51
|
|
52
|
Chen T, Zhang Q, Song Y, Isak AN, Tang X, Wang H, Ma Z, Sun F, Pan Q, Zhu X. Spatial confinement of chemically engineered cancer cells using large graphene oxide sheets: a new mode of cancer therapy. NANOSCALE HORIZONS 2021; 6:979-986. [PMID: 34542134 DOI: 10.1039/d1nh00350j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Treating cancer with high efficacy while eliminating side effects has been the holy grail of cancer research. The challenge, however, arises from the similarity in molecular traits of cancer cells and normal cells because truly specific cancer biomarkers are extremely scarce if not entirely unavailable. Often, biomarkers serving as the therapeutic targets are present on both healthy cells and cancers, but at different levels, causing not only off-target side effects but also on-target side effects. This work has reported a new concept of cancer treatment, spatial confinement of cells to inhibit cell migration and invasion, which directly addresses the defining trait of cancer on the cellular level, unchecked division. Using large sized graphene oxide (LS-GO), cell surfaces can be patched. Unlike conventional chemotherapy, this spatial confinement does not affect the viability of non-dividing cells but significantly inhibits tumor cell migration and invasion in vitro and in vivo. This new concept has the potential to become a general therapeutic for many cancer types with reduced side effects.
Collapse
Affiliation(s)
- Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, P. R. China
| | - Qianqian Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yuchen Song
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Albertina N Isak
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, P. R. China
| | - Hao Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China.
| | - Zhongliang Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Fenyong Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China.
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China.
| |
Collapse
|
53
|
Mi X, Li H, Tan R, Feng B, Tu Y. The TDs/aptamer cTnI biosensors based on HCR and Au/Ti 3C 2-MXene amplification for screening serious patient in COVID-19 pandemic. Biosens Bioelectron 2021; 192:113482. [PMID: 34256261 PMCID: PMC8258042 DOI: 10.1016/j.bios.2021.113482] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/26/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
The accurate assay of cardiac troponin I (cTnI) is very important for acute myocardial infarction (AMI), it also can be employed as an effective index for screening serious patients in COVID-19 pandemic before fatal heart injury to reduce the mortality. A ratiometric sensing strategy was proposed based on electrochemiluminescent (ECL) signal of doxorubicin (Dox)-luminol or the electrochemical (EC) signal of methylene blue (MB) vs. referable EC signal of Dox. The bio-recognitive Tro4-aptamer ensures the high specificity of the sensor by affinity binding to catch cTnI, and the tetrahedral DNA (TDs) on Au/Ti3C2-MXene built an excellent sensing matrix. An in situ hybrid chain reaction (HCR) amplification greatly improved the sensitivity. The ratiometric sensing responses ECLDox-luminol/CurrentDox or CurrentMB/CurrentDox linearly regressed to cTnI concentration in the range of 0.1 fM-1 pM or 0.1 fM-500 fM with the limit of detection (LOD) as 0.04 fM or 0.1 fM, respectively. Served as the reference signal, CurrentDox reflected the variation of sensor, it is very effective to ensure the accuracy of detection to obviate the false results. The proposed biosensors show good specificity, sensitivity, reproducibility and stability, have been applied to determine cTnI in real samples with satisfactory results. They are worth looking forward to be used for screening serious patient of COVID-19 to reduce the mortality, especially in mobile cabin hospital.
Collapse
Affiliation(s)
- Xiaona Mi
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China
| | - Hui Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Rong Tan
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China
| | - Bainian Feng
- School of Pharmaceutical Sciences, Jiangnan University, 214122, PR China
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
54
|
Liu G, Huang S, Liu X, Chen W, Ma X, Cao S, Wang L, Chen L, Yang H. DNA-Based Artificial Signaling System Mimicking the Dimerization of Receptors for Signal Transduction and Amplification. Anal Chem 2021; 93:13807-13814. [PMID: 34613712 DOI: 10.1021/acs.analchem.1c02405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmembrane signal transduction is of profound significance in many biological processes. The dimerization of cell-surface receptors is one prominent mechanism by which signals are transmitted across the membrane and trigger intracellular cascade amplification reactions. Recreating such processes in artificial systems has potential applications in sensing, drug delivery, bioengineering, and providing a new route for a deep understanding of fundamental biological processes. However, it remains a challenge to design artificial signal transduction systems working by the receptor dimerization mechanism in a predictable and smart manner. Here, benefitting from DNA with features of programmability, controllability, and flexible design, we use DNA as a building material to construct an artificial system mimicking dimerization of receptors for signal transduction and cascade amplification. DNA-based membrane-spanning receptor analogues are designed to recognize external signals, which drives two receptors into close spatial proximity to activate DNAzymes inside the cell-mimicking system. The activation of the DNAzyme initiates the catalyzed cleavage of encapsulated substrates and leads to the release of fluorescent second messengers for signal amplification. Such an artificial signal transduction system extends the range of biomimetic DNA-based signaling systems, providing a new avenue to study natural cell signaling processes and artificially regulate biological processes.
Collapse
Affiliation(s)
- Guo Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Shan Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xiaochen Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Wanzhen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xin Ma
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Shuang Cao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
55
|
He Q, Liu Y, Li K, Wu Y, Wang T, Tan Y, Jiang T, Liu X, Liu Z. Deoxyribonucleic acid anchored on cell membranes for biomedical application. Biomater Sci 2021; 9:6691-6717. [PMID: 34494042 DOI: 10.1039/d1bm01057c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Engineering cellular membranes with functional molecules provides an attractive strategy to manipulate cellular behaviors and functionalities. Currently, synthetic deoxyribonucleic acid (DNA) has emerged as a promising molecular tool to engineer cellular membranes for biomedical applications due to its molecular recognition and programmable properties. In this review, we summarized the recent advances in anchoring DNA on the cellular membranes and their applications. The strategies for anchoring DNA on cell membranes were summarized. Then their applications, such as immune response activation, receptor oligomerization regulation, membrane structure mimicking, cell-surface biosensing, and construction of cell clusters, were listed. The DNA-enabled intelligent systems which were able to sense stimuli such as DNA strands, light, and metal ions were highlighted. Finally, insights regarding the remaining challenges and possible future directions were provided.
Collapse
Affiliation(s)
- Qunye He
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China.
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, P. R. China. .,Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, P. R. China
| |
Collapse
|
56
|
Fu Y, Qian H, Zhou X, Wu Y, Song L, Chen K, Bai D, Yang Y, Li J, Xie G. Proximity ligation assay mediated rolling circle amplification strategy for in situ amplified imaging of glycosylated PD-L1. Anal Bioanal Chem 2021; 413:6929-6939. [PMID: 34523014 DOI: 10.1007/s00216-021-03659-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022]
Abstract
Glycosylated PD-L1 is a more reliable biomarker for immune checkpoint therapy and plays important roles in tumor immunity. Glycosylation of PD-L1 hinders antibody-based detection, which is partially responsible for the inconsistency between PD-L1 immunohistochemical results and therapeutic treatment response. Herein, we present a proximity ligation assay mediated rolling circle amplification (PLA-RCA) strategy for amplified imaging of glycosylated PD-L1 in situ. The strategy relies on a pair of DNA probes: an aptamer probe to specifically recognize cellular surface protein PD-L1 and a glycan conversion (GC) probe for metabolic glycan labeling. Upon proximity ligation of sequence binding to the two probes, the proximity ligation-triggered RCA occurs. The feasibility of the as-proposed strategy has been validated as it realized the visualization of PD-L1 glycosylation in different cancer cells and the monitoring of the variation of PD-L1 glycosylation during drug treatment. Thus, we envision the present work offers a useful alternative to track protein-specific glycosylation and potentially advances the investigation of the dynamic glycan state associated with the disease process.
