51
|
Targeting Virulence Factors of Candida albicans with Natural Products. Foods 2022; 11:foods11192951. [PMID: 36230026 PMCID: PMC9562657 DOI: 10.3390/foods11192951] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products derived from natural resources, including nutritional functional food, play an important role in human health. In recent years, the study of anti-fungal and other properties of agri-foods and derived functional compounds has been a hot research topic. Candida albicans is a parasitic fungus that thrives on human mucosal surfaces, which are colonized through opportunistic infection. It is the most prevalent cause of invasive fungal infection in immunocompromised individuals, resulting in a wide variety of clinical symptoms. Moreover, the efficacy of classical therapeutic medications such as fluconazole is often limited by the development of resistance. There is an ongoing need for the development of novel and effective antifungal therapy and medications. Infection of C. albicans is influenced by a great quantity of virulence factors, like adhesion, invasion-promoting enzymes, mycelial growth, and phenotypic change, and among others. Furthermore, various natural products especially from food sources that target C. albicans virulence factors have been researched, providing promising prospects for C. albicans prevention and treatment. In this review, we discuss the virulence factors of C. albicans and how functional foods and derived functional compounds affect them. Our hope is that this review will stimulate additional thoughts and suggestions regarding nutritional functional food and therapeutic development for patients afflicted with C. albicans.
Collapse
|
52
|
Sun P, Wang H, Liu L, Guo K, Li X, Cao Y, Ko C, Lan ZJ, Lei Z. Aberrant activation of KRAS in mouse theca-interstitial cells results in female infertility. Front Physiol 2022; 13:991719. [PMID: 36060690 PMCID: PMC9437434 DOI: 10.3389/fphys.2022.991719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
KRAS plays critical roles in regulating a range of normal cellular events as well as pathological processes in many tissues mediated through a variety of signaling pathways, including ERK1/2 and AKT signaling, in a cell-, context- and development-dependent manner. The in vivo function of KRAS and its downstream targets in gonadal steroidogenic cells for the development and homeostasis of reproductive functions remain to be determined. To understand the functions of KRAS signaling in gonadal theca and interstitial cells, we generated a Kras mutant (tKrasMT) mouse line that selectively expressed a constitutively active KrasG12D in these cells. KrasG12D expression in ovarian theca cells did not block follicle development to the preovulatory stage. However, tKrasMT females failed to ovulate and thus were infertile. The phosphorylated ERK1/2 and forkhead box O1 (FOXO1) and total FOXO1 protein levels were markedly reduced in tKrasMT theca cells. KrasG12D expression in theca cells also curtailed the phosphorylation of ERK1/2 and altered the expression of several ovulation-related genes in gonadotropin-primed granulosa cells. To uncover downstream targets of KRAS/FOXO1 signaling in theca cells, we found that the expression of bone morphogenic protein 7 (Bmp7), a theca-specific factor involved in ovulation, was significantly elevated in tKrasMT theca cells. Chromosome immunoprecipitation assays demonstrated that FOXO1 interacted with the Bmp7 promoter containing forkhead response elements and that the binding activity was attenuated in tKrasMT theca cells. Moreover, Foxo1 knockdown caused an elevation, whereas Foxo1 overexpression resulted in an inhibition of Bmp7 expression, suggesting that KRAS signaling regulates FOXO1 protein levels to control Bmp7 expression in theca cells. Thus, the anovulation phenotype observed in tKrasMT mice may be attributed to aberrant KRAS/FOXO1/BMP7 signaling in theca cells. Our work provides the first in vivo evidence that maintaining normal KRAS activity in ovarian theca cells is crucial for ovulation and female fertility.
Collapse
Affiliation(s)
- Penghao Sun
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zhenmin Lei, ; Hongliang Wang,
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Xian Li
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, United States
| | - Yin Cao
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Chemyong Ko
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zi-Jian Lan
- Birth Defects Center, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Zhenmin Lei
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, United States
- *Correspondence: Zhenmin Lei, ; Hongliang Wang,
| |
Collapse
|
53
|
Homma M, Takekawa N, Fujiwara K, Hao Y, Onoue Y, Kojima S. Formation of multiple flagella caused by a mutation of the flagellar rotor protein FliM in Vibrio alginolyticus. Genes Cells 2022; 27:568-578. [PMID: 35842835 DOI: 10.1111/gtc.12975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Marine bacterium Vibrio alginolyticus forms a single flagellum at a cell pole. In Vibrio, two proteins (GTPase FlhF and ATPase FlhG) regulate the number of flagella. We previously isolated the NMB155 mutant that forms multiple flagella despite the absence of mutations in flhF and flhG. Whole-genome sequencing of NMB155 identified an E9K mutation in FliM that is a component of C-ring in the flagellar rotor. Mutations in FliM result in defects in flagellar formation (fla) and flagellar rotation (che or mot); however, there are a few reports indicating that FliM mutations increase the number of flagella. Here, we determined that the E9K mutation confers the multi-flagellar phenotype and also the che phenotype. The co-expression of wild-type FliM and FliM-E9K indicated that they were competitive in regard to determining the flagellar number. The ATPase activity of FlhG has been correlated with the number of flagella. We observed that the ATPase activity of FlhG was increased by the addition of FliM but not by the addition of FliM-E9K in vitro. This indicates that FliM interacts with FlhG to increase its ATPase activity, and the E9K mutation may inhibit this interaction. FliM may control the ATPase activity of FlhG to properly regulate the number of the polar flagellum at the cell pole. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Osaka, Japan
| | - Kazushi Fujiwara
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yuxi Hao
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yasuhiro Onoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
54
|
A proteomic approach identifies isoform-specific and nucleotide-dependent RAS interactions. Mol Cell Proteomics 2022; 21:100268. [PMID: 35839996 PMCID: PMC9396065 DOI: 10.1016/j.mcpro.2022.100268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Active mutations in the RAS genes are found in ∼30% of human cancers. Although thought to have overlapping functions, RAS isoforms show preferential activation in human tumors, which prompted us to employ a comparative and quantitative proteomics approach to generate isoform-specific and nucleotide-dependent interactomes of the four RAS isoforms, KRAS4A, KRAS4B, HRAS, and NRAS. Many isoform-specific interacting proteins were identified, including HRAS-specific CARM1 and CHK1 and KRAS-specific PIP4K2C and IPO7. Comparing the interactomes of WT and constitutively active G12D mutant of RAS isoforms, we identified several potential previously unknown effector proteins of RAS, one of which was recently reported while this article was in preparation, RADIL. These interacting proteins play important roles as knockdown or pharmacological inhibition leads to potent inhibition of cancer cells. The HRAS-specific interacting protein CARM1 plays a role in HRAS-induced senescence, with CARM1 knockdown or inhibition selectively increasing senescence in HRAS-transformed cells but not in KRAS4B-transformed cells. By revealing new isoform-specific and nucleotide-dependent RAS interactors, the study here provides insights to help understand the overlapping functions of the RAS isoforms. RAS interactome uncovers isoform-specific and nucleotide-dependent interactors. Potential novel RAS effector proteins are introduced. RAS interactors are possible new targets for RAS-driven cancer cells.
Collapse
|
55
|
Ebnet K, Gerke V. Rho and Rab Family Small GTPases in the Regulation of Membrane Polarity in Epithelial Cells. Front Cell Dev Biol 2022; 10:948013. [PMID: 35859901 PMCID: PMC9289151 DOI: 10.3389/fcell.2022.948013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Membrane polarity, defined as the asymmetric distribution of lipids and proteins in the plasma membrane, is a critical prerequisite for the development of multicellular tissues, such as epithelia and endothelia. Membrane polarity is regulated by polarized trafficking of membrane components to specific membrane domains and requires the presence of intramembrane diffusion barriers that prevent the intermixing of asymmetrically distributed membrane components. This intramembrane diffusion barrier is localized at the tight junctions (TJs) in these cells. Both the formation of cell-cell junctions and the polarized traffic of membrane proteins and lipids are regulated by Rho and Rab family small GTPases. In this review article, we will summarize the recent developments in the regulation of apico-basal membrane polarity by polarized membrane traffic and the formation of the intramembrane diffusion barrier in epithelial cells with a particular focus on the role of Rho and Rab family small GTPases.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| | - Volker Gerke
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| |
Collapse
|
56
|
Chen L, Liu A, Guo Z, Jiang H, Luo L, Gao J, Li D, Ye S, Guo N. Cloning and Bioinformatics Analysis of GhArfGAP in Cotton ( Gossypium hirsutum) Boll Abscission Layer With Ethylene Treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:841161. [PMID: 35812965 PMCID: PMC9263981 DOI: 10.3389/fpls.2022.841161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
With the continuous growth of the human population, the demand for fiber is also rising sharply. As one of the main fiber plants available globally, cotton fiber yield (Gossypium hirsutum) is affected by boll abscission, which is related to the formation of the abscission layer. Therefore, we explored the formation of the abscission layer in cotton. The formation of the abscission layer in the cotton boll stalk was promoted by exogenous ethylene. It was found that both the number of the Golgi apparatus and the number of stacking layers increased in the dissociated cells. The GhArfGAP gene family in cotton was screened by the bioinformatics method, and the species and evolutionary relationship of the GhArfGAP gene family were analyzed. qRT-PCR showed that GhArfGAP13, GhArfGAP15, GhArfGAP25, and GhArfGAP34 in cotton had spatiotemporal-specific expression patterns. Subcellular localization suggested that GhArfGAP25 played a role in the Golgi apparatus. The expression of GhArfGAP25 in transgenic Arabidopsis thaliana is increased in the roots, stems, and leaves. Finally, we found that ethylene could induce the formation of the abscission layer in cotton. GhArfGAP13, GhArfGAP15, GhArfGAP25, and GhArfGAP34 might regulate the changes in the Golgi apparatus in the abscission layer. Taken together, the findings provide new ideas for the study of the formation of cotton abscission.
