51
|
Wang Y, Hou Y, Li H, Wu W, Ren S, Li J. A New Structural Model of Enzymatic Lignin with Multiring Aromatic Clusters. ACS OMEGA 2022; 7:18861-18869. [PMID: 35694518 PMCID: PMC9178751 DOI: 10.1021/acsomega.2c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Lignin is a natural aromatic compound in plants. Several lignin structural models have been proposed in the past years, but all the models cannot be converted to benzene carboxylic acids (BCAs) for all aromatic rings connected to oxygen. This inspired us to explore the structures of lignin. Based on the yields of BCAs, the results of 13C NMR and ethanolysis residues, and gas chromatography-mass spectrometry and electrospray ionization mass spectrometry of ethanolysis of lignin, we have constructed a structural model of lignin with a formula C6407H6736O2590N147S3. The model not only satisfies the results of analyses, but also explains the generation of BCAs from lignin oxidation and the ethanolysis products. Importantly, double-ring and triple-ring aromatic clusters are found in lignin, and some of them are connected by alkyl bridges, which results in conventional low conversions of lignin. Our findings in the structures of lignin may significantly influence the structures and applications of lignin.
Collapse
Affiliation(s)
- Yupeng Wang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yucui Hou
- Department
of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, China
| | - He Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weize Wu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuhang Ren
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianwei Li
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
52
|
Integrated strategy for the synthesis of aromatic building blocks via upcycling of real-life plastic wastes. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
53
|
Sang Y, Chen H, Khalifeh M, Li Y. Catalysis and chemistry of lignin depolymerization in alcohol solvents - A review. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
54
|
Kumar A, Jindal M, Rawat S, Kumar J, Sripadi P, Yang B, Thallada B. Upgradation of sugarcane bagasse lignin: Fractionation to cyclic alcohols production. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
55
|
Insight into the dual effect of water on lignin dissolution in ionic liquids. Int J Biol Macromol 2022; 205:178-184. [PMID: 35182559 DOI: 10.1016/j.ijbiomac.2022.02.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/13/2022] [Indexed: 11/23/2022]
Abstract
The dual regulation of water on lignin in ionic liquids was studied at the molecular level by molecular dynamics simulation. The simulation results show that a small amount of water will destroy the ion association in ionic liquids, that is, it will produce more free anions and cations. The free ions around lignin are conducive to the dissolution of lignin. On the contrary, excess water will seriously solvate anions and cations. By changing the number of lignin clusters, it is more intuitive to observe that the dissolution of lignin in ILs containing a small amount of water is stronger than that in pure IL, however, the dissolution ability of lignin is reduced after adding a large amount of water in ILs. It is concluded that with the increase of water content, water changes from co-solvent to anti-solvent in the dissolution process. This study provides ideas for the design of IL-water system for economic pretreatment of biomass.
Collapse
|
56
|
Schmid J, Wang M, Gutiérrez OY, Bullock RM, Camaioni DM, Lercher J. Controlling Reaction Routes in Noble‐Metal‐Catalyzed Conversion of Aryl Ethers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Julian Schmid
- Pacific Northwest National Laboratory Institute for Integrated Catalysis UNITED STATES
| | - Meng Wang
- Pacific Northwest National Laboratory Institute for Integrated Catalysis UNITED STATES
| | - Oliver Y. Gutiérrez
- Pacific Northwest National Laboratory Institute for Integrated Catalysis UNITED STATES
| | - R. Morris Bullock
- Pacific Northwest National Laboratory Institute for Integrated Catalysis UNITED STATES
| | - Donald M. Camaioni
- Pacific Northwest National Laboratory Institute for Integrated Catalysis UNITED STATES
| | - Johannes Lercher
- Technische Universität München Department Chemie Lichtenbergstrasse 4 85748 Garching GERMANY
| |
Collapse
|
57
|
Zhou Y, Klinger GE, Hegg EL, Saffron CM, Jackson JE. Skeletal Ni electrode-catalyzed C-O cleavage of diaryl ethers entails direct elimination via benzyne intermediates. Nat Commun 2022; 13:2050. [PMID: 35440551 PMCID: PMC9018776 DOI: 10.1038/s41467-022-29555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Diaryl ethers undergo electrocatalytic hydrogenolysis (ECH) over skeletal Ni cathodes in a mild, aqueous process that achieves direct C-O cleavage without initial benzene ring saturation. Mechanistic studies find that aryl phenyl ethers with a single para or meta functional group (methyl, methoxy, or hydroxy) are selectively cleaved to the substituted benzene and phenol, in contrast to recently reported homogeneous catalytic cleavage processes. Ortho positioning of substituents reverses this C-O bond selectivity, except for the 2-phenoxyphenol case. Together with isotope labeling and co-solvent studies, these results point to two distinct cleavage mechanisms: (a) dual-ring coordination and C-H activation, leading to vicinal elimination to form phenol and a surface-bound aryne intermediate which is then hydrogenated and released as the arene; and (b) surface binding in keto form by the phenolic ring of the hydroxy-substituted substrates, followed by direct displacement of the departing phenol. Notably, acetone inhibits the well-known reduction of phenol to cyclohexanol, affording control of product ring saturation. A byproduct of this work is the discovery that the ECH treatment completely defluorinates substrates bearing aromatic C-F and C-CF3 groupings. Biomass conversion holds promise as a more sustainable source of platform chemicals, but limitations in the ways in which lignin can be broken down is a current bottleneck. Here the authors report an electrocatalytic hydrogenolysis over skeletal Ni that cleaves diaryl ethers, chemically resistant moieties in both renewable carbon sources and persistent organic pollutants.
Collapse
Affiliation(s)
- Yuting Zhou
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| | - Grace E Klinger
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Eric L Hegg
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christopher M Saffron
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 48824, USA.,Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA
| | - James E Jackson
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
58
|
Effects of hydrothermal pretreatment on the dissolution and structural evolution of hemicelluloses and lignin: A review. Carbohydr Polym 2022; 281:119050. [DOI: 10.1016/j.carbpol.2021.119050] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
|
59
|
Scholten PBV, Figueirêdo MB. Back to the Future with Biorefineries: Bottom‐Up and Top‐Down Approaches toward Polymers and Monomers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Philip B. V. Scholten
- Bloom Biorenewables Route de l'Ancienne Papeterie 106 Case postal 146 Marly 1723 Switzerland
| | - Monique B. Figueirêdo
- Bloom Biorenewables Route de l'Ancienne Papeterie 106 Case postal 146 Marly 1723 Switzerland
| |
Collapse
|
60
|
Wang Z, Hao M, Li X, Zhang B, Jiao M, Chen BZ. Promising and efficient lignin degradation versatile strategy based on DFT calculations. iScience 2022; 25:103755. [PMID: 35141502 PMCID: PMC8810403 DOI: 10.1016/j.isci.2022.103755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022] Open
Abstract
The extraction of higher-value products from lignin degradations under mild conditions is a challenge. Previous research reported efficient two-step oxidation and reduction strategies for lignin degradation, which has great significance to lignin degradation. In this paper, the mechanism about the C-O bond cleavage of lignin with and without Cα oxidations has been studied systematically. Our calculation results show that the degradation of anionized lignin with Cα oxidations is kinetically and thermodynamically feasible. In addition, the calculations predict that the anionized lignin compounds without Cα oxidation also could be degraded under mild conditions. Moreover, we propose special lignin catalytic degradation systems containing the characteristic structure of "double hydrogen bonds." The double hydrogen bonds structure could further decrease the energy barriers of the C-O bond cleavage reaction. This provides a versatile strategy to design novel lignin degradation.