Collapse
Affiliation(s)
- Yixin Fu
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China.,Department of Blood Transfusion, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Husun Qian
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Xi Zhou
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - You Wu
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Lin Song
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Kena Chen
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Dan Bai
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Junjie Li
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics of Education, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, Sichuan, 400016, People's Republic of China.
| |
Collapse
|
57
|
Yang W, Nan H, Xu Z, Huang Z, Chen S, Li J, Li J, Yang H. DNA-Templated Glycan Labeling for Monitoring Receptor Spatial Distribution in Living Cells. Anal Chem 2021; 93:12265-12272. [PMID: 34474560 DOI: 10.1021/acs.analchem.1c01815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tracking the spatial distribution of receptor tyrosine kinases in their native environment contributes to understanding the homeostatic or pathological states at a molecular level. Conjugation of DNA tags to a specific receptor is a powerful tool for monitoring receptor spatial distribution. However, long-term stable trafficking in live cells without interfering with the intrinsic receptor function remains a challenge. Here, we report a general DNA-templated glycan labeling strategy to track spatial distribution of a specific receptor in living cells. Different from existing target-selective covalent methods, the DNA tags were incorporated in glycan of a specific receptor via aptamer-assisted metabolic glycan labeling, thus resulting in minimal perturbation to the receptor's biological function. As proof of concept, covalent tagging of MET, HER2, and EGFR was achieved, and then the spatial distribution was successfully monitored, including homo-/heterodimerization and internalization. Overall, the proposed strategy will greatly aid in investigating receptor dynamics and is conducive to understanding their biological function in the native environment.
Collapse
Affiliation(s)
- Wen Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hexin Nan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhifei Xu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zixiang Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shan Chen
- Institute of Oceanography, Minjiang University, Fuzhou350108, Fujian, People's Republic of China
| | - Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
58
|
Zhang X, Zhang C, Li N, Pan W, Fu M, Ong'achwa Machuki J, Ge K, Liu Z, Gao F. Gold-Bipyramid-Based Nanothernostics: FRET-Mediated Protein-Specific Sialylation Visualization and Oxygen-Augmenting Phototherapy against Hypoxic Tumor. Anal Chem 2021; 93:12103-12115. [PMID: 34428035 DOI: 10.1021/acs.analchem.1c02625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite several attempts, incorporating biological detection that supplies necessary biological information into therapeutic nanotheranostics for hypoxic tumor treatments is considered to be in its infancy. It is therefore imperative to consolidate biological detection and desirable phototherapy into a single nanosystem for maximizing theranostic advantages. Herein, we develop a versatile nanoprobe through combined fluorescence resonance energy transfer (FRET) and oxygen-augmenting strategy, namely APT, which enables glycosylation detection, O2 self-sufficiency, and collaborative phototherapy. Such APT nanoprobes were constructed by depositing platinum onto gold nano-bipyramids (Au NBPs), linking FITC fluorophore-labeled AS1411 aptamers for introducing FRET donors, and by conjugating G-quadruplex intercalated with TMPyP4 to their surfaces via the SH-DNA chain. By installing FRET acceptors on the glycan of targeted EpCAM glycoprotein using the metabolic glycan labeling and click chemistry, FRET signals appear on the cancerous cell membranes, not normal cells, when donors and acceptors are within an appropriate distance. This actualizes protein-specific glycosylation visualization while revealing glycan-based changes correlated with tumor progression. Interestingly, the deposited platinum scavenges excessive H2O2 as artificial nanoenzymes to transform O2 that alleviates tumor hypoxia and simultaneously elevates singlet oxygen (1O2) for inducing cancer cell apoptosis. Notably, the significant hyperthermia devastation was elicited via APT nanoprobes with phenomenal photothermal therapy (PTT) efficiency (71.8%) for thermally ablating cancer cells, resulting in synergistically enhanced photodynamic-hyperthermia therapy. Consequently, APT nanoprobes nearly actualized thorough tumor ablation while demonstrating highly curative biosafety. This work offers a new paradigm to rationally explore a combined FRET and oxygen-augmenting strategy with a focus on nanotheranostics for hypoxic tumor elimination.
Collapse
Affiliation(s)
- Xing Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.,Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Na Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wenzhen Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Mengying Fu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kezhen Ge
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zhao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.,Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
59
|
Chai H, Cheng W, Jin D, Miao P. Recent Progress in DNA Hybridization Chain Reaction Strategies for Amplified Biosensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38931-38946. [PMID: 34374513 DOI: 10.1021/acsami.1c09000] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the continuous development of DNA nanotechnology, various spatial DNA structures and assembly techniques emerge. Hybridization chain reaction (HCR) is a typical example with exciting features and bright prospects in biosensing, which has been intensively investigated in the past decade. In this Spotlight on Applications, we summarize the assembly principles of conventional HCR and some novel forms of linear/nonlinear HCR. With advantages like great assembly kinetics, facile operation, and an enzyme-free and isothermal reaction, these strategies can be integrated with most mainstream reporters (e.g., fluorescence, electrochemistry, and colorimetry) for the ultrasensitive detection of abundant targets. Particularly, we select several representative studies to better illustrate the novel ideas and performances of HCR strategies. Theoretical and practical utilities are confirmed for a range of biosensing applications. In the end, a deep discussion is provided about the challenges and future tasks of this field.
Collapse
Affiliation(s)
- Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| |
Collapse
|
60
|
Liu X, Bu S, Wei H, Wang Z, Yu S, Li Z, Hao Z, He X, Wan J. Visual assay of Escherichia coli O157:H7 based on an isothermal strand displacement and hybrid chain reaction amplification strategy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3379-3385. [PMID: 34235517 DOI: 10.1039/d1ay00644d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we describe a simple, sensitive, and enzyme-free method for visual point-of-care detection of 16S rRNA of Escherichia coli O157:H7 based on an isothermal strand displacement-hybrid chain reaction (ISD-HCR) and lateral flow strip (LFS). In this study, the secondary structure of 16S rRNA of E. coli O157:H7 was unwound by two helper oligonucleotides to expose the single-strand-specific nucleic acid sequence. The free specific sequence promoted the toehold-mediated strand displacement reaction to output a large number of FITC-labeled single-stranded DNA probes (capture probe [CP]). The 3'-end sequence of the reporter probe propagated a chain reaction of hybridization events between the two hairpin probes modified with biotin to form long nicked DNA polymers with multiple biotins (RP-HCR complexes); the free CP and RP-HCR complexes then form CP/RP-HCR complexes. The biotin-labeled double-stranded DNA CP/RP-HCR polymers then introduced numerous streptavidin (SA)-labeled gold nanoparticles (AuNPs) on the LFS. The accumulation of AuNPs produced a characteristic red band, which enabled visual detection of changes in the signal of 16S rRNA of E. coli O157:H7. The current approach could detect E. coli O157:H7 at concentrations as low as 102 CFU mL-1 without instrumentation. This approach thus provides a simple, sensitive, and low-cost tool for point-of-care detection of pathogenic bacteria, especially in resource-limited countries.
