51
|
Wang C, Zhang Z, Zhu Y, Yang C, Wu J, Hu W. 2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Optical-Electrical-Magnetic Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102290. [PMID: 35052010 DOI: 10.1002/adma.202102290] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs), an emerging class of organic crystalline polymers with highly oriented structures and permanent porosity, can adopt 2D or 3D architectures depending on the different topological diagrams of the monomers. Notably, 2D COFs have particularly gained much attention due to the extraordinary merits of their extended in-plane π-conjugation and topologically ordered columnar π-arrays. These properties together with high crystallinity, large surface area, and tunable porosity distinguish 2D COFs as an ideal candidate for the fabrication of functional materials. Herein, this review surveys the recent research advances in 2D COFs with special emphasis on the preparation of 2D COF powders, single crystals, and thin films, as well as their advanced optical, electrical, and magnetic functionalities. Some challenging issues and potential research outlook for 2D COFs are also provided for promoting their development in terms of structure, synthesis, and functionalities.
Collapse
Affiliation(s)
- Congyong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yating Zhu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chenhuai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
52
|
Traxler M, Gisbertz S, Pachfule P, Schmidt J, Roeser J, Reischauer S, Rabeah J, Pieber B, Thomas A. Acridine‐Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic C−N Cross‐Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael Traxler
- Department of Chemistry/Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| | - Sebastian Gisbertz
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Pradip Pachfule
- Department of Chemistry/Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
- Department of Chemical, Biological & Macro-Molecular Sciences S. N. Bose National Centre for Basic Sciences Kolkata 700106 India
| | - Johannes Schmidt
- Department of Chemistry/Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| | - Jérôme Roeser
- Department of Chemistry/Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| | - Susanne Reischauer
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Jabor Rabeah
- Leibniz Institute for Catalysis (LIKAT Rostock) Universität Rostock 18059 Rostock Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Arne Thomas
- Department of Chemistry/Functional Materials Technische Universität Berlin Hardenbergstraße 40 10623 Berlin Germany
| |
Collapse
|
53
|
Feng T, Streater D, Sun B, Duisenova K, Wang D, Liu Y, Huang J, Zhang J. Tuning Photoexcited Charge Transfer in Imine-Linked Two-Dimensional Covalent Organic Frameworks. J Phys Chem Lett 2022; 13:1398-1405. [PMID: 35119279 DOI: 10.1021/acs.jpclett.1c04163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The generation of a long-lived charge-separated state in versatile π-conjugated two-dimensional covalent organic frameworks (2D COFs), a process essential to extending their great potentials in advanced semiconducting applications, is yet fully elucidated. Herein, we report a systematic investigation of the photophysical properties of three highly crystalline imine-linked 2D COFs using steady-state and transient absorption spectroscopy accompanied by time-dependent density functional theory (TDDFT) calculations. The different electron affinity between 5,5',5″-(1,3,5-benzenetriyl)tris(2-pyridinecarboxaldehyde) (BTPA) and three tunable electron-donating/accepting triamine monomers dominated the formation of the excited-state, charge-transfer direction, and lifetime. A prominent charge transfer from electron-rich 4,4',4″-triaminotriphenylamine (TAPA) to BTPA in COFTAPA-BTPA led to the long-lived charge-separated state, which was attributed to a greater degree of delocalization compared to the two other COFs. These results provide fundamental insight into the importance of structure-property correlation for designing advanced photoactive 2D COF materials with the efficient charge transfer and long-lived charge-separated state.
Collapse
Affiliation(s)
- Tiantian Feng
- School of Science, China University of Geosciences, Beijing 100083, P. R. China
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Daniel Streater
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Bing Sun
- School of Science, China University of Geosciences, Beijing 100083, P. R. China
| | - Korlan Duisenova
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jian Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
54
|
Ren XR, Bai B, Zhang Q, Hao Q, Guo Y, Wan LJ, Wang D. Constructing Stable Chromenoquinoline-Based Covalent Organic Frameworks via Intramolecular Povarov Reaction. J Am Chem Soc 2022; 144:2488-2494. [PMID: 35129958 DOI: 10.1021/jacs.1c13005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemically stable chromenoquinoline (CQ)-based covalent organic frameworks (COFs) were constructed by postsynthetic conversion of imine COFs. The key step of an intramolecular Povarov reaction can transform a preintegrated alkyne group to bridge the benzene rings on both sides of the imine linkage via chemical bonds, affording a ladder-type CQ linkage. This novel approach achieves a high cyclization degree of 80-90%, which endows the CQ-COFs with excellent chemical stability toward strong acid, base, and redox reagents. The synthetic approach can be applied to various monomers with different symmetries and functional core moieties. The absorption and fluorescence intensities of CQ-COFs are sensitive to acid, which allows for dual-mode sensing of strongly acidic environments.
Collapse
Affiliation(s)
- Xiao-Rui Ren
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Bai
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qingsong Zhang
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | | | | | - Li-Jun Wan
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dong Wang
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
55
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene‐Based Two‐Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shuai Fu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| | - Matthew A. Addicoat
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS UK
| | - Wenxin Wei
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Qiang Chen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Materials Science Fudan University Shanghai 200433 P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| |
Collapse
|
56
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene-Based Two-Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202114059. [PMID: 34870362 PMCID: PMC9299764 DOI: 10.1002/anie.202114059] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 01/14/2023]
Abstract
Synthesis of covalent organic frameworks (COFs) with desirable organic units furnishes advanced materials with unique functionalities. As an emerging class of two-dimensional (2D) COFs, sp2 -carbon-conjugated COFs provide a facile platform to build highly stable and crystalline porous polymers. Herein, a 2D olefin-linked COF was prepared by employing nanographene, namely, dibenzo[hi,st]ovalene (DBOV), as a building block. The DBOV-COF exhibits unique ABC-stacked lattices, enhanced stability, and charge-carrier mobility of ≈0.6 cm2 V-1 s-1 inferred from ultrafast terahertz photoconductivity measurements. The ABC-stacking structure was revealed by the high-resolution transmission electron microscopy and powder X-ray diffraction. DBOV-COF demonstrated remarkable photocatalytic activity in hydroxylation, which was attributed to the exposure of narrow-energy-gap DBOV cores in the COF pores, in conjunction with efficient charge transport following light absorption.
