51
|
Zhang Q, Hou X, Wei L, Kong W, Luo Y, Ren Z, Sun Z, Liu J, Jiang G. Bromophenol Induced Multiple Stress Responses in Rice Plants: Impact of Doses and Congener Structures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16885-16894. [PMID: 36426421 DOI: 10.1021/acs.est.2c05731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bromophenols (BPs) have both natural and artificial sources in the environment and are frequently detected in plants. Herein, the ubiquitous 2,4,6-TriBP was hydroponically exposed to rice seedlings at two concentrations (0.2 and 2.0 mg/L) to characterize the dose-dependent abiotic stress responses of rice plants to BPs. The 2,4,6-TriBP induced oxidative damage to rice roots and subsequently inhibited plant transpiration and growth at the end of exposure in both concentrations. Moreover, the gene expression of OsUGT72B1 and the activity of glycosyltransferases of exposed rice roots were 2.36-to-4.41-fold and 1.23-to-1.72-fold higher than that of the blank controls after 24 h, following the formation of glycoconjugates in response to 2,4,6-TriBP exposure. It was notable that the glycosylation rates also showed a dose-effect relationship in rice roots. One and six glycoconjugates of 2,4,6-TriBP were detected in 0.2 and 2.0 mg/L exposure groups, respectively. Considering the detected species of glycoconjugates for four other types of BPs, the numbers of bromine atoms were found to dramatically affect their glycosylation process in rice plants. These results improve our fundamental understanding of the impact of congener structures and exposure concentrations of organic contaminants on the glycosylation process in response to phytotoxicity.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yadan Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Zhihua Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
52
|
Zhu J, Yang L, Wang M, Zhang Q, Zhang Y, Li Y. The influence of bromide and iodide ions on the sulfamethoxazole (SMX) halogenation during chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157687. [PMID: 35908709 DOI: 10.1016/j.scitotenv.2022.157687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Disinfection by-products (DBPs) were produced during the chlorination process, posing a threat to drinking water safety and human health. In the presence of bromide and iodide ions, brominated and iodinated DBPs will be generated, which might be more toxic than the parent compound. However, there are few studies on brominated and iodinated DBPs of antibiotics. Therefore, in this study, the fates of sulfamethoxazole (SMX) during chlorination in different systems (Blank; SMX + NaClO; SMX+ NaClO+ Br-; SMX+ NaClO+I-; SMX+ NaClO+ Br- + I-) were investigated. In different systems, all the reaction followed a pseudo-first-order kinetics, while the reaction rates of NaClO with SMX were different, the reaction rates were in order of SMX + NaClO + Br- + I- > SMX + NaClO + Br- > SMX + NaClO + I- > SMX + NaClO. When Br- and I- existed simultaneously, the reaction rate was the fastest. Iodide played an important role in oxidation and promoted the chlorination of SMX. SMX mainly underwent S-C cleavage, S-N hydrolysis, desulfonation, and substitution reactions. Nine disinfection by-products, including three reported for the first time, were identified using a non-targeted approach, and degradation pathways were proposed. Furthermore, EPI Suite software was applied to predict the environmental accumulation potential and environmental persistence of the degradation products. The results indicated that SMX and degradation products had little environmental accumulative potential and environmental persistence.
Collapse
Affiliation(s)
- Jingjing Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lumin Yang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mengyuan Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qing Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yuna Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
53
|
Zhai H, Guo Y, Zhang L, Miao Y, Wang J. Presence of bromide and iodide promotes the horizontal transfer of antibiotic resistance genes during chlorination: A preliminary study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157250. [PMID: 35817106 DOI: 10.1016/j.scitotenv.2022.157250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Chlorination was reported to have a great potential to increase horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs), which poses a great threat to global human health. Bromide (Br-) and iodide (I-) ions are widely spread ions in water and wastewater. In chlorination, Br- and I- can be oxidized to active bromine and iodine species. The influence of the co-existing different halogen oxidants (chlorine + bromine or iodine species) on HGT of ARGs were rarely investigated. In this study, the conjugative transfer of ARGs between a donor strain E. coli K12 and a recipient strain E. coli HB101 was investigated in chlorination without/with the presence of Br- or I-. Immediately after the addition of sodium hypochlorite, 53-88 % of the dosed chlorine was rapidly consumed, 10 %-42 % fast transformed into organic combined chloramines, and only low levels of free chlorine (0.02-0.8 mg/L as Cl2) left in the diluted cultural medium. Conjugative transfer mediated by the RP4 plasmid was not significantly enhanced in chlorination without the presence of Br- or I-. With the presence of Br- (0.5-5.0 mg/L) or I- (0.05-0.5 mg/L) in chlorination, the co-existing free halogen oxidants and their organic combined ones up-regulated the mRNA expression of the oxidative stress-regulatory gene (rpoS), outer membrane protein gene (ompC), and conjugation-relevant genes (trbBp and trfAp), and caused more damage to cell entirety. As a result, the co-existing reactive halogen oxidants enhanced the HGT of ARGs probably via conjugative transfer and transformation. This study showed that the presence of Br- and I- of common levels in aquatic environment promoted HGT of ARGs in chlorination, thus accelerating the transmission and prevalence of ARGs.
Collapse
Affiliation(s)
- Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, PR China.
| | - Yujing Guo
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, PR China
| | - Liangyu Zhang
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, PR China
| | - Yu Miao
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin 300072, PR China
| | - Jingfeng Wang
- Tianjin Institute of Environmental & Operational Medicine, Dali Road 1, Tianjin 300050, PR China
| |
Collapse
|
54
|
Miao T, Li M, Shao T, Jiang X, Jiang L, Zhou Q, Pan Y, Wang Y, Qiu J. The involvement of branched-chain amino acids (BCAAs) in aromatic trihalogenated DBP exposure-induced kidney damage in mice. CHEMOSPHERE 2022; 305:135351. [PMID: 35718037 DOI: 10.1016/j.chemosphere.2022.135351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Disinfection by-products (DBPs) are inevitably generated in the process of disinfection. Among them, aromatic halogenated DBPs, such as 2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodophenol (TIP), have attracted considerable interest for their high toxicity. A systematic nephrotoxicity evaluation of 2,4,6-trihalophenols is still lacking. In this study, mice were exposed to TCP, TBP and TIP ranging from environmental-related low concentration to high concentration that commonly used in animal study (0.5-200 μg/L). Kidney histopathology, urine protein detection and urine metabolomics were performed. Remarkable changes including kidney damage, proteinuria and glomerular mesangial cell proliferation were observed after three 2,4,6-trihalophenol exposure, even at low concentration of 0.5 μg/L. The nephrotoxicity rank order was TIP > TBP > TCP. Additionally, in vivo exposure to 2,4,6-trihalophenols also led to apparent changes in urinary metabolic profiles. Biosynthesis pathways of branched-chain amino acids (BCAAs, containing valine, leucine and isoleucine) were disturbed even at the early stage of exposure (4 weeks). Intriguingly, it has been reported that BCAAs could promote the proliferation of glomerular mesangial cells. Thus, in vitro cell experiments were further performed on mouse glomerular mesangial cell line MES-13. Consistently with in vivo results, cell proliferation was observed in MES-13 cells after exposure to 2,4,6-trihalophenols, especially to TBP and TIP. Meanwhile, TCP at high concentration, TBP and TIP at not only high concentration but also low concentration, induced BCAAs accumulation in glomerular mesangial cells, which was completely commensurate to that observed in cell proliferation assay. Then the proliferation of MES-13 cells induced by 2,4,6-trihalophenols was remarkably inhibited after BCAAs interference. Here we provide direct link between disturbed BCAAs and the nephrotoxicity of 2,4,6-trihalophenols. 2,4,6-trihalophenols could induce excess BCAAs, which further led to proliferation of glomerular mesangial cells and renal injury. This study revealed the nephrotoxicity of aromatic trihalogenated DBPs and provided new insights into the potential toxic mechanisms.
Collapse
Affiliation(s)
- Tingting Miao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Mingzhi Li
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Tianye Shao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoqin Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Liujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yong Wang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
55
|
Ali MEM, Moniem SM, Hemdan BA, Ammar NS, Ibrahim HS. Innovative polymeric inorganic coagulant-flocculant for wastewater purification with simultaneous microbial reduction in treated effluent and sludge. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
56
|
Hao T, Miao M, Cheng X, Dou Y, Zhang M, Li Y. The effects of polypropylene microplastics on the DBP formation under the chlorination and chloramination processes. CHEMOSPHERE 2022; 303:135102. [PMID: 35623421 DOI: 10.1016/j.chemosphere.2022.135102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
With the increased use of microplastics in modern society, tonnes of various microplastics (MPs) end up in natural and engineered water systems if not properly handled. Being a class of organics, the role of MPs during the disinfection of water treatment systems is still unclear at this stage. In the current experimental study, the formation of 6 typical disinfection by-products (DBPs) was investigated using varying concentrations of polypropylene (PP) MPs under various aquatic chemistry conditions and disinfectants. All investigated DBPs were detected, during the chlorination of PP, with an average CHCl3 concentration of 378 μg/g, and other DBPs, including CHCl2Br, TCA, DCAN, 1,1-DCP, and TCNM, were present in less than 60 μg/g, on average. When PP coexisted with Suwannee River Fulvic acid (SRFA), a suppression of DBP formation was observed with a 56% net reduction compared with a condition of PP alone. The dynamic balance of being a DBP precursor, or a scavenger, by absorbing the organics of PP is subjected to aquatic chemistry. Increasing the pH decreases the HOCl concentrations, reducing the PP oxidation capacity and DBP formation. As salinity increases, the aggregation of PP can reduce the reaction sites on the surface of PP and enhance the adsorption of SRFA, hence lowering the formation of DBPs.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Manhong Miao
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Xuhua Cheng
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Yuanyuan Dou
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Min Zhang
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Yao Li
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Procedures and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China.
| |
Collapse
|
57
|
Zhang W, Dong T, Ai J, Fu Q, Zhang N, He H, Wang Q, Wang D. Mechanistic insights into the generation and control of Cl-DBPs during wastewater sludge chlorination disinfection process. ENVIRONMENT INTERNATIONAL 2022; 167:107389. [PMID: 35843072 DOI: 10.1016/j.envint.2022.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Chlorination disinfection has been widely used to kill the pathogenic microorganisms in wastewater sludge during the special Covid-19 period, but sludge chlorination might cause the generation of harmful disinfection byproducts (DBPs). In this work, the transformation of extracellular polymeric substance (EPS) and mechanisms of Cl-DBPs generation during sludge disinfection by sodium hypochlorite (NaClO) were investigated using multispectral analysis in combination with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The microorganism Escherichia coli (E. coli) was effectively inactivated by active chlorine generated from NaClO. However, a high diversity of Cl-DBPs were produced with the addition of NaClO into sludge, causing the increase of acute toxicity on Q67 luminous bacteria of chlorinated EPS. A variety of N-containing molecular formulas were produced after chlorination, but N-containing DBPs were not detected, which might be the indicative of the dissociation of -NH2 groups after Cl-DBPs generated. Additionally, the release of N-containing compounds was increased in alkaline environment caused by NaClO addition, resulted in more Cl-DBPs generation via nucleophilic substitutions. Whereas, less N-compounds and Cl-DBPs were detected after EPS chlorination under acidic environment, leading to lower cell cytotoxicity. Therefore, N-containing compounds of lignin derivatives in sludge were the major Cl-DBPs precursors, and acidic environment could control the release of N-compounds by eliminating the dissociation of functional groups in lignin derivatives, consequently reducing the generation and cytotoxicity of Cl-DBPs. This study highlights the importance to control the alkalinity of sludge to reduce Cl-DBPs generation prior to chlorination disinfection process, and ensure the safety of subsequential disposal for wastewater sludge.
