51
|
Affiliation(s)
- Marty H Porter
- Fuqua Heart Center of Atlanta, Piedmont Hospital, 95 Collier Road, Suite 2015, Atlanta, GA 30309, USA.
| | | |
Collapse
|
52
|
Abstract
Our understanding of the molecular basis of mitochondrial disorders has come primarily from the discovery of an expanding number of mutations of mtDNA. However, a variety of recent observations indicate that many syndromes are due to abnormalities in nuclear genes related to oxidative-phosphorylation (OXPHOS). Nuclear genes encode hundreds of proteins involved in mitochondrial OXPHOS. Nevertheless, the identification of these genes has proceeded at a much slower pace, compared with the discovery and characterization of mtDNA mutations. This scenario is rapidly changing, thanks to the discovery of several OXPHOS-related human genes, and to the identification of mutations responsible for different clinical syndromes.
Collapse
Affiliation(s)
- M Zeviani
- Division of Biochemistry and Genetics, Carlo Besta National Neurological Institute, via Celoria 11, 20133 Milan, Italy.
| |
Collapse
|
53
|
Williams SL, Scholte HR, Gray RG, Leonard JV, Schapira AH, Taanman JW. Immunological phenotyping of fibroblast cultures from patients with a mitochondrial respiratory chain deficit. J Transl Med 2001; 81:1069-77. [PMID: 11502858 DOI: 10.1038/labinvest.3780319] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Conventional approaches to the diagnosis of mitochondrial respiratory chain diseases, using enzyme assays and histochemistry, are laborious and give limited information concerning the genetic basis of a deficiency. We have evaluated the diagnostic value of 12 monoclonal antibodies to subunits of the four respiratory chain enzyme complexes and F(1)F(0)-ATP synthase. Antibodies were used in immunological studies with skin fibroblast cultures derived from patients with diverse mitochondrial diseases, including patients in which the disease was caused by a nuclear genetic defect and patients known to harbor a heteroplasmic mutation in a mitochondrial tRNA gene. Immunoblotting experiments permitted the identification of specific enzyme assembly deficits and immunocytochemical studies provided clues regarding the genetic origin of the disease. The immunological findings were in agreement with the biochemical and genetic data of the patients. Our study demonstrates that characterization of the fibroblast cultures with the monoclonal antibodies provides a convenient technique to complement biochemical assays and histochemistry in the diagnosis of mitochondrial respiratory chain disorders.
Collapse
Affiliation(s)
- S L Williams
- University Department of Clinical Neurosciences, Royal Free and University College Medical School, University College London, UK
| | | | | | | | | | | |
Collapse
|
54
|
Williams SL, Taanman JW, Hansíková H, Houst'ková H, Chowdhury S, Zeman J, Houstek J. A novel mutation in SURF1 causes skipping of exon 8 in a patient with cytochrome c oxidase-deficient leigh syndrome and hypertrichosis. Mol Genet Metab 2001; 73:340-3. [PMID: 11509016 DOI: 10.1006/mgme.2001.3206] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leigh syndrome is a rare pediatric neurodegenerative disorder attributed to impaired mitochondrial energy metabolism. Mutations in SURF1 have been described in several patients with Leigh syndrome associated with cytochrome c oxidase deficiency. We report a new 18-bp deletion (821del18), spanning the splice donor junction of exon 8 of SURF1, in an infant presenting with cytochrome c oxidase-deficient Leigh syndrome and hypertrichosis. cDNA sequencing demonstrated that this deletion results in a messenger lacking exon 8. RT-PCR experiments suggested a rapid degradation of the aberrant mRNA species from the 5'-end.