Collapse
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shuai Fu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent UniversityClifton Lane, NottinghamNG11 8NSUK
| | - Wenxin Wei
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Qiang Chen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Robert Graf
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Materials ScienceFudan UniversityShanghai200433P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| |
Collapse
|
57
|
Skorjanc T, Shetty D, Mahmoud ME, Gándara F, Martinez JI, Mohammed AK, Boutros S, Merhi A, Shehayeb EO, Sharabati CA, Damacet P, Raya J, Gardonio S, Hmadeh M, Kaafarani BR, Trabolsi A. Metallated Isoindigo-Porphyrin Covalent Organic Framework Photocatalyst with a Narrow Band Gap for Efficient CO 2 Conversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2015-2022. [PMID: 34931799 DOI: 10.1021/acsami.1c20729] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalytic CO2 reduction into formate (HCOO-) has been widely studied with semiconductor and molecule-based systems, but it is rarely investigated with covalent organic frameworks (COFs). Herein, we report a novel donor-acceptor COF named Co-PI-COF composed of isoindigo and metallated porphyrin subunits that exhibits high catalytic efficiency (∼50 μmol formate g-1 h-1) at low-power visible-light irradiation and in the absence of rare metal cocatalysts. Density functional theory calculations and experimental diffuse-reflectance measurements are used to explain the origin of catalytic efficiency and the particularly low band gap (0.56 eV) in this material. The mechanism of photocatalysis is also studied experimentally and is found to involve electron transfer from the sacrificial agent to the excited Co-PI-COF. The observed high-efficiency conversion could be ascribed to the enhanced CO2 adsorption on the coordinatively unsaturated cobalt centers, the narrow band gap, and the efficient transfer of the charge originating from the postsynthetic metallation. It is anticipated that this study will pave the way toward the design of new simple and efficient catalysts for photocatalytic CO2 reduction into useful products.
Collapse
Affiliation(s)
- Tina Skorjanc
- Science Division, New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, 5270 Ajdovscina, Slovenia
| | - Dinesh Shetty
- Department of Chemistry & Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | | | - Felipe Gándara
- Instituto de Ciencia de Materiales de Madrid-CSIC, C. Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Jose Ignacio Martinez
- Instituto de Ciencia de Materiales de Madrid-CSIC, C. Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Abdul Khayum Mohammed
- Department of Chemistry & Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, P.O. Box 127788 Abu Dhabi, United Arab Emirates
| | - Sandra Boutros
- Science Division, New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
| | - Areej Merhi
- American University of Beirut, P.O. Box 11-0236, 1107 2020 Riad El-Solh, Beirut, Lebanon
- Department of Natural Sciences, Lebanese American University, P.O. Box 13-5053, 1102 2801 Chouran Beirut, Lebanon
| | - Elissa O Shehayeb
- American University of Beirut, P.O. Box 11-0236, 1107 2020 Riad El-Solh, Beirut, Lebanon
| | - Christa A Sharabati
- American University of Beirut, P.O. Box 11-0236, 1107 2020 Riad El-Solh, Beirut, Lebanon
| | - Patrick Damacet
- American University of Beirut, P.O. Box 11-0236, 1107 2020 Riad El-Solh, Beirut, Lebanon
| | - Jesus Raya
- Membrane Biophysics and NMR, Institute of Chemistry, University of Strasbourg─CNRS, Rue Blaise Pascal 1, 67081 Strasbourg, France
| | - Sandra Gardonio
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, 5270 Ajdovscina, Slovenia
| | - Mohamad Hmadeh
- American University of Beirut, P.O. Box 11-0236, 1107 2020 Riad El-Solh, Beirut, Lebanon
| | - Bilal R Kaafarani
- American University of Beirut, P.O. Box 11-0236, 1107 2020 Riad El-Solh, Beirut, Lebanon
| | - Ali Trabolsi
- Science Division, New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
- NYUAD Water Research Center, New York University Abu Dhabi (NYUAD), Saadiyat Island, P.O. Box 129188 Abu Dhabi, United Arab Emirates
| |
Collapse
|
58
|
Yang J, Kang F, Wang X, Zhang Q. Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. MATERIALS HORIZONS 2022; 9:121-146. [PMID: 34842260 DOI: 10.1039/d1mh00809a] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Highly crystalline covalent organic frameworks (COFs) or conjugated polymers (CPs) are very important and highly desirable because these materials would display better performance in diverse devices and provide more structure-property related information. However, how to achieve highly crystalline or single-crystal COFs and CPs is very challenging. Recently, many research studies have demonstrated the possibility of enhancing the crystallinity of COFs and CPs. Thus, it is timely to offer an overview of the important progress in improving the crystallinity of COFs and CPs from the viewpoint of design strategies. These strategies include polycondensation reaction optimization, improving the planarity, fluorine substitution, side chain engineering, and so on. Furthermore, the challenges and perspectives are also discussed to promote the realization of highly crystalline or single-crystal COFs and CPs.
Collapse
Affiliation(s)
- Jie Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, SAR 999077, P. R. China
| |
Collapse
|
59
|
Yang Y, Börjesson K. Electroactive covalent organic frameworks: a new choice for organic electronics. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
60
|
Zhang Y, Qin Z, Huo X, Song D, Qiao B, Zhao S. High-Performance Near-Infrared Photodetectors Based on the Synergy Effect of Short Wavelength Light Filter and Long Wavelength Response of a Perovskite/Polymer Hybrid Structure. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61818-61826. [PMID: 34919371 DOI: 10.1021/acsami.1c20742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Near-infrared photodetectors (NIR-PDs) are widely used in communications, biomedical imaging, and national defense. Here we report a new strategy to prepare a short wavelength light filter based NIR-PDs by introducing an interface layer between the perovskite layer and the polymer layer to achieve the selective passage of carriers. Through the synergistic effect of the perovskite and the interface layer, the short wavelength light component in the signal spectrum is effectively filtered out. The organic polymer layer with a bulk heterojunction structure is applied to realize the absorption and conversion of near-infrared light. The prepared device achieves a maximum external quantum efficiency of 83.7% without bias, a high specific detectivity of 1.52 × 1013 Jones, an NIR responsivity of 0.577A/W, and a short response time of 1.73/0.97 μs within the detection range from 770 to 900 nm. All these properties show great advantages compared with other perovskite/polymer hybrid NIR photodetectors that have been reported. This innovative strategy provides a new way to prepare high-performance near-infrared photodetectors.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Zilun Qin
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Xiaomin Huo
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Dandan Song
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Bo Qiao
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Suling Zhao
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
61
|
Thiophene-Based Covalent Organic Frameworks: Synthesis, Photophysics and Light-Driven Applications. Molecules 2021; 26:molecules26247666. [PMID: 34946748 PMCID: PMC8704352 DOI: 10.3390/molecules26247666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Porous crystalline materials, such as covalent organic frameworks (COFs), have emerged as some of the most important materials over the last two decades due to their excellent physicochemical properties such as their large surface area and permanent, accessible porosity. On the other hand, thiophene derivatives are common versatile scaffolds in organic chemistry. Their outstanding electrical properties have boosted their use in different light-driven applications (photocatalysis, organic thin film transistors, photoelectrodes, organic photovoltaics, etc.), attracting much attention in the research community. Despite the great potential of both systems, porous COF materials based on thiophene monomers are scarce due to the inappropriate angle provided by the latter, which hinders its use as the building block of the former. To circumvent this drawback, researchers have engineered a number of thiophene derivatives that can form part of the COFs structure, while keeping their intrinsic properties. Hence, in the present minireview, we will disclose some of the most relevant thiophene-based COFs, highlighting their basic components (building units), spectroscopic properties and potential light-driven applications.
