with the hydrophobicity (log Kow) increasing, suggesting that the hydrophobic OPEs were hard to translocate from roots to shoots. The hydrophilic OPEs, such as tris(2-chloroisopropyl) phosphate and tris(2-butoxyethyl) phosphate, were ambimobile in the plant xylem and phloem, suggesting that they could move to the edible parts of plants and enhanced risk to human health.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , People's Republic of China
| | - Xiaolei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , People's Republic of China
| | - Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , People's Republic of China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , People's Republic of China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , People's Republic of China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , People's Republic of China
| |
Collapse
|
94
|
Li Y, Chiou CT, Li H, Schnoor JL. Improved prediction of the bioconcentration factors of organic contaminants from soils into plant/crop roots by related physicochemical parameters. ENVIRONMENT INTERNATIONAL 2019; 126:46-53. [PMID: 30776749 PMCID: PMC6931905 DOI: 10.1016/j.envint.2019.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/25/2019] [Accepted: 02/06/2019] [Indexed: 05/14/2023]
Abstract
There has been an on-going pursuit for relations between the levels of chemicals in plants/crops and the source levels in soil or water in order to address impacts of toxic substances on human health and ecological quality. In this research, we applied the quasi-equilibrium partition model to analyze the relations for nonionic organic contaminants between plant/crop roots and external soil/water media. The model relates the in-situ root concentration factors of chemicals from external water into plant/crop roots (RCF(water)) with the system physicochemical parameters and the chemical quasi-equilibrium states with plant/crop roots (αpt, ≤1). With known RCF(water) values, root lipid contents (flip), and octanol-water Kow's, the chemical-plant αpt values and their ranges of variation at given flipKow could be calculated. Because of the inherent relation between αpt and flipKow, a highly distinct correlation emerges between log RCF(water) and log flipKow (R2 = 0.825; n = 368), with the supporting data drawn from 19 disparate soil-plant studies covering some 6 orders of magnitude in flipKow and 4 orders of magnitude in RCF(water). This correlation performs far better than any relationship previously developed for predicting the contamination levels of pesticides and toxic organic chemicals in plant/crop roots for assessing risks on food safety.
Collapse
Affiliation(s)
- Yuanbo Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States of America
| | - Cary T Chiou
- Department of Environmental Engineering, National Cheng Kung University, Tainan 70701, Taiwan.
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States of America
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242, United States of America
| |
Collapse
|
95
|
Li Y, Sallach JB, Zhang W, Boyd SA, Li H. Insight into the distribution of pharmaceuticals in soil-water-plant systems. WATER RESEARCH 2019; 152:38-46. [PMID: 30660096 DOI: 10.1016/j.watres.2018.12.039] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/15/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals in agricultural soils originating from irrigation with treated wastewater and land-applied biosolids can enter field crops. However, little is known about the role of pore water in plant uptake of pharmaceuticals from soils. In this study, the fate, uptake and distribution of fifteen commonly used pharmaceuticals in soil-water-radish systems were investigated to examine the relationship between the accumulation and their physicochemical processes in soils. The results indicate that the distribution of pharmaceuticals between soil and pore water, as well as their biodegradation, combined to govern the bioavailability of pharmaceuticals to plant uptake. Fourteen out of 15 pharmaceuticals could enter radish tissues in which the accumulation ranged from 2.1 to 14080 ng/g. Comparison of bioconcentration factors (BCFs) on the basis of pharmaceutical concentration in bulk soil vs. in pore water implies that pharmaceuticals present in soil pore water are the major bioavailable fractions to plant uptake. The pore water-based BCFs exhibited a positive linear relationship with log Dow for the pharmaceuticals with >90% as neutral species in soil pore water, while such relationship was not observed between bulk soil-based BCFs and log Dow mainly due to sorption by soil. Other than hydrophobicity, the dissociation of ionizable pharmaceuticals in the soil pore water and (or) root cells may lead to the "ion-trap" effects and thus influence the uptake and translocation process. The large molecular-size pharmaceuticals (e.g., tylosin) manifested a minimum uptake due plausibly to the limited permeability of cell membranes.