Collapse
Affiliation(s)
- Long Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - AnFeng Liu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - ZiWen Guo
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Hui Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ling Luo
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - JunShan Gao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - DaHui Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - SiHong Ye
- Cotton Research Institute of Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ning Guo
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
57
|
Fekrvand S, Khanmohammadi S, Abolhassani H, Yazdani R. B- and T-Cell Subset Abnormalities in Monogenic Common Variable Immunodeficiency. Front Immunol 2022; 13:912826. [PMID: 35784324 PMCID: PMC9241517 DOI: 10.3389/fimmu.2022.912826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a heterogeneous group of inborn errors of immunity characterized by reduced serum concentrations of different immunoglobulin isotypes. CVID is the most prevalent symptomatic antibody deficiency with a broad range of infectious and non-infectious clinical manifestations. Various genetic and immunological defects are known to be involved in the pathogenesis of CVID. Monogenic defects account for the pathogenesis of about 20-50% of CVID patients, while a variety of cases do not have a defined genetic background. Deficiencies in molecules of B cell receptor signaling or other pathways involving B-cell development, activation, and proliferation could be associated with monogenetic defects of CVID. Genetic defects damping different B cell developmental stages can alter B- and even other lymphocytes’ differentiation and might be involved in the clinical and immunologic presentations of the disorder. Reports concerning T and B cell abnormalities have been published in CVID patients, but such comprehensive data on monogenic CVID patients is few and no review article exists to describe the abrogation of lymphocyte subsets in these disorders. Hence, we aimed to review the role of altered B- and T-cell differentiation in the pathogenesis of CVID patients with monogenic defects.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Science, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Reza Yazdani, ;
| |
Collapse
|
58
|
Schaefer A, Der CJ. RHOA takes the RHOad less traveled to cancer. Trends Cancer 2022; 8:655-669. [PMID: 35568648 DOI: 10.1016/j.trecan.2022.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
RAS and RHO GTPases function as signaling nodes that regulate diverse cellular processes. Whereas RAS mutations were identified in human cancers nearly four decades ago, only recently have mutations in two RHO GTPases, RAC1 and RHOA, been identified in cancer. RAS mutations are found in a diverse spectrum of human cancer types. By contrast, RAC1 and RHOA mutations are associated with distinct and restricted cancer types. Despite a conservation of RAS and RAC1 residues that comprise mutational hotspots, RHOA mutations comprise highly divergent hotspots. Whereas RAS and RAC1 act as oncogenes, RHOA may act as both an oncogene and a tumor suppressor. Thus, while RAS and RHO each take different mutational paths, they arrive at the same biological destination as cancer drivers.
Collapse
Affiliation(s)
- Antje Schaefer
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, NC 27599, USA
| | - Channing J Der
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Department of Pharmacology, Chapel Hill, NC 27599, USA.
| |
Collapse
|
59
|
Wang Z, Zhou X, Han J, Xie G, Liu J. DNA coated CoZn-ZIF metal-organic frameworks for fluorescent sensing guanosine triphosphate and discrimination of nucleoside triphosphates. Anal Chim Acta 2022; 1207:339806. [DOI: 10.1016/j.aca.2022.339806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
|
60
|
He X, Du K, Wang Y, Fan J, Li M, Ni D, Lu S, Bian X, Liu Y. Autopromotion of K-Ras4B Feedback Activation Through an SOS-Mediated Long-Range Allosteric Effect. Front Mol Biosci 2022; 9:860962. [PMID: 35463958 PMCID: PMC9023742 DOI: 10.3389/fmolb.2022.860962] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
The Ras-specific guanine nucleotide exchange factors Son of Sevenless (SOS) regulates Ras activation by converting inactive GDP-bound to active GTP-bound states. The catalytic activity of Ras is further allosterically regulated by GTP-Ras bound to a distal site through a positive feedback loop. To address the mechanism underlying the long-range allosteric activation of the catalytic K-Ras4B by an additional allosteric GTP-Ras through SOS, we employed molecular dynamics simulation of the K-Ras4BG13D•SOScat complex with and without an allosteric GTP-bound K-Ras4BG13D. We found that the binding of an allosteric GTP-K-Ras4BG13D enhanced the affinity between the catalytic K-Ras4BG13D and SOScat, forming a more stable conformational state. The peeling away of the switch I from the nucleotide binding site facilitated the dissociation of GDP, thereby contributing to the increased nucleotide exchange rate. The community networks further showed stronger edge connection upon allosteric GTP-K-Ras4BG13D binding, which represented an increased interaction between catalytic K-Ras4BG13D and SOScat. Moreover, GTP-K-Ras4BG13D binding transmitted allosteric signaling pathways though the Cdc25 domain of SOS that enhanced the allosteric regulatory from the K-Ras4BG13D allosteric site to the catalytic site. This study may provide an in-depth mechanism for abnormal activation and allosteric regulation of K-Ras4BG13D.
Collapse
Affiliation(s)
- Xuan He
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Yuanhao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Duan Ni
- The Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaolan Bian
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
61
|
The Memory of Rice Response to Spaceflight Stress: From the Perspective of Metabolomics and Proteomics. Int J Mol Sci 2022; 23:ijms23063390. [PMID: 35328810 PMCID: PMC8954569 DOI: 10.3390/ijms23063390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 01/16/2023] Open
Abstract
The stress response of plants to spaceflight has been confirmed in contemporary plants, and plants retained the memory of spaceflight through methylation reaction. However, how the progeny plants adapt to this cross-generational stress memory was rarely reported. Here, we used the ShiJian-10 retractable satellite carrying Dongnong416 rice seeds for a 12.5-day on-orbit flight and planted the F2 generation after returning to the ground. We evaluated the agronomic traits of the F2 generation plants and found that the F2 generation plants had no significant differences in plant height and number of tillers. Next, the redox state in F2 plants was evaluated, and it was found that the spaceflight broke the redox state of the F2 generation rice. In order to further illustrate the stress response caused by this redox state imbalance, we conducted proteomics and metabolomics analysis. Proteomics results showed that the redox process in F2 rice interacts with signal transduction, stress response, and other pathways, causing genome instability in the plant, leading to transcription, post-transcriptional modification, protein synthesis, protein modification, and degradation processes were suppressed. The metabolomics results showed that the metabolism of the F2 generation plants was reshaped. These metabolic pathways mainly included amino acid metabolism, sugar metabolism, cofactor and vitamin metabolism, purine metabolism, phenylpropane biosynthesis, and flavonoid metabolism. These metabolic pathways constituted a new metabolic network. This study confirmed that spaceflight affected the metabolic changes in offspring rice, which would help better understand the adaptation mechanism of plants to the space environment.
Collapse
|
62
|
Mosallaei M, Ehtesham N, Beheshtian M, Khoshbakht S, Davarnia B, Kahrizi K, Najmabadi H. Phenotype and genotype spectrum of variants in guanine nucleotide exchange factor genes in a broad cohort of Iranian patients. Mol Genet Genomic Med 2022; 10:e1894. [PMID: 35174982 PMCID: PMC9000939 DOI: 10.1002/mgg3.1894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background Guanine nucleotide exchange factors (GEFs) play pivotal roles in neuronal cell functions by exchanging GDP to GTP nucleotide and activation of GTPases. We aimed to determine the genotype and phenotype spectrum of GEF mutations by collecting data from a large Iranian cohort with intellectual disability (ID) and/or developmental delay (DD). Methods We collected data from nine families with 20 patients extracted from Iranian cohort of 640 families with ID and/or DD. Next‐generation sequencing (NGS) was used to identify the causing variants in recruited families. We also compared our clinical and molecular findings with previously reported patients carrying mutations in these GEF genes in the literature published until mid‐2021. Results We identified disease‐causing variants in eight GEF genes including ALS2, IQSEC2, MADD, RAB3GAP1, RAB3GAP2, TRIO, ITSN1, and DENND2A. The major clinical manifestations in 203 previously reported cases along with our 20 patients with disease causing variants in eight GEF genes were as follow; speech disorder (85.2%), ID (81.6%), DD (81.1%), inability to walk (71.3%), facial dysmorphisms features (52.4%), abnormalities in skull morphology (55.6%), hypotonia and muscle weakness (47%), and brain MRI abnormalities (43.4%). Conclusion Our study provides new insights into the genotype and phenotype spectrum of mutations in GEF genes.
