51
|
Chapter 20 Cellular responses to eicosanoids: Molecular biology of eicosanoid receptors. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2582(97)80045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
52
|
Abstract
Guanine nucleotide binding (G) proteins relay extracellular signals encoded in light, small molecules, peptides, and proteins to activate or inhibit intracellular enzymes and ion channels. The larger G proteins, made up of G alpha beta gamma heterotrimers, dissociate into G alpha and G beta gamma subunits that separately activate intracellular effector molecules. Only recently has the G beta gamma subunit been recognized as a signal transduction molecule in its own right; G beta gamma is now known to directly regulate as many different protein targets as the G alpha subunit. Recent X-ray crystallography of G alpha, G beta gamma, and G alpha beta gamma subunits will guide the investigation of structure-function relationships.
Collapse
Affiliation(s)
- D E Clapham
- Department of Neurobiology and Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
53
|
G Proteins and the Early Events of Platelet Activation. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2558(08)60415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
54
|
Spiers JP, Kelso EJ, McDermott BJ, Scholfield CN, Silke B. Endothelin-1 mediated inhibition of the acetylcholine-activated potassium current from rabbit isolated atrial cardiomyocytes. Br J Pharmacol 1996; 119:1427-37. [PMID: 8968552 PMCID: PMC1915821 DOI: 10.1111/j.1476-5381.1996.tb16055.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. Endothelin-1 is a 21 amino acid peptide with potent inotropic and chronotropic actions in the heart. Relatively little is known about the underlying electrophysiological effects of the peptide. In this study, the effects of endothelin-1 (ET-1) on the acetylcholine-activated potassium current (IK(ACh) were investigated in the absence and presence of the receptor-selective antagonists, PD155080 (ETA receptor-selective) and RES-701 (ETB receptor-selective) in rabbit atrial cardiomyocytes. 2. Cells were obtained from New Zealand White rabbits (2.5-3 kg) by enzymatic dissociation with collagenase. Potassium currents were recorded, in the presence of nifedipine (5 microM), by use of the whole cell ruptured patch-clamp technique. Following stabilization, control recordings were made with standard pulse protocols, and drugs were applied by a gravity fed microperfusion system. 3. Endothelin-1 (10 nM) alone did not affect the "steady state' potassium current. Acetylcholine (1 microM) increased (P < 0.05) the potassium current to-1321 +/- 290 pA, from a control value of -955 +/- 191 pA, at a step potential of -100 mV. Acetylcholine also increased the holding current at -40 mV from +80 +/- 9 pA to +242 +/- 38 pA, and this effect was abolished (P < 0.05) in the presence of endothelin-1 (+44 +/- 13 pA). The responses to acetylcholine were attributed to activation of the atrial muscarinic-activated potassium current (IK(ACh)) as they were blocked by atropine (10 microM). Endothelin-1 (10 nM) in the presence of acetylcholine did not affect the "steady state' potassium current (-882 +/- 88 pA compared to a control value of -870 +/- 98 pA, at -100 mV). 4. The ETA receptor-selective antagonist, PD155080 (1 microM), prevented (P < 0.05) the ET-1 induced inhibition of IK(ACh) at all potentials. PD155080, in the presence of endothelin-1 and acetylcholine, increased the inward component of the "steady state' potassium current to -1030 +/- 210 pA from a control value of -804 +/- 224 pA at a step potential of -100 mV. Also the outward component was increased at a potential of -20 mV from +90 +/- 17 pA to +241 +/- 47 pA. 5. Unlike PD155080, the ETB receptor-selective antagonist, RES-701 (1 microM), only prevented (P < 0.05) the inhibitory effect of endothelin-1 on the inward component of the IK(ACh); at -100 mV, RES-701, in the presence of endothelin-1 and acetylcholine, increased the "steady state' potassium current to -913 +/- 137 pA from -733 +/- 116 pA. Furthermore, RES-701, in contrast to PD155080, failed to sustain this inhibitory effect as, in the presence of endothelin-1 and acetylcholine, the "steady state' potassium current returned to a value of -768 +/- 96 pA, at a step potential of -100 mV. 6. In conclusion, endothelin-1 clearly inhibits the effects of acetylcholine on IK(ACh) in rabbit atrial cardiomyocytes. This effect is primarily mediated by an ETA receptor-subtype, but is transiently and partially mediated by a RES-701-sensitive ETB receptor subtype. Inhibition of the IK(ACh) may account for the positive chronotropic properties of endothelin-1.
Collapse
Affiliation(s)
- J P Spiers
- School of Biomedical Science, Queen's University of Belfast, Medical Biology Centre
| | | | | | | | | |
Collapse
|
55
|
RAM JEFFREYL, FONG PETERP, KYOZUKA KEIICHIRO. Serotonergic mechanisms mediating spawning and oocyte maturation in the zebra mussel,Dreissena polymorpha. INVERTEBR REPROD DEV 1996. [DOI: 10.1080/07924259.1996.9672529] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
56
|
Jacobs LS, Douglas JG. Angiotensin II type 2 receptor subtype mediates phospholipase A2-dependent signaling in rabbit proximal tubular epithelial cells. Hypertension 1996; 28:663-8. [PMID: 8843895 DOI: 10.1161/01.hyp.28.4.663] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated the ability of angiotensin II (Ang II) or the stable analogue [Sar1]-Ang II to increase intracellular and extracellular free arachidonic acid in primary cultures of rabbit proximal tubular epithelial cells to better characterize the receptor subtype and orientation of phospholipase A2 (PLA2)-mediated signaling. Proximal tubular cells were labeled with [3H]arachidonic acid for 4 hours and then treated with Ang II or [Sar1]-Ang II. Lipids were extracted from labeled cells, separated by thin-layer chromatography, and quantified by liquid scintillation counting. Ang II (10 mumol/L, 1 minute) stimulated an increase in intracellular free [3H]arachidonic acid from 21.0 +/- 2.0 to 32.2 +/- 2.8 disintegrations per minute/microgram protein, an effect that was potentiated by EGTA. [Sar1]-Ang II stimulated a time- and concentration-dependent increase in [3H]arachidonic acid release from labeled cells. Release of [3H]arachidonic acid was maximal at 10 mumol/L [Sar1]-Ang II, with an EC50 of approximately 3 mumol/L. Ang II receptor antagonists caused concentration-dependent inhibition of [Sar1]-Ang II-stimulated [3H]arachidonic acid release with the following order of potency: CGP 42112 = PD 123319 > losartan. Furthermore, in proximal tubular epithelial cells grown on polyester membrane filters, the Ang II receptor that mediated arachidonic acid release was predominantly apical rather than basolateral. These observations are consistent with activation of a Ca(2+)-independent, apical PLA2 isoform in epithelial cells through an Ang II type 2 receptor subtype.
Collapse
Affiliation(s)
- L S Jacobs
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4982, USA
| | | |
Collapse
|
57
|
Shuttleworth TJ. Arachidonic acid activates the noncapacitative entry of Ca2+ during [Ca2+]i oscillations. J Biol Chem 1996; 271:21720-5. [PMID: 8702966 DOI: 10.1074/jbc.271.36.21720] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Current models for agonist-activated Ca2+ entry in nonexcitable cells focus on the capacitative mechanism where entry is activated as a downstream result of the sustained depletion of agonist-sensitive stores without any direct requirement for inositol phosphates. This mechanism has been shown to be important for the sustained Ca2+ signals seen in a variety of nonexcitable cells under conditions of maximal stimulation. In contrast, relatively little attention has been given to Ca2+ entry under more physiological levels of agonist where, for example, oscillating Ca2+ responses are common. In recent studies using cells from the exocrine avian nasal gland, we have shown that agonist-activated Ca2+ entry under these conditions demonstrates properties that are inconsistent with current versions of the capacitative model. We now report that activation of this novel noncapacitative Ca2+ entry is via a distinct signaling pathway involving an agonist-induced, phospholipase A2-mediated generation of arachidonic acid.