Collapse
|
62
|
Jiang W, Zhao Y, Zhang D, Zhu X, Liu H, Sun B. Efficient and robust dual modes of fluorescence sensing and smartphone readout for the detection of pyrethroids using artificial receptors bound inside a covalent organic framework. Biosens Bioelectron 2021; 194:113582. [PMID: 34461567 DOI: 10.1016/j.bios.2021.113582] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 01/23/2023]
Abstract
In the study, we have developed an efficient and robust method using dual modes of fluorescence sensing and smartphone readout for the detection of pyrethroids using artificial receptors inside a covalent organic framework. Carbazole-conjugated frameworks (CCFs) were used to prepare efficient fluorescent probes that combine stability with light-emitting activity. CN linkages between aldehydes and amines formed Schiff bases, allowing the development of layered structures, creating exceptionally stable frameworks. Artificial receptors that can bind compounds inside the CCFs with high affinity, for both the detection and absorption of λ-cyhalothrin (LC), were constructed using room-temperature reverse microemulsion polymerization. Under optimum conditions, the fluorescence sensing correlation with the concentration of LC showed good linearity in the range of 0.8-175 μg L-1 with a detection limit of 0.368 μg L-1. The smartphone-based visible readout exhibited a good effect, with a detection limit of 4.067 μg L-1, and recovery of 88 %-103% in food samples. A parallel analysis in food samples was conducted by high-performance liquid chromatography, the results showed good consistency, indicating the practicability of the developed method. Dual mode analysis can avoid the disadvantages of a single response, providing excellent sensitivity, specificity, and efficiency through a strong binding force between the target and the artificial receptors.
Collapse
Affiliation(s)
- Wei Jiang
- Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Yuan Zhao
- Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Dianwei Zhang
- Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Xuecheng Zhu
- Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Huilin Liu
- Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Baoguo Sun
- Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China
| |
Collapse
|
63
|
Jin E, Geng K, Fu S, Yang S, Kanlayakan N, Addicoat MA, Kungwan N, Geurs J, Xu H, Bonn M, Wang HI, Smet J, Kowalczyk T, Jiang D. Exceptional electron conduction in two-dimensional covalent organic frameworks. Chem 2021. [DOI: 10.1016/j.chempr.2021.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
64
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
65
|
Xu M, Luo X, Zhang G, Zhao B, Li S, Xiao Z, Wu Q, Wang Z, Wang C. Construction of imine-linked covalent organic framework as advanced adsorbent for the sensitive determination of chlorophenols. J Chromatogr A 2021; 1658:462610. [PMID: 34662826 DOI: 10.1016/j.chroma.2021.462610] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Food safety is a great concern of the general public. Chlorophenols (CPs) as organic pollutant can be found in drinking water and foods, causing serious harm to human health. Herein, imine-linked covalent organic frameworks (COFs), named as TAPT-AN-COF, was synthesized by aniline modulation strategy through condensation of 1,3,5-triformylphoroglucinol and 4,4',4''-(1,3,5-Triazine-2,4,6-triyl)trianiline with aniline as modulator. The prepared TAPT-AN-COF possesses good crystallinity and regular morphology, displaying excellent adsorption capability towards CPs pollutants. Thus, the TAPT-AN-COF was used as novel adsorbent for off-line solid-phase extraction of four CPs (2-CP, 3-CP, 2,3-CPs, 2,4-CPs) from bottled water, tea drink and honey samples before high performance liquid chromatography-ultraviolet detection. Under optimal conditions, wide linear range, low detection limits and satisfactory extraction recovery were gained. The π-stacking and hydrophobic interactions between the TAPT-AN-COF and the analytes played an important role in the adsorption. The established method has a great potential in determining other hydrophobic aromatic compounds.
Collapse
Affiliation(s)
- Mingming Xu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Xinying Luo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Guijiang Zhang
- Department of Basic Course Teaching, Hebei Agricultural University, Huanghua 061100, China
| | - Bin Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Shuofeng Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Zhichang Xiao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
66
|
Li C, Yu G. Controllable Synthesis and Performance Modulation of 2D Covalent-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100918. [PMID: 34288393 DOI: 10.1002/smll.202100918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Covalent-organic frameworks (COFs) are especially interesting and unique as their highly ordered topological structures entirely built from plentiful π-conjugated units through covalent bonds. Arranging tailorable organic building blocks into periodically reticular skeleton bestows predictable lattices and various properties upon COFs in respect of topology diagrams, pore size, properties of channel wall interfaces, etc. Indeed, these peculiar features in terms of crystallinity, conjugation degree, and topology diagrams fundamentally decide the applications of COFs including heterogeneous catalysis, energy conversion, proton conduction, light emission, and optoelectronic devices. Additionally, this research field has attracted widespread attention and is of importance with a major breakthrough in recent year. However, this research field is running with the lack of summaries about tailorable construction of 2D COFs for targeted functionalities. This review first covers some crucial polymeric strategies of preparing COFs, containing boron ester condensation, amine-aldehyde condensation, Knoevenagel condensation, trimerization reaction, Suzuki CC coupling reaction, and hybrid polycondensation. Subsequently, a summary is made of some representative building blocks, and then underlines how the electronic and molecular structures of building blocks can strongly influence the functional performance of COFs. Finally, conclusion and perspectives on 2D COFs for further study are proposed.