Collapse
Affiliation(s)
- Meysam Mosallaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Naeim Ehtesham
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahrouz Khoshbakht
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Behzad Davarnia
- Department of Genetic and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad - Najmabadi Pathology & Genetics Centre, Tehran, Iran
| |
Collapse
|
63
|
Bondos SE, Dunker AK, Uversky VN. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun Signal 2022; 20:20. [PMID: 35177069 PMCID: PMC8851865 DOI: 10.1186/s12964-022-00821-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling pathways allow cells to detect and respond to a wide variety of chemical (e.g. Ca2+ or chemokine proteins) and physical stimuli (e.g., sheer stress, light). Together, these pathways form an extensive communication network that regulates basic cell activities and coordinates the function of multiple cells or tissues. The process of cell signaling imposes many demands on the proteins that comprise these pathways, including the abilities to form active and inactive states, and to engage in multiple protein interactions. Furthermore, successful signaling often requires amplifying the signal, regulating or tuning the response to the signal, combining information sourced from multiple pathways, all while ensuring fidelity of the process. This sensitivity, adaptability, and tunability are possible, in part, due to the inclusion of intrinsically disordered regions in many proteins involved in cell signaling. The goal of this collection is to highlight the many roles of intrinsic disorder in cell signaling. Following an overview of resources that can be used to study intrinsically disordered proteins, this review highlights the critical role of intrinsically disordered proteins for signaling in widely diverse organisms (animals, plants, bacteria, fungi), in every category of cell signaling pathway (autocrine, juxtacrine, intracrine, paracrine, and endocrine) and at each stage (ligand, receptor, transducer, effector, terminator) in the cell signaling process. Thus, a cell signaling pathway cannot be fully described without understanding how intrinsically disordered protein regions contribute to its function. The ubiquitous presence of intrinsic disorder in different stages of diverse cell signaling pathways suggest that more mechanisms by which disorder modulates intra- and inter-cell signals remain to be discovered.
Collapse
Affiliation(s)
- Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia 142290
| |
Collapse
|
64
|
Abstract
Activating mutations in RAS genes are the most common genetic driver of human cancers. Yet, drugging this small GTPase has proven extremely challenging and therapeutic strategies targeting these recurrent alterations have long had limited success. To circumvent this difficulty, research has focused on the molecular dissection of the RAS pathway to gain a more-precise mechanistic understanding of its regulation, with the hope to identify new pharmacological approaches. Here, we review the current knowledge on the (dys)regulation of the RAS pathway, using melanoma as a paradigm. We first present a map of the main proteins involved in the RAS pathway, highlighting recent insights into their molecular roles and diverse mechanisms of regulation. We then overview genetic data pertaining to RAS pathway alterations in melanoma, along with insight into other cancers, that inform the biological function of members of the pathway. Finally, we describe the clinical implications of RAS pathway dysregulation in melanoma, discuss past and current approaches aimed at drugging the RAS pathway, and outline future opportunities for therapeutic development. Summary: This Review describes the molecular regulation of the RAS pathway, presents the clinical consequences of its pathological activation in human cancer, and highlights recent advances towards its therapeutic inhibition, using melanoma as an example.
Collapse
Affiliation(s)
- Amira Al Mahi
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052 CNRS UMR5286, Tumor Escape, Resistance and Immunity Department, 69008 Lyon, France
| | - Julien Ablain
- Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM U1052 CNRS UMR5286, Tumor Escape, Resistance and Immunity Department, 69008 Lyon, France
| |
Collapse
|
65
|
Khaliq SA, Umair Z, Yoon MS. Role of ARHGEF3 as a GEF and mTORC2 Regulator. Front Cell Dev Biol 2022; 9:806258. [PMID: 35174167 PMCID: PMC8841341 DOI: 10.3389/fcell.2021.806258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) activate GTPases by stimulating the release of guanosine diphosphate to permit the binding of guanosine triphosphate. ARHGEF3 or XPLN (exchange factor found in platelets, leukemic, and neuronal tissues) is a selective guanine nucleotide exchange factor for Rho GTPases (RhoGEFs) that activates RhoA and RhoB but not RhoC, RhoG, Rac1, or Cdc42. ARHGEF3 contains the diffuse B-cell lymphoma homology and pleckstrin homology domains but lacks similarity with other known functional domains. ARHGEF3 also binds the mammalian target of rapamycin complex 2 (mTORC2) and subsequently inhibits mTORC2 and Akt. In vivo investigation has also indicated the communication between ARHGEF3 and autophagy-related muscle pathologies. Moreover, studies on genetic variation in ARHGEF3 and genome-wide association studies have predicted exciting novel roles of ARHGEF3 in controlling bone mineral density, platelet formation and differentiation, and Hirschsprung disease. In conclusion, we hypothesized that additional biochemical and functional studies are required to elucidate the detailed mechanism of ARHGEF3-related pathologies and therapeutics.
Collapse
Affiliation(s)
- Sana Abdul Khaliq
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Zobia Umair
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- *Correspondence: Zobia Umair, ; Mee-Sup Yoon,
| | - Mee-Sup Yoon
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
- *Correspondence: Zobia Umair, ; Mee-Sup Yoon,
| |
Collapse
|
66
|
Ingólfsson HI, Neale C, Carpenter TS, Shrestha R, López CA, Tran TH, Oppelstrup T, Bhatia H, Stanton LG, Zhang X, Sundram S, Di Natale F, Agarwal A, Dharuman G, Kokkila Schumacher SIL, Turbyville T, Gulten G, Van QN, Goswami D, Jean-Francois F, Agamasu C, Chen D, Hettige JJ, Travers T, Sarkar S, Surh MP, Yang Y, Moody A, Liu S, Van Essen BC, Voter AF, Ramanathan A, Hengartner NW, Simanshu DK, Stephen AG, Bremer PT, Gnanakaran S, Glosli JN, Lightstone FC, McCormick F, Nissley DV, Streitz FH. Machine learning-driven multiscale modeling reveals lipid-dependent dynamics of RAS signaling proteins. Proc Natl Acad Sci U S A 2022; 119:e2113297119. [PMID: 34983849 PMCID: PMC8740753 DOI: 10.1073/pnas.2113297119] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.
Collapse
Affiliation(s)
- Helgi I Ingólfsson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Chris Neale
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Timothy S Carpenter
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Rebika Shrestha
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Timothy H Tran
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Tomas Oppelstrup
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Harsh Bhatia
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Liam G Stanton
- Department of Mathematics and Statistics, San José State University, San José, CA 95192
| | - Xiaohua Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Shiv Sundram
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Francesco Di Natale
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Animesh Agarwal
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Gautham Dharuman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | | | - Thomas Turbyville
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Gulcin Gulten
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Que N Van
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Debanjan Goswami
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Frantz Jean-Francois
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Constance Agamasu
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - De Chen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Jeevapani J Hettige
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Sumantra Sarkar
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Michael P Surh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Yue Yang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Adam Moody
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Shusen Liu
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Brian C Van Essen
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Arthur F Voter
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Arvind Ramanathan
- Computing, Environment & Life Sciences Directorate, Argonne National Laboratory, Lemont, IL 60439
| | - Nicolas W Hengartner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Dhirendra K Simanshu
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Andrew G Stephen
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701
| | - Peer-Timo Bremer
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - James N Glosli
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Felice C Lightstone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | - Frank McCormick
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701;
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115
| | - Dwight V Nissley
- RAS Initiative, The Cancer Research Technology Program, Frederick National Laboratory, Frederick, MD 21701;
| | - Frederick H Streitz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550;
| |
Collapse
|
67
|
Abdellatef S, Fakhoury I, Al Haddad M, Jaafar L, Maalouf H, Hanna S, Khalil B, El Masri Z, Hodgson L, El-Sibai M. StarD13 negatively regulates invadopodia formation and invasion in high-grade serous (HGS) ovarian adenocarcinoma cells by inhibiting Cdc42. Eur J Cell Biol 2022; 101:151197. [PMID: 34958986 PMCID: PMC8756770 DOI: 10.1016/j.ejcb.2021.151197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 01/03/2023] Open
Abstract
Metastasis remains the main challenge to overcome for treating ovarian cancers. In this study, we investigate the potential role of the Cdc42 GAP StarD13 in the modulation of cell motility, invasion in ovarian cancer cells. StarD13 depletion does not affect the 2D motility of ovarian cancer cells. More importantly, StarD13 inhibits matrix degradation, invadopodia formation and cell invasion through the inhibition of Cdc42. StarD13 does not localize to mature TKS4-labeled invadopodia that possess matrix degradation ability, while a Cdc42 FRET biosensor, detects Cdc42 activation in these invadopodia. In fact, StarD13 localization and Cdc42 activation appear mutually exclusive in invadopodial structures. Finally, for the first time we uncover a potential role of Cdc42 in the direct recruitment of TKS4 to invadopodia. This study emphasizes the specific role of StarD13 as a narrow spatial regulator of Cdc42, inhibiting invasion, suggesting the suitability of StarD13 for targeted therapy.