Collapse
Affiliation(s)
- Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Tianyi Dong
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China.
| | - Qinglong Fu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Nan Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dongsheng Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, Hubei, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
58
|
Li A, Huang X, Yan L, Cheng J. Pseudo-template molecularly imprinted polymeric fiber solid-phase microextraction coupled to gas chromatography for ultrasensitive determination of 2,4,6-trihalophenol disinfection by-products. J Chromatogr A 2022; 1678:463322. [PMID: 35872535 DOI: 10.1016/j.chroma.2022.463322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
2,4,6-trihalorophenol disinfection by-products (DBPs) have strong toxicity to be needed for monitoring. In this study, two kind of molecularly imprinted polymeric fibers were prepared using 2,4,6-trichlorophenol as template and tricuronic phloroglucinol (MOP) as pseudo-template, respectively. The two fibers were assembled as solid phase microextraction (SPME) fiber to extract 2,4,6-trihalophenol DBPs from water and detect them by gas chromatography coupled to electron capture detector (GC-ECD). The results of F-test and t-test stated that there are significant difference in the analytical results of 2,4,6-trichlorophenol between using the fiber based on 2, 4, 6-trichlorophenol as template and MOP as pseudo-template. It was found that the carry-over of template (2,4,6-trichlorophenol) leaked from the fiber in GC thermal desorption, resulting in the wrong quantitative analytical result for 2,4,6-trichlorophenol in water. Hence, molecularly imprinted polymeric fibers based on MOP as pseudo-template was applied for the determination of 2,4,6-trihalophenol DBPs in water combined with GC-ECD. The selectivity of the fiber for 2,4,6-trihalophenol DBPs was investigated and demonstrated. Under the optimized condition, the method has much lower limit of detection (0.5-1.1 pg mL-1) than most reported methods. The method was applied for the determination of 2,4,6-trihalophenol DBPs in environmental water and the relative recoveries were found to be in the range from 77.1% to 105.6% and the relative standard deviation was 0.5-9.4%. 2,4,6-tribromophenol was found at concentration of 0.054 ng mL-1 in a swimming pool.
Collapse
Affiliation(s)
- Aimin Li
- Hubei Ecological Environment Monitoring Center, China; Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaolan Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ling Yan
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
59
|
Zhang S, Lin YL, Zhang TY, Hu CY, Liu Z, Dong ZY, Xu MY, Xu B. Insight into the formation of iodinated trihalomethanes during chlorination, monochloramination, and dichloramination of iodide-containing water. J Environ Sci (China) 2022; 117:285-294. [PMID: 35725081 DOI: 10.1016/j.jes.2022.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
In this study, the formation of iodinated trihalomethanes (I-THMs) was systematically evaluated and compared for three treatment processes - (i) chlorination, (ii) monochloramine, and (iii) dichloramination - under different pH conditions. The results demonstrated that I-THM formation decreased in the order of monochloramination > dichloramination > chlorination in acidic and neutral pH. However, the generation of I-THMs increased in the dichloramination < chlorination < monochloramination order in alkaline condition. Specifically, the formation of I-THMs increased as pH increased from 5 to 9 during chlorination and monochloramination processes, while the maximum I-THM formation occurred at pH 7 during dichloramination. The discrepancy could be mainly related to the stability of the three chlor (am) ine disinfectants at different pH conditions. Moreover, in order to gain a thorough insight into the mechanisms of I-THM formation during dichloramination, further investigation was conducted on the influencing factors of DOC concentration and Br-/I- molar ratio. I-THM formation exhibited an increasing and then decreasing trend as the concentration of DOC increased from 1 to 7 mg-C/L, while the yield of I-THMs increased with increasing Br-/I- molar ratio from 5:0 to 5:10. During the three processes mentioned above, similar I-THM formation results were also obtained in real water, which indicates that the excessive generation of I-THMs should be paid special attention during the disinfection of iodide-containing water.
Collapse
Affiliation(s)
- Shuang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, "National" Kaohsiung University of Science and Technology, Kaohsiung 824, Chinese Taipei
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhi Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zheng-Yu Dong
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Meng-Yuan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
60
|
Ding S, Wu M, Xiao R, Fang C, Wang Q, Xu B, Chu W. Evaluation of N-acetylcysteine and glutathione as quenching agents for the analysis of halogenated disinfection by-products. J Environ Sci (China) 2022; 117:71-79. [PMID: 35725091 DOI: 10.1016/j.jes.2022.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 06/15/2023]
Abstract
Disinfection by-products (DBPs), formed from the reactions of disinfectants with natural organic matter and halides in drinking water, were considered to be cytotoxic and genotoxic, and might trigger various cancers. The relatively low concentration of DBPs in finished water (low µg/L or even ng/L levels) and the interference from water matrix inhibited in situ determination of DBPs. Moreover, the further formation and degradation of DBPs by disinfectants during the holding time (several hours to several days) from sample collection to analysis could adversely affect the determination of DBPs. To obtain accurate, precise and reliable data of DBP occurrence and formation, robust and reliable sample preservation is indispensable. However, the commonly used quenching agents (e.g., sodium sulfite, sodium thiosulfate, and ascorbic acid) for sample preservation can decompose reactive DBPs by reductive dehalogenation. This study evaluated the performance of N-acetylcysteine (NAC) and glutathione (GSH) as quenching agents for the analysis of halogenated DBPs by investigating the stoichiometry of the disinfectant-quenching agent reaction, the formation of DBPs during chlor(am)ination of NAC or GSH, and the effects of NAC or GSH on the stability of 18 individual DBPs and total organic halogen (TOX). Based on the results of this study, NAC and GSH were considered to be ideal quenching agents for the analysis of most DBPs and TOX, except halonitromethanes.
Collapse
Affiliation(s)
- Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Menglin Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Qi Wang
- School of Life and Environmental Science, Wenzhou University, Zhejiang 325035, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China.
| |
Collapse
|
61
|
Hu S, Kaw HY, Zhu L, Wang W. Halohydroxybenzonitriles as a new group of halogenated aromatic DBPs in drinking water: Are they of comparable risk to halonitrophenols? WATER RESEARCH 2022; 219:118547. [PMID: 35561620 DOI: 10.1016/j.watres.2022.118547] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Halogenated aromatic disinfection byproducts (DBPs) exhibited similar total organic halogen levels in chlorinated drinking water samples as compared with aliphatic ones, and they predominantly accounted for the overall toxicity of the samples. Among the reported halogenated aromatic DBPs, halonitrophenols (HNPs) have received particular attention in recent years due to the relatively high risk in drinking water. In this study, a new group of halogenated aromatic DBPs were detected and then proposed to be halohydroxybenzonitriles (HHBNs) by employing the ultra-performance liquid chromatography/tandem mass spectrometers. Thereafter, the specific HHBN species in drinking water were theoretically speculated and then thoroughly identified with standard compounds. Their occurrence in drinking water was investigated, their cytotoxicity was evaluated, and their stability in the presence of chlorine was assessed. Seven newly identified HHBNs, including 3,5-dichloro-4-hydroxybenzonitrile, 3,5-dichloro-2-hydroxybenzonitrile, 5-bromo-3-chloro-4-hydroxybenzonitrile, 5-bromo-3-chloro-2-hydroxybenzonitrile, 3,5-dibromo-4-hydroxybenzonitrile, 3,5-dibromo-2-hydroxybenzonitrile, and 3,5-diiodo-4-hydroxybenzonitrile, showed 100% detection frequency in the collected drinking water samples with concentrations up to 36 ng/L. HHBNs exhibited significantly higher cytotoxicity in Chinese hamster ovary cells than regulated DBPs (e.g., trihalomethanes and haloacetic acids), which might be contributed by their cellular uptake efficiency and nucleophilicity. The seven HHBNs were proved to undergo transformation during chlorination following pseudo-first-order decay with half-lives in the range of 9-63 h. More importantly, in comparison to HNPs, which showed relatively high toxicity and strong stability among the halogenated aromatic DBPs, HHBNs presented comparable concentration-cytotoxicity contribution (50%) and slightly weaker stability (43%), suggesting that HHBNs should be a new group of DBPs of concern in drinking water.
Collapse
Affiliation(s)
- Shaoyang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| |
Collapse
|
62
|
Jiang X, Shi P, Jiang L, Qiu J, Xu B, Pan Y, Zhou Q. In vivo toxicity evaluations of halophenolic disinfection byproducts in drinking water: A multi-omics analysis of toxic mechanisms. WATER RESEARCH 2022; 218:118431. [PMID: 35468502 DOI: 10.1016/j.watres.2022.118431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Halophenolic disinfection byproducts (DBPs) in drinking water have attracted considerable concerns in recent years due to their wide occurrence and high toxicity. The liver has been demonstrated as a major target organ for several halophenolic DBPs. However, little is known about the underlying mechanisms of liver damage caused by halophenolic DBPs. In this study, 2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodiophenol (TIP) were selected as representative halophenolic DBPs and exposed to C57BL/6 mice at an environmentally-relevant concentration (0.5 μg/L) and two toxicological concentrations (10 and 200 μg/L) for 12 weeks. Then, a combination of histopathologic and biochemical examination, liver transcriptome, serum metabolome, and gut microbiome was adopted. It was found that trihalophenol exposure significantly elevated the serum levels of alkaline phosphatase and albumin. Liver inflammation was observed at toxicological concentrations in the histopathological examination. Transcriptome results showed that the three trihalophenols could impact immune-related pathways at 0.5 μg/L, which further contributed to the disturbance of pathways in infectious diseases and cancers. Notably, TBP and TIP had higher immunosuppressive effects than TCP, which might lead to uncontrolled infection and cancer. In terms of serum metabolic profiles, energy metabolism pathway of citrate cycle and amino acid metabolism pathways of valine, leucine, and isoleucine were also significantly affected. Integration of the metabolomic and transcriptomic data suggested that a 12-week trihalophenol exposure could prominently disturb the glutathione metabolism pathway, indicating the impaired antioxidation and detoxification abilities in liver. Moreover, the disorder of the intestinal flora could interfere with immune regulation and host metabolism. This study reveals the toxic effects of halophenolic DBPs on mammalian liver and provides novel insights into the underlying mechanisms of hepatotoxicity.
Collapse
Affiliation(s)
- Xiaoqin Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Liujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
63
|
Jiang H, Kaw HY, Zhu L, Wang W. Halonaphthoquinones: A group of emerging disinfection byproducts of high toxicity in drinking water. WATER RESEARCH 2022; 217:118421. [PMID: 35429882 DOI: 10.1016/j.watres.2022.118421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Aromatic halogenated disinfection byproducts (DBPs) have received particular attention in recent years due to their high toxicity. However, most relevant researches at present focused merely on halo-monocyclic DBPs, while halo-polycyclic DBPs were scarcely explored. In this study, a new group of halo-bicyclic DBPs termed as halonaphthoquinones (HNQs) was systematically studied. By coupling with vacuum centrifugal concentrator, a SPE-UPLC-MS/MS method with high accuracy and sensitivity was developed to detect five semi-volatile HNQs in drinking water, which achieved the detection limits in the range of 0.05-0.24 ng/L. Five HNQs were identified using this method with 100% detection frequency at concentrations up to 136.7 ng/L in drinking water originated from seven water treatment plants. The cytotoxicity of the five tested HNQs in CHO-K1 cells (IC50 from 3.17 to 13.18 μM) was comparable to the most toxic known carbonaceous DBP in drinking water, iodoacetic acid (IC50=2.95 μM). Meanwhile, the cytotoxicity of five tested HNQs were also higher than 2,6-dichloro-1,4-benzoquinone (IC50=21.73 μM) which is hundreds to thousands of times more toxic than regulated DBPs, indicating the significant toxicity risk of HNQ DBPs. To the best of our knowledge, this study presents the first analytical method for analysis of HNQ DBPs, and the first set of data on the occurrence and cytotoxicity of HNQ DBPs in drinking water. These findings are meaningful for probing deeply into the presence of varied halo-polycyclic DBPs in the aqueous environment.