Collapse
Affiliation(s)
- T J Shuttleworth
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
58
|
Lin WW, Lee YT. Pyrimidinoceptor-mediated activation of phospholipase C and phospholipase A2 in RAW 264.7 macrophages. Br J Pharmacol 1996; 119:261-8. [PMID: 8886407 PMCID: PMC1915847 DOI: 10.1111/j.1476-5381.1996.tb15980.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. As well as the presence of P2Z purinoceptors previously found in macrophages, we identified pyrimidinoceptors in RAW 264.7 cells, which activate phospholipase C (PLC) and phospholipase A2 (PLA2). 2. The relative potency of agonists to stimulate inositol phosphate (IP) formation and arachidonic acid (AA) release was UTP = UDP > > ATP, ATP gamma S, 2MeSATP. For both signalling pathways, the EC50 values for UTP and UDP (3 microM) were significantly lower than that for ATP and all other analogues tested (> 100 microM). 3. UTP and UDP displayed no additivity in terms of IP formation and AA release at maximally effective concentrations. 4. UTP-, but not ATP-, evoked AA release was 60% inhibited by pertussis toxin (PTX), while stimulation of IP formation by both agonists was unaffected. Short-term treatment with phorbol 12-myristate 13-acetate (PMA) led to a dose-dependent inhibition of IP responses to UTP and UDP, but failed to affect the AA responses. Removal of extracellular Ca2+ inhibited the PI response to UTP, but abolished its AA response. 5. ATP-induction of these two transmembrane signal pathways was decreased in high Mg(2+)-containing medium but potentiated by the removal of extracellular Mg2+. 6. Suramin and reactive blue displayed equal potency to inhibit the IP responses of UTP and ATP. 7. Both UTP and UDP (0.1-100 microM) induced a sustained increase in [Ca2+]i which lasted for more than 10 min. 8. Taken together, these results indicate that in mouse RAW 264.7 macrophages, pyrimidinoceptors with specificity for UTP and UDP mediate the activation of PLC and cytosolic (c) PLA2. The activation of PLC is via a PTX-insensitive G protein, whereas that of cPLA2 is via a PTX-sensitive G protein-dependent pathway. The sustained Ca2+ influx caused by UTP contributes to the activation of cPLA2. RAW 264.7 cells also possess P2z purinoceptors which mediate ATP(4-)-induced PLC and PLA2 activation.
Collapse
Affiliation(s)
- W W Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei
| | | |
Collapse
|
59
|
Dellacorte C, Restrepo D, Menco BP, Andreini I, Kalinoski DL. G alpha 9/G alpha 11: immunolocalization in the olfactory epithelium of the rat (Rattus rattus) and the channel catfish (Ictalurus punctatus). Neuroscience 1996; 74:261-73. [PMID: 8843091 DOI: 10.1016/0306-4522(96)00115-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The immunohistochemical localization of G alpha 9/G alpha 11 was studied in the olfactory and respiratory epithelium of two representative vertebrates, the rat and the channel catfish. Localization in the rat was found at the apical surface of cells in the epithelium and within nerve tracts in the lamina propria. Immunostaining of neuronal cilia and supporting cell microvilli was confirmed by electron microscopy. Immunoreactivity on the ipsilateral neuroepithelium was abolished five weeks following unilateral bulbectomy. An emergence of patchy immunoreactivity was found, however, after fifteen weeks. In catfish, G alpha 9/G alpha 11 antigenicity was found at the apical surface of cells within the olfactory epithelium, at supranuclear regions within some cell bodies and in basal nerve tracts of the olfactory rosette. Immunoreactivity was removed with unilateral bulbectomy. Specific labelling in both rat and catfish was eliminated by preincubation of the G alpha 9/G alpha 11 antibodies with the cognate peptide. Proteins were extracted from olfactory tissues of both species and solubilized. Using western blotting, bands corresponding in apparent molecular weight to a 38,000 mol. wt protein were found. These data demonstrate the presence of G alpha 9/G alpha 11 in the olfactory tissues of these vertebrates and suggest a role in olfaction for this class of G-protein.
Collapse
Affiliation(s)
- C Dellacorte
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
60
|
Abstract
Heterotrimeric G proteins couple many types of cell surface receptors to intracellular effectors such as enzymes or ion channels. In the mammalian heart, G protein-mediated signalling pathways are involved in the regulation of contractile force, heart rate, conduction velocity, and relaxation. In the first part of this review we summarize some important structural and functional features of receptors, G proteins, and effectors with special focus on the heart. In the second part, we review the current knowledge about alterations of G protein-mediated signalling in heart disease such as myocardial hypertrophy and heart failure.
Collapse
Affiliation(s)
- P Schnabel
- Klinik III für Innere Medizin, Universität zu Köln, Germany
| | | |
Collapse
|
61
|
Abstract
BACKGROUND Urinary tract obstruction has a marked effect on renal function. Activation of phospholipases which results in incremental production of vasoactive eicosanoids may contribute to the hemodynamic changes characteristic of an obstructed kidney. G proteins play an important role in transmembrane signal transduction, which control phospholipase activities and eicosanoid production. The present study was designed to determine the presence of G proteins in obstructed kidneys in rats, and to characterize the differences between unilateral ureteral obstruction (UUO) and bilateral ureteral obstruction (BUO). METHODS Several G-protein alpha subunits (G alpha s, G alpha i1,2, and G alpha i3) and the beta subunit (G beta) were determined by immunoblotting and immunocytochemical techniques using specific antibodies against these G proteins. RESULTS Immunoblots demonstrated a decreased G alpha i3 content in the outer medullary tubules and a significantly lower G beta level in the glomeruli of UUO. In BUO, there was an increased level of G beta in the cortical tubules, and the G alpha s level was markedly reduced in the inner medullary tubules. Immunocytochemical studies revealed that these G proteins were predominantly localized in the brush border side of the cortical tubules. However, we could not demonstrate staining differences between UUO and BUO. CONCLUSIONS These results indicate that a modulation of G-protein-coupled transmembrane signal transduction may contribute to the renal functional changes in an obstructed kidney. A different level of expression of G-protein subunits between UUO and BUO may be a factor in the differences of hemodynamics and renal tubular damage between UUO and BUO.
Collapse
Affiliation(s)
- A Fukuzaki
- Department of Urology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | |
Collapse
|
62
|
Kim DU, Park SK, Chung KS, Choi MU, Yoo HS. The G protein beta subunit Gpb1 of Schizosaccharomyces pombe is a negative regulator of sexual development. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:20-32. [PMID: 8804400 DOI: 10.1007/bf02173201] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A Schizosaccharomyces pombe homolog of mammalian genes encoding G protein beta subunits, gpb1+, was cloned by the polymerase chain reaction using primer pairs that correspond to sequences conserved in several G beta genes of other species followed by screening of genomic and cDNA libraries. The gpb1 gene encodes 317 amino acids that show 47% homology with human G beta 1 and G beta 2 and 40% homology with Saccharomyces cerevisiae G beta protein. Disruption of the gpb1 gene indicated that this gene is not required for vegetative cell growth. However, gpb1-disrupted haploid cells mated and sporulated faster than wild-type cells, both in sporulation (MEA) and in complex medium (YE): when examined 23 h after transfer to sporulation medium, 35% of gpb1-disrupted haploid pairs had undergone conjugation and sporulation, whereas only 3-5% of wild-type haploid pairs had done so. Overexpression of the gpb1 gene suppressed this facilitated conjugation and sporulation phenotype of gpb1-disrupted cells but did not cause any obvious effect in wild-type cells. Co-disruption of one of the two S. pombe G alpha-subunit genes, gpa2, in the gpb1-disrupted cells did not change the accelerated conjugation and sporulation phenotype of the gpb1- cells. However, co-disruption of the ras1 gene abolished the gpb1- phenotype. These results suggest that Gpb1 is a negative regulator of conjugation and sporulation that apparently works upstream of Ras1 function in S. pombe. The possible relationship of Gpb1 to two previously identified, putative G alpha proteins of S. pombe is discussed.
Collapse
Affiliation(s)
- D U Kim
- Cell Cycle & Signal Research Unit, Korea Research Institute of Bioscience and Biotechnology, KIST, Taejon, Korea
| | | | | | | | | |
Collapse
|
63
|
Ringel MD, Schwindinger WF, Levine MA. Clinical implications of genetic defects in G proteins. The molecular basis of McCune-Albright syndrome and Albright hereditary osteodystrophy. Medicine (Baltimore) 1996; 75:171-84. [PMID: 8699958 DOI: 10.1097/00005792-199607000-00001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Inactivating and activating mutations in the gene encoding G alpha s (GNAS1) are known to be the basis for 2 well-described contrasting clinical disorders, Albright hereditary osteodystrophy (AHO) and McCune-Albright syndrome (MAS). AHO is an autosomal dominant disorder due to germline mutations in GNAS1 that decrease expression or function of G alpha s protein. Loss of G alpha s function leads to tissue resistance to multiple hormones whose receptors couple to G alpha s. By contrast, MAS results from postzygotic somatic mutations in GNAS1 that lead to enhanced function of G alpha s protein. Acquisition of the activating mutation early in life leads to a more generalized distribution of the mosaicism and is associated with the classic clinical triad of polyostotic fibrous dysplasia, endocrine hyperfunction, and café au lait skin lesions described in MAS. Acquisition of a similar activating mutation in GNAS1 later in life presumably accounts for the restricted distribution of the gsp oncogene, and is associated with the development of isolated lesions (for example, fibrous dysplasia, pituitary or thyroid tumors) without other manifestations of MAS. Tissues that are affected by loss of G alpha s function in AHO are also affected by gain of G alpha s function in MAS, thus identifying specific tissues in which the second messenger cAMP plays a dominant role in cell growth, proliferation, or function. Further investigations of the functions of G alpha s and other members of the GTPase binding protein family will provide more insight into the pathogenesis and clinical manifestations of human disease.