Collapse
Affiliation(s)
- Zichen Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| | - Mingtian Hao
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| | - Xiaoyu Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| | - Beibei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| | - Mingyang Jiao
- Shandong Energy Institute, Qingdao 266101, Shandong, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Bo-Zhen Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
61
|
He M, Sun Y, Han B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mingyuan He
- Shanghai Key Laboratory of Green Chemistry & Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
- Research Institute of Petrochem Processing, SINOPEC Beijing 100083 China
| | - Yuhan Sun
- Low Carbon Energy Conversion Center Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201203 China
- Shanghai Low Carbon Technology Innovation Platform Shanghai 210620 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry & Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
62
|
Flow-through strategy to fractionate lignin from eucalyptus with formic acid/hydrochloric solution under mild conditions. Int J Biol Macromol 2022; 204:364-372. [PMID: 35149095 DOI: 10.1016/j.ijbiomac.2022.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 12/11/2022]
Abstract
Formic acid is an attractive solvent for the fractionation of lignocellulose for the production of biomaterials and chemicals, while the operation conducted in a batch manner is not conducive to mass transfer in separation process. In this research, eucalyptus was fractionated with formic acid/hydrochloric solution in a flow-through reactor at 95 °C, and the structural characteristics and the composition of fractionated lignin in different stages were investigated. Results showed that the fractionation efficiency was notably improved with a flow-through reactor, as evidenced by the low solid residue yield of 49.5% and the lignin removal rate of 79.4% as compared to the batch manner. During the fractionation process, the dissolution rate of lignin decreased gradually, and the obtained lignin samples showed low molecular weight (<3000), good uniformity (<2), and high thermal stability. The structure analysis showed that β-O-4, β-β, and β-5 linkages in lignin were degraded to varying degrees with increased time, and the degradation of G units was more severe than S ones.
Collapse
|
63
|
Chin M, Suh SM, Fang Z, Hegg EL, Diao T. Depolymerization of Lignin via a Microscopic Reverse Biosynthesis Pathway. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mason Chin
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Sang Mi Suh
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Zhen Fang
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 313A, East Lansing, Michigan 48824, United States
| | - Eric L. Hegg
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 313A, East Lansing, Michigan 48824, United States
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
64
|
Banu Jamaldheen S, Kurade MB, Basak B, Yoo CG, Oh KK, Jeon BH, Kim TH. A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. BIORESOURCE TECHNOLOGY 2022; 346:126591. [PMID: 34929325 DOI: 10.1016/j.biortech.2021.126591] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Effective pretreatment of lignocellulosic biomass (LCB) is one of the most important steps in biorefinery, ensuring the quality and commercial viability of the overall bioprocess. Lignin recalcitrance in LCB is a major bottleneck in biological conversion as the polymerization of lignin with hemicellulose hinders enzyme accessibility and further bioconversion to fuels and chemicals. Therefore, there is a need to delignify LCB to ease further bioprocessing. The efficiency of delignification, quality and quantity of the desired products, and generation of inhibitors depend upon the type of pretreatment employed. This review summarizes different single and integrated physicochemical pretreatments for delignification. Additionally, conditions required for effective delignification and the advantages and drawbacks of each method were evaluated. Advances in overcoming the recalcitrance of residual lignin to saccharification and the methods to recover lignin after delignification are also discussed. Efficient lignin recovery and valorization strategies provide an avenue for the sustainable lignocellulose biorefinery.
Collapse
Affiliation(s)
- Sumitha Banu Jamaldheen
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Bikram Basak
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Kyeong Keun Oh
- Department of Chemical Engineering, Dankook University, Youngin 16890, Gyeonggi-do, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Tae Hyun Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
65
|
Abstract
Being the major renewable source of bio-aromatics, lignin possesses considerable potential for the chemical industry as raw material. Kraft lignin is a couple product of paper industry with an annual production of 55,000,000 ton/y and is considered the largest share of available lignin. Here we report a facile approach of Kraft lignin depolymerization to defined oligomeric units with yields of up to 70 wt.%. The process implies utilization of an aqueous base in combination with a metal containing catalyst and an alcohol under non-oxidative atmosphere at 300 °C. An advantage of the developed approach is the facile separation of the oligomer product that precipitates from the reaction mixture. In addition, the process proceeds without char formation; both factors make it attractive for industrialization. The suppression of the repolymerization processes that lead to char formation is possible when the combination of metal containing catalyst in the presence of an alcohol is used. It was found that the oligomer units have structural features found in phenol-acetaldehyde resins. These features result from the base catalyzed condensation of lignin fragments with in situ formed aldehydes. Catalytic dehydrogenation of the alcohol provides the latter. This reaction pathway is confirmed by the presence condensation products of Guerbet type reactions.
Collapse
|
66
|
Catalytic Liquefaction of Highly Inert Refining Residue over an Attapulgite-Supported Niobium Catalyst. Catal Letters 2022. [DOI: 10.1007/s10562-021-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
67
|
Guo T, Liu T, He J, Zhang Y. One‐Pot Transformation of Lignin and Lignin Model Compounds into Benzimidazoles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Guo
- Institution State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Tianwei Liu
- Institution State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Jianghua He
- Institution State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Yuetao Zhang
- Institution State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun Jilin 130012 China
| |
Collapse
|
68
|
Cui MY, Wang DK, Li Y, Zhao W, Liang C, Liu X, Fu SY, Wang L, Wei X. Preparation of magnetic silica supported Brönsted acidic ionic liquids for the depolymerization of lignin to aromatic monomers. NEW J CHEM 2022. [DOI: 10.1039/d1nj04777a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lignin, the most abundant renewable resource of aromatics in nature, is recognized as an alternative for fossil-based fuels and chemicals. Herein, we proposed an efficient method to obtain aromatic monomers...
Collapse
|
69
|
Gao W, Wang K, Wu Y, Zhu X, Wu Y, Zhang S, Li B, Huang Y, Zhang S, Zhang H. Catalytic hydrogenolysis of lignin to phenolic monomers over Ru supported N,S-co-doped biochar: The importance of doping atmosphere. Front Chem 2022; 10:1022779. [PMID: 36176895 PMCID: PMC9513433 DOI: 10.3389/fchem.2022.1022779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 02/05/2023] Open
Abstract
Doping of heteroatoms into carbon materials is a popular method to modify their physicochemical structures and has been widely used in the fields of energy conversion and storage. This study aims to investigate the effect of doping atmosphere on the catalytic performance of nitrogen and sulfur co-doped biochar supported Ru in the production of phenolic monomers from lignin hydrogenolysis. The results showed that the catalyst prepared under CO2 atmosphere (Ru@CNS-CO2) was able to produce phenolic monomers from corncob lignin with a yield up to 36.41 wt%, which was significantly higher than that from the run over N2-prepared catalyst (Ru@CNS-N2). The characterization of the catalysts demonstrated that the CNS-CO2 support had a larger specific surface area, richer C=S and C-S groups, and higher oxygen content than CNS-N2, resulting in finer Ru particles and more Ru0 content on the CNS-CO2 support. The Ru@CNS-CO2 catalyst exhibited high activity in hydrogenation and fragmentation of β-O-4 linkages.