Collapse
Affiliation(s)
- S L Williams
- University Department of Clinical Neurosciences, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
55
|
Szuplewski S, Terracol R. The cyclope gene of Drosophila encodes a cytochrome c oxidase subunit VIc homolog. Genetics 2001; 158:1629-43. [PMID: 11514451 PMCID: PMC1461756 DOI: 10.1093/genetics/158.4.1629] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytochrome c oxidase is the terminal enzyme of the mitochondrial electron transfer chain. In eukaryotes, the enzyme is composed of 3 mitochondrial DNA-encoded subunits and 7-10 (in mammals) nuclear DNA-encoded subunits. This enzyme has been extensively studied in mammals and yeast but, in Drosophila, very little is known and no mutant has been described so far. Here we report the genetic and molecular characterization of mutations in cyclope (cype) and the cloning of the gene encoding a cytochrome c oxidase subunit VIc homolog. cype is an essential gene whose mutations are lethal and show pleiotropic phenotypes. The 77-amino acid peptide encoded by cype is 46% identical and 59% similar to the human subunit (75 amino acids). The transcripts are expressed maternally and throughout development in localized regions. They are found predominantly in the central nervous system of the embryo; in the central region of imaginal discs; in the germarium, follicular, and nurse cells of the ovary; and in testis. A search in the Genome Annotation Database of Drosophila revealed the absence of subunit VIIb and the presence of 9 putative nuclear cytochrome c oxidase subunits with high identity scores when compared to the 10 human subunits.
Collapse
Affiliation(s)
- S Szuplewski
- Institut Jacques Monod, 75251 Paris Cedex 05, France
| | | |
Collapse
|
56
|
Valnot I, Osmond S, Gigarel N, Mehaye B, Amiel J, Cormier‐Daire V, Munnich A, Bonnefont J, Rustin P, Rotig A. Mutations of theSCO1Gene in Mitochondrial CytochromecOxidase Deficiency with Neonatal‐Onset Hepatic Failure and Encephalopathy. Am J Hum Genet 2000. [DOI: 10.1086/321202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
57
|
Valnot I, Osmond S, Gigarel N, Mehaye B, Amiel J, Cormier-Daire V, Munnich A, Bonnefont JP, Rustin P, Rötig A. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 2000; 67:1104-9. [PMID: 11013136 PMCID: PMC1288552 DOI: 10.1016/s0002-9297(07)62940-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Accepted: 09/08/2000] [Indexed: 10/22/2022] Open
Abstract
Cytochrome c oxidase (COX) catalyzes both electron transfer from cytochrome c to molecular oxygen and the concomitant vectorial proton pumping across the inner mitochondrial membrane. Studying a large family with multiple cases of neonatal ketoacidotic comas and isolated COX deficiency, we have mapped the disease locus to chromosome 17p13.1, in a region encompassing two candidate genes involved in COX assembly-namely, SCO1 and COX10. Mutation screening revealed compound heterozygosity for SCO1 gene mutations in the patients. The mutated allele, inherited from the father, harbored a 2-bp frameshift deletion (DeltaGA; nt 363-364) resulting in both a premature stop codon and a highly unstable mRNA. The maternally inherited mutation (C520T) changed a highly conserved proline into a leucine in the protein (P174L). This proline, adjacent to the CxxxC copper-binding domain of SCO1, is likely to play a crucial role in the tridimentional structure of the domain. Interestingly, the clinical presentation of SCO1-deficient patients markedly differs from that of patients harboring mutations in other COX assembly and/or maturation genes.