Collapse
Affiliation(s)
- Chenyu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
67
|
Leith GA, Shustova NB. Graphitic supramolecular architectures based on corannulene, fullerene, and beyond. Chem Commun (Camb) 2021; 57:10125-10138. [PMID: 34523630 DOI: 10.1039/d1cc02896k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this Feature Article, we survey the advances made in the field of fulleretic materials over the last five years. Merging the intriguing characteristics of fulleretic molecules with hierarchical materials can lead to enhanced properties of the latter for applications in optoelectronic, biomaterial, and heterogeneous catalysis sectors. As there has been significant growth in the development of fullerene- and corannulene-containing materials, this article will focus on studies performed during the last five years exclusively, and highlight the recent trends in designing fulleretic compounds and understanding their properties, that has enriched the repertoire of carbon-rich functional materials.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
68
|
Qian Y, Ma D. Covalent Organic Frameworks: New Materials Platform for Photocatalytic Degradation of Aqueous Pollutants. MATERIALS 2021; 14:ma14195600. [PMID: 34639997 PMCID: PMC8509496 DOI: 10.3390/ma14195600] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Covalent organic frameworks (COFs) are highly porous and crystalline polymeric materials, constructed by covalent bonds and extending in two or threedimensions. After the discovery of the first COF materials in 2005 by Yaghi et al., COFs have experienced exciting progress and exhibitedtheirpromising potential applications invarious fields, such as gas adsorption and separation, energy storage, optoelectronics, sensing and catalysis. Because of their tunablestructures, abundant, regular and customizable pores in addition to large specific surface area, COFs can harvest ultraviolet, visible and near-infrared photons, adsorb a large amount of substrates in internal structures and initiate surface redox reactions to act as effective organic photocatalysts for water splitting, CO2 reduction, organic transformations and pollutant degradation. In this review, we will discuss COF photocatalysts for the degradation of aqueous pollutants. The state-of-the-art paragon examples in this research area will be discussed according to the different structural type of COF photocatalysts. The degradation mechanism will be emphasized. Furthermore, the future development direction, challenges required to be overcome and the perspective in this field will be summarized in the conclusion.
Collapse
|
69
|
Zhao J, Ren J, Zhang G, Zhao Z, Liu S, Zhang W, Chen L. Donor-Acceptor Type Covalent Organic Frameworks. Chemistry 2021; 27:10781-10797. [PMID: 34002911 DOI: 10.1002/chem.202101135] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Intermolecular charge transfer (ICT) effect has been widely studied in both small molecules and linear polymers. Covalently-bonded donor-acceptor pairs with tunable bandgaps and photoelectric properties endow these materials with potential applications in optoelectronics, fluorescent bioimaging, and sensors, etc. However, owing to the lack of charge transfer pathway or effective separation of charge carriers, unfavorable charge recombination gives rise to inevitable energy loss. Covalent organic frameworks (COFs) can be mediated with various geometry- and property-tailored building blocks, where donor (D) and acceptor (A) segments are connected by covalent bonds and can be finely arranged to form highly ordered networks (namely D-A COFs). The unique structural features of D-A COFs render the formation of segregated D-A stacks, thus provides pathways and channels for effective charge carriers transport. This review highlights the significant progress on D-A COFs over the past decade with emphasis on design principles, growing structural diversities, and promising application potentials.
Collapse
Affiliation(s)
- Jinwei Zhao
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Junyu Ren
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Guang Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Ziqiang Zhao
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China.,Institute of Molecules Plus, Tianjin University, Tianjin, 300072, P. R. China
| | - Shiyong Liu
- College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Wandong Zhang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Long Chen
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
70
|
Bian G, Yin J, Zhu J. Recent Advances on Conductive 2D Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006043. [PMID: 33624949 DOI: 10.1002/smll.202006043] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/04/2020] [Indexed: 06/12/2023]
Abstract
As a burgeoning family of crystalline porous copolymers, covalent organic frameworks (COFs) allow precise atomic insertion of organic components in the topology construction to form periodic networks and ordered nanopores. Their 2D networks bear great similarities to graphene analogs, and therefore are essential additions to the 2D family. Here, the electronic properties of conductive 2D-COFs are reviewed and their bonding strategies and structural characteristics are examined in detail. The controlling approaches toward the morphologies of conductive 2D-COFs are further explored, followed by a discussion of their applications in field-effect transistors, photodetectors, sensors, catalysis, and energy storage. Finally, research challenges and forthcoming developments are projected. The resulting survey reveals that the extended porous 2D organic networks with conductive properties will provide great opportunities and essential innovations in various electronics and energy-related fields.
Collapse
Affiliation(s)
- Gang Bian
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin, 300350, P. R. China
| | - Jun Yin
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin, 300350, P. R. China
- Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
71
|
Xu XK, Liu JW, Li DY, Liu PN. Pd-Catalyzed Direct C-H Activation for the C5-Olefination of Methyleneindolinones. J Org Chem 2021; 86:7288-7295. [PMID: 33955751 DOI: 10.1021/acs.joc.1c00637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The direct C-H activation without directing groups can realize the para-selectivity, which is a powerful and concise approach for functionalization of arenes. Utilizing the strategy, a C5-olefination of methyleneindolinones has been successfully developed by palladium-catalyzed direct C-H activation, which provides an expeditious access to 5-vinylindolin-2-ones with high regioselectivity. The protocol is distinguished by a mild reaction system avoiding ligand and high temperature. The kinetic isotope experiments indicate that the C-H bond cleavage is the rate-limiting step.
Collapse
Affiliation(s)
- Xian-Kuan Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Jian-Wei Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| |
Collapse
|
72
|
Bessinger D, Muggli K, Beetz M, Auras F, Bein T. Fast-Switching Vis-IR Electrochromic Covalent Organic Frameworks. J Am Chem Soc 2021; 143:7351-7357. [PMID: 33724793 PMCID: PMC8154512 DOI: 10.1021/jacs.0c12392] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrochromic coatings are promising for applications in smart windows or energy-efficient optical displays. However, classical inorganic electrochromic materials such as WO3 suffer from low coloration efficiency and slow switching speed. We have developed highly efficient and fast-switching electrochromic thin films based on fully organic, porous covalent organic frameworks (COFs). The low band gap COFs have strong vis-NIR absorption bands in the neutral state, which shift significantly upon electrochemical oxidation. Fully reversible absorption changes by close to 3 OD can be triggered at low operating voltages and low charge per unit area. Our champion material reaches an electrochromic coloration efficiency of 858 cm2 C-1 at 880 nm and retains >95% of its electrochromic response over 100 oxidation/reduction cycles. Furthermore, the electrochromic switching is extremely fast with response times below 0.4 s for the oxidation and around 0.2 s for the reduction, outperforming previous COFs by at least an order of magnitude and rendering these materials some of the fastest-switching frameworks to date. This combination of high coloration efficiency and very fast switching reveals intriguing opportunities for applications of porous organic electrochromic materials.