Collapse
Affiliation(s)
- Sandra Abdellatef
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Isabelle Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Maria Al Haddad
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Leila Jaafar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Hiba Maalouf
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Samer Hanna
- Department of Pediatrics Hematology/Oncology division, Weill Cornell Medicine, Joan & Sanford I. Weill Medical College of Cornell University, Ithaca, NY, USA
| | - Bassem Khalil
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Zeinab El Masri
- Department of Biochemistry and Molecular Biology, University Park, Pennsylvania State University, State College, PA, USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon,Correspondence to: Department of Natural Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran 1102 2801, Beirut, Lebanon. (M. El-Sibai)
| |
Collapse
|
68
|
Malinova A, Veghini L, Real FX, Corbo V. Cell Lineage Infidelity in PDAC Progression and Therapy Resistance. Front Cell Dev Biol 2021; 9:795251. [PMID: 34926472 PMCID: PMC8675127 DOI: 10.3389/fcell.2021.795251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
Infidelity to cell fate occurs when differentiated cells lose their original identity and either revert to a more multipotent state or transdifferentiate into a different cell type, either within the same embryonic lineage or in an entirely different one. Whilst in certain circumstances, such as in wound repair, this process is beneficial, it can be hijacked by cancer cells to drive disease initiation and progression. Cell phenotype switching has been shown to also serve as a mechanism of drug resistance in some epithelial cancers. In pancreatic ductal adenocarcinoma (PDAC), the role of lineage infidelity and phenotype switching is still unclear. Two consensus molecular subtypes of PDAC have been proposed that mainly reflect the existence of cell lineages with different degrees of fidelity to pancreatic endodermal precursors. Indeed, the classical subtype of PDAC is characterised by the expression of endodermal lineage specifying transcription factors, while the more aggressive basal-like/squamous subtype is defined by epigenetic downregulation of endodermal genes and alterations in chromatin modifiers. Here, we summarise the current knowledge of mechanisms (genetic and epigenetic) of cell fate switching in PDAC and discuss how pancreatic organoids might help increase our understanding of both cell-intrinsic and cell-extrinsic factors governing lineage infidelity during the distinct phases of PDAC evolution.
Collapse
Affiliation(s)
- Antonia Malinova
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Lisa Veghini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francisco X. Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre, Madrid, Spain
- CIBERONC, Madrid, Spain
- Department de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-Net Research Centre, University of Verona, Verona, Italy
| |
Collapse
|
69
|
Upendra N, Krishnaveni S. Conformational exploration of RbgA using molecular dynamics: Possible implications in ribosome maturation and GTPase activity in different nucleotide bound states. J Mol Graph Model 2021; 111:108087. [PMID: 34864321 DOI: 10.1016/j.jmgm.2021.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/30/2021] [Accepted: 11/21/2021] [Indexed: 11/26/2022]
Abstract
Ribosome biogenesis GTPase A (RbgA) is involved in the late steps of the 50S ribosomal subunit maturation by binding into the 45S pre-ribosomal subunit. The association of RbgA to the 45S intermediate subunit depends on its bound nucleotide (GTP/GDP), probably because of the conformational shifts that occur between the GTP and GDP bound states. However, the available crystal structures of Staphylococcus aureus RbgA (SaRbgA) do not show any significant variations between different nucleotide bound states. Therefore, conformational exploration of SaRbgA in different nucleotide bound states was carried out using all-atom molecular dynamics (MD) simulations. Exploration of conformational distribution using cluster analysis and principal component analysis (PCA) revealed that GDP and pppGpp bound systems exhibit a larger distribution. This is majorly due to the fluctuations of the C-terminal tail (C-tail) as a result of the unwinding of α-helical secondary conformations into loop conformations which are observed from RMSF and DSSP analyses. Further investigation of the network of interactions revealed that the GTP and GMPPNP bound systems hold the C-tail in an α-helical form through stronger interactions between the active-site and C-tail. We also find that the presence of Mg2+ positions Sw-I loop away from the bound nucleotide and stabilizes the active-site water molecules. This seems to assist SaRbgA GTPase activity. In addition, mutations at the C-terminal and Sw-II conserved residues exhibit a larger conformational distribution majorly due to the C-tail fluctuations suggesting that the C-tail of SaRbgA probably interacts with the rRNA or rprotein in the process of ribosome biogenesis.
Collapse
Affiliation(s)
- N Upendra
- Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru, 570006, India
| | - S Krishnaveni
- Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru, 570006, India.
| |
Collapse
|
70
|
Rodríguez-Fdez S, Bustelo XR. Rho GTPases in Skeletal Muscle Development and Homeostasis. Cells 2021; 10:cells10112984. [PMID: 34831205 PMCID: PMC8616218 DOI: 10.3390/cells10112984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Rho guanosine triphosphate hydrolases (GTPases) are molecular switches that cycle between an inactive guanosine diphosphate (GDP)-bound and an active guanosine triphosphate (GTP)-bound state during signal transduction. As such, they regulate a wide range of both cellular and physiological processes. In this review, we will summarize recent work on the role of Rho GTPase-regulated pathways in skeletal muscle development, regeneration, tissue mass homeostatic balance, and metabolism. In addition, we will present current evidence that links the dysregulation of these GTPases with diseases caused by skeletal muscle dysfunction. Overall, this information underscores the critical role of a number of members of the Rho GTPase subfamily in muscle development and the overall metabolic balance of mammalian species.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Wellcome-MRC Institute of Metabolic Science and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: or
| | - Xosé R. Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
71
|
Rens EG, Edelstein-Keshet L. Cellular Tango: how extracellular matrix adhesion choreographs Rac-Rho signaling and cell movement. Phys Biol 2021; 18. [PMID: 34544056 DOI: 10.1088/1478-3975/ac2888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
The small GTPases Rac and Rho are known to regulate eukaryotic cell shape, promoting front protrusion (Rac) or rear retraction (Rho) of the cell edge. Such cell deformation changes the contact and adhesion of cell to the extracellular matrix (ECM), while ECM signaling through integrin receptors also affects GTPase activity. We develop and investigate a model for this three-way feedback loop in 1D and 2D spatial domains, as well as in a fully deforming 2D cell shapes with detailed adhesion-bond biophysics. The model consists of reaction-diffusion equations solved numerically with open-source software, Morpheus, and with custom-built cellular Potts model simulations. We find a variety of patterns and cell behaviors, including persistent polarity, flipped front-back cell polarity oscillations, spiral waves, and random protrusion-retraction. We show that the observed spatial patterns depend on the cell shape, and vice versa.
Collapse
Affiliation(s)
- Elisabeth G Rens
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.,Department of Mathematics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
72
|
Zhao J, Wang L, Bao H, Chen J. Cluster analysis on conformational changes of the GDP/KRAS complex induced by A59G and D33E. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
73
|
Ménesi D, Klement É, Ferenc G, Fehér A. The Arabidopsis Rho of Plants GTPase ROP1 Is a Potential Calcium-Dependent Protein Kinase (CDPK) Substrate. PLANTS (BASEL, SWITZERLAND) 2021; 10:2053. [PMID: 34685862 PMCID: PMC8539224 DOI: 10.3390/plants10102053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022]
Abstract
Plant Rho-type GTPases (ROPs) are versatile molecular switches involved in a number of signal transduction pathways. Although it is well known that they are indirectly linked to protein kinases, our knowledge about their direct functional interaction with upstream or downstream protein kinases is scarce. It is reasonable to suppose that similarly to their animal counterparts, ROPs might also be regulated by phosphorylation. There is only, however, very limited experimental evidence to support this view. Here, we present the analysis of two potential phosphorylation sites of AtROP1 and two types of potential ROP-kinases. The S74 site of AtROP1 has been previously shown to potentially regulate AtROP1 activation dependent on its phosphorylation state. However, the kinase phosphorylating this evolutionarily conserved site could not be identified: we show here that despite of the appropriate phosphorylation site consensus sequences around S74 neither the selected AGC nor CPK kinases phosphorylate S74 of AtROP1 in vitro. However, we identified several phosphorylation sites other than S74 for the CPK17 and 34 kinases in AtROP1. One of these sites, S97, was tested for biological relevance. Although the mutation of S97 to alanine (which cannot be phosphorylated) or glutamic acid (which mimics phosphorylation) somewhat altered the protein interaction strength of AtROP1 in yeast cells, the mutant proteins did not modify pollen tube growth in an in vivo test.
Collapse
Affiliation(s)
- Dalma Ménesi
- Institute of Plant Biology, Biological Research Centre of the Eötvös Lóránd Research Network, 6726 Szeged, Hungary; (D.M.); (G.F.)
| | - Éva Klement
- Laboratory of Proteomics Research, Biological Research Centre of the Eötvös Lóránd Research Network, 6726 Szeged, Hungary; or
- Single Cell Omics ACF, Hungarian Centre of Excellence for Molecular Medicine, 6726 Szeged, Hungary
| | - Györgyi Ferenc
- Institute of Plant Biology, Biological Research Centre of the Eötvös Lóránd Research Network, 6726 Szeged, Hungary; (D.M.); (G.F.)
| | - Attila Fehér
- Institute of Plant Biology, Biological Research Centre of the Eötvös Lóránd Research Network, 6726 Szeged, Hungary; (D.M.); (G.F.)