Collapse
Affiliation(s)
- I Valnot
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant, INSERM U-393, Hôpital Necker-Enfants Malades, 75743 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Horvath R, Lochmüller H, Stucka R, Yao J, Shoubridge EA, Kim SH, Gerbitz KD, Jaksch M. Characterization of human SCO1 and COX17 genes in mitochondrial cytochrome-c-oxidase deficiency. Biochem Biophys Res Commun 2000; 276:530-3. [PMID: 11027508 DOI: 10.1006/bbrc.2000.3495] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At least three proteins, COX17p, SCO1p, and its homologue SCO2p are thought to be involved in mitochondrial copper transport to cytochrome-c-oxidase (COX), the terminal enzyme of the respiratory chain. Recently, we and others have shown that mutations in SCO2 are associated with a lethal infantile hypertrophic cardiomyopathy (HCMP) with COX-deficiency. The majority of patients with a similar phenotype were, however, negative for SCO2 mutations, suggesting the other genes as candidates for this disorder. Here we report on the genomic organization of SCO1 and COX17 on human chromosomes 17 and 3 respectively, and the complete sequence analysis of COX17 and SCO1 in 30 patients with COX deficiency. Using a panel of human:mouse-monochromosomal hybrids, the expression of COX17 was specifically restricted to chromosome 3, indicating that the previously reported sequence on chromosome 13 represents a pseudogene. DNA sequence analysis of SCO1 and COX17 in nine patients with severe COX deficiency and fatal HCMP, and in 21 patients with other COX deficiency disorders, did not reveal any pathogenic mutations or polymorphisms. We conclude that neither SCO1 nor COX17 are common causes of COX deficiency disorders.
Collapse
Affiliation(s)
- R Horvath
- Metabolic Disease Centre Munich, Institute of Clinical Chemistry, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Pan-Zhou XR, Cui L, Zhou XJ, Sommadossi JP, Darley-Usmar VM. Differential effects of antiretroviral nucleoside analogs on mitochondrial function in HepG2 cells. Antimicrob Agents Chemother 2000; 44:496-503. [PMID: 10681309 PMCID: PMC89717 DOI: 10.1128/aac.44.3.496-503.2000] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous studies have reported effects of antiviral nucleoside analogs on mitochondrial function, but they have not correlated well with the observed toxic side effects. By comparing the effects of the five Food and Drug Administration-approved anti-human immunodeficiency virus nucleoside analogs, zidovudine (3'-azido-3'-deoxythymidine) (AZT), 2',3'-dideoxycytidine (ddC), 2', 3'-dideoxyinosine (ddI), 2',3'-didehydro-2',3'-deoxythymidine (d4T), and beta-L-2',3'-dideoxy-3'-thiacytidine (3TC), as well as the metabolite of AZT, 3'-amino-3'-deoxythymidine (AMT), on mitochondrial function in a human hepatoma cell line, this issue has been reexamined. Evidence for a number of mitochondrial defects with AZT, ddC, and ddI was found, but only AZT induced a marked rise in lactic acid levels. Only in mitochondria isolated from AZT (50 microM)-treated cells was significant inhibition of cytochrome c oxidase and citrate synthase found. Our investigations also demonstrated that AZT, d4T, and 3TC did not affect the synthesis of the 11 polypeptides encoded by mitochondrial DNA, while ddC caused 70% reduction of total polypeptide content and ddI reduced by 43% the total content of 8 polypeptides (including NADH dehydrogenase subunits 1, 2, 4, and 5, cytochrome c oxidase subunits I to III, and cytochrome b). We hypothesize that in hepatocytes the reserve capacity for mitochondrial respiration is such that inhibition of respiratory enzymes is unlikely to become critical. In contrast, the combined inhibition of the citric acid cycle and electron transport greatly enhances the dependence of the cell on glycolysis and may explain why apparent mitochondrial dysfunction is more prevalent with AZT treatment.