Collapse
Affiliation(s)
- Derya Bessinger
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Katharina Muggli
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Michael Beetz
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| | - Florian Auras
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany
| |
Collapse
|
73
|
Guo Y, Wang J, Hao L, Wu Q, Wang C, Wang Z. Triazine-triphenylphosphine based porous organic polymer as sorbent for solid phase extraction of nitroimidazoles from honey and water. J Chromatogr A 2021; 1649:462238. [PMID: 34034109 DOI: 10.1016/j.chroma.2021.462238] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
A triazine-based porous organic polymer was prepared by facile solvothermal polymerization with cyanuric chloride and triphenyl phosphine as functional monomers. The polymer was characterized and then used for the first time as the sorbent for the effective solid-phase extraction of some nitroimidazoles (NDZs) (metronidazole, ronidazole, secnidazole, dimetridazole and ornidazole). The main experimental influencing parameters for the extraction including the eluent solvent, eluent volume, sample loading rate, sample solution pH, salt concentration and sample volume were investigated. The adsorption kinetics and adsorption isotherms were investigated to elucidate the possible adsorption mechanism. With the triazine-based porous organic polymer as the SPE adsorbent, trace NDZs were effectively extracted. The good enrichment capability for the NDZs was mainly attributed to the hydrogen binding interactions by the aromatic 1,3,5-trizine rings. After the SPE, the extracted analytes were analyzed by high-performance liquid chromatograph with ultraviolet detection. Under the selected conditions, the method had a good linear response for the analytes in the range of 0.06-120 ng mL-1 for water and 1.5-1200 ng g-1 for honey samples. The limits of detections (S/N=3) fell in the range of 0.02-0.06 ng mL-1 for water and 0.5-1.5 ng g-1 for honey samples. The method recoveries for the analytes for spiked samples were in the range of 80.3-118%. The method can be applied for the determination of the NDZs from real samples.
Collapse
Affiliation(s)
- Yaxing Guo
- Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Juntao Wang
- Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
74
|
Ren X, Liao G, Li Z, Qiao H, Zhang Y, Yu X, Wang B, Tan H, Shi L, Qi X, Zhang H. Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213781] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
75
|
Huang Z, Luo YH, Geng WY, Wan Y, Li S, Lee CS. Marriage of 2D Covalent-Organic Framework and 3D Network as Stable Solar-Thermal Still for Efficient Solar Steam Generation. SMALL METHODS 2021; 5:e2100036. [PMID: 34928098 DOI: 10.1002/smtd.202100036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Indexed: 06/14/2023]
Abstract
In this work, a diketopyrrolopyrrole-based 2D covalent-organic framework (COF) is realized and featured with broadband optical absorption and high solar-thermal conversion performance. Moreover, a 3D hierarchical structure, referred to as COF-based hierarchical structure (COFHS), is rationally designed to achieve an enhanced photothermal conversion efficiency. In this water evaporator, diketopyrrolopyrrole is immobilized into conjugated COF to achieve enhanced light absorption, whereas a porous PVA network scaffold is utilized to support COF sheets as well as to enhance the hydrophilicity of the evaporator. Due to this structural advantage, COFHS displays a high solar-to-vapor energy conversion efficiency of 93.2%. Under 1 sun AM1.5 G irradiation, a stable water evaporation rate of 2.5 kg m-2 h-1 can be achieved. As a proof-of-concept application, a water collection device prepared with the COFHS can achieve high solar-thermal water collection efficiency of 10.2 L m-2 d-1 under natural solar irradiation. The good solar-thermal conversion properties and high-water evaporation rate make the COFHS a promising platform for solar-thermal water production.
Collapse
Affiliation(s)
- Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yu-Hui Luo
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu Province, 222000, P. R. China
| | - Wu-Yue Geng
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu Province, 222000, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
76
|
Xia R, Zheng X, Li C, Yuan X, Wang J, Xie Z, Jing X. Nanoscale Covalent Organic Frameworks with Donor-Acceptor Structure for Enhanced Photothermal Ablation of Tumors. ACS NANO 2021; 15:7638-7648. [PMID: 33792303 DOI: 10.1021/acsnano.1c01194] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Covalent organic frameworks (COFs) have shown great potential in catalysis and the biomedical fields, but monodisperse COFs with tunable sizes are hard to obtain. Herein, we successfully developed a series of COFs based on electron donor-acceptor strategy in mild conditions. The synthetic COFs exhibit excellent colloidal stability with uniform spherical morphology. The sizes can be flexibly adjusted by the amount of catalyst, and the absorption spectra also vary with the sizes. By changing the electron-donating ability of the monomers, the corresponding COFs possess a wide range of absorption spectra, which can be even extended to the second near-infrared biowindow. The obtained COFs possess potent photothermal activity under laser irradiation, and could inhibit the growth of tumors effectively. This work provides a strategy for the synthesis of monodisperse COFs with variable absorption for their potential applications.
Collapse
Affiliation(s)
- Rui Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaohua Zheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chaonan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaodie Yuan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jian Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
77
|
Wang DY, Wang WJ, Wang R, Xi SC, Dong B. A fluorescent covalent triazine framework consisting of donor–acceptor structure for selective and sensitive sensing of Fe3+. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
78
|
Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nat Commun 2021; 12:1354. [PMID: 33649344 PMCID: PMC7921403 DOI: 10.1038/s41467-021-21527-3] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022] Open
Abstract
Covalent organic frameworks have recently gained increasing attention in photocatalytic hydrogen generation from water. However, their structure-property-activity relationship, which should be beneficial for the structural design, is still far-away explored. Herein, we report the designed synthesis of four isostructural porphyrinic two-dimensional covalent organic frameworks (MPor-DETH-COF, M = H2, Co, Ni, Zn) and their photocatalytic activity in hydrogen generation. Our results clearly show that all four covalent organic frameworks adopt AA stacking structures, with high crystallinity and large surface area. Interestingly, the incorporation of different transition metals into the porphyrin rings can rationally tune the photocatalytic hydrogen evolution rate of corresponding covalent organic frameworks, with the order of CoPor-DETH-COF < H2Por-DETH-COF < NiPor-DETH-COF < ZnPor-DETH-COF. Based on the detailed experiments and calculations, this tunable performance can be mainly explained by their tailored charge-carrier dynamics via molecular engineering. This study not only represents a simple and effective way for efficient tuning of the photocatalytic hydrogen evolution activities of covalent organic frameworks at molecular level, but also provides valuable insight on the structure design of covalent organic frameworks for better photocatalysis.
Collapse
|
79
|
Castano I, Evans AM, Dos Reis R, Dravid VP, Gianneschi NC, Dichtel WR. Mapping Grains, Boundaries, and Defects in 2D Covalent Organic Framework Thin Films. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:1341-1352. [PMID: 35296112 PMCID: PMC8922717 DOI: 10.1021/acs.chemmater.0c04382] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To improve their synthesis and ultimately realize the technical promise of two-dimensional covalent organic frameworks (2D COFs), it is imperative that a robust understanding of their structure be developed. However, high-resolution transmission electron microscopy (HR-TEM) imaging of such beam-sensitive materials is an outstanding characterization challenge. Here, we overcome this challenge by leveraging low electron flux imaging conditions and high-speed direct electron counting detectors to acquire high-resolution images of 2D COF films. We developed a Fourier mapping technique to rapidly extract nanoscale structural information from these TEM images. This postprocessing script analyzes the evolution of 2D Fourier transforms across a TEM image, which yields information about polycrystalline domain orientations and enables quantification of average domain sizes. Moreover, this approach provides information about several types of defects present in a film, such as overlapping grains and various types of grain boundaries. We also find that the pre-eminent origin of defects in COF-5 films, a prototypical boronate ester-linked COF, arises as a consequence of broken B-O bonds formed during polymerization. These results suggest that the nanoscale features observed are a direct consequence of chemical phenomena. Taken together, this mapping approach provides information about the fundamental microstructure and crystallographic underpinnings of 2D COF films, which will guide the development of future 2D polymerization strategies and help realize the goal of using 2D COFs in a host of thin-film device architectures.