Collapse
Affiliation(s)
- Xiu Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Zhu L, Xu Y, Wei X, Lin H, Huang M, Lin B, Song Y, Yang C. Coupling Aptamer‐based Protein Tagging with Metabolic Glycan Labeling for In Situ Visualization and Biological Function Study of Exosomal Protein‐Specific Glycosylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lin Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Yuanfeng Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Xinyu Wei
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Haoting Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Bingqian Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
- Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
62
|
Electrochemical aptasensor based on proximity binding-induced DNA networked for enzyme-free and ultrasensitive detection of thrombin. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
63
|
Zhu L, Xu Y, Wei X, Lin H, Huang M, Lin B, Song Y, Yang C. Coupling Aptamer-based Protein Tagging with Metabolic Glycan Labeling for In Situ Visualization and Biological Function Study of Exosomal Protein-Specific Glycosylation. Angew Chem Int Ed Engl 2021; 60:18111-18115. [PMID: 34043264 DOI: 10.1002/anie.202103696] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Indexed: 12/15/2022]
Abstract
Exosomal glycoproteins play important roles in many physiological and pathological functions. Herein, we developed a dual labeling strategy based on a protein-specific aptamer tagging and metabolic glycan labeling for visualizing glycosylation of specific proteins on exosomes. The glycosylation of exosomal PD-L1 (exoPD-L1) was imaged in situ using intramolecular fluorescence resonance energy transfer (FRET) between fluorescent PD-L1 aptamers bound on exoPD-L1 and fluorescent tags on glycans introduced via metabolic glycan labeling. This method enables in situ visualization and biological function study of exosomal protein glycosylation. Exosomal PD-L1 glycosylation was confirmed to be required in interaction with PD-1 and participated in inhibiting of CD8+ T cell proliferation. This is an efficient and non-destructive method to study the presence and function of exosomal protein-specific glycosylation in situ, which provides a powerful tool for exosomal glycoproteomics research.
Collapse
Affiliation(s)
- Lin Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuanfeng Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xinyu Wei
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Haoting Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Bingqian Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the, Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.,Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
64
|
Liu Z, Liang Y, Cao W, Gao W, Tang B. Proximity-Induced Hybridization Chain Reaction-Based Photoacoustic Imaging System for Amplified Visualization Protein-Specific Glycosylation in Mice. Anal Chem 2021; 93:8915-8922. [PMID: 34143599 DOI: 10.1021/acs.analchem.1c01352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosylation is a key cellular mechanism that regulates several physiological and pathological functions. Therefore, identification and characterization of specific-protein glycosylation in vivo are highly desirable for studying glycosylation-related pathology and developing personalized theranostic modalities. Herein, we demonstrated a photoacoustic (PA) nanoprobe based on the proximity-induced hybridization chain reaction (HCR) for amplified visual detection of protein-specific glycosylation in vivo. Two kinds of functional DNA probes were designed. A glycan probe (DBCO-GP) was attached to glycans through metabolic oligosaccharide engineering (MOE) and protein probe (PP)-targeted proteins by aptamer recognition. Proximity-induced hybridization of the complementary domain between the two kinds of probes promoted conformational changes in the protein probes and in situ release of the HCR initiator domain. Gold nanoparticles (AuNPs) modified by complementary sequences (Au-H1 and Au-H2) self-assembled into Au aggregates via the HCR, thereby converting DNA signals to photoacoustic signals. Due to the high contrast and deep penetration of photoacoustic imaging, this strategy enabled in situ detection of Mucin 1 (MUC1)-specific glycosylation in mice with breast cancer and successfully monitored its dynamic states during tunicamycin treatment. This imaging technique provides a powerful platform for studying the effects of glycosylation on the protein structure and function, which helps to elucidate its role in disease processes.
Collapse
Affiliation(s)
- Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yuhua Liang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wenhua Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
65
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
66
|
Lv WY, Li CH, Li YF, Zhen SJ, Huang CZ. Hierarchical Hybridization Chain Reaction for Amplified Signal Output and Cascade DNA Logic Circuits. Anal Chem 2021; 93:3411-3417. [DOI: 10.1021/acs.analchem.0c04483] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chun Hong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
67
|
Wang H, Ruan Y, Zhu L, Shi X, Zhao W, Chen H, Xu J. An Integrated Electrochemical Nanodevice for Intracellular RNA Collection and Detection in Single Living Cell. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hai‐Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yi‐Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Li‐Bang Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiao‐Mei Shi
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wei‐Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
68
|
Wang HY, Ruan YF, Zhu LB, Shi XM, Zhao WW, Chen HY, Xu JJ. An Integrated Electrochemical Nanodevice for Intracellular RNA Collection and Detection in Single Living Cell. Angew Chem Int Ed Engl 2021; 60:13244-13250. [PMID: 33340231 DOI: 10.1002/anie.202014798] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Indexed: 01/30/2023]
Abstract
New tools for single-cell interrogation enable deeper understanding of cellular heterogeneity and associated cellular behaviors and functions. Information of RNA expression in single cell could contribute to our knowledge of the genetic regulatory circuits and molecular mechanism of disease development. Although significant progresses have been made for intracellular RNA analysis, existing methods have a trade-off between operational complexity and practical feasibility. We address this challenge by combining the ionic current rectification property of nanopipette reactor with duplex-specific nuclease-assisted hybridization chain reaction for signal amplification to realize a simple and practical intracellular nanosensor with minimal invasiveness, which enables single-cell collection and electrochemical detection of intracellular RNA with cell-context preservation. Systematic studies on differentiation of oncogenic miR-10b expression levels in non-malignant breast cells, metastatic breast cancer cells as well as non-metastatic breast cancer cells were then realized by this nanotool accompanied by assessment of different drugs effects. This work has unveiled the ability of electrochemistry to probe intracellular RNA and opened new opportunities to study the gene expression and heterogeneous complexity under physiological conditions down to single-cell level.
Collapse
Affiliation(s)
- Hai-Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Li-Bang Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiao-Mei Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
69
|
Li Y, Deng J, Han Z, Liu C, Tian F, Xu R, Han D, Zhang S, Sun J. Molecular Identification of Tumor-Derived Extracellular Vesicles Using Thermophoresis-Mediated DNA Computation. J Am Chem Soc 2021; 143:1290-1295. [PMID: 33455159 DOI: 10.1021/jacs.0c12016] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Molecular profiling of tumor-derived extracellular vesicles (tEVs) holds great promise for non-invasive cancer diagnosis. However, sensitive and accurate identification of tEVs is challenged by the heterogeneity of EV phenotypes which reflect different cell origins. Here we present a DNA computation device mediated by thermophoresis for detection of tEVs. The strategy leverages the aptamer-based logic gate using multiple protein biomarkers on single EVs as the input and thermophoretic accumulation to amplify the output signals for highly sensitive and specific profiling of tEVs. Employing this platform, we demonstrate a high accuracy of 97% for discrimination of breast cancer (BC) patients and healthy donors in a clinical cohort (n = 30). Furthermore, molecular phenotyping assessed by tEVs is in concordance with the results from tissue biopsy in BC patients. The thermophoresis-mediated molecular computation on EVs thus provides new opportunities for accurate detection and classification of cancers.