- Department of Plant Biology, University of Szeged, 6726 Szeged, Hungary
| |
Collapse
|
74
|
Makino Y, Arakawa Y, Yoshioka E, Shofuda T, Minamiguchi S, Kawauchi T, Tanji M, Kanematsu D, Nonaka M, Okita Y, Kodama Y, Mano M, Hirose T, Mineharu Y, Miyamoto S, Kanemura Y. Infrequent RAS mutation is not associated with specific histological phenotype in gliomas. BMC Cancer 2021; 21:1025. [PMID: 34525976 PMCID: PMC8442437 DOI: 10.1186/s12885-021-08733-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mutations in driver genes such as IDH and BRAF have been identified in gliomas. Meanwhile, dysregulations in the p53, RB1, and MAPK and/or PI3K pathways are involved in the molecular pathogenesis of glioblastoma. RAS family genes activate MAPK through activation of RAF and PI3K to promote cell proliferation. RAS mutations are a well-known driver of mutation in many types of cancers, but knowledge of their significance for glioma is insufficient. The purpose of this study was to reveal the frequency and the clinical phenotype of RAS mutant in gliomas. METHODS This study analysed RAS mutations and their clinical significance in 242 gliomas that were stored as unfixed or cryopreserved specimens removed at Kyoto University and Osaka National Hospital between May 2006 and October 2017. The hot spots mutation of IDH1/2, H3F3A, HIST1H3B, and TERT promoter and exon 2 and exon 3 of KRAS, HRAS, and NRAS were analysed with Sanger sequencing method, and 1p/19q codeletion was analysed with multiplex ligation-dependent probe amplification. DNA methylation array was performed in some RAS mutant tumours to improve accuracy of diagnosis. RESULTS RAS mutations were identified in four gliomas with three KRAS mutations and one NRAS mutation in one anaplastic oligodendroglioma, two anaplastic astrocytomas (IDH wild-type in each), and one ganglioglioma. RAS-mutant gliomas were identified with various types of glioma histology. CONCLUSION RAS mutation appears infrequent, and it is not associated with any specific histological phenotype of glioma.
Collapse
Affiliation(s)
- Yasuhide Makino
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Ema Yoshioka
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Tomoko Shofuda
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kawauchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Masahiro Tanji
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Kanematsu
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Masahiro Nonaka
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Neurosurgery, Kansai Medical University, Osaka, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Neurosurgery, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshinori Kodama
- Department of Central Laboratory and Surgical Pathology, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Division of Pathology Network, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masayuki Mano
- Department of Central Laboratory and Surgical Pathology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Takanori Hirose
- Department of Diagnostic Pathology, Hyogo Cancer Center, Hyogo, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan. .,Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.
| |
Collapse
|
75
|
Mima J. Self-assemblies of Rab- and Arf-family small GTPases on lipid bilayers in membrane tethering. Biophys Rev 2021; 13:531-539. [PMID: 34471437 DOI: 10.1007/s12551-021-00819-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Small GTPases of the Ras superfamily, which include Ras-, Rho-, Rab-, Arf-, and Ran-family isoforms, are generally known to function as a nucleotide-dependent molecular switch in eukaryotic cells. In the GTP-loaded forms, they selectively recruit their cognate interacting proteins or protein complexes, termed "effectors," to the cytoplasmic face of subcellular membrane compartments, thereby switching on the downstream effector functions, which are vital for fundamental cellular events, such as cell proliferation, cytoskeletal organization, and intracellular membrane trafficking. Nevertheless, in addition to acting as the classic nucleotide-dependent switches for the effectors, recent studies have uncovered that small GTPases themselves can be self-assembled specifically into homo-dimers or higher-order oligomers on membranes, and these assembly processes are likely responsible for their physiological functions. This Review focuses particularly on the self-assembly processes of Rab- and Arf-family isoforms during membrane tethering, the most critical step to ensure the fidelity of membrane trafficking. A summary of the current experimental evidence for self-assemblies of Rab and Arf small GTPases on lipid bilayers in chemically defined reconstitution system is provided.
Collapse
Affiliation(s)
- Joji Mima
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
76
|
Berger CS, Laroche J, Maaroufi H, Martin H, Moon KM, Landry CR, Foster LJ, Aubin-Horth N. The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasit Vectors 2021; 14:436. [PMID: 34454597 PMCID: PMC8400842 DOI: 10.1186/s13071-021-04933-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Manipulative parasites are thought to liberate molecules in their external environment, acting as manipulation factors with biological functions implicated in their host's physiological and behavioural alterations. These manipulation factors are part of a complex mixture called the secretome. While the secretomes of various parasites have been described, there is very little data for a putative manipulative parasite. It is necessary to study the molecular interaction between a manipulative parasite and its host to better understand how such alterations evolve. METHODS Here, we used proteomics to characterize the secretome of a model cestode with a complex life cycle based on trophic transmission. We studied Schistocephalus solidus during the life stage in which behavioural changes take place in its obligatory intermediate fish host, the threespine stickleback (Gasterosteus aculeatus). We produced a novel genome sequence and assembly of S. solidus to improve protein coding gene prediction and annotation for this parasite. We then described the whole worm's proteome and its secretome during fish host infection using LC-MS/MS. RESULTS A total of 2290 proteins were detected in the proteome of S. solidus, and 30 additional proteins were detected specifically in the secretome. We found that the secretome contains proteases, proteins with neural and immune functions, as well as proteins involved in cell communication. We detected receptor-type tyrosine-protein phosphatases, which were reported in other parasitic systems to be manipulation factors. We also detected 12 S. solidus-specific proteins in the secretome that may play important roles in host-parasite interactions. CONCLUSIONS Our results suggest that S. solidus liberates molecules with putative host manipulation functions in the host and that many of them are species-specific.
Collapse
Affiliation(s)
- Chloé Suzanne Berger
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Hélène Martin
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Christian R. Landry
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
- PROTEO, Le Réseau Québécois de Recherche Sur La Fonction, la structure et l’ingénierie des protéines, Université Laval, Quebec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Quebec, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Nadia Aubin-Horth
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| |
Collapse
|
77
|
Thompson SK, Buckl A, Dossetter AG, Griffen E, Gill A. Small molecule Son of Sevenless 1 (SOS1) inhibitors: a review of the patent literature. Expert Opin Ther Pat 2021; 31:1189-1204. [PMID: 34253125 DOI: 10.1080/13543776.2021.1952984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Up to 30% of all human cancers are driven by the overactivation of RAS signaling. Son of Sevenless 1 (SOS1) is a central node in RAS signaling pathways and modulation of SOS1-mediated RAS activation represents a unique opportunity for treating RAS-addicted cancers. Several recent publications and patent documents have demonstrated the ability of small molecules to affect the activation of RAS by SOS1 and have shown their potential for the treatment of cancers driven by RAS mutants.Areas covered: Documents focusing on both small-molecule inhibitors and activators of the SOS1:RAS interaction and their potential use as cancer therapeutics are covered. A total of 10 documents from 4 applicants are evaluated with discussion focusing on structural modifications of these compounds as well as relevant preclinical data.Expert opinion: The last decade has seen a significant increase in research and disclosures in the development of small-molecule SOS1 inhibitors. Considering the promising data that have been disclosed, interest in this area of research will likely remain strong for the foreseeable future. With the first SOS1 inhibitor currently in phase I clinical trials, the outcome of these trials will likely influence future development of SOS1 inhibitors for treatment of RAS-driven cancers.
Collapse
Affiliation(s)
- Severin K Thompson
- Department of Discovery Chemistry, Revolution Medicines Inc., Redwood City, CA, USA
| | - Andreas Buckl
- Department of Discovery Chemistry, Revolution Medicines Inc., Redwood City, CA, USA
| | | | - Ed Griffen
- Medchemica Limited, Biohub, Mereside, Cheshire, UK
| | - Adrian Gill
- Department of Discovery Chemistry, Revolution Medicines Inc., Redwood City, CA, USA
| |
Collapse
|
78
|
Agamennone M, Nicoli A, Bayer S, Weber V, Borro L, Gupta S, Fantacuzzi M, Di Pizio A. Protein-protein interactions at a glance: Protocols for the visualization of biomolecular interactions. Methods Cell Biol 2021; 166:271-307. [PMID: 34752337 DOI: 10.1016/bs.mcb.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein-protein interactions (PPIs) play a key role in many biological processes and are intriguing targets for drug discovery campaigns. Advancements in experimental and computational techniques are leading to a growth of data accessibility, and, with it, an increased need for the analysis of PPIs. In this respect, visualization tools are essential instruments to represent and analyze biomolecular interactions. In this chapter, we reviewed some of the available tools, highlighting their features, and describing their functions with practical information on their usage.
Collapse
Affiliation(s)
| | - Alessandro Nicoli
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Sebastian Bayer
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Verena Weber
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Luca Borro
- Department of Imaging, Advanced Cardiovascular Imaging Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany
| | | | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
| |
Collapse
|
79
|
Perez-Becerril C, Evans DG, Smith MJ. Pathogenic noncoding variants in the neurofibromatosis and schwannomatosis predisposition genes. Hum Mutat 2021; 42:1187-1207. [PMID: 34273915 DOI: 10.1002/humu.24261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 11/11/2022]
Abstract
Neurofibromatosis type 1 (NF1), type 2 (NF2), and schwannomatosis are a group of autosomal dominant disorders that predispose to the development of nerve sheath tumors. Pathogenic variants (PVs) that cause NF1 and NF2 are located in the NF1 and NF2 loci, respectively. To date, most variants associated with schwannomatosis have been identified in the SMARCB1 and LZTR1 genes, and a missense variant in the DGCR8 gene was recently reported to predispose to schwannomas. In spite of the high detection rate for PVs in NF1 and NF2 (over 90% of non-mosaic germline variants can be identified by routine genetic screening) underlying PVs for a proportion of clinical cases remain undetected. A higher proportion of non-NF2 schwannomatosis cases have no detected PV, with PVs currently only identified in around 70%-86% of familial cases and 30%-40% of non-NF2 sporadic schwannomatosis cases. A number of variants of uncertain significance have been observed for each disorder, many of them located in noncoding, regulatory, or intergenic regions. Here we summarize noncoding variants in this group of genes and discuss their established or potential role in the pathogenesis of NF1, NF2, and schwannomatosis.