Collapse
Affiliation(s)
- M D Ringel
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
64
|
Petit-Jacques J, Hartzell HC. Effect of arachidonic acid on the L-type calcium current in frog cardiac myocytes. J Physiol 1996; 493 ( Pt 1):67-81. [PMID: 8735695 PMCID: PMC1158951 DOI: 10.1113/jphysiol.1996.sp021365] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. External application of the unsaturated fatty acid arachidonic acid (AA) to frog ventricular cells caused a large inhibition (approximately 85%) of the L-type calcium current (ICa,L) previously stimulated by the beta-adrenergic agonist isoprenaline (Iso). The concentration producing half-maximal inhibition (K1/2) was 1.52 microM. The inhibitory effect did not affect the peak current-voltage relationship but produced a negative shift in the inactivation curve. 2. The inhibitory effect of AA also occurred in cells internally perfused with cAMP and non-hydrolysable analogues of cAMP. These data suggest that AA is acting by a mechanism located beyond adenylyl cyclase and does not involve changes in intracellular cAMP levels. 3. AA also inhibited the calcium current stimulated by internal perfusion with the catalytic subunit of protein kinase A (PKA), suggesting that AA acts downstream of channel phosphorylation. 4. The inhibitory effect of AA on the isoprenaline- or cAMP-stimulated ICa,L is largely reduced in cells internally perfused with the thiophosphate donor analogue of ATP, ATP gamma S, or protein phosphatase 1 and 2A inhibitors like microcystin (MC) or okadaic acid (OA). External application of the phosphatase inhibitor calyculin (Caly) also reduced the AA effect. These data suggested that the AA effect on ICa,L involves activation of protein phosphatase activity. 5. The effect of AA on ICa,L was not affected by staurosporine, an inhibitor of protein kinases. It was also unaffected in cells internally perfused with GTP gamma S. These results suggest that neither a PKC- nor a G-protein-mediated mechanism are likely to be involved in the effect of AA on ICa,L. 6. A saturated fatty acid, myristic acid (MA), had no inhibitory effect on the isoprenaline-stimulated Ca2+ current, whereas, in the same cells arachidonic acid produced approximately 85% inhibition of ICa,L. 7. The inhibitory effect of AA was not affected by exposing the cells to indomethacin (Indo), an inhibitor of the metabolism of AA by cyclo-oxygenase, nor nordihydroguaiaretic acid (NDGA), an inhibitor of the lipoxygenase pathway. However, the non-metabolizable analogue of AA, 5,8,11,14-eicosatetraynoic acid (ETYA), was without effect on the isoprenaline-stimulated ICa,L. 8. These results suggest that AA inhibits ICa,L via a mechanism which involves, in part, stimulation of protein phosphatase activity. This process could provide a new mechanism in the modulation of calcium channel activity.
Collapse
Affiliation(s)
- J Petit-Jacques
- Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
65
|
Ray K, Hansen CA, Robishaw JD. Gβγ-Mediated signaling in the heart: Implications of β and γ subunit heterogeneity. Trends Cardiovasc Med 1996; 6:115-21. [DOI: 10.1016/1050-1738(96)00021-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
66
|
Gschwentner M, Jungwirth A, Hofer S, Wöll E, Ritter M, Susanna A, Schmarda A, Reibnegger G, Pinggera GM, Leitinger M, Frick J, Deetjen P, Paulmichl M. Blockade of swelling-induced chloride channels by phenol derivatives. Br J Pharmacol 1996; 118:41-8. [PMID: 8733574 PMCID: PMC1909500 DOI: 10.1111/j.1476-5381.1996.tb15364.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. In NIH3T3 fibroblasts, the chloride channel involved in regulatory volume decrease (RVD) was identified as ICln, a protein isolated from a cDNA library derived from Madin Darby canine Kidney (MDCK) cells. ICln expressed in Xenopus laevis oocytes gives rise to an outwardly rectifying chloride current, sensitive to the extracellular addition of nucleotides and the known chloride channel blockers, DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) and NPPB (5-nitro-2-(3-phenylpropylamino)-benzoic acid). We set out to study whether substances structurally similar to NPPB are able to interfere with RVD. 2. RVD in NIH3T3 fibroblasts and MDCK cells is temperature-dependent. 3. RVD, the swelling-dependent chloride current and the depolarization seen after reducing extracellular osmolarity can be blocked by gossypol and NDGA (nordihydroguaiaretic acid), both structurally related to NPPB. 4. The cyclic AMP-dependent chloride current elicited in CaCo cells is less sensitive to the two substances tested while the calcium-activated chloride current in fibroblasts is insensitive. 5. The binding site for the two phenol derivatives onto ICln seems to be distinct but closely related to the nucleotide binding site identified as G x G x G, a glycine repeat located at the predicted outer mouth of the ICln channel protein.
Collapse
Affiliation(s)
- M Gschwentner
- Department of Physiology, University of Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Over the past year, the thrust of work in the field of heterotrimeric G proteins has been primarily in the following areas: first, resolution of their three-dimensional structures by X-ray crystallography; second, elucidation of the effect of lipid modifications on the Galpha and Ggamma subunits; third, understanding the role of the Gbetagamma dimer in stimulation of a variety of effectors following receptor activation; and fourth, identification of the points of contact among the Galpha, Gbeta, and Ggamma subunits, and between these subunits and their cognate receptor or effector molecules.
Collapse
Affiliation(s)
- H E Hamm
- University of Illinois at Chicago, Department of Physiology and Biophysics, 835 S Wolcott, Chicago, IL 60612, USA
| | | |
Collapse
|
68
|
Matsuura H, Sakaguchi M, Tsuruhara Y, Ehara T. Activation of the muscarinic K+ channel by P2-purinoceptors via pertussis toxin-sensitive G proteins in guinea-pig atrial cells. J Physiol 1996; 490 ( Pt 3):659-71. [PMID: 8683465 PMCID: PMC1158704 DOI: 10.1113/jphysiol.1996.sp021175] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. Whole-cell voltage clamp and cell-attached patch-clamp techniques were applied to single atrial myocytes enzymatically dissociated from adult guinea-pig hearts. 2. In whole-cell clamp conditions, external applications, of ATP activated the muscarinic K+ (KACh) current, identified by its inward rectification, its reversal potential near the calculated K+ equilibrium potential (EK) and its relaxation properties during step changes of whole-cell membrane potential. Theophylline, an antagonist for Pi-purinoceptors, did not affect the action of ATP on the KACh current, indicating that the response was evoked through P2-purinoceptors. 3. The concentration-response relationship for ATP was well described by a Hill equation with a half-maximal concentration of 1.84 microM and a Hill coefficient of 0.94. ATP (100 microM) produced a maximal increase of the KACh current to 10.92 microA microF-1, which corresponds to 44.9 and 80.9% of the maximal increases evoked by ACh (10 microM) and adenosine (100 microM), respectively. 4. The activation of KACh current gradually declined to a steady level despite the continuous presence of ATP (desensitization). Recovery from the desensitization was relatively rapid with a half-time of approximately 1.5 min. 5. The activation of KACh current by ATP was completely abolished by pre-incubating myocytes with pertussis toxin (PTX, 5 micrograms ml-1), indicating that P2-purinoceptors are coupled to PTX-sensitive G proteins to activate the KACh channel. 6. In the cell-attached patch recording, ATP (5 microM) applied to the pipette solution enhanced the activity of a channel with single-channel conductance of 52.7 +/- 0.9 pS (mean +/- S.E.M., n = 10), reversal potential near EK and mean open time of 1.1 +/- 0.1 ms. These conductance and kinetic properties are identical to those of the KACh channel in the heart. In contrast, ATP applied to the bath solution did not significantly affect the basal activity of KACh channel openings. These observations suggest that the mechanism coupling the P2-purinoceptor to the activation of the KACh channel involves membrane-delimited component(s) rather than soluble second messenger(s). 7. These results strongly suggest a direct coupling of the P2-purinoceptor to the KACh channel through PTX-sensitive G proteins, analogous to the coupling mechanism of the muscarinic ACh receptor and Pi-purinoceptor to this channel.