Collapse
Affiliation(s)
- Yuanbo Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - J Brett Sallach
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Stephen A Boyd
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
96
|
Houshani M, Salehi-Lisar SY, Motafakkerazad R, Movafeghi A. Uptake and distribution of phenanthrene and pyrene in roots and shoots of maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9938-9944. [PMID: 30739292 DOI: 10.1007/s11356-019-04371-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons as byproducts of carbon-based fuel combustion are an important group of pollutants with wide distribution in the environment. Polycyclic aromatic hydrocarbons are known as toxic compounds for almost all organisms. Different plant species can uptake polycyclic aromatic hydrocarbons by roots and translocate them to various aerial parts. The aim of this study is to investigate the uptake, translocation, and accumulation of pyrene and phenanthrene in maize under controlled conditions. Seeds were cultivated in perlite containing 25, 50, 75, and 100 ppm of phenanthrene and pyrene, and their concentrations in the roots and shoots of the plants were measured using high-performance liquid chromatography technique after 7, 14, and 21 days. The results revealed that phenanthrene naturally existed in maize and its concentration showed a time-dependent decrease in shoots and roots. In contrast, the concentration of pyrene was increased in the roots and reduced in the shoots. Although pyrene had higher uptake than phenanthrene in roots of maize, the translocation factor value for pyrene was lower than for phenanthrene. According to these findings, phenanthrene could be metabolized in maize in the shoot and root tissues, but pyrene had more tendency to be accumulated in roots.
Collapse
Affiliation(s)
- Mahdieh Houshani
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Ruhollah Motafakkerazad
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ali Movafeghi
- Department of Plant Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
97
|
Wu X, Zhu L. Prediction of organic contaminant uptake by plants: Modified partition-limited model based on a sequential ultrasonic extraction procedure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:124-130. [PMID: 30537650 DOI: 10.1016/j.envpol.2018.11.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/17/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Predicting the translocation of organic contaminants to plants is crucial to ensure the quality of agricultural goods and assess the risk of human exposure through the food web. In this study, the performance of a modified plant uptake model was evaluated considering a number of chemicals, such as polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs), with a range of physicochemical properties; different plant species (Ipomoea aquatica Forsk (swamp morning glory), Chrysanthemum coronarium L. (crown daisy), Zea mays L. (corn), Brassica rapa pekinensis (Chinese cabbage), Cucurbita moschata (pumpkin), Raphanus sativus L. (radish), Spinacia oleracea L. (spinach) and Capsicum annuum L. (pepper)); and different types of soil (paddy soil, laterite soil and black soil). The biases of predictions from a previously used partition-limited model were -76.4% to -99.9% relative to the measured concentrations. An overall transmission factor (αtf=0.39), calculated from a linear regression of the measured bioavailable fraction (Cbio) and the total concentration in plants, was considered a crucial modification and was included in the modified model. Cbio was found to better represent the chemical content available in soil for root uptake. The results from this study improve the accuracy of predictions for vegetation-uptake assessments by modifying the partition-limited model and then validating the modified model using comparisons between predicted data and measured values. The accuracy of the concentrations of organic contaminants in plants improved: when using the modified model, 89.5% of the predictions were within 40% of the actual value. The average bias was limited to 1.5%-30.5%. The model showed great potential to predict plant uptake using the bioavailable fraction concentration in soil.
Collapse
Affiliation(s)
- Xiang Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
98
|
Pan J, Jin D, Jiang H, Leng X, Zhang A, Bai Z. The phyllosphere indigenous microbiota of Brassica campestris L. change its diversity in responding to di-n-butyl phthalate pollution. World J Microbiol Biotechnol 2019; 35:21. [PMID: 30656424 DOI: 10.1007/s11274-019-2589-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
In this study, the effects of di-n-butyl phthalate (DBP) on the phyllosphere bacterial community of field mustard (Brassica campestris L.) at the five-leaf stage were investigated. The indigenous alpha-diversity of the phyllosphere bacteria was altered after spraying with different concentrations of DBP. Shannon diversity indices were significantly changed on day 5 after treatment at DBP concentrations > 400 mg L-1 (P > 0.05). Nevertheless, the difference between treatment and control was not significant on day 9 after DBP treatment (P > 0.05). Exposure to DBP resulted in a decrease in Proteobacteria and Firmicutes, and an increase in Actinobacteria at all sampling intervals. These changes included significant increases in the relative abundance of Paracoccus and Rhodococcus, and significant decreases in that of Pseudomonas, Exiguobacterium, an unclassified genus of Pseudomonadaceae, and an unclassified genus of Enterobacteriaceae. This study provides new evidence for the possibility of using phyllosphere microbiota to remediate DBP contamination.