Collapse
Affiliation(s)
- Ioannina Castano
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Austin M Evans
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Center, and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States; Department of Materials Science and Engineering, International Institute for Nanotechnology, Department of Biomedical Engineering, Department of Pharmacology, Simpson Querrey Institute, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
80
|
Wang W, Zhao W, Xu H, Liu S, Huang W, Zhao Q. Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213616] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
81
|
|
82
|
Li Y, Guo L, Lv Y, Zhao Z, Ma Y, Chen W, Xing G, Jiang D, Chen L. Polymorphism of 2D Imine Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:5363-5369. [DOI: 10.1002/anie.202015130] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Yusen Li
- Department of Chemistry Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Linshuo Guo
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 China
| | - Yongkang Lv
- Department of Chemistry Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Ziqiang Zhao
- Department of Chemistry Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Yanhang Ma
- School of Physical Science and Technology Shanghai Tech University Shanghai 201210 China
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center Zhengzhou University Henan 450001 China
| | - Guolong Xing
- Department of Chemistry Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| | - Donglin Jiang
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive Singapore 117543 Singapore
| | - Long Chen
- Department of Chemistry Institute of Molecular Plus and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300072 China
| |
Collapse
|
83
|
Zhang Y, Jin X, Ma X, Wang Y. Chiral porous organic frameworks and their application in enantioseparation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:8-33. [PMID: 33245740 DOI: 10.1039/d0ay01831g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Porous organic frameworks (POFs) are a kind of porous material with a network structure composed of repeated monomers, which have excellent physical and chemical properties, such as a high surface area, high porosity, uniform pore sizes and structural diversity, and which have aroused broad interest among researchers. With the rapid development of materials science, increasingly more porous materials have been developed and applied, especially metal organic frameworks (MOFs) and covalent organic frameworks (COFs), which have been widely applied in the fields of luminous materials, catalytic research, adsorption and drug transport. One of the most important applications for chiral porous materials is in chiral separation and these materials have become a research hotspot in the field of chromatographic separation and analysis in recent years. In this review, from the viewpoint of enantioseparation, the synthesis of chiral porous materials and their applications in high-performance liquid chromatography (HPLC), capillary electrochromatography (CEC), and gas chromatography (GC) are reviewed. The typical applications of MOFs in solid-phase microextraction (SPME) are also discussed.
Collapse
Affiliation(s)
- Ying Zhang
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | | | | | | |
Collapse
|
84
|
Liu R, Tan KT, Gong Y, Chen Y, Li Z, Xie S, He T, Lu Z, Yang H, Jiang D. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem Soc Rev 2021; 50:120-242. [DOI: 10.1039/d0cs00620c] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covalent organic frameworks offer a molecular platform for integrating organic units into periodically ordered yet extended 2D and 3D polymers to create topologically well-defined polygonal lattices and built-in discrete micropores and/or mesopores.
Collapse
|
85
|
Cui D, Ding X, Xie W, Xu G, Su Z, Xu Y, Xie Y. A tetraphenylethylene-based covalent organic framework for waste gas adsorption and highly selective detection of Fe3+. CrystEngComm 2021. [DOI: 10.1039/d1ce00870f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tetraphenylethylene-based covalent organic framework shows an outstanding performance for waste gas adsorption and has good selectivity and detection effect for Fe3+.
Collapse
Affiliation(s)
- Di Cui
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Changchun, 130103, China
| | - Xuesong Ding
- Key Laboratory of Nanosystem and Hierarchical Fabrication Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wei Xie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Changchun, 130103, China
| | - Guangjuan Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Changchun, 130103, China
| | - Zhongmin Su
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China
| | - Yanhong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Changchun, 130103, China
| | - Yuzhong Xie
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
86
|
Li M, Peng Y, Yan F, Li C, He Y, Lou Y, Ma D, Li Y, Shi Z, Feng S. A cage-based covalent organic framework for drug delivery. NEW J CHEM 2021. [DOI: 10.1039/d0nj04941g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel cage-based crystalline covalent organic framework, i.e. Cage-COF-TT (TT = triammonia–terephthalaldehyde), was prepared from a prism-like triammonia-containing molecular cage and terephthalaldehyde.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yu Peng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yiqiang He
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Dingxuan Ma
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Yi Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
87
|
Abstract
Covalent organic frameworks (COFs) are crystalline porous materials constructed from molecular building blocks using diverse linkage chemistries. The image illustrates electron transfer in a COF-based donor–acceptor system. Image by Nanosystems Initiative Munich.
Collapse
Affiliation(s)
- Niklas Keller
- Department of Chemistry and Center for NanoScience (CeNS)
- University of Munich (LMU)
- 81377 Munich
- Germany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS)
- University of Munich (LMU)
- 81377 Munich
- Germany
| |
Collapse
|
88
|
Balch HB, Evans AM, Dasari RR, Li H, Li R, Thomas S, Wang D, Bisbey RP, Slicker K, Castano I, Xun S, Jiang L, Zhu C, Gianneschi N, Ralph DC, Brédas JL, Marder SR, Dichtel WR, Wang F. Electronically Coupled 2D Polymer/MoS 2 Heterostructures. J Am Chem Soc 2020; 142:21131-21139. [PMID: 33284624 PMCID: PMC9836045 DOI: 10.1021/jacs.0c10151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Emergent quantum phenomena in electronically coupled two-dimensional heterostructures are central to next-generation optical, electronic, and quantum information applications. Tailoring electronic band gaps in coupled heterostructures would permit control of such phenomena and is the subject of significant research interest. Two-dimensional polymers (2DPs) offer a compelling route to tailored band structures through the selection of molecular constituents. However, despite the promise of synthetic flexibility and electronic design, fabrication of 2DPs that form electronically coupled 2D heterostructures remains an outstanding challenge. Here, we report the rational design and optimized synthesis of electronically coupled semiconducting 2DP/2D transition metal dichalcogenide van der Waals heterostructures, demonstrate direct exfoliation of the highly crystalline and oriented 2DP films down to a few nanometers, and present the first thickness-dependent study of 2DP/MoS2 heterostructures. Control over the 2DP layers reveals enhancement of the 2DP photoluminescence by two orders of magnitude in ultrathin sheets and an unexpected thickness-dependent modulation of the ultrafast excited state dynamics in the 2DP/MoS2 heterostructure. These results provide fundamental insight into the electronic structure of 2DPs and present a route to tune emergent quantum phenomena in 2DP hybrid van der Waals heterostructures.