Collapse
Affiliation(s)
- Yike Li
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziwei Han
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Tian
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shaohua Zhang
- Department of Breast Cancer, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100071, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
70
|
Zhu X, Qu B, Ying ZM, Liu JW, Wu Z, Yu RQ, Jiang JH. Cascade Circuits on Self-Assembled DNA Polymers for Targeted RNA Imaging In Vivo. Anal Chem 2020; 92:15953-15958. [PMID: 33275414 DOI: 10.1021/acs.analchem.0c03400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNA molecular probes have emerged as a powerful tool for RNA imaging. Hurdles in cell-specific delivery and other issues such as insufficient stability, limited sensitivity, or slow reaction kinetics, however, hinder the further application of DNA molecular probes in vivo. Herein, we report an aptamer-tethered DNA polymer for cell-specific transportation and amplified imaging of RNA in vivo via a DNA cascade reaction. DNA polymers are constructed through an initiator-triggered hybridization chain reaction using two functional DNA monomers. The prepared DNA polymers show low cytotoxicity and good stability against nuclease degradation and enable cell-specific transportation of DNA circuits via aptamer-receptor binding. Moreover, assembling the reactants of hairpins C1 and C2 on the DNA polymers accelerates the response kinetics and improves the sensitivity of the cascade reaction. We also show that the DNA polymers enable efficient imaging of microRNA-21 in live cells and in vivo via intravenous injection. The DNA polymers provide a valuable platform for targeted and amplified RNA imaging in vivo, which holds great implications for early clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Xueli Zhu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China.,Henan Province Function-Oriented Porous Materials Key Laboratory, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, Henan, China
| | - Bin Qu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Zhan-Ming Ying
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Jin-Wen Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China.,The First Affiliated Hospital of Guangxi Medical University, School of Preclinical Medicine & Centre for Translational Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
| |
Collapse
|
71
|
Liao X, Zhang C, Machuki JO, Wen X, Tang Q, Shi H, Gao F. Proximity hybridization-triggered DNA assembly for label-free surface-enhanced Raman spectroscopic bioanalysis. Anal Chim Acta 2020; 1139:42-49. [PMID: 33190708 DOI: 10.1016/j.aca.2020.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 11/24/2022]
Abstract
We have developed a versatile label-free surface-enhanced Raman spectroscopic platform for detecting various biotargets via proximity hybridization-triggered DNA assembly based on the 736 cm-1 Raman peak of adenine breathing mode. We initially immobilized the first probe to AuNPs and modified the second with poly adenine. Presence of target DNA or protein molecules assembled a sandwich complex that brought the poly adenine close to the AuNPs surface, generating Raman signals, that were proportional to target molecule concentration. These approach exhibits high sensitivity, with a detection limit of 5.4 pM, 47 fM, and 0.51 pg/mL for target DNA, thrombin and CEA, respectively. Owing to a one step proximity dependent complex formation, this technique is simple and can be completed within 40 min, making it a promising candidate for point-of-care testing applications.
Collapse
Affiliation(s)
- Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004, Xuzhou, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xiaoqing Wen
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China
| | - Qianli Tang
- West Guangxi Key Laboratory for Prevention and Treatment of High-Incidence Diseases, Youjiang Medical University for Nationalities, 533000, Baise, China.
| | - Hengliang Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
72
|
Zhao T, Masuda T, Miyoshi E, Takai M. High Dye-Loaded and Thin-Shell Fluorescent Polymeric Nanoparticles for Enhanced FRET Imaging of Protein-Specific Sialylation on the Cell Surface. Anal Chem 2020; 92:13271-13280. [DOI: 10.1021/acs.analchem.0c02502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tingbi Zhao
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
73
|
Li L, Jiang H, Meng X, Wen X, Guo Q, Li Z, Wang J, Ren Y, Wang K. Highly sensitive detection of cancer cells via split aptamer mediated proximity-induced hybridization chain reaction. Talanta 2020; 223:121724. [PMID: 33303170 DOI: 10.1016/j.talanta.2020.121724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 01/18/2023]
Abstract
Highly sensitive detection of cancer cells is of great importance for evaluating cancer development and improving survival rates. Here, we developed a split aptamer mediated proximity-induced hybridization chain reaction (HCR) strategy to meet this purpose. In this strategy, two split aptamer initiator probes, Sp-a and Sp-b, and two HCR hairpin probes, H1 and H2 were designed. The split aptamer initiator probes contained two components, split aptamer domains being responsible for target recognition, and the split initiator parts serving as the HCR promoter. In the presence of target cells, Sp-a and Sp-b would self-assemble on the cell surfaces, allowing the formation of an intact nicked initiator to activate the HCR reaction. Benefit from low background split aptamers and HCR amplification, this strategy presented high sensitivity in quantitative detection with a detection limit of 18 cells in 150 μL of binding buffer. Moreover, the approach exhibited excellent specificity to target cells in 10% fetal bovine serum and mixed cell samples, which was favorable for clinical diagnosis in complex biological environment. In addition, by changing the split aptamers attached to the split initiator, the proposed strategy can be expanded to detect various kinds of target cells. It may provide a novel and useful applicable platform for the sensitive detection of cancer cells in biomedicine and tumor-related studies.
Collapse
Affiliation(s)
- Lie Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Huishan Jiang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Xiangxian Meng
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Xiaohong Wen
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Qiuping Guo
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| | - Zenghui Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Jie Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Yazhou Ren
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Kemin Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| |
Collapse
|
74
|
Chen X, Qiu L, Cai R, Cui C, Li L, Jiang JH, Tan W. Aptamer-Directed Protein-Specific Multiple Modifications of Membrane Glycoproteins on Living Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37845-37850. [PMID: 32706235 DOI: 10.1021/acsami.0c07004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Understanding how a cell membrane protein functions on living cells remains a challenge for cell biology. Specific placement of functional molecules on specific proteins in their native environment would allow comprehensive study of proteins' dynamic functions. Existing methods cannot facilely achieve multiple modifications on specific membrane proteins. In this report, we describe an aptamer-induced, protein-specific bio-orthogonal modification technology for precise nongenetic immobilization of multiple small functional molecules on target membrane glycoproteins by combining metabolic technology and aptamer targeting. In brief, DNA probes were designed by modifying aptamers, which bind to target proteins on the surfaces of living cells pretreated with N-azidoacetylmannosamine-tetraacylated (Ac4ManNAz). The cyclooctynes tagged of DNA probes will approach the azide groups to trigger the bio-orthogonal reactions. After UV irradiation and hybridization with cDNA (complementary DNA), the aptamers can be removed, and the process can be repeated to achieve multiple modifications for multicolor imaging and cell surface nanoengineering on specific proteins.