Collapse
Affiliation(s)
- Hangcheng Jiang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
64
|
Grote M, Boudenne JL, Croué JP, Escher BI, von Gunten U, Hahn J, Höfer T, Jenner H, Jiang J, Karanfil T, Khalanski M, Kim D, Linders J, Manasfi T, Polman H, Quack B, Tegtmeier S, Werschkun B, Zhang X, Ziegler G. Inputs of disinfection by-products to the marine environment from various industrial activities: Comparison to natural production. WATER RESEARCH 2022; 217:118383. [PMID: 35460978 DOI: 10.1016/j.watres.2022.118383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Oxidative treatment of seawater in coastal and shipboard installations is applied to control biofouling and/or minimize the input of noxious or invasive species into the marine environment. This treatment allows a safe and efficient operation of industrial installations and helps to protect human health from infectious diseases and to maintain the biodiversity in the marine environment. On the downside, the application of chemical oxidants generates undesired organic compounds, so-called disinfection by-products (DBPs), which are discharged into the marine environment. This article provides an overview on sources and quantities of DBP inputs, which could serve as basis for hazard analysis for the marine environment, human health and the atmosphere. During oxidation of marine water, mainly brominated DBPs are generated with bromoform (CHBr3) being the major DBP. CHBr3 has been used as an indicator to compare inputs from different sources. Total global annual volumes of treated seawater inputs resulting from cooling processes of coastal power stations, from desalination plants and from ballast water treatment in ships are estimated to be 470-800 × 109 m3, 46 × 109 m3 and 3.5 × 109 m3, respectively. Overall, the total estimated anthropogenic bromoform production and discharge adds up to 13.5-21.8 × 106 kg/a (kg per year) with contributions of 11.8-20.1 × 106 kg/a from cooling water treatment, 0.89 × 106 kg/a from desalination and 0.86 × 106 kg/a from ballast water treatment. This equals approximately 2-6% of the natural bromoform emissions from marine water, which is estimated to be 385-870 × 106 kg/a.
Collapse
Affiliation(s)
- Matthias Grote
- German Federal Institute for Risk Assessment, Unit Transport of Dangerous Goods and Chemical Exposure, Berlin, Germany.
| | | | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, Poitiers 86000, France
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University, Tübingen, Germany
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Josefine Hahn
- Helmholtz-Zentrum Hereon, Institute for Coastal Environmental Chemistry, Geesthacht, Germany
| | | | | | - Jingyi Jiang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | | | - Daekyun Kim
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Jan Linders
- Member of GESAMP, GESAMP-BWWG, Retired, Formerly RIVM, De Waag 24, Amersfoort 3823 GE, the Netherland
| | - Tarek Manasfi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Harry Polman
- H20 Biofouling Solutions, Bemmel, the Netherland
| | - Birgit Quack
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Susann Tegtmeier
- Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada
| | - Barbara Werschkun
- Wissenschaftsbüro Dr. Barbara Werschkun, Monumentenstraße31a, Berlin D-10829, Germany
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | |
Collapse
|
65
|
Miao M, Liu J, Dou Y, Hao H, Cheng X, Zhang M, Li Y. Effects of microplastics on DBPs formation under the chlorination of natural organic matters. CHEMOSPHERE 2022; 296:134067. [PMID: 35216978 DOI: 10.1016/j.chemosphere.2022.134067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Microplastics have attracted extensive attention and concern because they inflict damage on human beings and the environment. When the microplastics enter the water system, they inevitably flow into the water treatment system and encounter disinfectants during the disinfection procedure. Chlorine can react with microplastics to form different kinds of disinfection byproducts (DBPs). O-containing functional groups on the surface of microplastics may play a major role in DBP formation. Without O-containing functional groups, microplastics can also form DBPs but with totally different mechanisms. Reactive oxygen species (ROS, i.e., •OH) and reactive chlorine substances (RCS, i.e., Cl• and ClO•) may attack the microplastics and form DBP precursors. With relatively low surface area and very little pore volume, microplastics cannot affect the DBP formation between Suwannee River fulvic acid (SRFA) and chlorine. When SRFA exists, microplastics with few O-containing functional groups can hardly form DBPs because of the inhibition of ROS and RCS.
Collapse
Affiliation(s)
- Manhong Miao
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Jinfeng Liu
- Tianjin International Engineering Consulting Group Co.,Ltd, Dongting Road 20, Hexi District, Tianjin, China
| | - Yuanyuan Dou
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Huizhi Hao
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Xuhua Cheng
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Min Zhang
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China
| | - Yao Li
- College of Environmental Science and Engineering/Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tong Yan Road 38, Tianjin, 300350, China.
| |
Collapse
|
66
|
Huang R, Guan C, Guo Q, Wang Z, Pan H, Jiang J. Oxidation of diclofenac by permanganate: Kinetics, products and effect of inorganic reductants. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
67
|
Hu J, Qu J, Deng L, Dong H, Jiang L, Yu J, Yue S, Qian H, Dai Q, Qiang Z. Metabonomic and transcriptomic modulations of HepG2 cells induced by the CuO-catalyzed formation of disinfection byproducts from biofilm extracellular polymeric substances in copper pipes. WATER RESEARCH 2022; 216:118318. [PMID: 35339968 DOI: 10.1016/j.watres.2022.118318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Cupric oxide (CuO) is able to catalyze the reactions among disinfectant, extracellular polymeric substances (EPS) and bromide (Br-) in copper pipes, which may deteriorate the water quality. This study aimed to investigate the metabonomic and transcriptomic modulations of HepG2 cells caused by the CuO-catalyzed formation of disinfection byproducts (DBPs) from EPS. The presence of CuO favored the substitution reactions of chlorine and bromine with EPS, inducing a higher content of total organic halogen (TOX). In addition, DBPs were shifted from chlorinated species to brominated species. A total of 182 differential metabolites (DMs) and 437 differentially expressed genes (DEGs) were identified, which were jointly involved in 38 KEGG pathways. Topology analysis indicates that glycerophospholipid and purine metabolism were disturbed most obviously. During glycerophospholipid metabolism, the differential expression of genes GPATs, AGPATs, LPINs and DGKs impacted the conversion of glycerol-3-phosphate to 2-diacyl-sn-glycerol, which further affected the conversion among phosphatidylcholine, phosphatidylserine and phosphocholines. During purine metabolism, it was mainly the differential expression of genes POLRs, RPAs, RPBs, RPCs, ENTPDs and CDs that impacted the transformation of RNA into guanine-, xanthosine-, inosine- and adenosine monophosphate, which were further successively transformed into their corresponding nucleosides and purines. The study provides an omics perspective to assess the potential adverse effects of overall DBPs formed in copper pipes on human.
Collapse
Affiliation(s)
- Jun Hu
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China; Department of Municipal Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| | - Jiajia Qu
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, 19 Yu-quan Road, Beijing 100049, China
| | - Liying Jiang
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China.
| | - Jianming Yu
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China
| | - Siqing Yue
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, 18 Chao-wang Road, Hangzhou 310014, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, 19 Yu-quan Road, Beijing 100049, China.
| |
Collapse
|
68
|
Wang K, Zhu X, Liu Z, Wang J, Chen B. Occurrence and transformation of unknown organochlorines in the wastewater treatment plant using specific Fragment-Based method with LC Q-TOF MS. WATER RESEARCH 2022; 216:118372. [PMID: 35378449 DOI: 10.1016/j.watres.2022.118372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plants (WWTPs) are important point sources of organochlorines in surface waters. However, comprehensive molecular-level understanding of the occurrence and transformation of organochlorines in WWTPs remains elusive. In this study, a specific fragment-based screening method with SWATH of LC Q-TOF MS was established to better understand the molecular composition of organochlorines. This method effectively excludes the non-chlorinated signals and provides multi-dimensional information (e.g., retention time, precursor ion mass, product ions, and molecular formula) with one injection to identify the possible structures of organochlorines. Eighty-seven organochlorines were successfully screened in practical wastewater samples, where 8 chlorinated sulfonic acids, 4 chlorophenols, 4 chlorinated benzenediols, and 6 chlorinated benzoic acids were further (tentatively) identified. Relative abundance of organochlorines showed that their occurrence was associated with the treatment units. In particular, anaerobic biological and NaClO treatment units contributed to the formation of chlorinated by-products. Most chlorinated by-products were substituted with more chlorine atoms than organochlorines from the influent. Furthermore, the relative abundance indicated that the fate of organochlorines were related to their structures. Chlorinated benzene sulfonic acids would be removed by adsorption on activated sludge. Most chlorinated benzoic acids were refractory, but some were likely to be chlorinated during the anaerobic process. Chlorophenols and chlorinated benzenediols might undergo chlorination, dealkylation/C-O bond breakage, and bromination. Our study offers a new tool to gain molecular information on organochlorines in complex environmental samples and highlights the importance of molecular structures when evaluating the fate of organochlorines and managing effluent discharge to surrounding waters.
Collapse
Affiliation(s)
- Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Zhengzheng Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Jing Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
69
|
Detenchuk EA, Mazur DM, Latkin TB, Lebedev AT. Halogen substitution reactions of halobenzenes during water disinfection. CHEMOSPHERE 2022; 295:133866. [PMID: 35134400 DOI: 10.1016/j.chemosphere.2022.133866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Although being successfully applied all over the world for more than 100 years water disinfection by means of chlorination possesses certain drawbacks, first of all formation of hazardous disinfection by-products (DBP). Aromatic halogenated DBPs significantly contribute to the total organic halogen and developmental toxicity of chlorinated water. The present study deals with investigation of possible substitution of one halogen for another in aromatic substrates in conditions of aqueous chlorination/bromination. The reaction showed high yields especially in case of substrates with proper position of an activating group in the aromatic ring. Thus, ipso-substitution of iodine by chlorine is the main process of aqueous chlorination of para-iodoanisole. Oxidation of the eliminating I+ ions into non-reactive IO3- species facilitates the substitution. Oxidation of eliminating Br+ is not so easy while being highly reactive it attacks initial substrates forming polybrominated products. Substitution of iodine and bromine by chlorine may also involve migration of electrophilic species inside the aromatic ring resulting in larger number of isomeric DBPs. Substitution of chlorine by bromine in aromatic substrates during aqueous bromination is not so pronounced as substitution of bromine by chlorine in aqueous chlorination due to higher electronegativity of chlorine atom. However, formation of some chlorine-free polybrominated products proves possibility of that process.