Collapse
Affiliation(s)
- X R Pan-Zhou
- Department of Clinical Pharmacology, Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | |
Collapse
|
60
|
Guo A, Nie F, Wong-Riley M. Human nuclear respiratory factor 2 alpha subunit cDNA: isolation, subcloning, sequencing, and in situ hybridization of transcripts in normal and monocularly deprived macaque visual system. J Comp Neurol 2000; 417:221-32. [PMID: 10660899 DOI: 10.1002/(sici)1096-9861(20000207)417:2<221::aid-cne7>3.0.co;2-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nuclear respiratory factor 2 (NRF-2) has been shown to contribute to the transcriptional regulation of a number of subunits of respiratory chain enzymes, including cytochrome c oxidase (CO). Our recent study demonstrated a parallel distribution of the alpha subunit proteins of NRF-2 (NRF-2 alpha) with CO in the monkey striate cortex, and that it can be regulated by neuronal activity. To determine whether this regulation is at the transcriptional level, the present study examined the expression of NRF-2 alpha mRNA in normal and monocularly deprived adult monkeys. A partial NRF-2 alpha cDNA was isolated from a human brain cDNA library. Sequence analysis revealed that it shared 99% identity with the published sequence from human HeLa cells. Riboprobes of NRF-2 alpha was generated and labeled with digoxigenin-11-UTP for in situ hybridization. The expression pattern of NRF-2 alpha mRNA in the normal striate cortex paralleled that of CO activity. It was highly expressed in layers IVC and VI, which contained high levels of CO, and more densely expressed in puffs of layers II and III than in interpuffs. In monkeys monocularly treated with tetrodotoxin for 1 day to 2 weeks, both NRF-2 alpha expression and CO activity were reduced in deprived ocular dominance columns of the visual cortex and in deprived layers of the lateral geniculate nucleus. These data indicate that, in the normal and visually deprived adult monkeys, NRF-2 alpha is regulated by neuronal activity at the transcriptional level.
Collapse
Affiliation(s)
- A Guo
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | |
Collapse
|
61
|
von Kleist-Retzow JC, Vial E, Chantrel-Groussard K, Rötig A, Munnich A, Rustin P, Taanman JW. Biochemical, genetic and immunoblot analyses of 17 patients with an isolated cytochrome c oxidase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1455:35-44. [PMID: 10524227 DOI: 10.1016/s0925-4439(99)00050-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondrial respiratory chain defects involving cytochrome c oxidase (COX) are found in a clinically heterogeneous group of diseases, yet the molecular basis of these disorders have been determined in only a limited number of cases. Here, we report the clinical, biochemical and molecular findings in 17 patients who all had isolated COX deficiency and expressed the defect in cultured skin fibroblasts. Immunoblot analysis of mitochondrial fractions with nine subunit specific monoclonal antibodies revealed that in most patients, including in a patient with a novel mutation in the SURF1 gene, steady-state levels of all investigated COX subunits were decreased. Distinct subunit expression patterns were found, however, in different patients. The severity of the enzymatic defect matched the decrease in immunoreactive material in these patients, suggesting that the remnant enzyme activity reflects the amount of remaining holo-enzyme. Four patients presented with a clear defect of COX activity but had near normal levels of COX subunits. An increased affinity for cytochrome c was observed in one of these patients. Our findings indicate a genetic heterogeneity of COX deficiencies and are suggestive of a prominent involvement of nuclear genes acting on the assembly and maintenance of cytochrome c oxidase.
Collapse
Affiliation(s)
- J C von Kleist-Retzow
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant (INSERM U393), Hôpital des Enfants-Malades, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
62
|
Bruno C, Martinuzzi A, Tang Y, Andreu AL, Pallotti F, Bonilla E, Shanske S, Fu J, Sue CM, Angelini C, DiMauro S, Manfredi G. A stop-codon mutation in the human mtDNA cytochrome c oxidase I gene disrupts the functional structure of complex IV. Am J Hum Genet 1999; 65:611-20. [PMID: 10441567 PMCID: PMC1377967 DOI: 10.1086/302546] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We have identified a novel stop-codon mutation in the mtDNA of a young woman with a multisystem mitochondrial disorder. Histochemical analysis of a muscle-biopsy sample showed virtually absent cytochrome c oxidase (COX) stain, and biochemical studies confirmed an isolated reduction of COX activity. Sequence analysis of the mitochondrial-encoded COX-subunit genes identified a heteroplasmic G-->A transition at nucleotide position 6930 in the gene for subunit I (COX I). The mutation changes a glycine codon to a stop codon, resulting in a predicted loss of the last 170 amino acids (33%) of the polypeptide. The mutation was present in the patient's muscle, myoblasts, and blood and was not detected in normal or disease controls. It was not detected in mtDNA from leukocytes of the patient's mother, sister, and four maternal aunts. We studied the genetic, biochemical, and morphological characteristics of transmitochondrial cybrid cell lines, obtained by fusing of platelets from the patient with human cells lacking endogenous mtDNA (rho0 cells). There was a direct relationship between the proportion of mutant mtDNA and the biochemical defect. We also observed that the threshold for the phenotypic expression of this mutation was lower than that reported in mutations involving tRNA genes. We suggest that the G6930A mutation causes a disruption in the assembly of the respiratory-chain complex IV.