Collapse
Affiliation(s)
- Xigao Chen
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ren Cai
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Cheng Cui
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Long Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Jian-Hui Jiang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
- The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
75
|
Miao P, Tang Y. Two-Dimensional Hybridization Chain Reaction Strategy for Highly Sensitive Analysis of Intracellular mRNA. Anal Chem 2020; 92:12700-12709. [DOI: 10.1021/acs.analchem.0c03181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
- Department of Chemistry, New York University, New York 10003, United States
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| |
Collapse
|
76
|
Díaz-Fernández A, Miranda-Castro R, Díaz N, Suárez D, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Aptamers targeting protein-specific glycosylation in tumor biomarkers: general selection, characterization and structural modeling. Chem Sci 2020; 11:9402-9413. [PMID: 34094206 PMCID: PMC8162130 DOI: 10.1039/d0sc00209g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Detecting specific protein glycoforms is attracting particular attention due to its potential to improve the performance of current cancer biomarkers. Although natural receptors such as lectins and antibodies have served as powerful tools for the detection of protein-bound glycans, the development of effective receptors able to integrate in the recognition both the glycan and peptide moieties is still challenging. Here we report a method for selecting aptamers toward the glycosylation site of a protein. It allows identification of an aptamer that binds with nM affinity to prostate-specific antigen, discriminating it from proteins with a similar glycosylation pattern. We also computationally predict the structure of the selected aptamer and characterize its complex with the glycoprotein by docking and molecular dynamics calculations, further supporting the binary recognition event. This study opens a new route for the identification of aptamers for the binary recognition of glycoproteins, useful for diagnostic and therapeutic applications. Binary recognition of the glycoprotein prostate specific antigen by aptamers: a tool for detecting aberrant glycosylation associated with cancer.![]()
Collapse
Affiliation(s)
- Ana Díaz-Fernández
- Departamento de Química Física y Analítica, Universidad de Oviedo Av. Julián Clavería 8 33006 Oviedo Spain .,Instituto de Investigación Sanitaria del Principado de Asturias Avenida de Roma 33011 Oviedo Spain
| | - Rebeca Miranda-Castro
- Departamento de Química Física y Analítica, Universidad de Oviedo Av. Julián Clavería 8 33006 Oviedo Spain .,Instituto de Investigación Sanitaria del Principado de Asturias Avenida de Roma 33011 Oviedo Spain
| | - Natalia Díaz
- Departamento de Química Física y Analítica, Universidad de Oviedo Av. Julián Clavería 8 33006 Oviedo Spain
| | - Dimas Suárez
- Departamento de Química Física y Analítica, Universidad de Oviedo Av. Julián Clavería 8 33006 Oviedo Spain
| | - Noemí de-Los-Santos-Álvarez
- Departamento de Química Física y Analítica, Universidad de Oviedo Av. Julián Clavería 8 33006 Oviedo Spain .,Instituto de Investigación Sanitaria del Principado de Asturias Avenida de Roma 33011 Oviedo Spain
| | - M Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo Av. Julián Clavería 8 33006 Oviedo Spain .,Instituto de Investigación Sanitaria del Principado de Asturias Avenida de Roma 33011 Oviedo Spain
| |
Collapse
|
77
|
Tang J, Lei Y, He X, Liu J, Shi H, Wang K. Recognition-Driven Remodeling of Dual-Split Aptamer Triggering In Situ Hybridization Chain Reaction for Activatable and Autonomous Identification of Cancer Cells. Anal Chem 2020; 92:10839-10846. [PMID: 32618183 DOI: 10.1021/acs.analchem.0c02524] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proximity-dependent hybridization chain reaction (HCR) has shown great potential in sensing biomolecules on the cell surface. However, the requirement of two adjacent bioevents occurring simultaneously limits its application. To solve the problem, split aptamers with target binding ability were introduced to combine with split triggers for initiating HCR, thus producing a novel dual-split aptamer probe (DSAP). By employing cancer-related receptors as models, in situ HCR on a cancer cell surface induced by recognition-driven remodeling of the DSAP was demonstrated. The DSAP consisted of two sequences. Each contained two segments; one derived from split aptamers and the other originated in split triggers. In the presence of target cells, split aptamers reassembled on the cell surface under the "induced-fit effect", thus forcing two split triggers close to each other. The remodeled DSAP worked as an intact trigger, which opened the H1 hairpin probe and then hybridized with the H2 hairpin probe, thus initiating HCR to produce an activated fluorescence signal. As a proof of concept, human liver cancer SMMC-7721 cells and their split ZY11 aptamer were used to construct the DSAP. Results indicated that the DSAP realized sensitive analysis of target cells, permitting the actual detection of 20 cells in the buffer. Moreover, the specific identification of target cells in mixed cell samples and the quantitative analysis of target cells in serum were also achieved. The DSAP strategy is facile and universal, which not only would expand the application range of HCR but also might be developed as a multitarget detection technique for bioanalysis.
Collapse
Affiliation(s)
- Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, P. R. China.,Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, P. R. China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, P. R. China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, P. R. China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, P. R. China
| |
Collapse
|
78
|
Tian Z, Peng P, Wang H, Zheng J, Shi L, Li T. Aptamer-Braked Multi-hairpin Cascade Circuits for Logic-Controlled Label-Free In Situ Bioimaging. Anal Chem 2020; 92:10357-10364. [PMID: 32600028 DOI: 10.1021/acs.analchem.0c00583] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a common hairpin-based amplification strategy, catalytic-hairpin assembly (CHA) has been widely used to construct various DNA circuits for biosensing and imaging. However, the hairpin substrates can potentially react without catalysts and result in circuit leakage, which may be quite severe in a CHA reaction consisting of three or four hairpins due to the formation of stable three-/four-way junction product. To circumvent this problem, here we introduce a well-designed ATP aptamer as a DNA brake into a four-hairpin cascade circuit, where the triggering toehold is blocked by the aptamer brake and thus the circuit leakage decreases dramatically. Such an aptamer-braked DNA circuit is then employed to build an AND logic gate in response to multiple external stimuli in acidic cell membrane microenvironments. Induced by a bimolecular i-motif that binds thioflavin T (ThT), the dimerization of a four-way junction in situ assembled on the cell surface is accomplished, enabling the logic-controlled cell membrane imaging in a label-free manner. Our design would be applicable to other hairpin-based amplification strategies and may find more applications in the construction of multiresponsive DNA cascade circuits in complex living systems.
Collapse
Affiliation(s)
- Zhijin Tian
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Pai Peng
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Huihui Wang
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Jiao Zheng
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Lili Shi
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Tao Li
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
79
|
Peng P, Wang Q, Du Y, Wang H, Shi L, Li T. Extracellular Ion-Responsive Logic Sensors Utilizing DNA Dimeric Nanoassemblies on Cell Surface and Application to Boosting AS1411 Internalization. Anal Chem 2020; 92:9273-9280. [PMID: 32521996 DOI: 10.1021/acs.analchem.0c01612] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High levels of extracellular H+ and K+ are unique features of the tumor microenvironment and have shown great promise for use in cancer-targeted drug delivery. Here, we design H+- and/or K+-responsive logic sensors utilizing in situ dimeric framework nucleic acid (FNA) assembly on the cell surface and for the first time apply the logic sensors to boosting cellular internalization of molecular payloads in tumor-mimicking extracellular environments. An anticancer aptamer AS1411 is blocked on branched FNA vertexes where a bimolecular i-motif is tethered as the controlling unit to enable a dimeric DNA nanoassembly in response to extracellular pH change. K+ promotes AS1411 to fold into a G-quadruplex and thereby release from dimeric FNA in which a proximity DNA hybridization-based FRET happens. Furthermore, such an AND-gated nanosensor functions more efficiently for AS1411 internalization than the conventional pathway. This finding shows significant implications for tumor-microenvironment-recognizing target drug delivery and precision cancer therapy.