Collapse
Affiliation(s)
- H Matsuura
- Department of Physiology, Saga Medical School, Japan
| | | | | | | |
Collapse
|
69
|
Tamura T, Takahashi H, Iizuka H. Protein kinase C-dependent modulation of stimulatory guanine nucleotide binding protein of fetal rat skin keratinocytes. Arch Dermatol Res 1996; 288:24-30. [PMID: 8750931 DOI: 10.1007/bf02505039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA) has been known to induce heterologous desensitization of the epidermal adenylate cyclase, the precise mechanism of PMA action remains unknown. Effects of PMA on the receptor-G-protein-adenylate cyclase system of fetal rat skin keratinocytes (FRSK) were investigated. Choleratoxin catalysed the ADP ribosylation of 45 kDa and 52 kDa membrane proteins and islet activating protein (IAP) catalysed the ADP ribosylation of a 40 kDa membrane protein. Incubation of FRSK with PMA decreased the cholera toxin-catalysed ADP ribosylation of the membrane protein, but not the IAP-catalysed ADP ribosylation. The effect of PMA on the cholera toxin-catalysed ADP ribosylation was inhibited by the PKC inhibitor, H-7 (1-(5-isoquinolinesulfonyl)-2-methyl piperazine dihydrochloride). 1-Oleoyl-2-acetylglycerol (OAG), a membrane-permeable diacylglycerol analogue, also decreased the cholera toxin-catalysed ADP ribosylation, but 4-0-methyl PMA, a very weak PKC activator, had no effect. Keratinocytes are known to express the guanine nucleotide binding proteins, Gsalpha, Gi2alpha, and Gi3alpha. Immunoblot analysis of the PMA-treated FRSK showed no detectable difference in the amount of Gsalpha, Gi2alpha, Gi3alpha, or the beta subunit of the G-protein. PMA significantly decreased the beta-adrenergic adenylate cyclase response and cholera toxin-induced cyclic AMP accumulation, while it markedly increased forskolin-induced cyclic AMP accumulation. These results indicate that phorbol esters affect the stimulatory guanine nucleotide binding protein (Gs) of FRSK via a PKC-dependent pathway.
Collapse
Affiliation(s)
- T Tamura
- Department of Dermatology, Asahikawa Medical College, Japan
| | | | | |
Collapse
|
70
|
Huang CL, Slesinger PA, Casey PJ, Jan YN, Jan LY. Evidence that direct binding of G beta gamma to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 1995; 15:1133-43. [PMID: 7576656 DOI: 10.1016/0896-6273(95)90101-9] [Citation(s) in RCA: 272] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Activation of G protein-gated K+ channels by G protein-coupled receptors contributes to parasympathetic regulation of heart rate in the atrium and inhibitory postsynaptic potentials in the peripheral and central nervous system. Having found that G beta gamma activates the cloned GIRK1 channel, we now report evidence for direct binding of G beta gamma to both the N-terminal hydrophilic domain and amino acids 273-462 of the C-terminal domain of GIRK1. These direct interactions are physiologically important because synthetic peptides derived from either domain reduce the G beta gamma binding as well as the G beta gamma activation of the channel. Moreover, the N-terminal domain may also bind trimeric G alpha beta gamma, raising the possibility that physical association of G protein-coupled receptors, G proteins, and K+ channels partially accounts for their compartmentalization and hence rapid and specific channel activation by receptors.
Collapse
Affiliation(s)
- C L Huang
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco 94143-0724, USA
| | | | | | | | | |
Collapse
|
71
|
Eaton DC, Becchetti A, Ma H, Ling BN. Renal sodium channels: regulation and single channel properties. Kidney Int 1995; 48:941-9. [PMID: 8569103 DOI: 10.1038/ki.1995.375] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- D C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
72
|
Yu SP. Roles of arachidonic acid, lipoxygenases and phosphatases in calcium-dependent modulation of M-current in bullfrog sympathetic neurons. J Physiol 1995; 487 ( Pt 3):797-811. [PMID: 8544140 PMCID: PMC1156664 DOI: 10.1113/jphysiol.1995.sp020919] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. M-current (IM) is regulated by intracellular free Ca2+ ([Ca2+]i). Suppression and overrecovery of IM induced by muscarine and luteinizing-hormone releasing hormone (LHRH) are also regulated by [Ca2+]i. The role of the arachidonic acid (AA) pathway in the Ca(2+)-dependent modulation of IM was investigated using whole-cell voltage clamp and intracellular perfusion in dissociated bullfrog sympathetic B neurons. 2. Quinacrine (10-20 microM) and 4-bromophenacyl bromide (4-BPB; 4-10 microM), the inhibitors of phospholipase A2, blocked the enhancement of IM evoked by raising [Ca2+]i. 3. AA (6-120 microM) increased IM by about 50% of the control current in a Ca(2+)-dependent manner. 4. Enhancements of IM by Ca2+ and AA were blocked by the lipoxygenase (LO) inhibitors nordihydroguaiaretic acid (NDGA; 1-5 microM) and 5,8,11-eicosatrynoic acid (ETI; 10 microM). The cyclo-oxygenase inhibitor indomethacin (10 microM) had no effect. 5. Enhancement of IM by Ca2+ was abolished by the selective 12-LO inhibitors baicalein (1-2 microM) and 15(S)-hydroxy-5-cis-8-cis-11-cis-13-trans-eicosatetraenoic acid (15-HETE; 6.5 microM). A 12-LO product, 2(S)-hydroxy-5-cis-8-cis-10-trans-14-cis- eicosatetraenoic acid (12-HETE; 13-20 microM), increased IM without Ca2+ requirement. 6. Enhancement of IM by Ca2+ was not affected by the selective 5-LO inhibitors AA-861 (10 microM), 5,6-dehydroarachidonic acid (5,6-DAA, 10 microM) and L-651,896 (10 microM). The 5-LO metabolites leukotriene C4 (1.5-8 microM) and leukotriene B4 (1.5-5 microM) showed no obvious effect on IM. 7. NDGA alone inhibited IM with an IC50 of 0.73 microM at 120 nM Cai(2+). 8. NDGA did not affect suppression of IM by muscarine or LHRH; however, overrecovery of IM upon removing these agonists was totally eliminated by 1 microM NDGA. 9. Inhibitors of phosphatases, calyculin A (0.1 microM) and okadaic acid (1 microM), completely abolished overrecovery of IM. Calyculin A also blocked the Ca(2+)-induced IM enhancement. 10. It is suggested that Ca2+ enhances IM by stimulating the AA metabolic pathway. Dephosphorylation probably upregulates IM. Overrecovery of IM is probably a result of stimulation of the LO pathway and phosphatases by increased [Ca2+]i.
Collapse
Affiliation(s)
- S P Yu
- Howard Hughes Medical Institute, Department of Neurobiology and Behavior, State University of New York at Stony Brook 11794, USA
| |
Collapse
|
73
|
Nagano N, Imaizumi Y, Watanabe M. Modulation of calcium channel currents by arachidonic acid in single smooth muscle cells from vas deferens of the guinea-pig. Br J Pharmacol 1995; 116:1887-93. [PMID: 8528575 PMCID: PMC1909104 DOI: 10.1111/j.1476-5381.1995.tb16678.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Effects of arachidonic acid (AA) on voltage-dependent Ca channel currents were investigated by whole-cell-clamp methods in single smooth muscle cells freshly isolated from vas deferens of the guinea-pig. 2. Ca channel current was decreased by application of 1-30 microM AA in a concentration-dependent manner. When Ca2+ or Ba2+ was the charge carrier, Ca channel current (ICa or IBa) was reduced by AA to a similar extent (IC50 = 10 and 6 microM, respectively). Addition of 15 mM BAPTA to the pipette solution did not affect the reduction of IBa by 10 microM AA. 3. The effect of AA on IBa was not prevented by internal application of 1 mM nordihydroguaiaretic acid (NDGA) and 1 mM indomethacin (Indo). When the pipette solution contained 0.1 mM guanosine-5'-triphosphate (GTP), IBa was decreased slightly but significantly by application of 30 microM prostaglandin F2 alpha (PGF2 alpha) but not by PGE2. This effect of PGF2 alpha was irreversible or not observed when the pipette solution contained 0.3 mM guanosine-5'-(3-thiotriphosphate) (GTP gamma S) or both GTP or guanosine-5'-O-(2-thiodiphosphate) (GDP beta S), respectively. 4. External application of 100 units ml-1 superoxide dismutase slightly but significantly attenuated the inhibition of IBa by 1-30 microM AA. Intracellular application of 1 mM GDP beta S or 0.3 mM GTP gamma S did not significantly change the effect of AA. Intracellular application of 0.1 mM 1-(5-isoquinolinesulphonyl)-2-methylepiperazine (H-7) also did not change the effect of AA. 5. These results indicate that the decrease in Ca channel currents in vas deferens smooth muscle cells is mainly due to AA itself, as opposed to its metabolites. The effect of AA may be due to AA itself, as opposed to its metabolites. The effect of AA may be due to its direct action on Ca channels or membrane phospholipids, but may not be mediated by activation of GTP binding proteins or protein kinase C. The inhibition of Ca channel current by AA may be partly induced by superoxide radicals derived from AA oxidation. PGF2A also reduces Ca channel currents but probably by a separate mechanism via activation of a GTP binding protein.