Collapse
Affiliation(s)
- E A Detenchuk
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - D M Mazur
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia; Lomonosov Northern (Arctic) Federal University, Core Facility "Arktika", nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - T B Latkin
- Lomonosov Northern (Arctic) Federal University, Core Facility "Arktika", nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia
| | - A T Lebedev
- Lomonosov Moscow State University, Chemistry Department, Leninskie Gory 1/3, Moscow, 119991, Russia; Lomonosov Northern (Arctic) Federal University, Core Facility "Arktika", nab. Severnoy Dviny 17, Arkhangelsk, 163002, Russia.
| |
Collapse
|
70
|
Zhang D, Bond T, Pan Y, Li M, Luo J, Xiao R, Chu W. Identification, Occurrence, and Cytotoxicity of Haloanilines: A New Class of Aromatic Nitrogenous Disinfection Byproducts in Chloraminated and Chlorinated Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4132-4141. [PMID: 35302737 DOI: 10.1021/acs.est.1c07375] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Identifying disinfection byproducts (DBPs) with high health risk is an unresolved challenge. In this study, six members of a new class of aromatic nitrogenous DBPs─2-chloroaniline, 2-bromoaniline, 2,4-dichloroaniline, 2-chloro-4-bromoaniline, 4-chloro-3-nitroaniline, and 2-chloro-4-nitroaniline─are reported as DBPs in drinking water for the first time. Haloanilines completely degraded within 1 h in the presence of chlorine (1 mg/L), while about 20% remained in the presence of chloramine (1 mg/L) after 120 h. Haloanilines showed high stability in the absence of disinfectants, with <30% degradation at pH 5-9 over 120 h. Eight haloanilines were determined in chloraminated finished water and tap water at total concentrations of up to 443 ng/L. The most abundant was 2-bromoaniline, with a median concentration of 104 ng/L. The cytotoxicity of eight haloanilines and regulated trichloromethane and dichloroacetic acid (DCAA) was evaluated using Hep G2 cell assay. The EC50 values of eight haloanilines were 1-2 orders of magnitude lower than those of the regulated DBPs. The lowest toxic concentration of 2-chloro-4-nitroaniline was 1 μM, 500 times lower than that of DCAA. The formation and control of haloanilines in drinking water warrant further investigation.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Tom Bond
- Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, U.K
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 Jiangsu, China
| | - Mingli Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Jiayi Luo
- Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, U.K
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
71
|
Li J, Zhang H, Wang J, Yu Z, Li H, Yang M. Identification of unknown disinfection byproducts in drinking water produced from Taihu Lake source water. J Environ Sci (China) 2022; 113:1-11. [PMID: 34963519 DOI: 10.1016/j.jes.2021.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 06/14/2023]
Abstract
Although disinfection byproducts (DBPs) in drinking water have been suggested as a cancer causing factor, the causative compounds have not yet been clarified. In this study, we used liquid chromatography quadrupole-time-of-flight spectrometry (LC-QTOF MS) to identify the unknown disinfection byproducts (DBPs) in drinking water produced from Taihu Lake source water, which is known as a convergence point for the anthropogenic pollutants discharged from intensive industrial activities in the surrounding regions. In total, 91 formulas of DBPs were discovered through LC-QTOF MS nontarget screen, 81 of which have not yet been reported. Among the 91 molecules, 56 only contain bromine, 15 only contain chlorine and 20 DBPs have both bromine and chlorine atoms. Finally, five DBPs including 2,4,6-tribromophenol, 2,6-dibromo-4-chlorophenol, 2,6-dichloro-4-bromophenol, 4-bromo-2,6-di-tert-butylphenol and 3,6-dibromocarbazole were confirmed using standards. The former three compounds mainly formed in the predisinfection step (maximum concentration, 0.2-2.6 µg/L), while the latter two formed in the disinfection step (maximum concentration, 18.2-33.6 ng/L). In addition, 19 possible precursors of the discovered DBPs were detected, with the aromatic compounds being a major group. 2,6-di-tert-butylphenol as the precursor of 4-bromo-2,6-di-tert-butylphenol was confirmed with standard, with a concentration of 20.3 µg/L in raw water. The results of this study show that brominated DBPs which are possibly formed from industrial pollutants are relevant DBP species in drinking water produced form Taihu source water, suggesting protection of Taihu Lake source water is important to control the DBP risks.
Collapse
Affiliation(s)
- Jiabao Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
72
|
Zhai H, Zhao J, Wang R, Yan Y, Yu S, Zhao Y. Formation of trihalomethanes and haloacetic acids from 2,6-dichloro-1,4-benzoquinone during chlorination: Decomposition kinetics, conversion rates, and pathways. CHEMOSPHERE 2022; 291:132729. [PMID: 34718017 DOI: 10.1016/j.chemosphere.2021.132729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
As a typical aromatic disinfection byproduct (DBP), 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) attracts much concern due to the potential toxicity. To further evaluate the role of 2,6-DCBQ as an intermediate DBP in water with or without chlorine, their decomposition characteristics and transformation potential to the regulated DBPs (i.e., trihalomethanes (THMs) and haloacetic acids (HAAs)) were investigated under different chlorine doses, pH values, temperatures, contact times, and bromide levels. The decomposition of 2,6-DCBQ under different conditions all fit apparent first-order kinetics. The hydrolysis rate constants of 2,6-DCBQ significantly increased with pH. The half-live values of 2,6-DCBQ were 108.3-568.7 h at pH 6.0-6.5, and 1.8-31.1 h at pH 7.0-8.5. During the hydrolysis of 2,6-DCBQ, there was no THMs and HAAs generated. During chlorination, 2,6-DCBQ decayed rapidly accompanied by the fast formation of trichloromethane (TCM) and the gradual generation of dichloroacetic acid and trichloroacetic acid. The molar conversion rates of 2,6-DCBQ-to-THMs (i.e., TCM) and 2,6-DCBQ-to-HAAs were 2.9-10.0% and 0.1-2.2% under different conditions. The presence of bromide increased the conversion rates of 2,6-DCBQ-to-THMs and caused the generation of brominated THMs and HAAs. According to the decomposition characteristics of 2,6-DCBQ and the formation trends of THMs and HAAs under different conditions, multiple formation pathways from 2,6-DCBQ to THMs and HAAs were proposed.
Collapse
Affiliation(s)
- Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| | - Jun Zhao
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Rumeng Wang
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Yuwei Yan
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Shanshan Yu
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
73
|
Li M, An Z, Huo Y, Jiang J, Zhou Y, Cao H, He M. Simulation degradation of bromophenolic compounds in chlorine-based advanced oxidation processes: Mechanism, microscopic and apparent kinetics, and toxicity assessment. CHEMOSPHERE 2022; 291:133034. [PMID: 34822870 DOI: 10.1016/j.chemosphere.2021.133034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 05/28/2023]
Abstract
Chlorine-based advanced oxidation processes (AOPs) have been extensively studied to remove contaminants through generating HO• and reactive chlorine species, including ClO• and Cl•. In this work, 2,4,6-tribromoanisole (246TBA) and 2,4,6-tribromophenol (246TBP) were selected as model to investigate the reaction mechanisms and micro-kinetics of brominated contaminants with HO•, ClO• and Cl• in chlorine-based AOPs. Also, the apparent degradation kinetics of two compounds were simulated at pH 3.0-9.5 under UV/H2O2, UV/chlorine and UV/NH2Cl. Calculated results showed that neutral 246TBA and 246TBP exhibited similar reactivity to HO• and ClO•, which was different from anionic 2,4,6-tribromophenolate (246TBPT): radical adduct formation (RAF) and H atom abstraction (HAA) were predominant mechanisms for the HO• and ClO• initiated reactions of 246TBA and 246TBP, while RAF and single electron transfer (SET) for 246TBPT; the reaction rate constants of 246TBA and 246TBP with HO• and ClO• were lower than 107 M-1 s-1, and such rate constants dramatically increased to 1010 M-1 s-1 once 246TBP was deprotonated to 246TBPT. The apparent degradation kinetics of 246TBA at pH 3.0-9.5 was simulated in the order of UV/NH2Cl > UV/chlorine > UV/H2O2, and UV/chlorine and UV/NH2Cl were more effective for the removal of 246TBP and 246TBPT than UV/H2O2. UV and/or Cl• dominated 246 TBA degradation under three AOPs. The main radicals mediating 246TBP and 246TBPT degradation are respectively HO• under UV/H2O2, ClO• under UV/chlorine, and HO• and Cl• under UV/NH2Cl. The transformation products of 246TBA, 246TBP and 246TBPT, especially methoxylated and hydroxylated polybrominated diphenyl ethers (MeO-PBDEs and HO-PBDEs), were still toxic pollutants.
Collapse
Affiliation(s)
- Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Zexiu An
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Haijie Cao
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
74
|
Hu S, Kaw HY, Zhu L, Wang W. Formation and Cytotoxicity of Halophenylacetamides: A New Group of Nitrogenous Aromatic Halogenated Disinfection Byproducts in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3181-3192. [PMID: 35175050 DOI: 10.1021/acs.est.1c08419] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nitrogenous aromatic halogenated disinfection byproducts (DBPs) in drinking water have received considerable attention recently owing to their relatively high toxicity. In this study, a new group of nitrogenous aromatic halogenated disinfection byproducts, halophenylacetamides (HPAcAms), were successfully identified for the first time in both the laboratory experiments and realistic drinking water. The formation mechanism of HPAcAms during chlorination of phenylalanine in the presence of Br- and I-, occurrence frequencies, and concentrations in authentic drinking water were investigated, and a quantitative structure-activity relationship (QSAR) model was developed based on the acquired cytotoxicity data. The results demonstrated that HPAcAms could be formed from phenylalanine in chlorination via electrophilic substitution, decarboxylation, hydrochloric acid elimination, and hydrolysis. The HPAcAm yields from phenylalanine were significantly affected by contact time, pH, chlorine dose, and temperature. Nine HPAcAms with concentrations in the range of 0.02-1.54 ng/L were detected in authentic drinking water samples. Most tested HPAcAms showed significantly higher cytotoxicity compared with dichloroacetamide, which is the most abundant aliphatic haloacetamide DBP. The QSAR model demonstrated that the cellular uptake efficiency and the polarized distributions of electrons of HPAcAms play essential roles in their cytotoxicity mechanisms.
Collapse
Affiliation(s)
- Shaoyang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
75
|
Meng L, Chen J, Kong D, Ji Y, Lu J, Yin X, Zhou Q. Transformation of bromide and formation of brominated disinfection byproducts in peracetic acid oxidation of phenol. CHEMOSPHERE 2022; 291:132698. [PMID: 34715107 DOI: 10.1016/j.chemosphere.2021.132698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Peracetic acid (PAA) has attracted increasing attention in wastewater treatment as a disinfectant. However, the transformation of bromide (Br-) during PAA oxidation of bromide-containing wastewater has not been fully explored. This study showed that Br- could be oxidized by PAA to free bromine which reacted with phenol to form organic bromine. At pH 7.0, more than 35.2% inorganic Br- was converted to organic bromines in 4 h. At acidic conditions, the conversion ratio was even higher, reaching 69.9% at pH 2.8. Most of the organic bromines were presented as bromophenols (i.e., 2-bromophenol, 4-bromophenol, and 2,4-dibromophenol), while regulated brominated disinfection byproducts (Br-DBPs, i.e., bromoform and bromoacetic acids) only accounted for a tiny fraction of total organic bromine. Similar results were observed when PAA was applied to natural organic matter (NOM) or wastewater in presence of Br-. The organic bromine yield reached 56.6 μM in the solution containing 0.1 mM Br- and 2 mg/L NOM initially. Among them, only 1.00 μM bromoform and 0.16 μM dibromoacetic acid were found. Similarly, regulated Br-DBPs only accounted for 28.3% of the organic bromine in a real wastewater effluent treated with PAA. All these data show that monitoring regulated DBPs cannot fully indicate the potential environmental risk of the application of PAA to wastewater.