Collapse
Affiliation(s)
- Pai Peng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yi Du
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Huihui Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lili Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
80
|
Liu CG, Wang Y, Liu P, Yao QL, Zhou YY, Li CF, Zhao Q, Liu GH, Zhang XL. Aptamer-T Cell Targeted Therapy for Tumor Treatment Using Sugar Metabolism and Click Chemistry. ACS Chem Biol 2020; 15:1554-1565. [PMID: 32401486 DOI: 10.1021/acschembio.0c00164] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of a tumor-targeted immunotherapy is highly required. The most advanced application is the use of CD19 chimeric antigen receptor (CAR)T (CAR-T) cells to B cell malignancies, but there are still side effects including potential carcinogenicity of lentiviral or retroviral insertion into the host cell genome. Here, we developed a nonviral aptamer-T cell targeted strategy for tumor therapy. Tumor cells surface-specific ssDNA aptamers were conjugated to CD3+T cells (aptamer-T cells) using N-azidomannosamine (ManNAz) sugar metabolic cell labeling and click chemistry. We found that the aptamer-T cells could specifically target and bind to tumor cells (such as SGC-7901 gastric cancer cell and CT26 colon carcinoma cell) in vitro and in mice after adoptively transfer in. Aptamer-T cells led to significant regression in tumor volume due to being enriched at tumor microenvironment and producing strong cytotoxicity activities of CD3+T cells with enhanced perforin, granzyme B, CD107a, CD69, and FasL expression. Moreover, aptamer-T displayed even stronger antitumor effects than an anti-PD1 immune-checkpoint monoclonal antibody (mAb) treatment in mice and combination with anti-PD1 yielded synergic antitumor effects. This study uncovers the strong potential of the adoptive nonviral aptamer-T cell strategy as a feasible and efficacious approach for tumor-targeted immunotherapy application.
Collapse
Affiliation(s)
- Chuan-Gang Liu
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
| | - Yong Wang
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
| | - Peng Liu
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
| | - Qi-Li Yao
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
| | - Yuan-Yuan Zhou
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
| | - Chao-Fan Li
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
| | - Qiu Zhao
- Department of Gastroenterology and Clinical Research Center for Intestinal and Colorectal Diseases, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Guang-Hui Liu
- Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Allergy Department of Zhongnan Hospital Wuhan University, Wuhan 430071, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology, Department of Immunology Wuhan University School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy and Immune-related Diseases, Allergy Department of Zhongnan Hospital Wuhan University, Wuhan 430071, China
| |
Collapse
|
81
|
Hong CY, Zhang XX, Dai CY, Wu CY, Huang ZY. Highly sensitive detection of multiple antibiotics based on DNA tetrahedron nanostructure-functionalized magnetic beads. Anal Chim Acta 2020; 1120:50-58. [PMID: 32475391 DOI: 10.1016/j.aca.2020.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/03/2023]
Abstract
Functional DNAs-functionalized magnetic beads (MBs) offer great potential in bioanalysis field because of their target recognition and magnetic separation functions. However, the recognition capability and hybridization affinity of DNA probes often suffer from limited available space, poor probe conformation and non-selective adsorption. To overcome these limitations, we herein used aptamer-pendant DNA tetrahedron nanostructure-functionalized MBs (TETapt-tet MBs) to develop a target-response fluorescence method with tetracycline (TET) as a model. In the absence of TET, 6-carboxy-X-rhodamine-labeled complementary DNAs (ROX-cDNAs) were assembled on the surface of MBs. Upon the addition of target TET, the ROX-cDNAs were separated and released from the MBs to generate fluorescence signal. The limit of detection and limit of quantification for TET were found to be 6 pg mL-1 and 20 pg mL-1, respectively. Compared with ssDNA-functionalized MBs surface, the designed DNA tetrahedron nanostructure-based surface could decrease the hybridization time and reduce false positives, ensuring the accuracy of TET detection in complex samples. The presented method was successfully employed for TET detection in honey samples. Moreover, this functionalization strategy could be extended to detect multiple antibiotics by simply substituting different aptamer sequences. Therefore, the proposed method has great potential in the field of food safety and public health.
Collapse
Affiliation(s)
- Cheng-Yi Hong
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Xiao-Xia Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Chen-Ying Dai
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Chen-Yue Wu
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Zhi-Yong Huang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, 361021, China.
| |
Collapse
|
82
|
Zhang Y, Luo S, Situ B, Ye X, Huang Y, Li B, Jiang X, Chen X, Zheng L, Yan X. A fluorescent immunosensor for determination and imaging of circulating tumor cells based on a bifunctional DNA nanomachine. Mikrochim Acta 2020; 187:259. [PMID: 32248380 DOI: 10.1007/s00604-020-4205-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
A fluorescent platform was developed for the determination and visualization of circulating tumor cells by a toehold-mediated bifunctional DNA nanomachine. In the presence of target tumor cells, the DNA nanomachine was activated. Multiple DNA products were formed, including dendritic DNA products and double-strand DNA products. Dendritic DNA products bound to their target cells for the visualization, while double-strand DNA products were released for the determination of tumor cells. At fluorescence excitation and emission wavelengths of 530 and 550 nm, this method could detect as low as 43 cells/mL (S/N = 3) with a linear range of 100 to 10,000 cells/mL. In clinical hydrothorax samples, this platform exhibited high reliability with a recovery of 93 to 116%. At the fluorescence excitation and emission wavelengths of 490 and 515 nm, the specificity and biocompatibility of this method were further verified by tumor cells imaging. Furthermore, the robustness of the toehold-mediated bifunctional DNA nanomachine was demonstrated by the specific gene mutation detection in single-cell analysis. Graphical abstract Schematic illustration of the fluorescent immunosensor for determination and imaging of circulating tumor cells. The method is based on aptamer-based recognition and toehold-mediated bifunctional DNA nanomachine.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Shihua Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xinyi Ye
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Yifang Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xiujuan Jiang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xueping Chen
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, People's Republic of China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China.
| | - Xiaohui Yan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China.