Collapse
Affiliation(s)
- N Nagano
- Department of Chemical Pharmacology, Faculty of Pharmacentical Science, Nagoya City University, Japan
| | | | | |
Collapse
|
74
|
Abstract
The effects of non-esterified arachidonic acid (AA) on erythrocyte membrane ion permeability have been studied using 86Rb flux measurements. [14C]AA was used to quantify membrane incorporation of AA and to show AA removal by albumin washing. The actions of vitamin E and other antioxidants on the effects of AA were examined. Reversible membrane incorporation of 700-2000 nmol AA per ml cells was achieved without significant haemolysis or morphological change. AA incorporation caused a reversible mean increase in bumetanide-sensitive Rb influx of 34% (S.E.M. 4.5, n = 23). This action could be partially prevented by co-incubation with vitamin E, but not by Trolox or dithioerythritol. AA incorporation caused an irreversible mean increase in residual Rb permeability (bumetanide and ouabain insensitive) of 130% (S.E.M. 22, n = 20), associated with a rise in intracellular Na and a fall in intracellular K concentrations. This action was also partially prevented by co-incubation with vitamin E. The effects of AA incorporation on Na,K-ATPase function were difficult to quantify because of the concomitant rises in intracellular Na but the data are consistent with approximately 20% inhibition of activity. Modulation of membrane ion permeability by AA appears to be partially mediated by lipid peroxidation and may have pathophysiological significance.
Collapse
Affiliation(s)
- J F Dwight
- Department of Medicine, King's College School of Medicine and Dentistry, London, UK
| | | |
Collapse
|
75
|
Misgeld U, Bijak M, Jarolimek W. A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 1995; 46:423-62. [PMID: 8532848 DOI: 10.1016/0301-0082(95)00012-k] [Citation(s) in RCA: 358] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The inhibitory neurotransmitter GABA acts in the mammalian brain through two different receptor classes: GABAA and GABAB receptors. GABAB receptors differ fundamentally from GABAA receptors in that they require a G-protein. GABAB receptors are located pre- and/or post-synaptically, and are coupled to various K+ and Ca2+ channels presumably through both a membrane delimited pathway and a pathway involving second messengers. Baclofen, a selective GABAB receptor agonist, as well as GABA itself have pre- and post-synaptic effects. Pre-synaptic effects comprise the reduction of the release of excitatory and inhibitory transmitters. GABAergic receptors on GABAergic terminals may regulate GABA release, however, in most instances spontaneous inhibitory synaptic activity is not modulated by endogenous GABA. Post-synaptic GABAB receptor-mediated inhibition is likely to occur through a membrane delimited pathway activating K+ channels, while baclofen, in some neurons, may activate K+ channels through a second messenger pathway involving arachidonic acid. Some, but not all GABAB receptor-gated K+ channels have the typical properties of those G-protein-activated K+ channels which are also gated by other endogenous ligands of the brain. New, high affinity GABAB antagonists are now available, and some pharmacological evidence points to a receptor heterogeneity. The pharmacological distinction of receptor subtypes, however, has to await final support from a characterization of the molecular structure. The function importance of post-synaptic GABAB receptors is highlighted by a segregation of GABAA and GABAB synapses in the mammalian brain.
Collapse
Affiliation(s)
- U Misgeld
- Institute of Physiology I, University of Heidelberg, Germany
| | | | | |
Collapse
|
76
|
Xie R, Li L, Goshima Y, Strittmatter SM. An activated mutant of the alpha subunit of G(o) increases neurite outgrowth via protein kinase C. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 87:77-86. [PMID: 7554235 DOI: 10.1016/0165-3806(95)00061-h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The GTP-binding protein, G(o), is present at very high concentration in the neuronal growth cone membrane. The expression of activated mutants of the a subunit of G(o) increases neurite outgrowth. To determine the intracellular mechanism for this outgrowth, we have examined activated alpha o-dependent outgrowth in the presence of agents which modulate different signal transduction cascades. Activation of protein kinase C with phorbol esters or with diacylglycerol prevents the alpha o-dependent increase in neurite extension. Inhibition of protein kinase C with staurosporine, with H7, or with long-term, high dose phorbol ester treatment resulted in greater neurite elongation, and no further increase after activated alpha o transfection. The protein phosphatase inhibitor, okadaic acid, also blocked the effect of activated alpha o. In contrast, tyrosine kinase inhibitors and agents which alter cAMP levels did not alter activated alpha o-dependent neurite extension. We tested a number of compounds which alter intracellular calcium levels. TMB-8 and thapsigargin prevented an increase in outgrowth by activated alpha o, but diltiazem, Bay K8644 and dantrolene had no effect on activated alpha o-dependent outgrowth. These studies suggest that activated alpha o increases neurite outgrowth by inhibiting protein kinase C and by modulating intracellular calcium release.
Collapse
Affiliation(s)
- R Xie
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
77
|
Nair LA, Inglese J, Stoffel R, Koch WJ, Lefkowitz RJ, Kwatra MM, Grant AO. Cardiac muscarinic potassium channel activity is attenuated by inhibitors of G beta gamma. Circ Res 1995; 76:832-8. [PMID: 7729000 DOI: 10.1161/01.res.76.5.832] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cardiac muscarinic potassium channel (IK.ACh) is activated by a G protein upon receptor stimulation with acetylcholine. The G protein subunit responsible for activation (G alpha versus G beta gamma) has been disputed. We used G beta gamma inhibitors derived from the beta-adrenergic kinase 1 (beta ARK1) to assess the relative importance of G beta gamma in IK.ACh activation. In rabbit atrial myocytes, IK.ACh had a conductance of 49 +/- 6.2 pS. In inside-out patches, the mean open time was 1.60 +/- 0.57 ms, mean time constant (tau o) was 1.59 +/- 0.53 ms, and mean closed time was 3.02 +/- 1.35 ms (n = 38). beta ARK1 is a G beta gamma-sensitive enzyme that interacts with G beta gamma through a defined sequence near its carboxyl terminus. A 28-amino-acid peptide derived from the carboxyl terminus of beta ARK1 (peptide G) increased the closed time to 10.04 ms (P < .001) and decreased opening probability (NPo) by 71% (P < .001). Fusion proteins containing the entire carboxyl terminus of beta ARK1, glutathione S-transferase beta ARK1ct and hexahistidine beta ARK1ct, decreased NPo by 67% (P = .03) and 48% (P = .009), respectively. They also both significantly increased the closed time. None of the inhibitors affected mean open time or channel amplitude. A control peptide derived from a neighboring region of beta ARK1 had no significant effect on IK.ACh activity. These results provide further evidence for the role of G beta gamma in the activation of IK.ACh.
Collapse
Affiliation(s)
- L A Nair
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Vandenburgh HH, Shansky J, Solerssi R, Chromiak J. Mechanical stimulation of skeletal muscle increases prostaglandin F2 alpha production, cyclooxygenase activity, and cell growth by a pertussis toxin sensitive mechanism. J Cell Physiol 1995; 163:285-94. [PMID: 7706373 DOI: 10.1002/jcp.1041630209] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Repetitive mechanical stimulation of differentiated skeletal muscle in tissue culture increased the long-term production of prostaglandin F2 alpha, an anabolic stimulator of myofiber growth. Within 4 h of initiating mechanical stimulation, the enzymatic activity of cyclooxygenase (prostaglandin GH synthase [PGHS]), a regulatory enzyme in prostaglandin synthesis, was increased 82% (P < .005), and this increase was maintained for at least 24 h. Kinetic analysis of stretch-activated cyclooxygenase activity indicated a two to threefold decrease in the enzyme's Km, with little change in its Vmax. Immunocytochemical analysis of the cell cultures indicated the presence of high levels of the mitogen-inducible isoform of cyclooxygenase (PGHS-2) in the skeletal myofibers compared to the interstitial fibroblasts. While the stretch-induced increase in cyclooxygenase enzymatic activity was not inhibited by tetrodotoxin and therefore was independent of cellular electrical activity, the G protein inhibitor pertussis toxin prevented stretch-induced cyclooxygenase activation. Pertussis toxin also inhibited stretch-induced increases in PGF2 alpha production, phospholipase D activation, and cell growth. It is concluded that stretch of skeletal muscle increases muscle cell growth through a G protein-dependent process involving the activation of cyclooxygenase, an immediate early gene product.