Collapse
Affiliation(s)
- Cristina Perez-Becerril
- Division of Evolution and Genomic Science, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, UK
| | - D Gareth Evans
- Division of Evolution and Genomic Science, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Miriam J Smith
- Division of Evolution and Genomic Science, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
80
|
Kapoor S, Scanga HL, Reyes-Múgica M, Nischal KK. Somatic KRAS mutation affecting codon 146 in linear sebaceous nevus syndrome. Am J Med Genet A 2021; 185:3825-3830. [PMID: 34254724 DOI: 10.1002/ajmg.a.62422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/04/2023]
Abstract
Linear Sebaceous Nevus Syndrome is a rare disorder that presents with nevus sebaceus in association with corneal dermoids, colobomas, choroidal osteomas, and arachnoid cysts. It is thought to represent a mosaic RASopathy. These are disorders characterized by postzygotic somatic mutation in genes involved in RAS/MAPK signaling pathway. In this report we describe two patients with linear sebaceous nevus syndrome found to have mutations in codon 146 of KRAS with evidence of mosaicism. This specific mutation has previously been reported in Oculoectodermal Syndrome and Encephalocraniocutaneous Lipomatosis, two other mosaic RASopathies with predominantly cerebrooculocutaneous manifestations. These findings suggest that, while initially classified as different syndromes, these disorders should be evaluated and managed as a spectrum of related disorders.
Collapse
Affiliation(s)
- Saloni Kapoor
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hannah L Scanga
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Ken K Nischal
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
81
|
Chen J, Wang L, Wang W, Sun H, Pang L, Bao H. Conformational transformation of switch domains in GDP/K-Ras induced by G13 mutants: An investigation through Gaussian accelerated molecular dynamics simulations and principal component analysis. Comput Biol Med 2021; 135:104639. [PMID: 34247129 DOI: 10.1016/j.compbiomed.2021.104639] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Mutations in K-Ras are involved in a large number of all human cancers, thus, K-Ras is regarded as a promising target for anticancer drug design. Understanding the target roles of K-Ras is important for providing insights on the molecular mechanism underlying the conformational transformation of the switch domains in K-Ras due to mutations. In this study, multiple replica Gaussian accelerated molecular (MR-GaMD) simulations and principal component analysis (PCA) were applied to probe the effect of G13A, G13D and G13I mutations on conformational transformations of the switch domains in GDP-associated K-Ras. The results suggest that G13A, G13D and G13I enhance the structural flexibility of the switch domains, change the correlated motion modes of the switch domains and strengthen the total motion strength of K-Ras compared with the wild-type (WT) K-Ras. Free energy landscape analyses not only show that the switch domains of the GDP-bound inactive K-Ras mainly exist as a closed state but also indicate that mutations evidently alter the free energy profile of K-Ras and affect the conformational transformation of the switch domains between the closed and open states. Analyses of hydrophobic interaction contacts and hydrogen bonding interactions show that the mutations scarcely change the interaction network of GDP with K-Ras and only disturb the interaction of GDP with the switch (SW1). In summary, two newly introduced mutations, G13A and G13I, play similar adjustment roles in the conformational transformations of two switch domains to G13D and are possibly utilized to tune the activity of K-Ras and the binding of guanine nucleotide exchange factors.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China.
| | - Lifei Wang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan, 250357, China
| | - Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
82
|
Kawaguchi M, Sekimoto E, Ohta Y, Ieda N, Murakami T, Nakagawa H. Synthesis of Fluorescent Probes Targeting Tumor-Suppressor Protein FHIT and Identification of Apoptosis-Inducing FHIT Inhibitors. J Med Chem 2021; 64:9567-9576. [PMID: 34160227 DOI: 10.1021/acs.jmedchem.1c00874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For the early diagnosis of cancer, leading to a better chance of full recovery, marker genes whose expression is already altered in precancerous lesions are desirable, and the tumor-suppressor gene FHIT is one candidate. The gene product, FHIT protein, has a unique dinucleoside triphosphate hydrolase (AP3Aase) activity, and in this study, we designed and synthesized a series of FHIT fluorescent probes utilizing this activity. We optimized the probe structure for high and specific reactivity with FHIT and applied the optimized probe in a screening assay for FHIT inhibitors. Screening of a compound library with this assay identified several hits. Structural development of a hit compound afforded potent FHIT inhibitors. These inhibitors induce apoptosis in FHIT-expressing cancers via caspase activation. Our results support the idea that FHIT binders, no matter whether inhibitors or agonists of AP3Aase activity, might be promising anticancer agents.
Collapse
Affiliation(s)
- Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Eriko Sekimoto
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Yuhei Ohta
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.,Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Takashi Murakami
- Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama, Iruma, Saitama 350-0495, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
83
|
Kumar SU, Priya Doss CG. Residue interaction networks of K-Ras protein with water molecules identifies the potential role of switch II and P-loop. Comput Biol Med 2021; 135:104597. [PMID: 34237589 DOI: 10.1016/j.compbiomed.2021.104597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The mutant K-Ras with aberrant signaling is the primary cause of several cancers. The proposed study investigated the influence of water molecules in K-Ras crystal structure, where they have a significant function by understanding their residue interaction networks (RINs). We analyzed the RINs of K-Ras with and without water molecules and determined their interaction properties. RINs were developed with the help of StructureViz2 and RINspector; further, the changes in K-Ras backbone flexibility were predicted with the DynaMine. We found that the residues K42, I142, and L159 are the hotspots from water, including the K-Ras-GTP complex with the highest residue centrality analysis (RCA) Z-score. The DynaMine prediction calculated the NMR S2 value for the frequently mutated positions G12, G13, and Q61 showing a minor shift in flexibility, which make up the P-Loop and switch II of the K-Ras protein. This flexibility shift can account for changes in conformational activity and the protein's GTPase activity, making it difficult to recognize by the effectors and exchange factors. Taken together, our study helps in understanding the functional importance of the water molecules in K-Ras protein and the impact of mutation that modulate the conformational state of the protein.
Collapse
Affiliation(s)
- S Udhaya Kumar
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
84
|
Nubbemeyer B, Pepanian A, Paul George AA, Imhof D. Strategies towards Targeting Gαi/s Proteins: Scanning of Protein-Protein Interaction Sites To Overcome Inaccessibility. ChemMedChem 2021; 16:1696-1715. [PMID: 33615736 PMCID: PMC8252600 DOI: 10.1002/cmdc.202100039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Heterotrimeric G proteins are classified into four subfamilies and play a key role in signal transduction. They transmit extracellular signals to intracellular effectors subsequent to the activation of G protein-coupled receptors (GPCRs), which are targeted by over 30 % of FDA-approved drugs. However, addressing G proteins as drug targets represents a compelling alternative, for example, when G proteins act independently of the corresponding GPCRs, or in cases of complex multifunctional diseases, when a large number of different GPCRs are involved. In contrast to Gαq, efforts to target Gαi/s by suitable chemical compounds has not been successful so far. Here, a comprehensive analysis was conducted examining the most important interface regions of Gαi/s with its upstream and downstream interaction partners. By assigning the existing compounds and the performed approaches to the respective interfaces, the druggability of the individual interfaces was ranked to provide perspectives for selective targeting of Gαi/s in the future.
Collapse
Affiliation(s)
- Britta Nubbemeyer
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Anna Pepanian
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | | | - Diana Imhof
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
85
|
Neurodegeneration with Brain Iron Accumulation and a Brief Report of the Disease in Iran. Can J Neurol Sci 2021; 49:338-351. [PMID: 34082843 DOI: 10.1017/cjn.2021.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a term used for a group of hereditary neurological disorders with abnormal accumulation of iron in basal ganglia. It is clinically and genetically heterogeneous with symptoms such as dystonia, dysarthria, Parkinsonism, intellectual disability, and spasticity. The age at onset and rate of progression are variable among individuals. Current therapies are exclusively symptomatic and unable to hinder the disease progression. Approximately 16 genes have been identified and affiliated to such condition with different functions such as iron metabolism (only two genes: Ferritin Light Chain (FTL) Ceruloplasmin (CP)), lipid metabolism, lysosomal functions, and autophagy process, but some functions have remained unknown so far. Subgroups of NBIA are categorized based on the mutant genes. Although in the last 10 years, the development of whole-exome sequencing (WES) technology has promoted the identification of disease-causing genes, there seem to be some unknown genes and our knowledge about the molecular aspects and pathogenesis of NBIA is not complete yet. There is currently no comprehensive study about the NBIA in Iran; however, one of the latest discovered NBIA genes, GTP-binding protein 2 (GTPBP2), has been identified in an Iranian family, and there are some patients who have genetically remained unknown.