Collapse
Affiliation(s)
- Liang Meng
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Chen
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Deyang Kong
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing, 210042, China
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaoming Yin
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Quansuo Zhou
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
76
|
Wang Y, Liu H, Yang X, Wang L. Aquatic toxicity and aquatic ecological risk assessment of wastewater-derived halogenated phenolic disinfection byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151089. [PMID: 34688747 DOI: 10.1016/j.scitotenv.2021.151089] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Increasing number of wastewater-derived aliphatic and phenolic disinfection byproducts (DBPs) were discharged into aquatic environment with the discharge of disinfected wastewater. However, the currently available aquatic toxicity data and the aquatic ecological risk information of them are limited, especially for wastewater-derived phenolic DBPs. In this study, we investigated the acute toxicity of 7 phenolic DBPs that selected from the typical five groups of phenolic DBPs (2,4,6-trihalo-phenols, 2,6-dihalo-4-nitrophenols, 3,5-dihalo-4-hydroxybenzaldehydes, 3,5-dihalo-4-hydroxybenzoic acids and halo-salicylic acids) and 4 aliphatic DBPs to Gobiocypris rarus and also assessed their potential aquatic ecological risk. Experimental results indicated that the half lethal concentration (LC50) values of 2,4,6-trihalo-phenols and 2,6-dihalo-4-nitrophenols ranged from 1 to 10 mg/L; While that of 3,5-dihalo-4-hydroxybenzaldehydes was between 10 and 100 mg/L, and 3,5-dihalo-4-hydroxybenzoic acids and halo-salicylic acids was >100 mg/L. The toxicity mode of action (MOA) identification results from three methods suggested that no clear and consistent MOA were obtained for those 11 DBPs currently. The species-specific aquatic toxicity analysis results highlighted that no aquatic species would be considered as the most sensitive species for all 11 DBPs. However, crustacean and fish were more sensitive than that of algae for most of tested compounds. Lastly, the aquatic ecological risk assessment results of those 11 DBPs revealed that all 7 phenolic and 2 aliphatic DBPs (2-bromoacetamide and bromodichloromethane) had low aquatic ecological risk, while dichloroacetic acid and dibromoacetonitrile had high aquatic ecological risk. The low environmental concentration was the main reason why high toxic phenolic DBPs (2,4,6-trihalo-phenols and 2,6-dihalo-4-nitrophenols) exhibited low ecological risk. Their ecological risk may increase with the increases of corresponding environmental concentration. Thus, more efforts should be made to determine other potential harmful effects of those high toxic phenolic DBPs and to minimize their potential ecological risk by taking appropriate measures.
Collapse
Affiliation(s)
- Yaqian Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
77
|
Song H, Sun ZQ, Li DL, Zhang J, Zhou XQ, Pan XR, Wang L, Xin YJ, Liu YL, Ma J. Formation of iodinated aromatic DBPs at different molar ratios of chlorine and nitrogen in iodide-containing water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150385. [PMID: 34610565 DOI: 10.1016/j.scitotenv.2021.150385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Variations in iodinated aromatic disinfection byproducts (DBPs) in the presence of I- and organic compounds as a function of reaction time in different molar ratios (MRs) of HOCl:NH3-N were investigated. Up to 17 kinds of iodinated aromatic DBPs were identified in the breakpoint chlorination of iodide (I-)/organic (phenol, bisphenol S (BPS) and p-nitrophenol (p-NP)) systems, and the possible pathways for the formation of iodinated aromatic DBPs were proposed. The reaction pathways include HOCl/HOI electrophilic substitution and oxidation, while the dominant iodinated DBPs were quantified. In the I-/phenol system (pH = 7.0), the sum of the concentrations of four iodinated aliphatic DBPs ranged from 0.32 to 1.04 μM (triiodomethane (TIM), dichloroiodomethane (DCIM), diiodochloromethane (DICM) and monoiodoacetic acid (MIAA)), while the concentration of 4-iodophenol ranged from 2.99 to 12.87 μM. The concentration of iodinated aromatic DBPs remained stable with an MR = 1:1. When the MR was 6:1, iodinated aromatic DBPs decreased with increasing reaction time, in which the main disinfectant in the system was active chlorine. This study proposed the formation mechanism of iodinated aromatic DBPs during the breakpoint chlorination of iodide-containing water. These results can be used to control the formation of hazardous iodinated aromatic DBPs in the disinfection of iodine containing water.
Collapse
Affiliation(s)
- Heng Song
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhi-Qiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Da-Long Li
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150090, China
| | - Jing Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-Qun Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiang-Rui Pan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yan-Jun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Ma
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
78
|
Ma C, Cheng H, Huang R, Zou Y, He Q, Huangfu X, Ma J. Kinetics of Thallium(I) Oxidation by Free Chlorine in Bromide-Containing Waters: Insights into the Reactivity with Bromine Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1017-1027. [PMID: 34807594 DOI: 10.1021/acs.est.1c06901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The oxidation of thallium [Tl(I)] to Tl(III) by chlorine (HOCl) is an important process changing its removal performance in water treatment. However, the role of bromide (Br-), a common constituent in natural water, in the oxidation behavior of Tl(I) during chlorination remains unknown. Our results demonstrated that Br- was cycled and acted as a catalyst to enhance the kinetics of Tl(I) oxidation by HOCl over the pH range of 5.0-9.5. Different Tl(I) species (i.e., Tl+ and TlOH(aq)) and reactive bromine species (i.e., HOBr/BrO-, BrCl, Br2O, and BrOCl) were kinetically relevant to the enhanced oxidation of Tl(I). The oxidation by free bromine species became the dominant pathway even at a low Br- level of 50 μg/L for a chlorine dose of 2 mg of Cl2/L. It was found that the reactions of Tl+/BrCl, Tl+/BrOCl, and TlOH(aq)/HOBr dominated the kinetics of Tl(I) oxidation at pH < 6.0, pH 6.0-8.0, and pH > 8.0, respectively. The species-specific rate constants for Tl+ reacting with individual bromine species were determined and decreased in the order: BrCl > Br2 > BrOCl > Br2O > HOBr. Overall, the presented results refine our knowledge regarding the species-specific reactivity of TI(I) with bromine species and will be useful for further prediction of thallium mobility in chlorinated waters containing bromide.
Collapse
Affiliation(s)
- Chengxue Ma
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ruixing Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yijie Zou
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
79
|
Wu Y, Wei W, Luo J, Pan Y, Yang M, Hua M, Chu W, Shuang C, Li A. Comparative Toxicity Analyses from Different Endpoints: Are New Cyclic Disinfection Byproducts (DBPs) More Toxic than Common Aliphatic DBPs? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:194-207. [PMID: 34935353 DOI: 10.1021/acs.est.1c03292] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, dozens of halogenated disinfection byproducts (DBPs) with cyclic structures were identified and detected in drinking water globally. Previous in vivo toxicity studies have shown that a few new cyclic DBPs possessed higher developmental toxicity and growth inhibition rate than common aliphatic DBPs; however, in vitro toxicity studies have proved that the latter exhibited higher cytotoxicity and genotoxicity than the former. Thus, to provide a more comprehensive toxicity comparison of DBPs from different endpoints, 11 groups of cyclic DBPs and nine groups of aliphatic DBPs were evaluated for their comparative in vitro and in vivo toxicity using human hepatoma cells (Hep G2) and zebrafish embryos. Notably, results showed that the in vitro Hep G2 cytotoxicity index of the aliphatic DBPs was nearly eight times higher than that of the cyclic DBPs, whereas the in vivo zebrafish embryo developmental/acute toxicity indexes of the cyclic DBPs were roughly 48-50 times higher than those of the aliphatic DBPs, indicating that the toxicity rank order differed when different endpoints were applied. For a broader comparison, a Pearson correlation analysis of DBP toxicity data from nine different endpoints was conducted. It was found that the observed Hep G2 cytotoxicity and zebrafish embryo developmental/acute toxicity in this study were highly correlated with the previously reported in vitro CHO cytotoxicity and in vivo toxicity in aquatic organisms (P < 0.01), respectively. However, the observed in vitro toxicity had no correlation with the in vivo toxicity (P > 0.05), suggesting that the toxicity rank orders obtained from in vitro and in vivo bioassays had large discrepancies. According to the observed toxicity data in this study and the candidate descriptors, two quantitative structure-activity relationship (QSAR) models were established, which help to further interpret the toxicity mechanisms of DBPs from different endpoints.
Collapse
Affiliation(s)
- Yun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Wenzhe Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jiayi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chendong Shuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
80
|
John JF, Jagannathan M, Rajendran AR, Mohanapriya P, Natarajan TS, Dhinasekaran D. Sustainable multilayer biomass carbon and polymer hybrid column as potential antibacterial water filter. CHEMOSPHERE 2022; 286:131691. [PMID: 34392197 DOI: 10.1016/j.chemosphere.2021.131691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Stipulation of fresh water for domestic use without any microbial, organic and inorganic contaminants is of high need. Sustainable, efficient, cost-effective and robust water purification technologies is of high need and it can be achieved using nanomaterials and their composite. Nanostructured graphene has unique properties like high surface to volume ratio, higher absorbability, reusability with minimal chemical alterations, and low cytotoxicity. From the validation of these properties, we have developed PLLA-Ag@graphene sandwich structures as an effective adsorbate for water purification application. As the real water bodies have lot of bacterial contaminants, the material is also designed as efficient adsorbate with antibacterial efficacy. In view of achieving these objectives, we have synthesized PLLA fibre mats by electrospinning method, followed by PLLA-Graphene and Ag decorated PLLA-graphene mats. The crystallite size for graphite and Ag@graphene was calculated as 30.82 nm and 43.79 nm, respectively. Furthermore, the UV analysis of Ag@graphene shows two peaks corresponding to graphene and Ag NP at 285 nm and 407 nm respectively. The layers were assembled in the order of polymeric fibre, as-fired biomass graphite, Ag@graphene for methodical filtration process. The filtration efficacy of the filtrate was tested using sewage water and the results shows higher contamination removal percentage of 87 % with TDS values in the drinking water standards after filtration. The antibacterial efficacy results also evidence of the potentialities of the hybrid system towards water purification application.
Collapse
Affiliation(s)
- Josfel Flora John
- Department of Medical Physics, CEG Campus, Anna University, Chennai, 600 025, India
| | - Mohanraj Jagannathan
- Department of Medical Physics, CEG Campus, Anna University, Chennai, 600 025, India
| | - Ajay Rakkesh Rajendran
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | | | | | | |
Collapse
|
81
|
Mazur DM, Lebedev AT. Transformation of Organic Compounds during Water Chlorination/Bromination: Formation Pathways for Disinfection By-Products (A Review). JOURNAL OF ANALYTICAL CHEMISTRY 2022; 77. [PMCID: PMC9924213 DOI: 10.1134/s1061934822140052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The purity of drinking water is an important issue of the human life quality. Water disinfection has saved millions people from the diseases spread with water. However, that procedure has a certain drawback due to formation of toxic organic disinfection products. Establishing the structures of these products and the mechanisms of their formation and diminishing their levels in drinking water represent an important task for chemistry and medicine, while mass spectrometry is the most efficient tool for the corresponding studies. The current review throws light upon natural and anthropogenic sources of the formation of disinfection by-products (DBPs) and the mechanisms of their formation related to the structural peculiarities and the presence of functional groups. In addition to chlorination, bromination is discussed since it is used quite often as an alternative method of disinfection, particularly, for the purification of swimming pool water. The benefits of the contemporary GC/MS and LC/MS methods for the elucidation of DBP structures and study of the mechanisms of their formation are discussed. The reactions characteristic for various functional groups and directions of transformation of certain classes of organic compounds in conditions of aqueous chlorination/bromination are also covered in the review.