Collapse
Affiliation(s)
- H H Vandenburgh
- Department of Pathology and Laboratory Medicine, Brown University School of Medicine, Providence, Rhode Island 02906, USA
| | | | | | | |
Collapse
|
79
|
Abstract
Preconditioning with brief intermittent periods of ischemia before a sustained period of ischemia has been shown to reduce infarct size and improve recovery of function in rat hearts. The mediators of this protective response are unknown in rats. We tested the hypothesis that a lipoxygenase metabolite might be involved in preconditioning, since lipoxygenase metabolites such as 12-hydroperoxyeicosatetraenoic acid have been shown to increase K+ channel activity and to decrease Ca2+ channel activity, which could have a protective effect on ischemic injury. In support of this hypothesis, we report that the lipoxygenase inhibitors nordihydroguaiaretic acid (NDGA, 5 mumol/L) and eicosatetraynoic acid (7 mumol/L) added just before and during preconditioning blocked the protective effects of preconditioning on recovery of function during reflow after 30 minutes of global ischemia. In addition, these lipoxygenase inhibitors partially blocked the ability of preconditioning to attenuate the rise in cytosolic free calcium during sustained ischemia. We also investigated the effects of preconditioning on eicosanoid metabolism by using high-performance liquid chromatography and found that 12-hydroxyeicosatetraenoic acid (12-HETE), the stable product of the lipoxygenase pathway, was made during the preconditioning protocol and that 12-HETE accumulation was blocked by NDGA. Thus, there is a correlation between functional recovery after ischemia and stimulation of the lipoxygenase pathway of arachidonic acid metabolism before the sustained period of ischemia; inhibition of the lipoxygenase pathway eliminates the protective effect of preconditioning on recovery of function after ischemia.
Collapse
Affiliation(s)
- E Murphy
- Laboratory of Molecular Biophysics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | | | | | |
Collapse
|
80
|
Larsen JL, Burkman TW. Lactogen enhances Nb2 cell GTPase activity after 4 hours incubation. Endocrine 1995; 3:221-6. [PMID: 21153198 DOI: 10.1007/bf02994447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/1994] [Accepted: 11/21/1994] [Indexed: 11/25/2022]
Abstract
The lactogen receptor has been suggested to associate with one or more G proteins despite the absence of a 7-transmembrane spanning sequence. These studies were designed to determine whether lactogens acutely increase GTP binding to or GTPase activity in Nb2 cell membrane. Incubation of Nb2 cell membrane with either ovine PRL (10 ng/ml) or diluent for 0-1 h resulted in a decrease in total(35)S-GTP binding to both with no difference in GTP binding between PRL- and diluent-treated membranes. There was also no change in(35)S-GTP binding to Nb2 cell membrane incubated with increasing oPRL concentrations (0.001-100 ng/ml) for 60 min. α-(32)P-GTP photoaffinity labelling was used to evaluate changes in GTP binding to specific G proteins. Photoaffinity labelling of α-(32)P-GTP to no G protein was changed after preincubation with oPRL (10 ng/ml) for 0-60 min or with oPRL (0.01-10 ng/ml) for 60 min. Finally, it was determined whether oPRL had any acute effect on GTPase activity, as determined by release of(32)Pi from γ-(32)P-GTP. When Nb2 cell membrane was preincubated for 0-60 min with oPRL (10 ng/ml) or a range of oPRL concentrations (0-10 ng/ml), no change in GTPase activity was observed. However, when Nb2 cells were incubated with lactogen for 0-7 h, GTPase activity in equal quantities of Nb2 cell membrane prepared from those cells increased over time. Increased GTPase activity (64.9-74.4%;P<0.03 compared to 0 h) was observed after 4-7 h incubation with lactogen.In summary, addition of lactogen to Nb2 cell membrane did not acutely increase either GTP binding or GTPase activity. Yet when Nb2 cells were incubated with lactogen for 4 h prior to preparation of membrane, GTPase activity was significantly increased. This evidence, in addition to our previous results showing that 4 h incubation with lactogen increased G protein β subunit concentration and pertussis toxin-stimulated ADP-ribosylation of Gi, support a role for delayed lactogen modulation of one or more G proteins in the Nb2 cell, requiring at least 4 h for maximal effect.
Collapse
Affiliation(s)
- J L Larsen
- Department of Internal Medicine, University of Nebraska Medical Center, 600 S. 42nd St., 68198-3020, Omaha, Nebraska, USA
| | | |
Collapse
|
81
|
Shen WK, Kurachi Y. Mechanisms of adenosine-mediated actions on cellular and clinical cardiac electrophysiology. Mayo Clin Proc 1995; 70:274-91. [PMID: 7861817 DOI: 10.4065/70.3.274] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To provide insights into the molecular mechanisms of adenosine-mediated cardiac cellular electrophysiology and how information about these mechanisms can be used to facilitate diagnostic and therapeutic approaches to various clinical arrhythmias. DESIGN A review of (1) adenosine metabolism and receptors in the cardiac system, (2) adenosine-mediated signal transduction pathways in the regulation of cellular electrophysiology in various cardiac cell types, and (3) the clinical usefulness of adenosine in cardiac electrophysiology is presented. RESULTS The effects of adenosine on cardiac electrophysiologic properties are consequences of complex interactions among the specific cardiac target structures, the density and type of adenosine receptors, and the effector systems. The easy application of adenosine and its short half-life, favorable side-effects profile, and electrophysiologic properties make it an excellent diagnostic and therapeutic tool for the initial assessment of various tachyarrhythmias. CONCLUSION The direct adenosine-activated KACh (potassium acetylcholine) channel signal transduction system explains the effects of adenosine on the sinus node, atrioventricular node, and atrial myocardium. The indirect adenosine-inhibited adenylate cyclase system accounts for its negative inotropic effects on the catecholamine-entrained contractility in atrial and ventricular myocardium. Because of the recent purification and cloning of adenosine receptors and subunits of G proteins, additional adenosine-mediated electrophysiologic mechanisms can be explored.
Collapse
Affiliation(s)
- W K Shen
- Division of Cardiovascular Diseases and Internal Medicine, Mayo Clinic Rochester, MN 55905
| | | |
Collapse
|
82
|
Abstract
GABAB receptors are a distinct subclass of receptors for the major inhibitory transmitter 4-aminobutanoic acid (GABA) that mediate depression of synaptic transmission and contribute to the inhibition controlling neuronal excitability. The development of specific agonists and antagonists for these receptors has led to a better understanding of their physiology and pharmacology, highlighting their diverse coupling to different intracellular effectors through Gi/G(o) proteins. This review emphasises our current knowledge of the neurophysiology and neurochemistry of GABAB receptors, including their heterogeneity, as well as the therapeutic potential of drugs acting at these sites.
Collapse
Affiliation(s)
- D I Kerr
- Department of Anaesthesia and Intensive Care, University of Adelaide, Australia
| | | |
Collapse
|
83
|
Mori M, Bito H, Sakanaka C, Honda Z, Kume K, Izumi T, Shimizu T. Activation of mitogen-activated protein kinase and arachidonate release via two G protein-coupled receptors expressed in the rat hippocampus. Ann N Y Acad Sci 1994; 744:107-25. [PMID: 7825832 DOI: 10.1111/j.1749-6632.1994.tb52728.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Platelet-activating factor and somatostatin receptors, two G protein-coupled receptors expressed in the rat hippocampus, were analyzed for the downstream signaling pathways in Chinese hamster ovary cells stably expressing each receptor. Ligand stimulation to each CHO cell line induced (1) inhibition of forskolin-induced accumulation of cAMP, (2) arachidonate release, and (3) activation of mitogen-activated protein kinase and MAP kinase kinase. In contrast, inositol phosphate breakdown was seen only in the PAF-stimulated CHO cells. The induction of these signals accompanied no detectable Ras activation. Suppression of the signals by pertussis toxin was almost complete for the somatostatin receptor but partial for the PAF receptor, suggesting that the somatostatin receptor couples only with PTX-sensitive G protein, while the PAF receptor couples with both PTX-sensitive and -insensitive G proteins. A model of G protein-mediated signaling pathways was proposed in which the signals from Gi and those from Gq converge at MAP kinase kinase and lead to arachidonate release. The present system using CHO cells is useful for analyzing signaling pathways from G proteins to MAP kinase kinase and will thereby provide clues for understanding the mechanisms underlying the physiological and pathological events mediated by PAF, somatostatin, and other G protein-coupled receptors in the central nervous system and other tissues.