Collapse
|
86
|
Reck M, Carbone DP, Garassino M, Barlesi F. Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches. Ann Oncol 2021; 32:1101-1110. [PMID: 34089836 DOI: 10.1016/j.annonc.2021.06.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Rat sarcoma (RAS) is the most frequently mutated oncogene in human cancer, with Kirsten rat sarcoma (KRAS) being the most commonly mutated RAS isoform. Overall, KRAS accounts for 85% of RAS mutations observed in human cancers and is present in 35% of lung adenocarcinomas (LUADs). While the use of targeted therapies and immune checkpoint inhibitors (CPIs) has drastically changed the treatment landscape of advanced non-small-cell lung cancer (NSCLC) in recent years, historic attempts to target KRAS (both direct and indirect approaches) have had little success, and no KRAS-specific targeted therapies have been approved to date for patients in this molecular subset of NSCLC. With the discovery by Ostrem, Shokat, and colleagues of the switch II pocket on the surface of the active and inactive forms of KRAS, we now have an improved understanding of the complex interactions involved in the RAS family of signaling proteins which has led to the development of a number of promising direct KRASG12C inhibitors, such as sotorasib and adagrasib. In previously treated patients with KRASG12C-mutant NSCLC, clinical activity has been shown for both sotorasib and adagrasib monotherapy; these data suggest promising new treatment options are on the horizon. With the stage now set for a new era in the treatment of KRASG12C-mutated NSCLC, many questions remain to be answered in order to further elucidate the mechanisms of resistance, how best to use combination strategies, and if KRASG12C inhibitors will have suitable activity in earlier lines of therapy for patients with advanced/metastatic NSCLC.
Collapse
Affiliation(s)
- M Reck
- Department of Thoracic Oncology, Lung Clinic Grosshansdorf, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany.
| | - D P Carbone
- James Thoracic Oncology Center, The Ohio State University, Columbus, USA
| | - M Garassino
- Department of Medicine, Section Hematology Oncology; The University of Chicago, Chicago, USA
| | - F Barlesi
- Aix Marseille University, Marseille, France; Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
87
|
Hu C, Jiang K, Shao Z, Shi M, Meng HM. A DNAzyme-based label-free fluorescent probe for guanosine-5'-triphosphate detection. Analyst 2021; 145:6948-6954. [PMID: 32852000 DOI: 10.1039/d0an01334j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Guanosine-5'-triphosphate (GTP) plays a key role in many important biological processes of cells. It is not only a primer for DNA replication and one of the four essential nucleoside triphosphates for mRNA synthesis, but also an energy source for translation and other important cellular processes. It can be converted to adenine nucleoside triphosphate (ATP), and the intracellular GTP level is closely related to the specific pathological state, so it is crucial to establish a simple and accurate method for the detection of GTP. Deoxyribozymes have unique catalytic and structural properties. One of the deoxyribozymes which is named DK2 with self-phosphorylation ability can transfer a phosphate from GTP to the 5' end in the presence of manganese(ii), while lambda exonuclease (λexo) catalyzes the gradual hydrolysis of double-stranded DNA molecules phosphorylated at the 5'-end from 5' to 3', but cannot cleave the 5'-OH end. The fluorescent dye SYBR Green I (SG I) can bind to dsDNA and produce significant fluorescence, but it can only give out weak fluorescence when it is mixed with a single strand. Here, we present a novel unlabeled fluorescence assay for GTP based on the self-phosphorylation of deoxyribozyme DK2 and the specific hydrolysis of λexo. Owing to the advantages of simple operation, high sensitivity, good specificity, low cost and without fluorophore (quenching group) labeling, this method has great potential in biological applications.
Collapse
Affiliation(s)
- Chengzhen Hu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China.
| | | | | | | | | |
Collapse
|
88
|
Nagamalla SS, Alaparthi MD, Mellacheruvu S, Gundeti R, Earrawandla JPS, Sagurthi SR. Morpho-Physiological and Proteomic Response of Bt-Cotton and Non-Bt Cotton to Drought Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:663576. [PMID: 34040622 PMCID: PMC8143030 DOI: 10.3389/fpls.2021.663576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Drought stress impacts cotton plant growth and productivity across countries. Plants can initiate morphological, cellular, and proteomic changes to adapt to unfavorable conditions. However, our knowledge of how cotton plants respond to drought stress at the proteome level is limited. Herein, we elucidated the molecular coordination underlining the drought tolerance of two inbred cotton varieties, Bacillus thuringiensis-cotton [Bt-cotton + Cry1 Ac gene and Cry 2 Ab gene; NCS BG II BT (BTCS/BTDS)] and Hybrid cotton variety [Non-Bt-cotton; (HCS/HDS)]. Our morphological observations and biochemical experiments showed a different tolerance level between two inbred lines to drought stress. Our proteomic analysis using 2D-DIGE revealed that the changes among them were not obviously in respect to their controls apart from under drought stress, illustrating the differential expression of 509 and 337 proteins in BTDS and HDS compared to their controls. Among these, we identified eight sets of differentially expressed proteins (DEPs) and characterized them using MALDI-TOF/TOF mass spectrometry. Furthermore, the quantitative real-time PCR analysis was carried out with the identified drought-related proteins and confirmed differential expressions. In silico analysis of DEPs using Cytoscape network finds ATPB, NAT9, ERD, LEA, and EMB2001 to be functionally correlative to various drought-responsive genes LEA, AP2/ERF, WRKY, and NAC. These proteins play a vital role in transcriptomic regulation under stress conditions. The higher drought response in Bt cotton (BTCS/BTDS) attributed to the overexpression of photosynthetic proteins enhanced lipid metabolism, increased cellular detoxification and activation chaperones, and reduced synthesis of unwanted proteins. Thus, the Bt variety had enhanced photosynthesis, elevated water retention potential, balanced leaf stomata ultrastructure, and substantially increased antioxidant activity than the Non-Bt cotton. Our results may aid breeders and provide further insights into developing new drought-tolerant and high-yielding cotton hybrid varieties.
Collapse
|
89
|
Huang M, Wang Y. GLOBAL AND TARGETED PROFILING OF GTP-BINDING PROTEINS IN BIOLOGICAL SAMPLES BY MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:215-235. [PMID: 32519381 PMCID: PMC7725852 DOI: 10.1002/mas.21637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 05/05/2023]
Abstract
GTP-binding proteins are among the most important enzyme families that are involved in a plethora of biological processes. However, owing to the enormous diversity of the nucleotide-binding protein family, comprehensive analyses of the expression level, structure, activity, and regulatory mechanisms of GTP-binding proteins remain challenging with the use of conventional approaches. The many advances in mass spectrometry (MS) instrumentation and data acquisition methods, together with a variety of enrichment approaches in sample preparation, render MS a powerful tool for the comprehensive characterizations of the activities and expression levels of various GTP-binding proteins. We review herein the recent developments in the application of MS-based techniques, together with general and widely used affinity enrichment approaches, for the proteome-wide and targeted capture, identification, and quantification of GTP-binding proteins. The working principles, advantages, and limitations of various strategies for profiling the expression level, activity, posttranslational modifications, and interactome of GTP-binding proteins are discussed. It can be envisaged that future applications of MS-based proteomics will lead to a better understanding about the roles of GTP-binding proteins in different biological processes and human diseases. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Ming Huang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
- Correspondence author: Yinsheng Wang. Telephone: (951)827-2700;
| |
Collapse
|
90
|
Lamprakis C, Andreadelis I, Manchester J, Velez-Vega C, Duca JS, Cournia Z. Evaluating the Efficiency of the Martini Force Field to Study Protein Dimerization in Aqueous and Membrane Environments. J Chem Theory Comput 2021; 17:3088-3102. [PMID: 33913726 DOI: 10.1021/acs.jctc.0c00507] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-protein complex assembly is one of the major drivers of biological response. Understanding the mechanisms of protein oligomerization/dimerization would allow one to elucidate how these complexes participate in biological activities and could ultimately lead to new approaches in designing novel therapeutic agents. However, determining the exact association pathways and structures of such complexes remains a challenge. Here, we use parallel tempering metadynamics simulations in the well-tempered ensemble to evaluate the performance of Martini 2.2P and Martini open-beta 3 (Martini 3) force fields in reproducing the structure and energetics of the dimerization process of membrane proteins and proteins in an aqueous solution in reasonable accuracy and throughput. We find that Martini 2.2P systematically overestimates the free energy of association by estimating large barriers in distinct areas, which likely leads to overaggregation when multiple monomers are present. In comparison, the less viscous Martini 3 results in a systematic underestimation of the free energy of association for proteins in solution, while it performs well in describing the association of membrane proteins. In all cases, the near-native dimer complexes are identified as minima in the free energy surface albeit not always as the lowest minima. In the case of Martini 3, we find that the spurious supramolecular protein aggregation present in Martini 2.2P multimer simulations is alleviated and thus this force field may be more suitable for the study of protein oligomerization. We propose that the use of enhanced sampling simulations with a refined coarse-grained force field and appropriately defined collective variables is a robust approach for studying the protein dimerization process, although one should be cautious of the ranking of energy minima.
Collapse
Affiliation(s)
- Christos Lamprakis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Ioannis Andreadelis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - John Manchester
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Camilo Velez-Vega
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - José S Duca
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
91
|
Dautt-Castro M, Rosendo-Vargas M, Casas-Flores S. The Small GTPases in Fungal Signaling Conservation and Function. Cells 2021; 10:cells10051039. [PMID: 33924947 PMCID: PMC8146680 DOI: 10.3390/cells10051039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Monomeric GTPases, which belong to the Ras superfamily, are small proteins involved in many biological processes. They are fine-tuned regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several families have been identified in organisms from different kingdoms. Overall, the most studied families are Ras, Rho, Rab, Ran, Arf, and Miro. Recently, a new family named Big Ras GTPases was reported. As a general rule, the proteins of all families have five characteristic motifs (G1–G5), and some specific features for each family have been described. Here, we present an exhaustive analysis of these small GTPase families in fungi, using 56 different genomes belonging to different phyla. For this purpose, we used distinct approaches such as phylogenetics and sequences analysis. The main functions described for monomeric GTPases in fungi include morphogenesis, secondary metabolism, vesicle trafficking, and virulence, which are discussed here. Their participation during fungus–plant interactions is reviewed as well.