Collapse
Affiliation(s)
- Wenran Gao
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ke Wang
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yishuang Wu
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xun Zhu
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong, China
| | - Yinlong Wu
- Hefei Debo Bioenergy Science & Technology Co., Ltd., Hefei, Anhui, China
| | - Shoujun Zhang
- Hefei Debo Bioenergy Science & Technology Co., Ltd., Hefei, Anhui, China
| | - Bin Li
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, China
| | - Yong Huang
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
- *Correspondence: Yong Huang, ; Shu Zhang,
| | - Shu Zhang
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
- *Correspondence: Yong Huang, ; Shu Zhang,
| | - Hong Zhang
- Joint International Research Laboratory of Biomass Energy and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
70
|
Hydrodemethoxylation/Dealkylation on Bifunctional Nanosized Zeolite Beta. Molecules 2021; 26:molecules26247694. [PMID: 34946777 PMCID: PMC8708772 DOI: 10.3390/molecules26247694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Mono-, and bimetallic Ni-, Ru-, and Pt-modified nanosized Beta zeolite catalysts were prepared by the post synthesis method and characterized by powder X-ray diffraction (XRD), nitrogen physisorption, HRTEM microscopy, temperature-programmed reduction (TPR-TGA), ATR FT-IR spectroscopy, and by solid-state MAS-NMR spectroscopy. The presence of nanosized nickel-oxide, ruthenium-oxide, and platinum species was detected on the catalysts. The presence of Brønsted and Lewis acid sites, and incorporation of nickel ions into zeolite lattice was proven by FT-IR of adsorbed pyridine. The structural changes in the catalyst matrix were investigated by solid state NMR spectroscopy. The catalysts were used in a gas-phase hydrodemethoxylation and dealkylation of 2-methoxy-4-propylphenol as a lignin derivative molecule for phenol synthesis.
Collapse
|
71
|
He M, Sun Y, Han B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling Towards Carbon Neutrality. Angew Chem Int Ed Engl 2021; 61:e202112835. [PMID: 34919305 DOI: 10.1002/anie.202112835] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/10/2022]
Abstract
Green carbon science is defined as "Study and optimization of the transformation of carbon containing compounds and the relevant processes involved in the entire carbon cycle from carbon resource processing, carbon energy utilization, and carbon recycling to use carbon resources efficiently and minimize the net CO2 emission." [1] Green carbon science is related closely to carbon neutrality, and the relevant fields have developed quickly in the last decade. In this Minireview, we proposed the concept of carbon energy index, and the recent progresses in petroleum refining, production of liquid fuels, chemicals, and materials using coal, methane, CO2, biomass, and waste plastics are highlighted in combination with green carbon science, and an outlook for these important fields is provided in the final section.
Collapse
Affiliation(s)
- Mingyuan He
- East China Normal University, Department of Chemistry, 200062, Shanghai, CHINA
| | - Yuhan Sun
- Chinese Academy of Sciences, Shanghai Advanced Research Institute, 201203, Shanghai, CHINA
| | - Buxing Han
- Chinese Academy of Sciences, Institute of Chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA
| |
Collapse
|
72
|
Wang Z, Deuss PJ. Catalytic Hydrogenolysis of Lignin: The Influence of Minor Units and Saccharides. CHEMSUSCHEM 2021; 14:5186-5198. [PMID: 34398518 PMCID: PMC9293178 DOI: 10.1002/cssc.202101527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The precise elucidation of native lignin structures plays a vital role for the development of "lignin first" strategies such as reductive catalytic fractionation. The structure of lignin and composition of the starting material has a major impact on the product yield and distribution. Here, the differences in structure of lignin from birch, pine, reed, and walnut shell were investigated by combining detailed analysis of the whole cell wall material, residual enzyme lignin, and milled wood lignin. The results of the 2D heteronuclear single quantum coherence NMR analysis could be correlated to the product from Ru/C-catalyzed hydrogenolysis if monomeric products from ferulate and p-coumaryl and its analogous units were also appropriately considered. Notably, residual polysaccharide constituents seemed to influence the selectivity towards hydroxy-containing monomers. The results reinforced the importance of adequate structural characterization and compositional analysis of the starting materials as well as distinct (dis)advantages of specific types of structural characterization and isolation methods for guiding valorization potential of different biomass feedstocks.
Collapse
Affiliation(s)
- Zhiwen Wang
- Department of Chemical Engineering (ENTEG)University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Peter J. Deuss
- Department of Chemical Engineering (ENTEG)University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
73
|
Lu X, Lagerquist L, Eränen K, Hemming J, Eklund P, Estel L, Leveneur S, Grénman H. Reductive Catalytic Depolymerization of Semi-industrial Wood-Based Lignin. Ind Eng Chem Res 2021; 60:16827-16838. [PMID: 34880549 PMCID: PMC8641393 DOI: 10.1021/acs.iecr.1c03154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Abstract
![]()
The current work
studies the reductive catalytic depolymerization
(RCD) of lignin from a novel semi-industrial process. The aim was
to obtain aromatic mono-, di-, tri-, and tetramers for further valorization.
The substrate and products were characterized by multiple analytical
methods, including high pressure size-exclusion chromatography (HPSEC),
gas chromatography–mass spectrometry, GC-flame ionization detector
(FID), GC-FID/thermal conductivity detector (TCD), and NMR. The RCD
was studied by exploring the influence of different parameters, such
as lignin solubility, reaction time, hydrogen pressure, reaction temperature,
pH, type and loading of the catalyst, as well as type and composition
of the organic/aqueous solvent. The results show that an elevated
temperature, a redox catalyst, and a hydrogen atmosphere are essential
for the depolymerization and stability of the products, while the
reaction medium also plays an important role. The highest obtained
mono- to tetramers yield was 98% and mono- to dimers yield over 85%
in the liquid phase products. The reaction mechanisms influenced the
structure of the aliphatic chain in the monomers, but left the phenolic
structure along with the methoxy groups largely unaltered. The current
work contributes to the development and debottlenecking of the novel
and sustainable overall process, which utilizes efficiently all the
fractions of wood, in line with the principles of green engineering
and chemistry.