Collapse
Affiliation(s)
- Halleh B. Balch
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | | | | | | | | | - Simil Thomas
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States,Department of Physics, Govt. College Nedumangad, Kerala 695541, India
| | - Danqing Wang
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Ryan P. Bisbey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States,Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Kaitlin Slicker
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ioannina Castano
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sangni Xun
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lili Jiang
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Nathan Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel C. Ralph
- Department of Physics and Kavli Institute at Cornell, Cornell University, Ithaca, New York 14853, United States
| | - Jean-Luc Brédas
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States,Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Seth R. Marder
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - William R. Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Feng Wang
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
89
|
Zhu YL, Zhao HY, Fu CL, Li ZW, Sun ZY. A controlling parameter of topological defects in two-dimensional covalent organic frameworks. NANOSCALE 2020; 12:22107-22115. [PMID: 33118587 DOI: 10.1039/d0nr05303a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthesis of covalent organic frameworks with long-range molecular ordering is an outstanding challenge due to the fact that defects against predesigned topological symmetries are prone to form and break crystallization. The physical origins and controlling parameters of topological defects remain scarcely understood. By virtue of molecular dynamics simulations, we found that pentagons for combination [C4 + C4] and [C4 + C2] and heptagons for [C3 + C3] and [C3 + C2] were initial defects for growth dynamics with both uncontrolled and suppressed nucleation, further inducing more complex defects. The defects can be significantly reduced by achieving the growth with monomers added to a single nucleus, agreeing well with previous simulations and experiments. To understand the nature of defects, we proposed a parameter φ to describe the range of biased rotational angle between two monomers, within which chemical reactions are allowed. The parameter φ shows a monotonic relationship with defect population, which is demonstrated to be highly computable by using density functional theory calculations. When φ < 20, we can even observe defect-free growth for the four combinations, irrespective of growth dynamics. The results are essential for screening and designing condensation reactions for the synthesis of single crystals of high quality.
Collapse
Affiliation(s)
- You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | | | | | | | |
Collapse
|
90
|
Zhu YL, Zhao HY, Fu CL, Li ZW, Sun ZY, Lu Z. Mechanisms of Defect Correction by Reversible Chemistries in Covalent Organic Frameworks. J Phys Chem Lett 2020; 11:9952-9956. [PMID: 33170715 DOI: 10.1021/acs.jpclett.0c02960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Reversible chemistries have been extensively explored to construct highly crystalline covalent organic frameworks (COFs) via defect correction. However, the mechanisms of defect correction that can explain the formation of products as single crystals, polycrystal/crystallites, or amorphous solids remain unknown. Herein, we employed molecular dynamics simulations combined with a polymerization model to investigate the growth kinetics of two-dimensional COFs. By virtue of the Arrhenius two-state model describing reversible reactions, we figured out the conditions in terms of active energy and binding energy for different products. Specifically, the ultraslow growth of COFs under high reversibility of reactions corresponding to low binding energies resulted in a single crystal by inhibiting the emergence of nuclei as well as correcting defects through continually dropping small defective fragments off at crystal boundaries. High bonding energies responsible for the high nucleation rate and rapid growth that incorporated defects in crystals and caused the division of crystals through defect correcting processes led to small crystallites or polycrystals. The insights into the mechanisms help us to understand and further control the growth kinetics by exploiting reversible conditions to synthesize COFs of higher quality.
Collapse
Affiliation(s)
- You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Huan-Yu Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Cui-Liu Fu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
91
|
Martínez-Abadía M, Mateo-Alonso A. Structural Approaches to Control Interlayer Interactions in 2D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002366. [PMID: 32864762 DOI: 10.1002/adma.202002366] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The ability to design and synthesize monomers can affect fundamental aspects in 2D covalent organic frameworks, such as dimensionality, topology, and pore size. Besides this, the structure of the monomers can also affect interlayer interactions, which provide an additional means to influence crystallinity, layer arrangement, interlayer distances, and exfoliability. Herein, some of the effects that the structure of monomers can have on the interlayer interactions in 2D covalent organic frameworks and related materials are illustrated.
Collapse
Affiliation(s)
- Marta Martínez-Abadía
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, Donostia-San Sebastian, E-20018, Spain
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, Donostia-San Sebastian, E-20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| |
Collapse
|
92
|
Allendorf MD, Dong R, Feng X, Kaskel S, Matoga D, Stavila V. Electronic Devices Using Open Framework Materials. Chem Rev 2020; 120:8581-8640. [DOI: 10.1021/acs.chemrev.0c00033] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark D. Allendorf
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Vitalie Stavila
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
93
|
Ouyang L, Armstrong JPK, Chen Q, Lin Y, Stevens MM. Void-free 3D Bioprinting for In-situ Endothelialization and Microfluidic Perfusion. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909009. [PMID: 35677899 DOI: 10.1002/adfm.201909909] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 05/21/2023]
Abstract
Two major challenges of 3D bioprinting are the retention of structural fidelity and efficient endothelialization for tissue vascularization. We address both of these issues by introducing a versatile 3D bioprinting strategy, in which a templating bioink is deposited layer-by-layer alongside a matrix bioink to establish void-free multimaterial structures. After crosslinking the matrix phase, the templating phase is sacrificed to create a well-defined 3D network of interconnected tubular channels. This void-free 3D printing (VF-3DP) approach circumvents the traditional concerns of structural collapse, deformation and oxygen inhibition, moreover, it can be readily used to print materials that are widely considered "unprintable". By pre-loading endothelial cells into the templating bioink, the inner surface of the channels can be efficiently cellularized with a confluent endothelial layer. This in-situ endothelialization method can be used to produce endothelium with a far greater uniformity than can be achieved using the conventional post-seeding approach. This VF-3DP approach can also be extended beyond tissue fabrication and towards customized hydrogel-based microfluidics and self-supported perfusable hydrogel constructs.