Collapse
Affiliation(s)
- D. M. Mazur
- Organic Chemistry Department, Moscow State University, 119991 Moscow, Russia
| | - A. T. Lebedev
- M.V. Lomonosov Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia
| |
Collapse
|
82
|
Fu J, Huang CH, Dang C, Wang Q. A review on treatment of disinfection byproduct precursors by biological activated carbon process. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
83
|
Lu Y, Song ZM, Wang C, Liang JK, Hu Q, Wu QY. Combining high resolution mass spectrometry with a halogen extraction code to characterize and identify brominated disinfection byproducts formed during ozonation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149016. [PMID: 34280624 DOI: 10.1016/j.scitotenv.2021.149016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Ozonation is widely used during water treatment but can generate a variety of toxic disinfection byproducts, especially in the presence of bromide. In the present study, our halogen extraction code was extended and modified to identify bromine isotopic patterns and combined with the R package MFAssignR in selectively identifying brominated disinfection byproducts (Br-DBPs) from high resolution mass spectra. In total, 127 Br-DBPs formed from a Suwannee River natural organic matter (SRNOM) solution were successfully detected from tens of thousands of mass spectrometry peaks. Kendrick mass defect analysis and structural characterization identified 17 structures, 15 of which were identified as brominated carboxylic acids and firstly reported here. Computational model predictions indicated that these brominated carboxylic acids may possess high toxic potencies and raise valid concerns. The adapted halogen extraction code described in this study is a powerful tool for a wider application of analyzing Br-DBPs in complex water matrices and provides an effective technique to characterize and identify these compounds in future studies.
Collapse
Affiliation(s)
- Yao Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Zhi-Min Song
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Jun-Kun Liang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
84
|
Li J, Aziz MT, Granger CO, Richardson SD. Are Disinfection Byproducts (DBPs) Formed in My Cup of Tea? Regulated, Priority, and Unknown DBPs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12994-13004. [PMID: 34523331 DOI: 10.1021/acs.est.1c03419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Globally, tea is the second most consumed nonalcoholic beverage next to drinking water and is an important pathway of disinfection byproduct (DBP) exposure. When boiled tap water is used to brew tea, residual chlorine can produce DBPs by the reaction of chlorine with tea compounds. In this study, 60 regulated and priority DBPs were measured in Twinings green tea, Earl Grey tea, and Lipton tea that was brewed using tap water or simulated tap water (nanopure water with chlorine). In many cases, measured DBP levels in tea were lower than in the tap water itself due to volatilization and sorption onto tea leaves. DBPs formed by the reaction of residual chlorine with tea precursors contributed ∼12% of total DBPs in real tap water brewed tea, with the remaining 88% introduced by the tap water itself. Of that 12%, dichloroacetic acid, trichloroacetic acid, and chloroform were the only contributing DBPs. Total organic halogen in tea nearly doubled relative to tap water, with 96% of the halogenated DBPs unknown. Much of this unknown total organic halogen (TOX) may be high-molecular-weight haloaromatic compounds, formed by the reaction of chlorine with polyphenols present in tea leaves. The identification of 15 haloaromatic DBPs using gas chromatography-high-resolution mass spectrometry indicates that this may be the case. Further studies on the identity and formation of these aromatic DBPs should be conducted since haloaromatic DBPs can have significant toxicity.
Collapse
Affiliation(s)
- Jiafu Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Md Tareq Aziz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Caroline O Granger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
85
|
Li Y, Wu J, Yong T, Fei Y, Qi J. Investigation of bromide removal and bromate minimization of membrane capacitive deionization for drinking water treatment. CHEMOSPHERE 2021; 280:130857. [PMID: 34162099 DOI: 10.1016/j.chemosphere.2021.130857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous bromide (Br-) poses a challenge to current drinking water treatment schemes due to the formation of brominated disinfection by-products, especially bromate (BrO3-). A cost-effective and energy-efficient technology to remove Br- before disinfection is highly desired. In this work, the application of membrane capacitive deionization (MCDI) for the removal of Br- and BrO3- minimization for drinking water treatment was systematically investigated. Results showed that the removal of Br- by MCDI followed the pseudo-second-order kinetics, in which kinetics was faster at lower Br- concentration. Additionally, Br- displayed a preferential electrosorption over Cl- in MCDI despite the relatively smaller amounts. Due to high removal performance of Br-, 99.49% of BrO3- minimization can be achieved. Moreover, the presence of humic acid (HA) had a negative effect on the removal of Br- and BrO3- minimization. However, Br- could be more preferentially removed than Cl- in the presence of HA due to the weak interaction with HA. Finally, by treating an actual surface water sample, it was found that the removal rate of Br- was 91.80%, and 83.97% of BrO3- minimization can be achieved. BrO3- concentration of effluent meets the control standard. Overall, these results prove the feasibility of MCDI for practical drinking water treatment.
Collapse
Affiliation(s)
- Yang Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - Junsheng Wu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Tianzhi Yong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Yingxiang Fei
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| |
Collapse
|
86
|
Schammel MH, Martin-Culet KR, Taggart GA, Sivey JD. Structural effects on the bromination rate and selectivity of alkylbenzenes and alkoxybenzenes in aqueous solution. Phys Chem Chem Phys 2021; 23:16594-16610. [PMID: 34318844 DOI: 10.1039/d1cp02422a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aqueous free bromine species (e.g., HOBr, BrCl, Br2, BrOCl, Br2O, and H2OBr+) can react with activated aromatic compounds via electrophilic aromatic substitution to generate products with industrial applications, environmental consequences, and potentially adverse biological effects. The relative contributions of these brominating agents to overall bromination rates can be calculated via nonlinear regression analyses of kinetic data collected under a variety of solution conditions, including variations in parameters (e.g., [Cl-], [Br-], and pH) known to influence free bromine speciation. Herein, kinetic experiments conducted in batch reactors were employed to evaluate the contributions of steric and electronic effects on bromination of monosubstituted alkylbenzenes (ethyl, isopropyl, tert-butyl) and alkoxybenzenes (ethoxy, isopropoxy, tert-butoxy) and to elucidate the inherent reactivities of aqueous brominating agents towards these aromatic compounds. For bromination at the para position of alkylbenzenes, overall reactivity increased from tert-butyl < ethyl ≈ isopropyl. For bromination at the para position of alkoxybenzenes, reactivity increased from tert-butoxy < ethoxy < isopropoxy. In going from ethyl to tert-butyl and ethoxy to isopropoxy, unfavorable steric effects attenuated the favorable electronic effects imparted by the substituents. When comparing unsubstituted benzene, alkyl-, and alkoxybenzenes, the structure of the substituent has a significant effect on bromination rates, nucleophile regioselectivity, and electrophile chemoselectivity. Hirshfeld charges were useful predictors of reactivity and regioselectivity. The experimental results were also modeled using Taft equations. Collectively, these findings indicate that steric effects, electronic effects, and brominating agents other than HOBr can influence aromatic compound bromination in solutions of free bromine.
Collapse
Affiliation(s)
- Marella H Schammel
- Department of Chemistry, Towson University, 8000 York Road, Towson, Maryland 21252, USA.
| | | | | | | |
Collapse
|
87
|
Liang Q, Gao J, Guo D, Huang J, Zhang J, Li J, Yang B, Chen B, Wu Q, Yang M. Species and formation characteristics of halogenated DBPs in chloramination of tannic acid after biodegradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146690. [PMID: 33812118 DOI: 10.1016/j.scitotenv.2021.146690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Tannic acid is widely found in source water and wastewater, and it is also a typical degradation precursor of natural organic matter. In this study, focused on chloramination, the formation characteristics of halogenated DBPs from tannic acid biodegradation products were examined. Fifty-nine polar emerging DBPs (including four nitrogenous DBPs) were detected and forty of them were identified for the first time; meanwhile, their formation pathways were tentatively proposed. In general, much more polar emerging DBPs were formed at the early biodegradation stage than those at the later stage, while commonly observed aliphatic DBPs presented an exactly inverse trend, because initially-formed emerging DBPs can be transformed to those aliphatic DBPs by residual chloramine. Interestingly, while the relative formation level of brominated species in overall halogenated polar emerging DBPs maintained at high level at the later biodegradation stage during chlorination, it decreased significantly later during chloramination. The discrepancy may be due to that hydrolysis effects became dominant at this period in chloramination, whereas DBP formation from the reactions between slow reactive sites and hypohalous acids prevailed in chlorination. In addition, the calculated toxicity drivers among the 21 aliphatic DBPs were found to be haloacetonitriles, although they contribute mildly to the total concentration.
Collapse
Affiliation(s)
- Qiuhong Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Danfen Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingxiong Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junmin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qianyuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
88
|
Hu CY, Zhang JC, Lin YL, Ren SC, Zhu YY, Xiong C, Wang QB. Degradation kinetics of prometryn and formation of disinfection by-products during chlorination. CHEMOSPHERE 2021; 276:130089. [PMID: 33743417 DOI: 10.1016/j.chemosphere.2021.130089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Prometryn is a herbicide that is widely used and frequently detected in aqueous environment and soil. Prometryn is chemically stable, biologically toxic, and easily to accumulate in living bodies, which can cause accumulate in the environment and acute and chronic toxicity to living creatures. In this study, factors affecting the degradation kinetics of prometryn chlorination were studied, including solution pH, bromide and ammonium concentrations, and temperature. Prometryn reacted quickly with aqueous chlorine following the pseudo-first-order kinetics. The maximum pseudo-first-order rate constant (kapp) appeared at pH 5 with the observed rate constant (kobs) as 190. 08 h-1; the minimum value of kapp reached at pH 9 with kobs as 5.26 h-1. The presence of Br- and increase of temperature both accelerated the degradation rate of prometryn during chlorination. The activation energy was calculated as 31.80 kJ/mol. Meanwhile 6 disinfection by-products (DBPs) were detected, namely: chloroform (CF), trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN), dichloroacetone, trichloronitromethane (TCNM), and trichloroacetone. Solution pH significantly affected the formation and distribution of DBPs. CF was the most formed carbonated DBP (C-DBP) with the maximum of 217.9 μg/L at pH 8, and its formation was significantly higher in alkaline conditions. For nitrogenated DBPs (N-DBPs), the yields of DCAN and TCAN were significantly higher in acidic conditions, while the maximum of TCNM achieved in neutral conditions. Because the toxicity of N-DBPs is higher than that of C-DBPs, the pH should be controlled in neutral or slight alkaline conditions during prometryn chlorination to effectively control DBP formation and reduce the related toxicity.
Collapse
Affiliation(s)
- Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy- Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Ji-Chen Zhang
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy- Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, PR China.