Collapse
Affiliation(s)
- M Mori
- Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
84
|
Hunt TW, Carroll RC, Peralta EG. Heterotrimeric G proteins containing G alpha i3 regulate multiple effector enzymes in the same cell. Activation of phospholipases C and A2 and inhibition of adenylyl cyclase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43917-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
85
|
Senar S, Puente JC, López-Aparicio P, Recio MN, Pérez-Albarsanz MA. Increased intracellular glycerophosphoinositol and arachidonic acid are biochemical markers for lindane toxicity. Cell Signal 1994; 6:915-21. [PMID: 7536436 DOI: 10.1016/0898-6568(94)90024-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lindane stimulates the release of both glycerophosphoinositol and arachidonic acid from phospholipids in rat renal proximal tubular cell cultures. When lindane was added to the culture medium, a correlation between the time-course profiles of glycerophosphoinositol and arachidonate release was found. This suggests a pathway in which phosphatidylinositol is not directly broken down by phospholipase C, but can instead be broken down to glycerophosphoinositol and arachidonic acid by phospholipase A enzymes. Therefore, a mechanism of action of lindane is through its effect on glycerophosphoinositol and arachidonic acid metabolism.
Collapse
Affiliation(s)
- S Senar
- Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá de Henares, Madrid, Spain
| | | | | | | | | |
Collapse
|
86
|
Koyano K, Grigg JJ, Velimirovic BM, Nakajima S, Nakajima Y. The role of arachidonic acid metabolism in somatostatin and substance P effects on inward rectifier K conductance in rat brain neurons. Neurosci Res 1994; 20:345-54. [PMID: 7532842 DOI: 10.1016/0168-0102(94)90057-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Somatostatin enhances an inward rectifier K conductance in cultured locus coeruleus neurons, while substance P reduces an inward rectifier K conductance in cultured nucleus basalis and locus coeruleus neurons. The role of arachidonic acid metabolites in these responses was studied. The somatostatin-induced response was reduced by phospholipase A2 inhibitors, non-specific lipoxygenase inhibitors and specific 5-lipoxygenase inhibitors. A cyclooxygenase inhibitor and a 12-lipoxygenase inhibitor had no effect. 5(S)-HPETE occasionally increased the K conductance, but failed to occlude the somatostatin response. The substance P response was suppressed by a 5-lipoxygenase inhibitor but not by a 12-lipoxygenase inhibitor. These results suggest that the 5-lipoxygenase pathway is not a specific messenger of either one of these responses, but that it plays a more general role in maintaining or enhancing the effectiveness of both somatostatin and substance P responses.
Collapse
Affiliation(s)
- K Koyano
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine at Chicago 60612
| | | | | | | | | |
Collapse
|
87
|
Watson JB, Coulter PM, Margulies JE, de Lecea L, Danielson PE, Erlander MG, Sutcliffe JG. G-protein gamma 7 subunit is selectively expressed in medium-sized neurons and dendrites of the rat neostriatum. J Neurosci Res 1994; 39:108-16. [PMID: 7807587 DOI: 10.1002/jnr.490390113] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We used subtractive hybridization to isolate clones of gamma 7, a 68 residue G-protein gamma subunit. Northern blotting and in situ hybridization reveal that the gamma 7 subunit mRNA is expressed primarily in medium-sized neurons of the neostriatum and nucleus accumbens and neurons of the olfactory tubercle, and at low levels in the dentate gyrus of the hippocampal formation and laminae II-III, and V of the neocortex. The gamma 7 mRNA is translocated into dendrites of neurons in the neostriatum and the dentate gyrus of the hippocampus. gamma 7 is expressed at relatively very low concentrations in peripheral tissues. The selective pattern of gamma 7 expression within the brain is highly reminiscent of those of the striatum-enriched adenylyl cyclase ACST, dopamine receptors, and the alpha subunit of G(olf), suggesting that, in striatum, gamma 7 may be a subunit of a G(olf) alpha-containing G protein that couples dopamine receptors selectively to ACST.
Collapse
Affiliation(s)
- J B Watson
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine
| | | | | | | | | | | | | |
Collapse
|
88
|
Hansen CA, Schroering AG, Carey DJ, Robishaw JD. Localization of a heterotrimeric G protein gamma subunit to focal adhesions and associated stress fibers. J Biophys Biochem Cytol 1994; 126:811-9. [PMID: 8045942 PMCID: PMC2120142 DOI: 10.1083/jcb.126.3.811] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Signal transducing heterotrimeric G proteins are responsible for coupling a large number of cell surface receptors to the appropriate effector(s). Of the three subunits, 16 alpha, 4 beta, and 5 gamma subunits have been characterized, indicating a potential for over 300 unique combinations of heterotrimeric G proteins. To begin deciphering the unique G protein combinations that couple specific receptors with effectors, we examined the subcellular localization of the gamma subunits. Using anti-peptide antibodies specific for each of the known gamma subunits, neonatal cardiac fibroblasts were screened by standard immunocytochemistry. The anti-gamma 5 subunit antibody yielded a highly distinctive pattern of intensely fluorescent regions near the periphery of the cell that tended to protrude into the cell in a fibrous pattern. Dual staining with anti-vinculin antibody showed co-localization of the gamma 5 subunit with vinculin. In addition, the gamma 5 subunit staining extended a short distance out from the vinculin pattern along the protruding stress fiber, as revealed by double staining with phalloidin. These data indicated that the gamma 5 subunit was localized to areas of focal adhesion. Dual staining of rat aortic smooth muscle cells and Schwann cells also indicated co-localization of the gamma 5 subunit and vinculin, suggesting that the association of the gamma 5 subunit with areas of focal adhesion was wide-spread.
Collapse
Affiliation(s)
- C A Hansen
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822
| | | | | | | |
Collapse
|
89
|
Fleig A, Ruben PC, Rayner MD. Kinetic mode switch of rat brain IIA Na channels in Xenopus oocytes excised macropatches. Pflugers Arch 1994; 427:399-405. [PMID: 7971138 DOI: 10.1007/bf00374253] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Na currents recorded from outside-out macropatches excised from Xenopus oocytes expressing the alpha subunit of the rat brain Na channel IIA show at least two distinguishable components in their inactivation time course, with time constants differing about tenfold (tau h1 = approx. 150 microseconds and tau h2 = approx. 2 ms). In excised patches, the inactivation properties of Na currents changed with time, favoring the faster inactivation kinetics. Analysis of the fast and slow current kinetics shows that only the relative magnitudes of tau h1 and tau h2 components are altered without significant changes in the time constants of activation or inactivation. In addition, voltage dependence of both activation and steady-state inactivation of Na currents are shifted to more negative potentials in patches with predominantly fast inactivation, although reversal potentials and valences remained unaltered. We conclude that the two inactivation modes discerned in this study are conferred by two states of Na channel the interconversion of which are regulated by an as yet unknown mechanism that seems to involve cytosolic factors.
Collapse
Affiliation(s)
- A Fleig
- Department of Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu 96822
| | | | | |
Collapse
|
90
|
Portilla D, Shah SV, Lehman PA, Creer MH. Role of cytosolic calcium-independent plasmalogen-selective phospholipase A2 in hypoxic injury to rabbit proximal tubules. J Clin Invest 1994; 93:1609-15. [PMID: 8163663 PMCID: PMC294192 DOI: 10.1172/jci117141] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although the activation of calcium-independent phospholipase A2 (PLA2) enzymes has been described in the heart, the pathogenetic role of this enzyme(s) in hypoxic cell injury has not been previously examined in any tissue. Therefore, we characterized the time course of activation of calcium-independent PLA2 using both plasmalogen and diacylglycerophospholipid substrates during hypoxia in rabbit proximal tubules and examined whether inhibition of calcium-independent PLA2 activity is associated with a cytoprotective effect. Subjecting rabbit proximal tubules to hypoxia for 5 min resulted in at least a threefold increase in cytosolic calcium-independent PLA2, which was selective for plasmalogen substrates (control 444 +/- 69 vs hypoxia 1,675 +/- 194 pmol.mg protein-1.min-1, n = 5). In contrast, no changes in PLA2 activity were observed in the presence of 4 mM EGTA in the membrane fraction using plasmenylcholine substrates. 20 min of hypoxia resulted in an increase in arachidonate from 3 +/- 1 to 28 +/- 4 ng/mg protein and lactate dehydrogenase release from 7.5 +/- 2% to 38 +/- 5%, n = 4. Pretreatment of proximal tubules with 10 microM Compound I, a specific inhibitor of calcium-independent PLA2, resulted in reduction in the magnitude of both hypoxia-induced arachidonic acid release (11 +/- 3 ng/mg protein) and lactate dehydrogenase release (18 +/- 4%). Our data indicate that a significant fraction of PLA2 activity in the proximal tubule is calcium-independent and selective for plasmalogen substrates. Furthermore, the activation of this enzyme plays an important role in the pathogenesis of membrane injury during hypoxia in the proximal tubule.