Collapse
Affiliation(s)
- Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China. .,Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China.
| | - Decai Jin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haiming Jiang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.,Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China
| | - Xiaoyun Leng
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.,Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China
| | - Aiai Zhang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.,Inner Mongolia Key Laboratory for Biomass-Energy Conversion, Baotou, 014010, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
99
|
Wang J, Xia K, Waigi MG, Gao Y, Odinga ES, Ling W, Liu J. Application of biochar to soils may result in plant contamination and human cancer risk due to exposure of polycyclic aromatic hydrocarbons. ENVIRONMENT INTERNATIONAL 2018; 121:169-177. [PMID: 30212761 DOI: 10.1016/j.envint.2018.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/18/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Biochars are added to soil to improve agronomic yield. This greenhouse- and field-scale study evaluated polycyclic aromatic hydrocarbon (PAH) contamination in 35 commercial and laboratory-produced biochars, and assessed the effects of biochar amendment of soils on PAH accumulation in vegetables and the risk for cancer. The total and bioavailable PAH concentrations in biochars varied from 638 to 12,347 μg/kg and from below the detection limit (BDL) to 2792 μg/kg, respectively. PAH formation in biochars decreased with increasing production temperature (350-650 °C). Root exudates enhanced PAH release from biochars. The total PAH concentrations in eight edible vegetables growing in biochar-amended soil varied according to biochar and vegetables type from BDL to 565 μg/kg. A health risk assessment framework was integrated with the benzo[a]pyrene toxic equivalency quotient and the incremental lifetime cancer risk (ILCR) to estimate the exposure risk for human beings via ingestion of PAH-contaminated vegetables. The total ILCR for adults was above 10-6, which suggests a risk to human health from direct exposure to PAHs in vegetables grown in biochar-amended soil. These results demonstrate that biochar application may lead to contamination of plants with PAHs, which represents a risk to human health. The PAH levels in biochars produced using different conditions and/or feedstocks need to be evaluated and biochars should be pretreated to remove PAHs before their large-scale agronomic application.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
100
|
Motoki Y, Iwafune T, Seike N, Inao K, Namiki S. Comparison of soil sorption parameters of pesticides measured by batch and centrifugation methods using an andosol. JOURNAL OF PESTICIDE SCIENCE 2018; 43:277-282. [PMID: 30479550 PMCID: PMC6240779 DOI: 10.1584/jpestics.d18-015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 06/09/2023]
Abstract
We compared the soil sorption coefficient (K d) measured by batch and centrifugation methods using a Japanese andosol and ten pesticides. Although the K d values measured by both methods increased with time, those obtained via the batch method tended to be higher during the test period. The difference in K d values between the two methods affected pesticide concentrations estimated in the soil solution, and the results estimated using K d values obtained via the batch method underestimated the observed trends.
Collapse
Affiliation(s)
- Yutaka Motoki
- Food and Agricultural Materials Inspection Center, Agricultural Chemicals Inspection Station, 2–772 Suzuki-cho, Kodaira, Tokyo 187–0011, Japan
| | - Takashi Iwafune
- Food Safety Commission Secretariat of Japan, Akasaka Park Bld. 22nd F. 5–2–20 Akasaka, Minato-ku, Tokyo 107–6122, Japan
| | - Nobuyasu Seike
- Institute for Agro-Environmental Sciences, NARO, 3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604, Japan
| | - Keiya Inao
- Institute for Agro-Environmental Sciences, NARO, 3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604, Japan
| | - Sayuri Namiki
- Institute for Agro-Environmental Sciences, NARO, 3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604, Japan
| |
Collapse
|