Collapse
Affiliation(s)
- Xiaojia Lu
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henriksgatan 2, 20500 Turku, Finland.,Normandie Univ, INSA Rouen, UNIROUEN, LSPC, EA4704, 76000 Rouen, France
| | - Lucas Lagerquist
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henriksgatan 2, 20500 Turku, Finland
| | - Kari Eränen
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henriksgatan 2, 20500 Turku, Finland
| | - Jarl Hemming
- Laboratory of Natural Materials Technology, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henriksgatan 2, 20500 Turku, Finland
| | - Patrik Eklund
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henriksgatan 2, 20500 Turku, Finland
| | - Lionel Estel
- Normandie Univ, INSA Rouen, UNIROUEN, LSPC, EA4704, 76000 Rouen, France
| | - Sébastien Leveneur
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henriksgatan 2, 20500 Turku, Finland.,Normandie Univ, INSA Rouen, UNIROUEN, LSPC, EA4704, 76000 Rouen, France
| | - Henrik Grénman
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henriksgatan 2, 20500 Turku, Finland
| |
Collapse
|
74
|
Fractionation of Birch Wood by Integrating Alkaline-Acid Treatments and Hydrogenation in Ethanol over a Bifunctional Ruthenium Catalyst. Catalysts 2021. [DOI: 10.3390/catal11111362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
For the first time, the fractionation of birch wood into microcrystalline cellulose, xylose and methoxyphenols is suggested based on the integration of alkali-acid pretreatments and hydrogenation in ethanol over a bifunctional Ru/C catalyst. It is established that removal of hemicelluloses during pretreatments of birch wood influences the yields of the liquid, gaseous and solid products of the non-catalytic and catalytic hydrogenation of pretreated samples in ethanol at 225 °C. The bifunctional Ru/carbon catalyst affects in different ways the conversion and yields of products of hydrogenation of the initial and acid- and alkali-pretreated birch wood. The most noticeable influence is characteristic of the hydrogenation of the acid-pretreated wood, where in contrast to the non-catalytic hydrogenation, the wood conversion and the yields of liquid products increase but the yields of the solid and gaseous products decrease. GC-MS, gel permeation chromatography and elemental analysis were used for characterization of the liquid product composition. The molecular mass distribution of the liquid products of hydrogenation of the initial and pretreated wood shifts towards the low-molecular range in the presence of the catalyst. From the GC-MS data, the contents of monomer compounds, predominantly 4-propylsyringol and 4-propanolsyringol, increase in the presence of the ruthenium catalyst. The solid products of catalytic hydrogenation of the pretreated wood contain up to 95 wt% of cellulose with the structure, similar to that of microcrystalline cellulose.
Collapse
|
75
|
Groß J, Grundke C, Rocker J, Arduengo AJ, Opatz T. Xylochemicals and where to find them. Chem Commun (Camb) 2021; 57:9979-9994. [PMID: 34522925 DOI: 10.1039/d1cc03512f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This article surveys a range of important platform and high value chemicals that may be considered primary and secondary 'xylochemicals'. A summary of identified xylochemical substances and their natural sources is provided in tabular form. In detail, this review is meant to provide useful assistance for the consideration of potential synthetic strategies using xylochemicals, new methodologies and the development of potentially sustainable, xylochemistry-based processes. It should support the transition from petroleum-based approaches and help to move towards more sustainability within the synthetic community. This feasible paradigm shift is demonstrated with the total synthesis of natural products and active pharmaceutical ingredients as well as the preparation of organic molecules suitable for potential industrial applications.
Collapse
Affiliation(s)
- Jonathan Groß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Caroline Grundke
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Johannes Rocker
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Anthony J Arduengo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA.
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
76
|
Subbotina E, Rukkijakan T, Marquez-Medina MD, Yu X, Johnsson M, Samec JSM. Oxidative cleavage of C-C bonds in lignin. Nat Chem 2021; 13:1118-1125. [PMID: 34556848 DOI: 10.1038/s41557-021-00783-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 08/04/2021] [Indexed: 11/09/2022]
Abstract
Lignin is an aromatic polymer that constitutes up to 30 wt% of woody biomass and is considered the largest source of renewable aromatics. Valorization of the lignin stream is pivotal for making biorefining sustainable. Monomeric units in lignin are bound via C-O and C-C bonds. The majority of existing methods for the production of valuable compounds from lignin are based on the depolymerization of lignin via cleavage of relatively labile C-O bonds within lignin structure, which leads to yields of only 36-40 wt%. The remaining fraction (60 wt%) is a complex mixture of high-molecular-weight lignin, generally left unvalorized. Here we present a method to produce additional valuable monomers from the high-molecular-weight lignin fraction through oxidative C-C bond cleavage. This oxidation reaction proceeds with a high selectivity to give 2,6-dimethoxybenzoquinone (DMBQ) from high-molecular-weight lignin in 18 wt% yield, thus increasing the yield of monomers by 32%. This is an important step to make biorefining competitive with petroleum-based refineries.
Collapse
Affiliation(s)
- Elena Subbotina
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Thanya Rukkijakan
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Xiaowen Yu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Mats Johnsson
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Joseph S M Samec
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
77
|
Luo H, Weeda EP, Alherech M, Anson CW, Karlen SD, Cui Y, Foster CE, Stahl SS. Oxidative Catalytic Fractionation of Lignocellulosic Biomass under Non-alkaline Conditions. J Am Chem Soc 2021; 143:15462-15470. [PMID: 34498845 PMCID: PMC8487257 DOI: 10.1021/jacs.1c08635] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biomass pretreatment methods are commonly used to isolate carbohydrates from biomass, but they often lead to modification, degradation, and/or low yields of lignin. Catalytic fractionation approaches provide a possible solution to these challenges by separating the polymeric sugar and lignin fractions in the presence of a catalyst that promotes cleavage of the lignin into aromatic monomers. Here, we demonstrate an oxidative fractionation method conducted in the presence of a heterogeneous non-precious-metal Co-N-C catalyst and O2 in acetone as the solvent. The process affords a 15 wt% yield of phenolic products bearing aldehydes (vanillin, syringaldehyde) and carboxylic acids (p-hydroxybenzoic acid, vanillic acid, syringic acid), complementing the alkylated phenols obtained from existing reductive catalytic fractionation methods. The oxygenated aromatics derived from this process have appealing features for use in polymer synthesis and/or biological funneling to value-added products, and the non-alkaline conditions associated with this process support preservation of the cellulose, which remains insoluble at reaction conditions and is recovered as a solid.
Collapse
Affiliation(s)
- Hao Luo
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
| | - Eric P. Weeda
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| | - Manar Alherech
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| | - Colin W. Anson
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
| | - Steven D. Karlen
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Yanbin Cui
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| | - Cliff E. Foster
- D.O.E. Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue Madison, WI, 53706, United States
- D.O.E. Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, Wisconsin 53726, United States
| |
Collapse
|
78
|
Liu Y, Deak N, Wang Z, Yu H, Hameleers L, Jurak E, Deuss PJ, Barta K. Tunable and functional deep eutectic solvents for lignocellulose valorization. Nat Commun 2021; 12:5424. [PMID: 34521828 PMCID: PMC8440657 DOI: 10.1038/s41467-021-25117-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
Stabilization of reactive intermediates is an enabling concept in biomass fractionation and depolymerization. Deep eutectic solvents (DES) are intriguing green reaction media for biomass processing; however undesired lignin condensation is a typical drawback for most acid-based DES fractionation processes. Here we describe ternary DES systems composed of choline chloride and oxalic acid, additionally incorporating ethylene glycol (or other diols) that provide the desired 'stabilization' function for efficient lignocellulose fractionation, preserving the quality of all lignocellulose constituents. The obtained ethylene-glycol protected lignin displays high β-O-4 content (up to 53 per 100 aromatic units) and can be readily depolymerized to distinct monophenolic products. The cellulose residues, free from condensed lignin particles, deliver up to 95.9 ± 2.12% glucose yield upon enzymatic digestion. The DES can be recovered with high yield and purity and re-used with good efficiency. Notably, we have shown that the reactivity of the β-O-4 linkage in model compounds can be steered towards either cleavage or stabilization, depending on DES composition, demonstrating the advantage of the modular DES composition.