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China.
| |
Collapse
|
83
|
Li Z, Yuan B, Lin X, Meng X, Wen X, Guo Q, Li L, Jiang H, Wang K. Intramolecular trigger remodeling-induced HCR for amplified detection of protein-specific glycosylation. Talanta 2020; 215:120889. [PMID: 32312435 DOI: 10.1016/j.talanta.2020.120889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
Abstract
Dynamic changes of protein-glycosylation on cell surface act as an important indicator that reflects cellular physiological states and disease developments. The enhanced visualization of protein-specific glycosylation is of great value to interpret its functions and mechanisms. Hence, we present an intramolecular trigger remodeling-induced hybridization chain reaction (HCR) for imaging protein-specific glycosylation. This strategy relies on designing two DNA probes, protein and glycan probes, labeled respectively on protein by aptamer recognition and glycan through metabolic oligosaccharide engineering (MOE). Upon the same glycoprotein was labeled, the complementary domain of two probes induces hybridization and thus to remodel an intact trigger, followed by initiating HCR assembly. Applying this strategy, we successfully achieved imaging of specific protein-glycosylation on CEM cell surface and monitored dynamic changes of the glycosylation after treating with drugs. It provides a powerful tool with high flexibility, specificity and sensitivity in the research field of protein-specific glycosylation on living cells.
Collapse
Affiliation(s)
- Zenghui Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Baoyin Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoxia Lin
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Xiangxian Meng
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Xiaohong Wen
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Qiuping Guo
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| | - Lie Li
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Huishan Jiang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China
| | - Kemin Wang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
| |
Collapse
|
84
|
Huang J, Ma W, Sun H, Wang H, He X, Cheng H, Huang M, Lei Y, Wang K. Self-Assembled DNA Nanostructures-Based Nanocarriers Enabled Functional Nucleic Acids Delivery. ACS APPLIED BIO MATERIALS 2020; 3:2779-2795. [DOI: 10.1021/acsabm.9b01197] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jin Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wenjie Ma
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Huanhuan Sun
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Huizhen Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Hong Cheng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Mingmin Huang
- College of Biology, Hunan University, Changsha 410082, China
| | - Yanli Lei
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Biology, Hunan University, Changsha 410082, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
85
|
Xiong M, Liu Q, Tang D, Liu L, Kong G, Fu X, Yang C, Lyu Y, Meng HM, Ke G, Zhang XB. “Apollo Program” in Nanoscale: Landing and Exploring Cell-Surface with DNA Nanotechnology. ACS APPLIED BIO MATERIALS 2020; 3:2723-2742. [DOI: 10.1021/acsabm.9b01193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Qin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Decui Tang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Lu Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Gezhi Kong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Xiaoyi Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Chan Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Hong-Min Meng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Guoliang Ke
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
86
|
Dong H, Liu L, Wang J, Fan J, Wang HH, Nie Z. DNA-Based Reprogramming Strategy of Receptor-Mediated Cellular Behaviors: From Genetic Encoding to Nongenetic Engineering. ACS APPLIED BIO MATERIALS 2020; 3:2796-2804. [DOI: 10.1021/acsabm.9b01223] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Huilin Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Lin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Jieyu Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Jiahui Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Hong-Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
87
|
Li J, Wang L, Tian J, Zhou Z, Li J, Yang H. Nongenetic engineering strategies for regulating receptor oligomerization in living cells. Chem Soc Rev 2020; 49:1545-1568. [DOI: 10.1039/c9cs00473d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nongenetic strategies for regulating receptor oligomerization in living cells based on DNA, protein, small molecules and physical stimuli.
Collapse
Affiliation(s)
- Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Jinmiao Tian
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Zhilan Zhou
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| |
Collapse
|
88
|
|
89
|
Cheng YH, Tang H, Yu RQ, Jiang JH. DNA-Programmed plasmonic ELISA for the ultrasensitive detection of protein biomarkers. Analyst 2020; 145:4860-4866. [DOI: 10.1039/d0an00656d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a novel DNA-programmed plasmonic enzyme-linked immunosorbent assay (ELISA) for the ultrasensitive detection of protein biomarkers with the naked eye.
Collapse
Affiliation(s)
- Yu-Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Hao Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
90
|
Gao H, Zhang K, Teng X, Li J. Rolling circle amplification for single cell analysis and in situ sequencing. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115700] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
91
|
Feng Q, Wang M, Qin L, Wang P. Dual-Signal Readout of DNA Methylation Status Based on the Assembly of a Supersandwich Electrochemical Biosensor without Enzymatic Reaction. ACS Sens 2019; 4:2615-2622. [PMID: 31507174 DOI: 10.1021/acssensors.9b00720] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A highly sensitive and selective biosensing system was designed to analyze DNA methylation using a dual-signal readout technique in combination with the signal amplification of supersandwich DNA structure. Through the ingenious design of target-triggered cascade of hybridization chain reaction, one target DNA could initiate the formation of supersandwich structure with multiple signal probes. As a result, one-to-multiple amplification effect was achieved, which conferred high sensitivity to target molecular recognition. Based on probe 1 labeled with ferrocene and probe 2 modified with methylene blue, the target DNA was clearly recognized by two electrochemical signals at independent potentials, which was helpful for the acquisition of more accurate detection results. Taking advantage of bisulfite conversion, the methylation status of cytosine (C) was changed to nucleic acid sequence status, which facilitated the hybridization-based detection without enzymatic reaction. Consequently, the methylated DNA was detected at the femtomolar level with satisfactory analytical parameters. The proposed system was effectively used to assess methylated DNA in human blood serum samples, illuminating the possibility of the sensing platform for applications in disease diagnosis and biochemistry research.
Collapse
Affiliation(s)
- Qiumei Feng
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengying Wang
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Li Qin
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| | - Po Wang
- Department of Chemistry, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
92
|
Chen S, Xu Z, Yang W, Lin X, Li J, Li J, Yang H. Logic-Gate-Actuated DNA-Controlled Receptor Assembly for the Programmable Modulation of Cellular Signal Transduction. Angew Chem Int Ed Engl 2019; 58:18186-18190. [PMID: 31595614 DOI: 10.1002/anie.201908971] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/18/2019] [Indexed: 02/01/2023]
Abstract
Programming cells to sense multiple inputs and activate cellular signal transduction cascades is of great interest. Although this goal has been achieved through the engineering of genetic circuits using synthetic biology tools, a nongenetic and generic approach remains highly demanded. Herein, we present an aptamer-controlled logic receptor assembly for modulating cellular signal transduction. Aptamers were engineered as "robotic arms" to capture target receptors (c-Met and CD71) and a DNA logic assembly functioned as a computer processor to handle multiple inputs. As a result, the DNA assembly brings c-Met and CD71 into close proximity, thus interfering with the ligand-receptor interactions of c-Met and inhibiting its functions. Using this principle, a set of logic gates was created that respond to DNA strands or light irradiation, modulating the c-Met/HGF signal pathways. This simple modular design provides a robust chemical tool for modulating cellular signal transduction.