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, ROC, Taiwan.
| | - Si-Cheng Ren
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy- Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, PR China.
| | - Ye-Ye Zhu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy- Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, PR China.
| | - Cun Xiong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy- Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, PR China.
| | - Qiang-Bing Wang
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy- Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, PR China.
| |
Collapse
|
89
|
Kali S, Khan M, Ghaffar MS, Rasheed S, Waseem A, Iqbal MM, Bilal Khan Niazi M, Zafar MI. Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116950. [PMID: 33819670 DOI: 10.1016/j.envpol.2021.116950] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Disinfection is considered as a vital step to ensure the supply of clean and safe drinking water. Various approaches are adopted for this purpose; however, chlorination is highly preferred all over the world. This method is opted owing to its several advantages. However, it leads to the formation of certain by-products. These chlorination disinfection by-products (DBPs) are genotoxic, carcinogenic and mutagenic. Still chlorination is being practiced worldwide. Present review gives insights into the occurrence, toxicity and factors affecting the formation of regulated (THMs, HAAs) and emerging DBPs (N-DBPs, HKs, HAs and aromatic DBPs) found in drinking water. Furthermore, remediation techniques used to control DBPs have also been summarized here. Key findings are: (i) concentration of regulated DBPs surpassed the permissible limit in most of the regions, (ii) high chlorine dose, high NOM, more reaction time (up to 3 h) and high temperature (up to 30 °C) enhance the formation of THMs and HAAs, (iii) high pH favors the formation of THMs while low pH is suitable of the formation of HAAs, (iv) high NOM, low temperature, low chlorine dose and moderate pH favors the formation of unstable DBPs (N-DBPs, HKs and HAs), (v) DBPs are toxic not only for humans but for aquatic fauna as well, (vi) membrane technologies, enhanced coagulation and AOPs remove NOM, (vii) adsorption, air stripping and other physical and chemical methods are post-formation approaches (viii) step-wise chlorination is assumed to be an efficient method to reduce DBPs formation without any treatment. Toxicity data revealed that N-DBPs are found to be more toxic than C-DBPs and aromatic DBPs than aliphatic DBPs. In majority of the studies, merely THMs and HAAs have been studied and USEPA has regulated just these two groups. Future studies should focus on emerging DBPs and provide information regarding their regulation.
Collapse
Affiliation(s)
- Sundas Kali
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Marina Khan
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Sheraz Ghaffar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sajida Rasheed
- Department of Biotechnology, Faculty of Sciences, University of Kotli, Azad Jamu Kashmir, Pakistan.
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Mazhar Iqbal
- Laboratory of Analytical Chemistry and Applied Eco-chemistry, Department of Applied Analytical and Physical Chemistry, Ghent University, Ghent, Belgium; Soil and Water Testing Laboratory, Department of Agriculture, Chiniot, Government of Punjab, Pakistan.
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Mazhar Iqbal Zafar
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
90
|
Chen B, Jiang J, Yang X, Zhang X, Westerhoff P. Roles and Knowledge Gaps of Point-of-Use Technologies for Mitigating Health Risks from Disinfection Byproducts in Tap Water: A Critical Review. WATER RESEARCH 2021; 200:117265. [PMID: 34091221 PMCID: PMC8634687 DOI: 10.1016/j.watres.2021.117265] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 05/19/2023]
Abstract
Due to rising concerns about water pollution and affordability, there is a rapidly-growing public acceptance and global market for a variety of point-of-use (POU) devices for domestic uses. However, the efficiencies and mechanisms of POU technologies for removing regulated and emerging disinfection byproducts (DBPs) are still not systematically known. To facilitate the development of this field, we summarized performance trends of four common technologies (i.e., boiling, adsorption, membrane filtration, and advanced oxidation) on mitigating preformed DBPs and identified knowledge gaps. The following highest priority knowledge gaps include: 1) data on DBP levels at the tap or cup in domestic applications; 2) certainty regarding the controls of DBPs by heating processes as DBPs may form and transform simultaneously; 3) standards to evaluate the performance of carbon-based materials on varying types of DBPs; 4) long-term information on the membrane performance in removing DBPs; 5) knowledge of DBPs' susceptibility toward advanced redox processes; 6) tools to monitor/predict the toxicity and diversity of DBPs formed in waters with varying precursors and when implementing different treatment technologies; and 7) social acceptance and regulatory frameworks of incorporating POU as a potential supplement to current centralized-treatment focused DBP control strategies. We conclude by identifying research needs necessary to assure POU systems protect the public against regulated and emerging DBPs.
Collapse
Affiliation(s)
- Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), 518055, China.
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Paul Westerhoff
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-3005, United States.
| |
Collapse
|
91
|
Li J, He J, Aziz MT, Song X, Zhang Y, Niu Z. Iodide promotes bisphenol A (BPA) halogenation during chlorination: Evidence from 30 X-BPAs (X = Cl, Br, and I). JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125461. [PMID: 33647627 DOI: 10.1016/j.jhazmat.2021.125461] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
As a well known endocrine-disrupting and model chemical, bisphenol A (BPA) may pose a serious threat to human health, since it and its disinfection by-products (DBPs) have been detected in drinking water, urine, human colostrum, adipose tissue, and placenta samples. Although chlorinated BPAs (Cl-BPAs) and iodinated BPAs (I-BPAs) have been well studied, brominated BPAs (Br-BPAs), and mixed halogenated DBPs like bromo-iodo-BPAs (Br-I-BPAs), and bromo-chloro-iodo-BPAs (Cl-Br-I-BPAs) are less well understood. Notably, the role of iodide (I-) during chlorination is not well understood, since the studies of the I-DBPs mainly focus on their genotoxicity and cytotoxicity. To understand the formation mechanisms of halogenated bisphenol A (HBPs) during chlorination with bromide (Br-) and/or I-, and the role of I- during chlorination, three set of reactions were performed in the laboratory ("BPA + chlorine + Br-", "BPA + chlorine + I-" and "BPA + chlorine + Br- +I-" assigned as group A, B and C respectively). Thirty HBPs were identified and 18 of them were never reported before. I- increases the transformation rate of BPA into HBPs as I-BPAs act as intermediate HBPs during chlorination that easily react with HClO/ClO- and HBrO/BrO- to form Cl-BPAs and Br-BPAs. HIO/IO- showed higher reactivity towards BPA and HBPs than that of HBrO/BrO- and HClO/ClO-. The recycling of I- was observed in the reactions of "BPA + chlorine + I-" and "BPA + chlorine + Br- +I-", which may explain why I- can induce BPA to transform into HBPs and suggests that I- may act as a catalyst during the BPA chlorination reactions. The reaction pathways are proposed which present the reactions of BPA and HBPs with HClO/ClO-, HBrO/BrO-, and HIO/IO-, as well as the recycling of I-. This study describes the potential DBP formation and transformation mechanisms of BPA and its 16 alternatives, as well as the role of I- on the transformation of phenol compounds during chlorination.
Collapse
Affiliation(s)
- Jiafu Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Jiahui He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Md Tareq Aziz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Xiaocui Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ying Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
92
|
Mohan A, Reckhow DA. Hydrolysis and Chlorination of 2,6-Dichloro-1,4-benzoquinone under conditions typical of drinking water distribution systems. WATER RESEARCH 2021; 200:117219. [PMID: 34038823 DOI: 10.1016/j.watres.2021.117219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Halobenzoquinones (HBQs) are emerging disinfection by-products (DBPs) that are postulated drivers of bladder carcinogenicity. Prior assessments of 2,6-dichloro-1,4-benzoquinone (DCBQ) occurrence in drinking water distribution systems have revealed a gradual decline with increasing distance from points of entry. While this signals a degradation pathway, there is limited quantitative data on rate of that degradation. A systematic evaluation of DCBQ hydrolysis was performed, resulting in a rate law that is first order in both hydroxide [OH-] and [DCBQ]. The impact of temperature on that rate was characterized according to the Arrhenius relationship. Under the conditions tested (pH~7.2, T = 20°C) chloramine did not significantly impact DCBQ concentrations. However, DCBQ was rapidly degraded in solutions containing free available chlorine (FAC). Kinetic analysis showed non-integer order with respect to FAC. Further investigation led to a model that invoked reaction with dichlorine monoxide (Cl2O) as well as FAC.
Collapse
Affiliation(s)
- Aarthi Mohan
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst 01003, United States.
| | - David A Reckhow
- Department of Civil and Environmental Engineering, University of Massachusetts, Amherst 01003, United States
| |
Collapse
|
93
|
Tang H, Zhong H, Pan Y, Zhou Q, Huo Z, Chu W, Xu B. A New Group of Heterocyclic Nitrogenous Disinfection Byproducts (DBPs) in Drinking Water: Role of Extraction pH in Unknown DBP Exploration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6764-6772. [PMID: 33928775 DOI: 10.1021/acs.est.1c00078] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
pH adjustment prior to extraction is an important step in water sample pretreatment processes for exploration of new/unknown disinfection byproducts (DBPs) in drinking water. To achieve a better extraction efficiency, the pH of a water sample is usually adjusted to a low level (e.g., < 0.5) to ensure that target DBPs are in their neutral forms. However, such a practice may elude some amphoteric DBPs (especially those nitrogenous DBPs with multiple functional groups), which can accept protons at a low pH and lose protons at a high pH. In this study, with careful extraction pH selection and optimization, we first report the detection and identification of a new group of heterocyclic nitrogenous DBPs, halogenated pyridinols, in simulated drinking water using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry and time-of-flight mass spectrometry, including 5-chloro-3-pyridinol, 2-bromo-3-pyridinol, 2,6-dichloro-4-pyridinol, 2,6-dibromo-3-pyridinol, 3-bromo-2-chloro-5-pyridinol, 5-bromo-2-chloro-3-pyridinol, 3,5,6-trichloro-2-pyridinol, and 2,4,6-tribromo-3-pyridinol. On the basis of the speciation of dissociated chemical species and recovery tests at different extraction pH values, it was found that, only at a pH of 3.0, all the eight new DBPs could achieve recoveries of >50%. With subsequent instrumental parameter optimization, the method detection and quantitation limits of the eight new DBPs were determined to be 0.04-1.58 and 0.15-4.11 ng/L, respectively. The optimized method enabled an accurate detection of the eight new DBPs in two real drinking water samples. Further aided with in vivo developmental and acute toxicity assays using zebrafish embryos, the developmental and acute toxicity of the new DBPs were found to be slightly lower than those of halogenated benzoquinones but dozens of times higher than those of commonly known DBPs such as tribromomethane and iodoacetic acid.
Collapse
Affiliation(s)
- Haiyang Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongli Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, No.172 Jiangsu Road, Nanjing 210009, Jiangsu, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
94
|
Han J, Zhang X, Jiang J, Li W. How Much of the Total Organic Halogen and Developmental Toxicity of Chlorinated Drinking Water Might Be Attributed to Aromatic Halogenated DBPs? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5906-5916. [PMID: 33830743 DOI: 10.1021/acs.est.0c08565] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although >700 disinfection byproducts (DBPs) have been identified, >50% of the total organic halogen (TOX) in drinking water chlorination is unknown, and the DBPs responsible for the chlorination-associated health risks remain largely unclear. Recent studies have revealed numerous aromatic halo-DBPs, which generally present substantially higher developmental toxicity than aliphatic halo-DBPs. This raises a fascinating and important question: how much of the TOX and developmental toxicity of chlorinated drinking water can be attributed to aromatic halo-DBPs? In this study, an effective approach with ultraperformance liquid chromatography was developed to separate the DBP mixture (from chlorination of bromide-rich raw water) into aliphatic and aromatic fractions, which were then characterized for their TOX and developmental toxicity. For chlorine contact times of 0.25-72 h, aromatic fractions accounted for 49-67% of the TOX in the obtained aliphatic and aromatic fractions, which were equivalent to 26-36% of the TOX in the original chlorinated water samples. Aromatic halo-DBP fractions were more developmentally toxic than the corresponding aliphatic fractions, and the overall developmental toxicity of chlorinated water samples was dominated by aromatic halo-DBP fractions. This might be explained by the considerably higher potentials of aromatic halo-DBPs to bioconcentrate and then generate reactive oxygen species in the organism.