Collapse
Affiliation(s)
- Yongzhuang Liu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Noemi Deak
- Karl-Franzens University of Graz, Institute of Chemistry, Graz, Austria
| | - Zhiwen Wang
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, The Netherlands
| | - Haipeng Yu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, P. R. China
| | - Lisanne Hameleers
- Department of Bioproduct Engineering (ENTEG), University of Groningen, Groningen, The Netherlands
| | - Edita Jurak
- Department of Bioproduct Engineering (ENTEG), University of Groningen, Groningen, The Netherlands
| | - Peter J Deuss
- Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, The Netherlands
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
- Karl-Franzens University of Graz, Institute of Chemistry, Graz, Austria.
| |
Collapse
|
79
|
Zhang B, Guo T, Liu Y, Kühn FE, Wang C, Zhao ZK, Xiao J, Li C, Zhang T. Sustainable Production of Benzylamines from Lignin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Tenglong Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Yuxuan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Fritz E. Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching bei München Germany
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 China
| | - Zongbao K. Zhao
- Division of Biotechnology Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
80
|
Zhang B, Guo T, Liu Y, Kühn FE, Wang C, Zhao ZK, Xiao J, Li C, Zhang T. Sustainable Production of Benzylamines from Lignin. Angew Chem Int Ed Engl 2021; 60:20666-20671. [PMID: 34297874 DOI: 10.1002/anie.202105973] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/28/2022]
Abstract
Catalytic conversion of lignin into heteroatom functionalized chemicals is of great importance to bring the biorefinery concept into reality. Herein, a new strategy was designed for direct transformation of lignin β-O-4 model compounds into benzylamines and phenols in moderate to excellent yields in the presence of organic amines. The transformation involves dehydrogenation of Cα -OH, hydrogenolysis of the Cβ -O bond and reductive amination in the presence of Pd/C catalyst. Experimental data suggest that the dehydrogenation reaction proceeds over the other two reactions and secondary amines serve as both reducing agents and amine sources in the transformation. Moreover, the concept of "lignin to benzylamines" was demonstrated by a two-step process. This work represents a first example of synthesis of benzylamines from lignin, thus providing a new opportunity for the sustainable synthesis of benzylamines from renewable biomass, and expanding the products pool of biomass conversion to meet future biorefinery demands.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tenglong Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuxuan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fritz E Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching bei München, Germany
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
81
|
Liang J, Wang M, Zhao Y, Yan W, Si X, Yu G, Cao J, Wei X. Nano WO
3
‐Catalyzed One‐Pot Process for Mild Oxidative Depolymerization of Lignin and its Model Compounds. ChemCatChem 2021. [DOI: 10.1002/cctc.202100670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jing Liang
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Meng‐Xiao Wang
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Yun‐Peng Zhao
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Wei‐Wei Yan
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Xing‐Gang Si
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Guo Yu
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Jing‐Pei Cao
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| | - Xian‐Yong Wei
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education China University of Mining & Technology Xuzhou 221116, Jiangsu P. R. China
| |
Collapse
|
82
|
Bai D, Chen J, Zheng B, Li X, Chang J. Catalytic [3+3] Annulation of
β‐Ketoethers
and Cyclopropenones
via
C(sp
3
)—O/C—C Bond Cleavage under
Transition‐Metal
Free Conditions. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dachang Bai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Junyan Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Bingbing Zheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Xueyan Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
83
|
Arturi K, Rohrbach T, Vogel F, Bjelić S. High Yields of Aromatic Monomers from Acidolytic Oxidation of Kraft Lignin in a Biphasic System. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katarzyna Arturi
- Energy and Environment Division, Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Thomas Rohrbach
- Energy and Environment Division, Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Frédéric Vogel
- Energy and Environment Division, Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
- Institute of Bioenergy and Resource Efficiency, University of Applied Sciences Northwestern Switzerland (FHNW), Klosterzelgstrasse 2, 5210 Windisch, Switzerland
| | - Saša Bjelić
- Energy and Environment Division, Laboratory for Bioenergy and Catalysis, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| |
Collapse
|
84
|
Abstract
Benzene is a widely used commodity chemical, which is currently produced from fossil resources. Lignin, a waste from lignocellulosic biomass industry, is the most abundant renewable source of benzene ring in nature. Efficient production of benzene from lignin, which requires total transformation of Csp2-Csp3/Csp2-O into C-H bonds without side hydrogenation, is of great importance, but has not been realized. Here, we report that high-silica HY zeolite supported RuW alloy catalyst enables in situ refining of lignin, exclusively to benzene via coupling Bronsted acid catalyzed transformation of the Csp2-Csp3 bonds on the local structure of lignin molecule and RuW catalyzed hydrogenolysis of the Csp2-O bonds using the locally abstracted hydrogen from lignin molecule, affording a benzene yield of 18.8% on lignin weight basis in water system. The reaction mechanism is elucidated in detail by combination of control experiments and density functional theory calculations. The high-performance protocol can be readily scaled up to produce 8.5 g of benzene product from 50.0 g lignin without any saturation byproducts. This work opens the way to produce benzene using lignin as the feedstock efficiently. Efficient production of benzene from lignin is attractive and of great importance, but has not been realized. Here, the authors develop a strategy to transform lignin into benzene over a RuW/zeolite catalyst in water, and the yield of benzene can be as high as 18.8% on lignin weight basis.
Collapse
|
85
|
Ma C, Kim TH, Liu K, Ma MG, Choi SE, Si C. Multifunctional Lignin-Based Composite Materials for Emerging Applications. Front Bioeng Biotechnol 2021; 9:708976. [PMID: 34277593 PMCID: PMC8284057 DOI: 10.3389/fbioe.2021.708976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Lignin exhibited numerous advantages such as plentiful functional groups, good biocompatibility, low toxicity, and high carbon content, which can be transformed into composites and carbon materials. Lignin-based materials are usually environmentally friendly and low cost, and are widely used in energy storage, environment, electronic devices, and other fields. In this review article, the pretreatment separation methods like hydrothermal process are illustrated briefly, and the properties and categories of technical lignin are introduced. Then, the latest progress of lignin-based composites and lignin-derived carbon materials is summarized. Finally, the current challenges and future developments were suggested based on our knowledge. It is expected that this review paper favored the applications of composites and lignin-derived carbon materials in the future.