Collapse
MESH Headings
- Adult
- Blood Platelets/cytology
- Blood Platelets/enzymology
- Blood Platelets/metabolism
- Blotting, Western
- Cell Division
- Codon, Terminator/genetics
- Cytochrome-c Oxidase Deficiency
- DNA, Mitochondrial/genetics
- Electron Transport Complex IV/chemistry
- Electron Transport Complex IV/genetics
- Electron Transport Complex IV/metabolism
- Female
- Humans
- Hybrid Cells/cytology
- Hybrid Cells/enzymology
- Hybrid Cells/metabolism
- Immunohistochemistry
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Mitochondrial Myopathies/enzymology
- Mitochondrial Myopathies/genetics
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Mutation
- Protein Biosynthesis
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Sequence Deletion/genetics
Collapse
Affiliation(s)
- C Bruno
- Department of Neurology, H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related Diseases, Columbia University College of Physicians and Surgeons, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Beauvoit B, Bunoust O, Guérin B, Rigoulet M. ATP-regulation of cytochrome oxidase in yeast mitochondria: role of subunit VIa. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:118-27. [PMID: 10429195 DOI: 10.1046/j.1432-1327.1999.00475.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of the nuclear-encoded subunit VIa in the regulation of cytochrome oxidase by ATP was investigated in isolated yeast mitochondria. As the subunit VIa-null strain possesses a fully active and assembled cytochrome oxidase, multiple ATP-regulating sites were characterized with respect to their location and their kinetic effect: (a) intra-mitochondrial ATP inhibited the complex IV activity of the null strain, whereas the prevailing effect of ATP on the wild-type strain, at low ionic strength, was activation on the cytosolic side of complex IV, mediated by subunit VIa. However, at physiological ionic strength (i.e. approximately 200 mM), activation by ATP was absent but inhibition was not impaired; (b) in ethanol-respiring mitochondria, when the electron flux was modulated using a protonophoric uncoupler, the redox state of aa3 cytochromes varied with respect to activation (wild-type) or inhibition (null-mutant) of the cytochrome oxidase by ATP; (c) consequently, the control coefficient of cytochrome oxidase on respiratory flux, decreased (wild-type) or increased (null-mutant) in the presence of ATP; (d) considering electron transport from cytochrome c to oxygen, the response of cytochrome oxidase to its thermodynamic driving force was increased by ATP for the wild-type but not for the mutant subunit. Taken together, these findings indicate that at physiological concentration, ATP regulates yeast cytochrome oxidase via subunit-mediated interactions on both sides of the inner membrane, thus subtly tuning the thermodynamic and kinetic control of respiration. This study opens up new prospects for understanding the feedback regulation of the respiratory chain by ATP.
Collapse
Affiliation(s)
- B Beauvoit
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université Victor Ségalen, Bordeaux, France.