Collapse
Affiliation(s)
- Shan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhifei Xu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wen Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
93
|
Chen S, Xu Z, Yang W, Lin X, Li J, Li J, Yang H. Logic‐Gate‐Actuated DNA‐Controlled Receptor Assembly for the Programmable Modulation of Cellular Signal Transduction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908971] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
- Institute of Molecular MedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhifei Xu
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
| | - Wen Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
| | - Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
| | - Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
- College of Biological Science and EngineeringFuzhou University Fuzhou 350108 P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
- Institute of Molecular MedicineRenji HospitalShanghai Jiao Tong University School of MedicineShanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyFujian Provincial Key Laboratory of Analysis and Detection Technology for Food SafetyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou 350108 P. R. China
| |
Collapse
|
94
|
Wu H, Chen TT, Wang XN, Ke Y, Jiang JH. RNA imaging in living mice enabled by an in vivo hybridization chain reaction circuit with a tripartite DNA probe. Chem Sci 2019; 11:62-69. [PMID: 32110357 PMCID: PMC7012062 DOI: 10.1039/c9sc03469b] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
RNA imaging in living animals helps decipher biology and creates new theranostics for disease treatment. Due to their low delivery efficiency and high background, however, fluorescence probes for in situ RNA imaging in living mice have not been reported. We develop a new cell-targeting fluorescent probe that enables RNA imaging in living mice via an in vivo hybridization chain reaction (HCR). The minimalistic Y-shaped design of the tripartite DNA probe improves its performance in live animal studies and serves as a modular scaffold for three DNA motifs for cell-targeting and the HCR circuit. The tripartite DNA probe allows facile synthesis with a high yield and demonstrates ultrasensitive RNA detection in vitro. The probe also exhibits selective and efficient internalization into folate (FA) receptor-overexpressed cells via a caveolar-mediated endocytosis mechanism and produces fluorescence signals dynamically correlated with intracellular target expressions. Furthermore, the probe exhibits specific delivery into tumor cells and allows high-contrast imaging of miR-21 in living mice. The tripartite DNA design may open the door for intracellular RNA imaging in living animals using DNA-minimal structures and its design strategy can help future development of DNA-based multi-functional molecular probes.
Collapse
Affiliation(s)
- Han Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China . .,Wallace H. Coulter Department of Biomedical Engineering , Emory University School of Medicine , Emory University , Atlanta , Georgia 30322 , USA .
| | - Ting-Ting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Xiang-Nan Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering , Emory University School of Medicine , Emory University , Atlanta , Georgia 30322 , USA .
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| |
Collapse
|
95
|
Li D, Li X, Shen B, Li P, Chen Y, Ding S, Chen W. Aptamer recognition and proximity-induced entropy-driven circuit for enzyme-free and rapid amplified detection of platelet-derived growth factor-BB. Anal Chim Acta 2019; 1092:102-107. [PMID: 31708022 DOI: 10.1016/j.aca.2019.09.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is currently used as a biomarker protein for cancer early diagnosis and clinical treatment. Herein, we reported a robust and enzyme-free strategy based on aptamer recognition and proximity-induced entropy-driven circuits (AR-PEDC) for homogeneous and rapid detection of platelet-derived growth factor BB (PDGF-BB) without any washing steps or thermocycling. The proximity probes specifically recognize target protein to form the completed trigger (CT). Then, the CT reacts with three-strand complex to form intermediate, which subsequently binds to fuel strand to release reporter strand, assistant strand and the CT. The revised proximity probes exhibit significantly improved signal-to-background ratio and faster association rate. Moreover, target protein/proximity probes interaction can specifically initiate entropy-driven circuits, thus providing immense signal amplification for ultrasensitive detection of PDGF-BB with low detection limit of 9.6 pM. The practical ability of the developed strategy is demonstrated by detection of PDGF-BB in human serum with satisfactory results. In addition, this method is flexible and can be conveniently extended to a variety of targets by simply substituting the target specific sequence. Thus, this strategy presents a rapid, low background and versatile amplification mechanism for the detection of protein biomarkers and offers a promising alternative platform for clinical diagnosis.
Collapse
Affiliation(s)
- Dandan Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinmin Li
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Bo Shen
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Pu Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuanjiao Chen
- Department of Laboratory Medicine, Fengjie Country Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Shijia Ding
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
96
|
Wang J, Wang DX, Ma JY, Wang YX, Kong DM. Three-dimensional DNA nanostructures to improve the hyperbranched hybridization chain reaction. Chem Sci 2019; 10:9758-9767. [PMID: 32055345 PMCID: PMC6993746 DOI: 10.1039/c9sc02281c] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 11/21/2022] Open
Abstract
Nonenzymatic nucleic acid amplification techniques (e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers.
Nonenzymatic nucleic acid amplification techniques (e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| | - Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| | - Jia-Yi Ma
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| | - Ya-Xin Wang
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China . .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China
| |
Collapse
|
97
|
Yang W, Peng Q, Guo Z, Wu H, Ding S, Chen Y, Zhao M. PtCo nanocubes/reduced graphene oxide hybrids and hybridization chain reaction-based dual amplified electrochemiluminescence immunosensing of antimyeloperoxidase. Biosens Bioelectron 2019; 142:111548. [PMID: 31400729 DOI: 10.1016/j.bios.2019.111548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 11/24/2022]
Abstract
Antimyeloperoxidase (anti-MPO) is regarded as one of the most important circulating autoantibodies for anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitides (AAVs). Hence, it is crucial for highly sensitive detection of anti-MPO to monitor efficacy of AAVs in clinical diagnosis. Herein, a highly sensitive electrochemiluminescence (ECL) immunosensor for anti-MPO detection was constructed by combining reduced graphene oxide-supported PtCo nanocubes hybrids (PtCo@rGO) with hybridization chain reaction (HCR) as signal amplification. Multiple ECL luminophores (Dox-ABEI) prepared by cross-linking of N-(aminobutyl)-N-(ethylisoluminol) (ABEI) and doxorubicin (Dox) were intercalated into dsDNA products of HCR, achieving the effective immobilization of ECL luminophores to obtain strong ECL emission. Benefiting from the efficient catalytic activity of PtCo@rGO toward H2O2, the massive the superoxide radical (O2●-) were generated to further react with ABEI for ECL emission. Thus, the designed ECL immunoassay for anti-MPO detection exhibited excellent sensitivity of a concentration variation from 50 fg/mL to 1 ng/mL and a detection limit of 15.68 fg/mL. Importantly, this work proposed an enzyme-free ECL immunoassay with high sensitivity, excellent specificity for protein detection in clinical diagnosis.
Collapse
Affiliation(s)
- Wei Yang
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Qiling Peng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhen Guo
- Department of Clinical Laboratory, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yongjian Chen
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
98
|
Huang ZM, Lin MY, Zhang CH, Wu Z, Yu RQ, Jiang JH. Recombinant Fusion Streptavidin as a Scaffold for DNA Nanotetrads for Nucleic Acid Delivery and Telomerase Activity Imaging in Living Cells. Anal Chem 2019; 91:9361-9365. [DOI: 10.1021/acs.analchem.9b02115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhi-Mei Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Mei-Ya Lin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Chong-Hua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
99
|
In situ template generation of silver nanoparticles as amplification tags for ultrasensitive surface plasmon resonance biosensing of microRNA. Biosens Bioelectron 2019; 137:82-87. [DOI: 10.1016/j.bios.2019.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
|
100
|
Gu C, Kong X, Liu X, Gai P, Li F. Enzymatic Biofuel-Cell-Based Self-Powered Biosensor Integrated with DNA Amplification Strategy for Ultrasensitive Detection of Single-Nucleotide Polymorphism. Anal Chem 2019; 91:8697-8704. [DOI: 10.1021/acs.analchem.9b02510] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chengcheng Gu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xinke Kong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Panpan Gai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|