Collapse
Affiliation(s)
- Chang Ma
- Research Center of Biomass Clean Utilization, Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
- Material Science and Engineering College, Northeast Forestry University, Harbin, China
| | - Tae-Hee Kim
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Ming-Guo Ma
- Research Center of Biomass Clean Utilization, Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, China
| | - Sun-Eun Choi
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
86
|
Saito K, Makimura Y, Nishimura H, Watanabe T. Identifying the Interunit Linkages Connecting Free Phenolic Terminal Units in Lignin. CHEMSUSCHEM 2021; 14:2554-2563. [PMID: 33860629 DOI: 10.1002/cssc.202100180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Understanding the linkages connecting phenolic terminal and nonphenolic units in complex branched polymer, lignin, is crucial to facilitate efficient and selective valorization of lignin. In this study, the interunit linkages connecting phenolic units are identified by premethylation of the phenolic hydroxy groups and thioacidolysis-desulfuration. Interestingly, the phenolic units are found to be connected by only β-5, β-1, and β-O-4 linkages. The phenolic unit abundance is approximately 20 %. The result reveals that lignin polymerization terminates with the three linkages by a coupling between a monomer and the polymer terminus, which is reasonably explained by the radical coupling mechanism. Unexpectedly, 5-5, 4-O-5, and β-β linkages connecting the phenolic units are not detected, indicating that these units are further elongated to form nonphenolic units. This study reveals the linkage types connecting phenolic and nonphenolic units and their elongation mechanisms.
Collapse
Affiliation(s)
- Kaori Saito
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 610-0011, Japan
| | - Yutaka Makimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 610-0011, Japan
| | - Hiroshi Nishimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 610-0011, Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 610-0011, Japan
| |
Collapse
|
87
|
Popova M, Szegedi Á, Oykova M, Lazarova H, Koseva N, Mihályi MR, Shestakova P. Selective Production of Phenol on Bifunctional, Hierarchical ZSM-5 Zeolites. Molecules 2021; 26:molecules26123576. [PMID: 34208314 PMCID: PMC8231192 DOI: 10.3390/molecules26123576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Mono- and bimetallic Ni-, Ru- and Pt-modified hierarchical ZSM-5 materials were prepared by impregnation technique and characterized by X-ray diffraction (XRD), N2 physisorption, temperature-programmed reduction (TPR-TGA), ATR-FTIR and solid state NMR spectroscopy. Formation of finely dispersed nickel, ruthenium and platinum species was observed on the bimetallic catalysts. It was found that the peculiarity of the used zeolite structure and the modification procedure determine the type of formed metal oxides and their dispersion and reducibility. The samples' acidity was studied via FTIR spectroscopy of adsorbed pyridine. The changes in the zeolite structure were studied via solid-state NMR spectroscopy. The catalysts were investigated in a gas-phase hydrodeoxygenation, transalkylation and dealkylation reaction of model lignin derivative molecules for phenol production.
Collapse
Affiliation(s)
- Margarita Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.O.); (H.L.); (P.S.)
- Correspondence: (M.P.); (Á.S.)
| | - Ágnes Szegedi
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok krt.2., 1117 Budapest, Hungary;
- Correspondence: (M.P.); (Á.S.)
| | - Manuela Oykova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.O.); (H.L.); (P.S.)
| | - Hristina Lazarova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.O.); (H.L.); (P.S.)
| | - Neli Koseva
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Magdolna R. Mihályi
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok krt.2., 1117 Budapest, Hungary;
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.O.); (H.L.); (P.S.)
| |
Collapse
|
88
|
Song W, Song M, Jiang X, Yi X, Lai W. Hydrolytic cleavage of lignin derived C-O bonds by acid/base catalysis in water. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01990-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
89
|
Zhang J, Su Z, Wu Z, Wang P, Xiao FS. Basic carrier promoted Pt-catalyzed hydrogenolysis of alkaline lignin. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
90
|
Yang See J, Song S, Xiao Y, Trang Pham T, Zhao Y, Lapkin A, Yan N. Transformation of Corn Lignin into Sun Cream Ingredients. CHEMSUSCHEM 2021; 14:1586-1594. [PMID: 33528880 DOI: 10.1002/cssc.202002739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Production of value-added chemicals from lignocellulose is one of the key strands of the emerging bio-economy. A synthetic approach has been developed to produce p-methoxy coumarate esters from waste corn stover and corn bran, and further transform these compounds into consumer products. In the first step, p-coumaric acid (pCA) and ferulic acid (FA) are released through mild alkaline hydrolysis of corn waste, in more than 20 mg g-1 yield (10 wt % based on lignin content). Subsequently, heterogeneous solid acids catalyze the esterification of pCA with various alcohols. Amberlite IR-15 shows the best catalytic performance, owing to its optimal acid density, large surface area, and suitable pore diameter. The solid acid catalyst can be recycled with slight activity loss and regenerated by acid washing and vacuum drying. Finally, methylation of p-coumarate ester to give target product p-methoxy coumarate esters is carried out by using commercially available and low-cost inorganic bases (e. g., K2 CO3 ). Base-catalyzed transesterification of methyl p-methoxy coumarate to p-methoxy coumarate esters is also investigated.
Collapse
Affiliation(s)
- Jie Yang See
- Cambridge Centre for Advanced Research and Education in Singapore, CARES Ltd., 1 CREATE Way, CREATE Tower #05-05, Singapore, 138602, Singapore
| | - Song Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yiying Xiao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Thuy Trang Pham
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Alexei Lapkin
- Cambridge Centre for Advanced Research and Education in Singapore, CARES Ltd., 1 CREATE Way, CREATE Tower #05-05, Singapore, 138602, Singapore
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
91
|
De Santi A, Monti S, Barcaro G, Zhang Z, Barta K, Deuss PJ. New Mechanistic Insights into the Lignin β-O-4 Linkage Acidolysis with Ethylene Glycol Stabilization Aided by Multilevel Computational Chemistry. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:2388-2399. [PMID: 33585085 PMCID: PMC7874265 DOI: 10.1021/acssuschemeng.0c08901] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Indexed: 06/01/2023]
Abstract
Acidolysis in conjunction with stabilization of reactive intermediates has emerged as one of the most powerful methods of lignin depolymerization that leads to high aromatic monomer yields. In particular, stabilization of reactive aldehydes using ethylene glycol results in the selective formation of the corresponding cyclic acetals (1,3-dioxolane derivatives) from model compounds, lignin, and even from softwood lignocellulose. Given the high practical utility of this method for future biorefineries, a deeper understanding of the method is desired. Here, we aim to elucidate key mechanistic questions utilizing a combination of experimental and multilevel computational approaches. The multiscale computational protocol used, based on ReaxFF molecular dynamics, represents a realistic scenario, where a typical experimental setup can be reproduced confidently given the explicit molecules of the solute, catalyst, and reagent. The nudged elastic band (NEB) approach allowed us to characterize the key intermolecular interactions involved in the reaction paths leading to crucial intermediates and products. The high level of detail obtained clearly revealed for the first time the unique role of sulfuric acid as a proton donor and acceptor in lignin β-O-4 acidolysis as well as the reaction pathways for ethylene glycol stabilization, and the difference in reactivity between compounds with different methoxy substituents.