| | | | | | | |
Collapse
|
64
|
Kish SJ, Mastrogiacomo F, Guttman M, Furukawa Y, Taanman JW, Dozić S, Pandolfo M, Lamarche J, DiStefano L, Chang LJ. Decreased brain protein levels of cytochrome oxidase subunits in Alzheimer's disease and in hereditary spinocerebellar ataxia disorders: a nonspecific change? J Neurochem 1999; 72:700-7. [PMID: 9930743 DOI: 10.1046/j.1471-4159.1999.0720700.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Controversy exists as to the clinical importance, cause, and disease specificity of the cytochrome oxidase (CO) activity reduction observed in some patients with Alzheimer's disease (AD). Although it is assumed that the enzyme is present in normal amount in AD, no direct measurements of specific CO protein subunits have been conducted. We measured protein levels of CO subunits encoded by mitochondrial (COX I, COX II) and nuclear (COX IV, COX VIc) DNA in autopsied brain of patients with AD whom we previously reported had decreased cerebral cortical CO activity. To assess disease specificity, groups of patients with spinocerebellar ataxia type I and Friedreich's ataxia were also included. As compared with the controls, mean protein concentrations of all four CO subunits were significantly decreased (-19 to -47%) in temporal and parietal cortices in the AD group but were not significantly reduced (-12 to -17%) in occipital cortex. The magnitude of the reduction in protein levels of the CO subunits encoded by mitochondrial DNA (-42 to -47%) generally exceeded that encoded by nuclear DNA (-19 to -43%). In the spinocerebellar ataxia disorders, COX I and COX II levels were significantly decreased in cerebellar cortex (-22 to -32%) but were normal or close to normal in cerebral cortex, an area relatively unaffected by neurodegeneration. We conclude that protein levels of mitochondrial- and nuclear-encoded CO subunits are moderately reduced in degenerating but not in relatively spared brain areas in AD and that the decrease is not specific to this disorder. The simplest explanation for our findings is that CO is decreased in human brain disorders as a secondary event in brain areas having reduced neuronal activity or neuronal/synaptic elements consequent to the primary neurodegenerative process.
Collapse
Affiliation(s)
- S J Kish
- Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Petruzzella V, Tiranti V, Fernandez P, Ianna P, Carrozzo R, Zeviani M. Identification and characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain. Genomics 1998; 54:494-504. [PMID: 9878253 DOI: 10.1006/geno.1998.5580] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have successfully applied a strategy based on the "cyberscreening" of the expressed sequence tags database using yeast protein sequences as "probes" to identify the human gene orthologs to BCS1, COX15, PET112, COX11, and SCO1, five yeast genes involved in the biogenesis of the mitochondrial respiratory chain complexes. In yeast, BCS1 is involved mainly in the assembly of complex III, while the other genes appear to control the structure/function of cytochrome-c oxidase. Significant amino acid identity and similarity were demonstrated by comparison of the human with the corresponding yeast polypeptides. Sequence alignment revealed numerous colinear identical regions and the conservation of functional domains. Mitochondrial targeting of the human gene products, suggested by computer analysis of the protein sequences, was confirmed by an in vitro import and protease-protection assay. These data strongly suggest that the human gene products share similar or identical functions with their yeast homologues. Genes controlling the structure/function of the respiratory chain complexes are attractive candidates for human mitochondrial disorders such as Leigh disease. However, both sequence analysis and functional complementation assays on an index patient do not support an etiological role for any of these genes.
Collapse
Affiliation(s)
- V Petruzzella
- Unit of Molecular Medicine, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | | | | | | | | |
Collapse
|
66
|
Tiranti V, Hoertnagel K, Carrozzo R, Galimberti C, Munaro M, Granatiero M, Zelante L, Gasparini P, Marzella R, Rocchi M, Bayona-Bafaluy MP, Enriquez JA, Uziel G, Bertini E, Dionisi-Vici C, Franco B, Meitinger T, Zeviani M. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am J Hum Genet 1998; 63:1609-21. [PMID: 9837813 PMCID: PMC1377632 DOI: 10.1086/302150] [Citation(s) in RCA: 370] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Leigh disease associated with cytochrome c oxidase deficiency (LD[COX-]) is one of the most common disorders of the mitochondrial respiratory chain, in infancy and childhood. No mutations in any of the genes encoding the COX-protein subunits have been identified in LD(COX-) patients. Using complementation assays based on the fusion of LD(COX-) cell lines with several rodent/human rho0 hybrids, we demonstrated that the COX phenotype was rescued by the presence of a normal human chromosome 9. Linkage analysis restricted the disease locus to the subtelomeric region of chromosome 9q, within the 7-cM interval between markers D9S1847 and D9S1826. Candidate genes within this region include SURF-1, the yeast homologue (SHY-1) of which encodes a mitochondrial protein necessary for the maintenance of COX activity and respiration. Sequence analysis of SURF-1 revealed mutations in numerous DNA samples from LD(COX-) patients, indicating that this gene is responsible for the major complementation group in this important mitochondrial disorder.