Collapse
Affiliation(s)
- D Portilla
- Division of Nephrology, University of Arkansas for Medical Sciences, Little Rock 72205
| | | | | | | |
Collapse
|
91
|
|
92
|
Direct interaction of the alpha and gamma subunits of the G proteins. Purification and analysis by limited proteolysis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41902-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
93
|
Robishaw JD, Hansen CA. Structure and function of G proteins mediating signal transduction pathways in the heart. Alcohol Clin Exp Res 1994; 18:115-20. [PMID: 8198206 DOI: 10.1111/j.1530-0277.1994.tb00890.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J D Robishaw
- Geisinger Clinic, Weis Center for Research, Danville, PA 17822
| | | |
Collapse
|
94
|
Emala CW, Schwindinger WF, Wand GS, Levine MA. Signal-transducing G proteins: basic and clinical implications. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 47:81-111. [PMID: 8016326 DOI: 10.1016/s0079-6603(08)60250-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The pivotal role that G proteins play in transmembrane signal transduction is highlighted by the rapidly expanding list of receptors and effector molecules that are coupled through G proteins. G proteins are poised to allow discrimination and diversification of cellular signals into the cytosolic milieu. The utilization of an evolutionarily conserved "GTPase clock" by G proteins, offers insight into the fundamental role these proteins play in biology. Knowledge of the implication of altered expression or function of G proteins in human disease is now emerging. It is not surprising that deficiency or expression of altered forms of these important proteins can lead to global or restricted metabolic disturbances, depending upon the distribution and role of the G protein. Human disorders, including heart failure, alcoholism, endocrine abnormalities, and neoplasia, are now recognized as due in part to altered expression or function of G proteins.
Collapse
Affiliation(s)
- C W Emala
- Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | |
Collapse
|
95
|
Abstract
Heterotrimeric GTP-binding proteins (G proteins) that are made up of alpha and beta gamma subunits couple many kinds of cell-surface receptors to intracellular effector enzymes or ion channels. Every cell contains several types of receptors, G proteins, and effectors. The specificity with which G protein subunits interact with receptors and effectors defines the range of responses a cell is able to make to an external signal. Thus, the G proteins act as a critical control point that determines whether a signal spreads through several pathways or is focused to a single pathway. In this review, I will summarize some features of the structure and function of mammalian G protein subunits, discuss the role of both alpha and beta gamma subunits in regulation of effectors, the role of the beta gamma subunit in macromolecular assembly, and the mechanisms that might make some responses extremely specific and others rather diffuse.
Collapse
Affiliation(s)
- E J Neer
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
96
|
Jackson DM, Westlind-Danielsson A. Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol Ther 1994; 64:291-370. [PMID: 7878079 DOI: 10.1016/0163-7258(94)90041-8] [Citation(s) in RCA: 319] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The description of new dopamine (DA) receptor subtypes, D1-(D1 and D5) and D2-like (D2A, D2B, D3, D4), has given an impetus to DA research. While selective agonists and antagonists are not generally available yet, the receptor distribution in the brain suggests that they could be new targets for drug development. Binding characteristics and second messenger coupling has been explored in cell lines expressing the new cloned receptors. The absence of selective ligands has meant that in vivo studies have lagged behind. However, progress has been made in understanding the function of DA-containing discrete brain nuclei and the functional consequence of the DA's interaction with other neurotransmitters. This review explores some of the latest advances in these various areas.
Collapse
Affiliation(s)
- D M Jackson
- Department of Behavioural, Pharmacology, Astra Arcus AB, Södertälje, Sweden
| | | |
Collapse
|
97
|
Yamada M, Terzic A, Kurachi Y. Regulation of potassium channels by G-protein subunits and arachidonic acid metabolites. Methods Enzymol 1994; 238:394-422. [PMID: 7799802 DOI: 10.1016/0076-6879(94)38036-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M Yamada
- Osaka University Medical School, Japan
| | | | | |
Collapse
|
98
|
Adham N, Borden LA, Schechter LE, Gustafson EL, Cochran TL, Vaysse PJ, Weinshank RL, Branchek TA. Cell-specific coupling of the cloned human 5-HT1F receptor to multiple signal transduction pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1993; 348:566-75. [PMID: 8133900 DOI: 10.1007/bf00167231] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We recently described the cloning of a fifth member of the 5-hydroxytryptamine (5-HT)1 (serotonin1) receptor class that inhibits adenylyl cyclase, namely the human 5-HT1F receptor (Adham et al. 1993a). In the present study we have examined in greater detail the functional coupling of the 5-HT1F receptor in two different cell lines, NIH-3T3 and LM(tk-) fibroblasts (receptor densities of 1.7 and 4.4 pmol/mg protein, respectively). The maximal inhibitory response elicited by 5-HT was significantly greater in NIH-3T3 as compared to LM(tk-) cells, whereas the EC50 values were comparable. To investigate the relationship between receptor occupancy and inhibition of cAMP accumulation mediated by 5-HT1F receptors in NIH-3T3 cells (and hence the degree of receptor reserve), we used the irreversible receptor antagonist N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). The half-maximal response required only about 10% receptor occupancy, consistent with a receptor reserve of 90% (88 +/- 2.1%, n = 4) for 5-HT-induced inhibition of FSCA. Despite the presence of such a high degree of receptor reserve, a range of intrinsic activities was displayed by structurally diverse classes of compounds. For example, sumatriptan and lysergol were as efficacious as 5-HT itself and thus acted as full agonists, whereas metergoline and 1-NP behaved as partial agonists and as shown previously (Adham et al. 1993a), methiothepin was a silent antagonist (Kb = 438 nM). We have also investigated activation of additional signal transduction pathways by the 5-HT1F receptor and found that the responses differ in the two cell lines with respect to stimulation of phospholipase C. For example, in NIH-3T3 cells no elevation of inositol phosphates (IP) of [Ca2+]i was observed even at very high agonist concentrations (100 microM). In contrast, in LM(tk-) cells concentrations of 5-HT as low as 10 nM induced stimulation of IP and a rapid increase of [Ca2+]i. The 5-HT1F receptor failed to alter arachidonic acid release in either cell line. The maximal increase in IP accumulation in LM(tk-) cells was modest, averaging about 100% above basal. The increases of IP and [Ca2+]i required 5-HT concentrations less than one order of magnitude greater than those inhibiting FSCA (EC50 = 17, 55 and 8 nM, respectively), and both responses were blocked by 100 microM methiothepin. All three responses (cAMP, IP, and [Ca2+]i) were sensitive to pertussis toxin pre-treatment, suggesting the involvement of Gi/Go protein(s) in these signal transduction pathways.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- N Adham
- Department of Pharmacology, Synaptic Pharmaceutical Corporation, Paramus, NJ 07652
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Rudolph U, Brabet P, Hasty P, Bradley A, Birnbaumer L. Disruption of the G(i2) alpha locus in embryonic stem cells and mice: a modified hit and run strategy with detection by a PCR dependent on gap repair. Transgenic Res 1993; 2:345-55. [PMID: 8268981 DOI: 10.1007/bf01976176] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have used an insertion vector-based approach to target the G(i2) alpha gene in AB-1 embryonic stem cells. 105 bp located 0.8-0.9 kb upstream of a disrupting Neo marker in exon 3 were deleted and replaced with an engineered Not I site, that served to linearize the vector. The 105 bp deletion served as a primer annealing site in a polymerase chain reaction (PCR) designed to detect the gap repair associated with homologous recombination. Both target conversion and vector insertion events were obtained ('hit' step). Clones that had inserted the entire targeting vector were taken into FIAU (1-[2-deoxy,2-fluoro-beta-D-arabinofuranosyl]-5-ioduracil) counterselection to select against a thymidine kinase (TK) marker flanking the homologous genomic sequences and thus for cells that had excised the plasmid and the TK marker by intrachromosomal recombination ('run' step). Additional selection in G418 reduced the number of drug-resistant colonies at least five-fold. Thus, the Neo marker disrupting the homologous sequences allows for a more specific selection of the desired intrachromosomal recombination event in tissue culture. This modified 'hit and run' strategy represents a novel approach for vector design and the use of the polymerase chain reaction to detect targeting. It may be particularly useful for targeting genes that display a low frequency of homologous recombination. Germ line transmission of the mutated G(i2) alpha allele is also demonstrated.
Collapse
Affiliation(s)
- U Rudolph
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | |
Collapse
|
100
|
Abstract
When a membrane-bound receptor acts on a G protein, the GTP-binding or G alpha subunit dissociates from the G beta gamma dimer. Until recently, the G alpha subunit alone was thought to act on the enzymes and ion channels controlled by these proteins. Newer evidence indicates that the G beta gamma dimer also plays a major part in signal transmission, enhancing the complexity of the possible interactions between the G proteins and their targets.
Collapse
Affiliation(s)
- D E Clapham
- Department of Pharmacology, Mayo Foundation, Rochester, Minnesota 55905
| | | |
Collapse
|