Collapse
Affiliation(s)
- Liliang Ouyang
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - James P K Armstrong
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Qu Chen
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yiyang Lin
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
94
|
Yuan H, Li N, Linghu J, Dong J, Wang Y, Karmakar A, Yuan J, Li M, Buenconsejo PJS, Liu G, Cai H, Pennycook SJ, Singh N, Zhao D. Chip-Level Integration of Covalent Organic Frameworks for Trace Benzene Sensing. ACS Sens 2020; 5:1474-1481. [PMID: 32367715 DOI: 10.1021/acssensors.0c00495] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
State-of-the-art chemical sensors based on covalent organic frameworks (COFs) are restricted to the transduction mechanism relying on luminescence quenching and/or enhancement. Herein, we present an alternative methodology via a combination of in situ-grown COF films with interdigitated electrodes utilized for capacitive benzene detection. The resultant COF-based sensors exhibit highly sensitive and selective detection at room temperature toward benzene vapor over carbon dioxide, methane, and propane. Their benzene detection limit can reach 340 ppb, slightly inferior to those of the metal oxide semiconductor-based sensors, but with reduced power consumption and increased selectivity. Such a sensing behavior can be attributed to the large dielectric constant of the benzene molecule, distinctive adsorptivity of the chosen COF toward benzene, and structural distortion induced by the custom-made interaction pair, which is corroborated by sorption measurements and density functional theory (DFT) calculations. This study provides new perspectives for fabricating COF-based sensors with specific functionality targeted for selective gas detection.
Collapse
Affiliation(s)
- Hongye Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Nanxi Li
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Fusionopolis Way, #08-02 Innovis Tower, 138634 Singapore
| | - Jiajun Linghu
- Department of Applied Physics, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Jinqiao Dong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Yuxiang Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Avishek Karmakar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Jiaren Yuan
- Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Mengsha Li
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore
| | - Pio John S. Buenconsejo
- Facility for Analysis Characterisation Testing Simulation (FACTS), Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Guoliang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Hong Cai
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Fusionopolis Way, #08-02 Innovis Tower, 138634 Singapore
| | - Stephen John Pennycook
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore
| | - Navab Singh
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Fusionopolis Way, #08-02 Innovis Tower, 138634 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| |
Collapse
|
95
|
Zhai L, Cui S, Tong B, Chen W, Wu Z, Soutis C, Jiang D, Zhu G, Mi L. Bromine‐Functionalized Covalent Organic Frameworks for Efficient Triboelectric Nanogenerator. Chemistry 2020; 26:5784-5788. [PMID: 32073179 DOI: 10.1002/chem.202000722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Lipeng Zhai
- Center for Advanced Materials ResearchZhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Siwen Cui
- Center for Advanced Materials ResearchZhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Boli Tong
- Center for Advanced Materials ResearchZhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Weihua Chen
- College of ChemistryZhengzhou University Zhengzhou 450001 P. R. China
| | - Zijie Wu
- North West Composites CenterSchool of MaterialsUniversity of Manchester Manchester M13 9PL UK
| | - Constantinos Soutis
- North West Composites CenterSchool of MaterialsUniversity of Manchester Manchester M13 9PL UK
| | - Donglin Jiang
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Guangshan Zhu
- Key Lab of Polyoxometalate Science of Ministry of EducationFaculty of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Liwei Mi
- Center for Advanced Materials ResearchZhongyuan University of Technology Zhengzhou 450007 P. R. China
| |
Collapse
|
96
|
Liao Q, Xu W, Huang X, Ke C, Zhang Q, Xi K, Xie J. Donor-acceptor type [4+3] covalent organic frameworks: sub-stoichiometric synthesis and photocatalytic application. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9696-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
97
|
Wang Y, Liu H, Pan Q, Wu C, Hao W, Xu J, Chen R, Liu J, Li Z, Zhao Y. Construction of Fully Conjugated Covalent Organic Frameworks via Facile Linkage Conversion for Efficient Photoenzymatic Catalysis. J Am Chem Soc 2020; 142:5958-5963. [DOI: 10.1021/jacs.0c00923] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuancheng Wang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hui Liu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qingyan Pan
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenyu Wu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenbo Hao
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Xu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Renzeng Chen
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingjie Zhao
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
98
|
Xiong Y, Liao Q, Huang Z, Huang X, Ke C, Zhu H, Dong C, Wang H, Xi K, Zhan P, Xu F, Lu Y. Ultrahigh Responsivity Photodetectors of 2D Covalent Organic Frameworks Integrated on Graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907242. [PMID: 31990415 DOI: 10.1002/adma.201907242] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/21/2019] [Indexed: 05/09/2023]
Abstract
2D materials exhibit superior properties in electronic and optoelectronic fields. The wide demand for high-performance optoelectronic devices promotes the exploration of diversified 2D materials. Recently, 2D covalent organic frameworks (COFs) have emerged as next-generation layered materials with predesigned π-electronic skeletons and highly ordered topological structures, which are promising for tailoring their optoelectronic properties. However, COFs are usually produced as solid powders due to anisotropic growth, making them unreliable to integrate into devices. Here, by selecting tetraphenylethylene monomers with photoelectric activity, elaborately designed photosensitive 2D-COFs with highly ordered donor-acceptor topologies are in situ synthesized on graphene, ultimately forming COF-graphene heterostructures. Ultrasensitive photodetectors are successfully fabricated with the COFETBC-TAPT -graphene heterostructure and exhibited an excellent overall performance with a photoresponsivity of ≈3.2 × 107 A W-1 at 473 nm and a time response of ≈1.14 ms. Moreover, due to the high surface area and the polarity selectivity of COFs, the photosensing properties of the photodetectors can be reversibly regulated by specific target molecules. The research provides new strategies for building advanced functional devices with programmable material structures and diversified regulation methods, paving the way for a generation of high-performance applications in optoelectronics and many other fields.
Collapse
Affiliation(s)
- Yifeng Xiong
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Qiaobo Liao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Zhengping Huang
- School of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Can Ke
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Hengtian Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Chenyu Dong
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Haoshang Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Kai Xi
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Peng Zhan
- School of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Fei Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Yanqing Lu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
99
|
Abstract
Conjugated microporous polymers (CMPs) are a unique class of materials that combine extended π-conjugation with a permanently microporous skeleton. Since their discovery in 2007, CMPs have become established as an important subclass of porous materials. A wide range of synthetic building blocks and network-forming reactions offers an enormous variety of CMPs with different properties and structures. This has allowed CMPs to be developed for gas adsorption and separations, chemical adsorption and encapsulation, heterogeneous catalysis, photoredox catalysis, light emittance, sensing, energy storage, biological applications, and solar fuels production. Here we review the progress of CMP research since its beginnings and offer an outlook for where these materials might be headed in the future. We also compare the prospect for CMPs against the growing range of conjugated crystalline covalent organic frameworks (COFs).
Collapse
Affiliation(s)
| | - Andrew I. Cooper
- Department of Chemistry and
Materials Innovation Factory, University
of Liverpool, 51 Oxford Street, Liverpool L7 3NY, United Kingdom
| |
Collapse
|
100
|
Gao C, Li J, Yin S, Sun J, Wang C. Twist Building Blocks from Planar to Tetrahedral for the Synthesis of Covalent Organic Frameworks. J Am Chem Soc 2020; 142:3718-3723. [DOI: 10.1021/jacs.9b13824] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chao Gao
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Sheng Yin
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Cheng Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|