Collapse
Affiliation(s)
- V Tiranti
- Istituto Nazionale Neurologico, Divisione di Biochimica e Genetica, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Jaksch M, Hofmann S, Kleinle S, Liechti-Gallati S, Pongratz DE, Müller-Höcker J, Jedele KB, Meitinger T, Gerbitz KD. A systematic mutation screen of 10 nuclear and 25 mitochondrial candidate genes in 21 patients with cytochrome c oxidase (COX) deficiency shows tRNA(Ser)(UCN) mutations in a subgroup with syndromal encephalopathy. J Med Genet 1998; 35:895-900. [PMID: 9832034 PMCID: PMC1051480 DOI: 10.1136/jmg.35.11.895] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
COX deficiency is believed to be the most common defect in neonates and infants with mitochondrial diseases. To explore the causes of this group of disorders, we examined 25 mitochondrial genes (three COX subunit genes and 22 tRNA genes) and 10 nuclear COX subunit genes for disease associated mutations using PCR-SSCP and direct sequencing of polymorphic SSCP fragments. DNA from one patient with severe COX deficiency and with consanguineous parents was entirely sequenced. The patient population consisted of 21 unrelated index patients with mitochondrial disorders and predominant (n=7) or isolated (n=14) COX deficiency. We detected two distinct tRNA(Ser)(UCN) mutations, which have been recently described in single kindreds, in a subgroup of four patients with COX deficiency, deafness, myoclonic epilepsy, ataxia, and mental retardation. Besides a number of nucleotide variants, a single novel missense mutation, which may contribute to the disease phenotype, was found in the mitochondrial encoded COX 1 gene (G6480A). Mutations in nuclear encoded COX subunit genes were not detected in this study.
Collapse
Affiliation(s)
- M Jaksch
- Institute of Clinical Chemistry, Molecular Diagnostics and Mitochondrial Genetics, Academic Hospital Schwabing, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Schwarze SR, Weindruch R, Aiken JM. Oxidative stress and aging reduce COX I RNA and cytochrome oxidase activity in Drosophila. Free Radic Biol Med 1998; 25:740-7. [PMID: 9801075 DOI: 10.1016/s0891-5849(98)00153-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Drosophila melanogaster displays an age-associated increase in oxidative damage and a decrease in mitochondrial transcripts. To determine if these changes result in energy production deficiencies, we measured the electron transport system (ETS) enzyme activity, and ATP levels with age. No statistically significant influences of age on activities of complexes I and II or citrate synthase were observed. In contrast, from 2 to 45 days post-eclosion, declines were found in complex IV cytochrome c oxidase activity (COX, 40% decline) and ATP abundance (15%), while lipid peroxidation increased 71%. We next examined flies that were either genetically or chemically oxidatively stressed to determine the effect on levels of mitochondrial-encoded cytochrome oxidase I RNA (coxI) and COX activity. A catalase null mutant line had 48% of coxI RNA compared to the wild type. In Cu/Zn superoxide dismutase (cSOD) null flies, the rate of coxI RNA decline was greater than in controls. CoxI RNA also declined with increasing hydrogen peroxide (H2O2) treatment, which was reflected in reduced cytochrome c oxidase (COX) activity. These results show that oxidative stress is closely associated with reductions in mitochondrial transcript levels and support the hypothesis that oxidative stress may contribute to mitochondrial dysfunction and aging in D. melanogaster.
Collapse
Affiliation(s)
- S R Schwarze
- Department of Animal Health and Biomedical Sciences, VA GRECC, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|