Collapse
Affiliation(s)
- Alessandra De Santi
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Susanna Monti
- CNR-ICCOM−
Institute of Chemistry of Organometallic Compounds, via Moruzzi 1, 56124 Pisa, Italy
| | - Giovanni Barcaro
- CNR-IPCF−Institute
for Chemical and Physical Processes, via Moruzzi 1, 56124 Pisa, Italy
| | - Zhenlei Zhang
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Katalin Barta
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| | - Peter J. Deuss
- Department
of Chemical Engineering (ENTEG), University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
92
|
Weidener D, Leitner W, Domínguez de María P, Klose H, Grande PM. Lignocellulose Fractionation Using Recyclable Phosphoric Acid: Lignin, Cellulose, and Furfural Production. CHEMSUSCHEM 2021; 14:909-916. [PMID: 33244874 PMCID: PMC7898823 DOI: 10.1002/cssc.202002383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/25/2020] [Indexed: 05/05/2023]
Abstract
The conversion of lignocellulose into its building blocks and their further transformation into valuable platform chemicals (e. g., furfural) are key technologies to move towards the use of renewable resources. This paper explored the disentanglement of lignocellulose into hemicellulose-derived sugars, cellulose, and lignin in a biphasic solvent system (water/2-methyltetrahydrofuran) using phosphoric acid as recyclable catalyst. Integrated with the biomass fractionation, in a second step hemicellulose-derived sugars (mainly xylose) were converted to furfural, which was in situ extracted into 2-methyltetrahydrofuran with high selectivity (70 %) and yield (56 wt %). To further increase the economic feasibility of the process, a downstream and recycling strategy enabled recovery of phosphoric acid without loss of process efficiency over four consecutive cycles. This outlines a more efficient and sustainable use of phosphoric acid as catalyst, as its inherent costs can be significantly lowered.
Collapse
Affiliation(s)
- Dennis Weidener
- Institute of Bio- and Geosciences, Plant Sciences Forschungszentrum Jülich GmbHWilhelm-Johnen-Straße52428JülichGermany
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringer Weg 152074AachenGermany
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum JülichWilhelm-Johnen-Straße52428JülichGermany
| | - Walter Leitner
- Institute of Technical and Macromolecular Chemistry (ITMC)RWTH Aachen UniversityWorringer Weg 152074AachenGermany
- Max-Planck-Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an derRuhrGermany
| | | | - Holger Klose
- Institute of Bio- and Geosciences, Plant Sciences Forschungszentrum Jülich GmbHWilhelm-Johnen-Straße52428JülichGermany
- Institute for Biology IRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum JülichWilhelm-Johnen-Straße52428JülichGermany
| | - Philipp M. Grande
- Institute of Bio- and Geosciences, Plant Sciences Forschungszentrum Jülich GmbHWilhelm-Johnen-Straße52428JülichGermany
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum JülichWilhelm-Johnen-Straße52428JülichGermany
| |
Collapse
|
93
|
Lee N, Kim YT, Lee J. Recent Advances in Renewable Polymer Production from Lignin-Derived Aldehydes. Polymers (Basel) 2021; 13:364. [PMID: 33498847 PMCID: PMC7865860 DOI: 10.3390/polym13030364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/25/2022] Open
Abstract
Lignin directly derived from lignocellulosic biomass has been named a promising source of platform chemicals for the production of bio-based polymers. This review discusses potentially relevant routes to produce renewable aromatic aldehydes (e.g., syringaldehyde and vanillin) from lignin feedstocks (pre-isolated lignin or lignocellulose) that are used to synthesize a range of bio-based polymers. To do this, the processes to make aromatic aldehydes from lignin with their highest available yields are first presented. After that, the routes from such aldehydes to different polymers are explored. Challenges and perspectives of the production the lignin-derived renewable chemicals and polymers are also highlighted.
Collapse
Affiliation(s)
- Nahyeon Lee
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Suwon 16499, Korea;
| | - Yong Tae Kim
- C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Korea;
| | - Jechan Lee
- Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Suwon 16499, Korea;
- Department of Environmental and Safety Engineering, Ajou University, 206 Worldcup-ro, Suwon 16499, Korea
| |
Collapse
|
94
|
Cui X, van Muyden AP, Dyson PJ. Utility of Core-Shell Nanomaterials in the Catalytic Transformations of Renewable Substrates. Chemistry 2021; 27:12-19. [PMID: 33107649 DOI: 10.1002/chem.202002597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/29/2020] [Indexed: 11/09/2022]
Abstract
In recent years, core-shell nano-catalysts have received increasing attention due to their tunable properties and broad applications in catalysis. Control of the two components of these materials allows their catalytic properties to be tuned to various sustainable processes in synthetic and energy-related applications. This Concept article describes recent state-of-the-art core-shell materials and their application as heterogeneous catalysts for a range of sustainable catalytic transformations, focusing on two important classes of renewable substrates, CO2 and biomass. In the discussion, emphasis is directed to the role of the constituent parts of the core-shell structure and how they can be manipulated to enhance activity.
Collapse
Affiliation(s)
- Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, P. R. China
| | - Antoine P van Muyden
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
95
|
Hong-Xia F, Peng C, Chen Q. Behavior characterization of lignosulfonate depolymerization products under acid-catalyzed conditions using gas chromatography–mass spectrometry. Chromatographia 2021. [DOI: 10.1007/s10337-020-03988-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
96
|
Bao H, Sagues WJ, Wang Y, Peng W, Zhang L, Yang S, Xiao D, Tong Z. Depolymerization of Lignin into Monophenolics by Ferrous/Persulfate Reagent under Mild Conditions. CHEMSUSCHEM 2020; 13:6582-6593. [PMID: 33078554 DOI: 10.1002/cssc.202002240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/18/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to use a persulfate together with transition metal ions as the reagent to effectively depolymerize lignin into monophenolic compounds under mild conditions (ambient pressure, temperature <100 °C). The Box-Behnken experimental design in combination with the response surface methodology was applied to obtain optimized reaction conditions. The results showed that this reagent could depolymerize up to 99 % of lignin dimers to mainly veratraldehyde. This reaction also successfully depolymerized industrial lignins with a high yield of phenolic oils and monophenolic compounds. Quantum chemistry calculations using the density functional theory level indicated that the persulfate free radical attacks Cβ to break the β-O-4 bond of lignin through a five-membered ring mechanism. This mechanism using persulfate free radicals has a lower activation barrier than that using hydroxyl radicals. Gel permeation chromatography and 2D-NMR spectroscopy demonstrated the effective cleavage of the β-O-4 bonds of lignin after depolymerization.