Collapse
Affiliation(s)
- Jiarui Han
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| | - Wanxin Li
- Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
95
|
Polymer brush-grafted cotton fiber for the efficient removal of aromatic halogenated disinfection by-products in drinking water. J Colloid Interface Sci 2021; 597:66-74. [PMID: 33865079 DOI: 10.1016/j.jcis.2021.03.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022]
Abstract
Apart from the activated carbon, other functional adsorbents are usually not frequently reported for the removal of disinfection by-products (DBPs) in drinking water. In this study, a novel polymer brush-grafted cotton fiber was prepared and for the first time used as adsorbents for the efficient removal of aromatic halogenated DBPs in drinking water in the column adsorption mode. Poly (glycidyl methacrylate) (PGMA) was grafted onto the surface of cotton fibers via UV irradiation, and then diethylenetriamine was immobilized on the PGMA polymer brush through amination reaction to obtain the aminated cotton fibers (ACFs). The adsorption performance of the prepared ACF was investigated with eight aromatic halogenated DBPs via dynamic adsorption experiments. The results revealed that ACF showed significantly longer breakthrough point (38,500-225,500 BV) for aromatic halogenated DBPs compared with the granular activated carbon (150-500 BV). Thomas model was used to fit the breakthrough curves, and the theoretical value of the maximum adsorption capacity ranged from 14.76 to 89.47 mg/g. The enhanced adsorption performance of the ACF for aromatic halogenated DBPs was mainly due to the formation of hydrogen bonds. Additionally, the partially protonated amine groups also improved the adsorption performance. Furthermore, the ACF also showed remarkable stability and reusability.
Collapse
|
96
|
Hu W, Croué JP, Allard S. Effect of copper oxide on monochloramine decomposition in bromide-containing waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142519. [PMID: 33077219 DOI: 10.1016/j.scitotenv.2020.142519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Copper oxide (CuO), a common corrosion product found in copper pipes, has been shown to catalyse the decay of different oxidants in drinking water, including chlorine, bromine, iodine, and chlorine dioxide. However, its impact on monochloramine (NH2Cl), a disinfectant commonly used in long distribution system worldwide is still unknown. In this study, the effect of CuO on NH2Cl decay in the absence or presence of bromide was investigated. Results showed that in the presence of CuO and the absence of bromide, NH2Cl slightly decayed under acidic conditions. When bromide was present in NH2Cl solutions, the total oxidant concentration (sum of the different bromo-chloro-amines) was significantly decreased by CuO. This was primarily due to the degradation of bromochloramine (NHBrCl) by CuO which was evidenced by membrane inlet mass spectrometry. The decomposition rate of the total oxidant was similar for different CuO dosages (0.02-0.2 g/L) but increased with increasing bromide concentration (0-80 μM) and decreasing pH (6.5-8). An apparent second-order rate constant of 0.73 M-1 s-1 was determined with respect to NH2Cl and bromide concentrations for a CuO concentration of 0.05 g/L. Our findings suggest that, during water transportation in copper pipes or in distribution systems where copper oxide is present, special attention should be given to the stability of chloramines when bromide-containing waters are chloraminated.
Collapse
Affiliation(s)
- Wei Hu
- Curtin Water Quality Research Centre, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Jean-Philippe Croué
- Curtin Water Quality Research Centre, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Sébastien Allard
- Curtin Water Quality Research Centre, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia.
| |
Collapse
|
97
|
Li Z, Song G, Bi Y, Gao W, He A, Lu Y, Wang Y, Jiang G. Occurrence and Distribution of Disinfection Byproducts in Domestic Wastewater Effluent, Tap Water, and Surface Water during the SARS-CoV-2 Pandemic in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4103-4114. [PMID: 33523638 PMCID: PMC7875339 DOI: 10.1021/acs.est.0c06856] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 05/13/2023]
Abstract
Intensified efforts to curb transmission of the Severe Acute Respiratory Syndrome Coronavirus-2 might lead to an elevated concentration of disinfectants in domestic wastewater and drinking water in China, possibly resulting in the generation of numerous toxic disinfection byproducts (DBPs). In this study, the occurrence and distribution of five categories of DBPs, including six trihalomethanes (THMs), nine haloacetic acids (HAAs), two haloketones, nine nitrosamines, and nine aromatic halogenated DBPs, in domestic wastewater effluent, tap water, and surface water were investigated. The results showed that the total concentration level of measured DBPs in wastewater effluents (78.3 μg/L) was higher than that in tap water (56.0 μg/L, p = 0.05), followed by surface water (8.0 μg/L, p < 0.01). Moreover, HAAs and THMs were the two most dominant categories of DBPs in wastewater effluents, tap water, and surface water, accounting for >90%, respectively. Out of the regulated DBPs, none of the wastewater effluents and tap water samples exceeded the corresponding maximum guideline values of chloroform (300 μg/L), THM4 (80 μg/L), NDMA (100 ng/L), and only 2 of 35 tap water samples (67.6 and 63.3 μg/L) exceeded the HAA5 (60 μg/L) safe limit. HAAs in wastewater effluents showed higher values of risk quotient for green algae. This study illustrates that the elevated use of disinfectants within the guidance ranges during water disinfection did not result in a significant increase in the concentration of DBPs.
Collapse
Affiliation(s)
- Zhigang Li
- School of Environment, Hangzhou
Institute for Advanced Study, University of Chinese
Academy of Sciences, Hangzhou 310000,
People’s Republic of China
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| | - Gaofei Song
- State Key Laboratory of Freshwater
Ecology and Biotechnology, Institute of Hydrobiology,
Chinese Academy of Sciences, Wuhan 430072,
People’s Republic of China
| | - Yonghong Bi
- State Key Laboratory of Freshwater
Ecology and Biotechnology, Institute of Hydrobiology,
Chinese Academy of Sciences, Wuhan 430072,
People’s Republic of China
| | - Wei Gao
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| | - Anen He
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| | - Yao Lu
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| | - Yawei Wang
- School of Environment, Hangzhou
Institute for Advanced Study, University of Chinese
Academy of Sciences, Hangzhou 310000,
People’s Republic of China
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
- University of Chinese
Academy of Sciences, Beijing 100049,
People’s Republic of China
| | - Guibin Jiang
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| |
Collapse
|
98
|
Zhang D, Bond T, Li M, Dong S, Pan Y, Du E, Xiao R, Chu W. Ozonation Treatment Increases Chlorophenylacetonitrile Formation in Downstream Chlorination or Chloramination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3747-3755. [PMID: 33595294 DOI: 10.1021/acs.est.0c07853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chlorophenylacetonitriles (CPANs) are an emerging group of aromatic nitrogenous disinfection byproducts (DBPs). However, their dominant precursors and formation pathways remain unclear, which hinders the further development of effective control strategies. For the first time, CPAN precursors were screened by conducting formation potential (FP) tests on real water samples from six drinking water treatment plants (DWTPs). The average overall removal of CPAN precursors across all six DWTPs was only 10%. Moreover, ozonation increased CPAN precursors by 140% on average. Fluorescence spectroscopy showed a dramatic reduction in aromatic proteins, tyrosine-like proteins, and tryptophan-like proteins following ozonation. Low-apparent-molecular-weight (AMW) (<1 kDa) substances were correlated with the CPAN FP in these samples. We therefore hypothesized that protein fragments with low AMW, such as amino acids, are important CPAN precursors during downstream chlor(am)ination. Two aromatic free amino acids, tyrosine and tryptophan, were selected to investigate the formation of CPANs during chlor(am)ination. Both amino acids were found to act as CPAN precursors for the first time. CPAN formation pathways from these model precursors were proposed based on the frontier molecular orbital theory and intermediate products identified using high-resolution mass spectrometry. This study provides a powerful theoretical foundation for controlling CPAN formation in drinking water.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Tom Bond
- Department of Civil and Environmental Engineering, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Mingli Li
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shengkun Dong
- Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong Higher Education Institute, School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
99
|
Jahan BN, Li L, Pagilla KR. Fate and reduction of bromate formed in advanced water treatment ozonation systems: A critical review. CHEMOSPHERE 2021; 266:128964. [PMID: 33250222 DOI: 10.1016/j.chemosphere.2020.128964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Disinfection in water treatment and reclamation systems eliminates the potential health risks associated with waterborne pathogens, however it may produce disinfection by-products (DBPs) harmful to human health. Potentially carcinogenic bromate is a DBP formed during the ozonation of bromide-containing waters. To mitigate the problem of bromate formation, different physical/chemical or biological reduction methods of bromate have been investigated. Until now, adsorption-based physical method has proven to be more effective than chemical methods in potable water treatment. Though several studies on biological reduction methods have been carried out in a variety of bioreactor systems, such as in biologically active carbon filters and denitrifying bioreactors, the microbiological mechanisms or biochemical pathways of bromate minimization have not been clearly determined to date. Genetic analysis could provide a broader picture of microorganisms involved in bromate reduction which might show cometabolic or respiratory pathways, and affirm the synergy functions between different contributing groups. The hypothesis established from the diffusion coefficients of different electron donor and acceptors, illustrates that some microorganisms preferring bromate over oxygen contain specific enzymes which lower the activation energy required for bromate reduction. In addition, considering microbial bromate reduction as an effective treatment strategy; field scale investigations are required to observe quantitative correlations of various influencing parameters such as pH, ozone dose, additives or constituents such as ammonia, hydrogen peroxide, and/or chloramine, dissolved organic carbon levels, dissolved oxygen gradient within biofilm, and empty bed contact time on bromate removal or reduction.
Collapse
Affiliation(s)
- Begum Nazia Jahan
- Graduate Research Assistant, Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Lin Li
- Post-Doctoral Researcher, Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Krishna R Pagilla
- Chair, Civil and Environmental Engineering, University of Nevada, Reno, NV, USA.
| |
Collapse
|
100
|
Zhang XY, Lu Y, Du Y, Wang WL, Yang LL, Wu QY. Comprehensive GC×GC-qMS with a mass-to-charge ratio difference extraction method to identify new brominated byproducts during ozonation and their toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124103. [PMID: 33265069 DOI: 10.1016/j.jhazmat.2020.124103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 06/12/2023]
Abstract
Ozonation might increase the risk of wastewater due to byproduct formation, especially in the presence of bromide. In this study, a new analytical method was developed to identify new brominated disinfection byproducts (Br-DBPs) during ozonation, using comprehensive two-dimensional gas chromatography-single quadrupole mass spectrometry (GC×GC-qMS) connected with an electron capture detector in parallel. The obtained data were analyzed using a mass-to-charge ratio (m/z) difference extraction method. Over 1304 DBPs were detected in an ozonated phenylalanine solution. Further screening of 635 DBPs was conducted using the m/z difference extraction method. Finally, the structures for 12 Br-DBPs were confirmed and for 4 Br-DBPs were tentatively proposed by comparison with the NIST library and standard compounds. Eight of the confirmed Br-DBPs are first reported and identified: 2-bromostyrene, 1-bromo-1-phenylethylene, 2-bromobenzaldehyde, 3-bromobenzaldehyde, 4-bromobenzaldehyde, 2-bromophenylacetonitrile, 3-bromophenylacetonitrile and 4-bromophenylacetonitrile. These DBPs and 2,4,6-tribromophenol were detected at nanogram- to microgram-per-liter concentrations during ozonation of authentic water samples like algal bloom waters, wastewater treatment plant effluents, and surface water. The toxicities of these compounds were generally higher than that of bromate. The developed analytical method is a powerful technique for analyzing complex compounds and provides a novel way of identifying byproducts in future studies.
Collapse
Affiliation(s)
- Xin-Yang Zhang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, International Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Yao Lu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Ye Du
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Wen-Long Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Lu-Lin Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, International Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, International Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|