Collapse
Affiliation(s)
- Hanxi Bao
- Agricultural and Biological Engineering, University of Florida, 1741 Museum Rd, Gainesville, FL, 32603, USA
| | - William J Sagues
- Department of Forest Biomaterials, North Carolina State University, 2820, Faucette Dr, Raleigh, NC 27606, USA
| | - Yigui Wang
- Center for Integrative Materials Discovery Department of Chemistry and Chemical Engineering, University of New Haven, 300 Boston Post Rd, West Haven, CT, 06516, USA
| | - Wenbo Peng
- Agricultural and Biological Engineering, University of Florida, 1741 Museum Rd, Gainesville, FL, 32603, USA
| | - Lin Zhang
- Agricultural and Biological Engineering, University of Florida, 1741 Museum Rd, Gainesville, FL, 32603, USA
| | - Shunchang Yang
- Agricultural and Biological Engineering, University of Florida, 1741 Museum Rd, Gainesville, FL, 32603, USA
| | - Dequan Xiao
- Center for Integrative Materials Discovery Department of Chemistry and Chemical Engineering, University of New Haven, 300 Boston Post Rd, West Haven, CT, 06516, USA
| | - Zhaohui Tong
- Agricultural and Biological Engineering, University of Florida, 1741 Museum Rd, Gainesville, FL, 32603, USA
| |
Collapse
|
97
|
Li L, Dong L, Li D, Guo Y, Liu X, Wang Y. Hydrogen-Free Production of 4-Alkylphenols from Lignin via Self-Reforming-Driven Depolymerization and Hydrogenolysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03170] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lingxiao Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lin Dong
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Didi Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
98
|
Hassanpour M, Abbasabadi M, Moghaddam L, Sun FF, Gebbie L, Te'o VSJ, O'Hara IM, Zhang Z. Mild fractionation of sugarcane bagasse into fermentable sugars and β-O-4 linkage-rich lignin based on acid-catalysed crude glycerol pretreatment. BIORESOURCE TECHNOLOGY 2020; 318:124059. [PMID: 32911367 DOI: 10.1016/j.biortech.2020.124059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Acid-catalysed crude glycerol (ACG) pretreatment was carried out at 110 °C and 130 °C for mild fractionation of sugarcane bagasse into fermentable sugars and high-quality lignin. ACG pretreatment at 110 °C led to sugar yields of 71%-74%, comparable to those with acid-catalysed reagent-grade glycerol (AG). ACG pretreatment removed more lignin (53%-75%) than AG pretreatment (38%-49%), likely due to the presence of organic impurities in ACG. Hence, 28% more lignin was recovered from ACG pretreatment hydrolysate than with the AG pretreatment. NMR analysis revealed that recovered lignin was modified by glycerol through etherification of β-aryl ethers and esterification of hydroxycinnamic acids, which prevented lignin condensation and led to the generation of β-O-4 linkage-rich lignin at mild conditions (110 °C for 3 h and 5 h). This study suggests that crude glycerol is a suitable low-cost solvent for mild fractionation of lignocellulosic biomass into fermentable sugars and high-quality lignin for value-adding applications.
Collapse
Affiliation(s)
- Morteza Hassanpour
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Mahsa Abbasabadi
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Biology & Environmental Science, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Lalehvash Moghaddam
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Fubao Fuelbiol Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Leigh Gebbie
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Biology & Environmental Science, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Valentino Setoa Junior Te'o
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Biology & Environmental Science, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Ian M O'Hara
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia.
| |
Collapse
|
99
|
Dou X, Li W, Zhu C, Jiang X, Chang HM, Jameel H. Cleavage of aryl-ether bonds in lignin model compounds using a Co-Zn-beta catalyst. RSC Adv 2020; 10:43599-43606. [PMID: 35519679 PMCID: PMC9058404 DOI: 10.1039/d0ra08121c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Efficient cleavage of aryl-ether linkages is a key strategy for generating aromatic chemicals and fuels from lignin. Currently, a popular method to depolymerize native/technical lignin employs a combination of Lewis acid and hydrogenation metal. However, a clear mechanistic understanding of the process is lacking. Thus, a more thorough understanding of the mechanism of lignin depolymerization in this system is essential. Herein, we propose a detailed mechanistic study conducted with lignin model compounds (LMC) via a synergistic Co-Zn/Off-Al H-beta catalyst that mirrors the hydrogenolysis process of lignin. The results suggest that the main reaction paths for the phenolic dimers exhibiting α-O-4 and β-O-4 ether linkages are the cleavage of aryl-ether linkages. Particularly, the conversion was readily completed using a Co-Zn/Off-Al H-beta catalyst, but 40% of α-O-4 was converted and β-O-4 did not react in the absence of a catalyst under the same conditions. In addition, it was found that the presence of hydroxyl groups on the side chain, commonly found in native lignin, greatly promotes the cleavage of aryl-ether linkages activated by Zn Lewis acid, which was attributed to the adsorption between Zn and the hydroxyl group. Followed by the cobalt catalyzed hydrogenation reaction, the phenolic dimers are degraded into monomers that maintain aromaticity.
Collapse
Affiliation(s)
- Xiaomeng Dou
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China Hefei 230026 PR China +86-551-63600786
| | - Wenzhi Li
- Laboratory of Basic Research in Biomass Conversion and Utilization, University of Science and Technology of China Hefei 230026 PR China +86-551-63600786
| | - Chaofeng Zhu
- Hefei National Laboratory for Physics Science at Microscale, School of Chemistry and Materials Science, University of Science and Technology of China Hefei 230026 PR China
| | - Xiao Jiang
- Department of Forest Biomaterials, North Carolina State University Raleigh NC 27695-8005 USA
| | - Hou-Min Chang
- Department of Forest Biomaterials, North Carolina State University Raleigh NC 27695-8005 USA
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University Raleigh NC 27695-8005 USA
| |
Collapse
|
100
|
Muldoon JA, Harvey BG. Bio-Based Cycloalkanes: The Missing Link to High-Performance Sustainable Jet Fuels. CHEMSUSCHEM 2020; 13:5777-5807. [PMID: 32810345 DOI: 10.1002/cssc.202001641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/14/2020] [Indexed: 05/12/2023]
Abstract
The development of sustainable energy solutions that reduce global carbon emissions, while maintaining high living standards, is one of the grand challenges of the current century. Transportation fuels are critical to economic development, globalization, and the advancement of society. Although ground vehicles and small aircraft are beginning a slow transition toward electric propulsion with energy sourced from solar radiation or wind, the extreme power requirements of jet aircraft require a more concentrated source of energy that is conveniently provided by liquid hydrocarbon fuels. This Review describes recent efforts to develop efficient routes for the conversion of crude biomass sources (e. g., lignocellulose) to cycloalkanes. These cycloalkanes impart advantageous properties to jet fuels, including increased density, higher volumetric heat of combustion, and enhanced operability. The combination of bio-based cycloalkanes and synthetic paraffinic kerosenes allows for the preparation of 100 % bio-based fuels that can outperform conventional petroleum-based fuels. In this Review methods are described that convert biomass-derived small molecules, including furfural, furfuryl alcohol, 5-hydroxymethylfurfural, cyclic ketones, phenolics, acyclic ketones, cyclic alcohols, furans, esters, and alkenes to high-density cycloalkanes. In addition to describing the chemical transformations and catalysts that have been developed to efficiently produce various cycloalkanes, this Review includes summaries of key fuel properties, which highlight the ability to generate fuels with customized performance metrics. This work is intended to inspire other researchers to study the conversion of sustainable feedstocks to full-performance aviation fuels. An acceleration of this research is critical to reducing the carbon footprint of commercial and military aviation on a timescale that will help blunt the impacts of global warming.
Collapse
Affiliation(s)
- Jake A Muldoon
- US NAVY, NAWCWD, Research Department, Chemistry Branch, China Lake, California, 93555, USA
| | - Benjamin G Harvey
- US NAVY, NAWCWD, Research Department, Chemistry Branch, China Lake, California, 93555, USA
| |
Collapse
|