Collapse
|
92
|
Donsante S, Palmisano B, Serafini M, Robey PG, Corsi A, Riminucci M. From Stem Cells to Bone-Forming Cells. Int J Mol Sci 2021; 22:ijms22083989. [PMID: 33924333 PMCID: PMC8070464 DOI: 10.3390/ijms22083989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
Bone formation starts near the end of the embryonic stage of development and continues throughout life during bone modeling and growth, remodeling, and when needed, regeneration. Bone-forming cells, traditionally termed osteoblasts, produce, assemble, and control the mineralization of the type I collagen-enriched bone matrix while participating in the regulation of other cell processes, such as osteoclastogenesis, and metabolic activities, such as phosphate homeostasis. Osteoblasts are generated by different cohorts of skeletal stem cells that arise from different embryonic specifications, which operate in the pre-natal and/or adult skeleton under the control of multiple regulators. In this review, we briefly define the cellular identity and function of osteoblasts and discuss the main populations of osteoprogenitor cells identified to date. We also provide examples of long-known and recently recognized regulatory pathways and mechanisms involved in the specification of the osteogenic lineage, as assessed by studies on mice models and human genetic skeletal diseases.
Collapse
Affiliation(s)
- Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, 20900 Monza, Italy;
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA;
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina 324, 00161 Rome, Italy; (S.D.); (B.P.); (A.C.)
- Correspondence:
| |
Collapse
|
93
|
Chen J, Zhang S, Wang W, Pang L, Zhang Q, Liu X. Mutation-Induced Impacts on the Switch Transformations of the GDP- and GTP-Bound K-Ras: Insights from Multiple Replica Gaussian Accelerated Molecular Dynamics and Free Energy Analysis. J Chem Inf Model 2021; 61:1954-1969. [PMID: 33739090 DOI: 10.1021/acs.jcim.0c01470] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations yield significant effect on the structural flexibility of two switch domains, SW1 and SW2, in K-Ras, which is considered as an important target of anticancer drug design. To unveil a molecular mechanism with regard to mutation-mediated tuning on the activity of K-Ras, multiple replica Gaussian accelerated molecular dynamics (MR-GaMD) simulations followed by analysis of free energy landscapes (FELs) are performed on the GDP- and GTP-bound wild-type (WT), G12V, and D33E K-Ras. The results suggest that G12V and D33E not only evidently change the flexibility of SW1 and SW2 but also greatly affect correlated motions of SW1 and SW2 separately relative to the P-loop and SW1, which exerts a certain tuning on the activity of K-Ras. The information stemming from the analyses of FELs reveals that the conformations of SW1 and SW2 are in high disorders in the GDP- and GTP-associated WT and mutated K-Ras, possibly producing significant effect on binding of guanine nucleotide exchange factors or effectors to K-Ras. The interaction networks of GDP and GTP with K-Ras are identified and the results uncover that the instability in hydrogen-bonding interactions of SW1 with GDP and GTP is mostly responsible for conformational disorder of SW1 and SW2 as well as tunes the activity of oncogenic K-Ras.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| |
Collapse
|
94
|
Amin S, Alam MM, Akhter M, Najmi AK, Siddiqui N, Husain A, Shaquiquzzaman M. A review on synthetic procedures and applications of phosphorus oxychloride (POCl 3) in the last biennial period (2018–19). PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1831499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shaista Amin
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - A. K. Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nadeem Siddiqui
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asif Husain
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - M. Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
95
|
Stolerman LM, Ghosh P, Rangamani P. Stability Analysis of a Signaling Circuit with Dual Species of GTPase Switches. Bull Math Biol 2021; 83:34. [PMID: 33609194 PMCID: PMC8378325 DOI: 10.1007/s11538-021-00864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
GTPases are molecular switches that regulate a wide range of cellular processes, such as organelle biogenesis, position, shape, function, vesicular transport between organelles, and signal transduction. These hydrolase enzymes operate by toggling between an active ("ON") guanosine triphosphate (GTP)-bound state and an inactive ("OFF") guanosine diphosphate (GDP)-bound state; such a toggle is regulated by GEFs (guanine nucleotide exchange factors) and GAPs (GTPase activating proteins). Here we propose a model for a network motif between monomeric (m) and trimeric (t) GTPases assembled exclusively in eukaryotic cells of multicellular organisms. We develop a system of ordinary differential equations in which these two classes of GTPases are interlinked conditional to their ON/OFF states within a motif through coupling and feedback loops. We provide explicit formulae for the steady states of the system and perform classical local stability analysis to systematically investigate the role of the different connections between the GTPase switches. Interestingly, a coupling of the active mGTPase to the GEF of the tGTPase was sufficient to provide two locally stable states: one where both active/inactive forms of the mGTPase can be interpreted as having low concentrations and the other where both m- and tGTPase have high concentrations. Moreover, when a feedback loop from the GEF of the tGTPase to the GAP of the mGTPase was added to the coupled system, two other locally stable states emerged. In both states the tGTPase is inactivated and active tGTPase concentrations are low. Finally, the addition of a second feedback loop, from the active tGTPase to the GAP of the mGTPase, gives rise to a family of steady states that can be parametrized by a range of inactive tGTPase concentrations. Our findings reveal that the coupling of these two different GTPase motifs can dramatically change their steady-state behaviors and shed light on how such coupling may impact signaling mechanisms in eukaryotic cells.
Collapse
Affiliation(s)
- Lucas M Stolerman
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Moores Comprehensive Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
96
|
Luo Y, Li X, Ma J, Abbruzzese JL, Lu W. Pancreatic Tumorigenesis: Oncogenic KRAS and the Vulnerability of the Pancreas to Obesity. Cancers (Basel) 2021; 13:cancers13040778. [PMID: 33668583 PMCID: PMC7918840 DOI: 10.3390/cancers13040778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Pancreatic cancer is a devastating disease with a poor survival rate, and oncogenic mutant KRAS is a major driver of its initiation and progression; however, effective strategies/drugs targeting major forms of mutant KRAS have not been forthcoming. Of note, obesity is known to worsen mutant KRAS-mediated pathologies, leading to PDAC with high penetrance; however, the mechanistic link between obesity and pancreatic cancer remains elusive. The recent discovery of FGF21 as an anti-obesity and anti-inflammation factor and as a downstream target of KRAS has shed new light on the problem. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and KRAS (Kirsten rat sarcoma 2 viral oncogene homolog) mutations have been considered a critical driver of PDAC initiation and progression. However, the effects of mutant KRAS alone do not recapitulate the full spectrum of pancreatic pathologies associated with PDAC development in adults. Historically, mutant KRAS was regarded as constitutively active; however, recent studies have shown that endogenous levels of mutant KRAS are not constitutively fully active and its activity is still subject to up-regulation by upstream stimuli. Obesity is a metabolic disease that induces a chronic, low-grade inflammation called meta-inflammation and has long been recognized clinically as a major modifiable risk factor for pancreatic cancer. It has been shown in different animal models that obesogenic high-fat diet (HFD) and pancreatic inflammation promote the rapid development of mutant KRAS-mediated PDAC with high penetrance. However, it is not clear why the pancreas with endogenous levels of mutant KRAS is vulnerable to chronic HFD and inflammatory challenges. Recently, the discovery of fibroblast growth factor 21 (FGF21) as a novel anti-obesity and anti-inflammatory factor and as a downstream target of mutant KRAS has shed new light on this problem. This review is intended to provide an update on our knowledge of the vulnerability of the pancreas to KRAS-mediated invasive PDAC in the context of challenges engendered by obesity and associated inflammation.
Collapse
Affiliation(s)
- Yongde Luo
- The First Affiliated Hospital & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China;
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| | - Xiaokun Li
- The First Affiliated Hospital & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China;
| | - Jianjia Ma
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - James L. Abbruzzese
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC 27710, USA;
| | - Weiqin Lu
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| |
Collapse
|
97
|
You X, Ryu MJ, Cho E, Sang Y, Damnernsawad A, Zhou Y, Liu Y, Zhang J, Lee Y. Embryonic Expression of Nras G 12 D Leads to Embryonic Lethality and Cardiac Defects. Front Cell Dev Biol 2021; 9:633661. [PMID: 33681212 PMCID: PMC7928391 DOI: 10.3389/fcell.2021.633661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ras proteins control a complex intracellular signaling network. Gain-of-function mutations in RAS genes lead to RASopathy disorders in humans, including Noonan syndrome (NS). NS is the second most common syndromic cause of congenital heart disease. Although conditional expression of the NrasG12D/+ mutation in adult hematopoietic system is leukemogenic, its effects on embryonic development remain unclear. Here, we report that pan-embryonic expression of endogenous NrasG12D/+ by Mox2-Cre in mice caused embryonic lethality from embryonic day (E) 15.5 and developmental defects predominantly in the heart. At E13.5, NrasG12D/+; Mox2Cre/+ embryos displayed a moderate expansion of hematopoietic stem and progenitor cells without a significant impact on erythroid differentiation in the fetal liver. Importantly, the mutant embryos exhibited cardiac malformations resembling human congenital cardiac defects seen in NS patients, including ventricular septal defects, double outlet right ventricle, the hypertrabeculation/thin myocardium, and pulmonary valve stenosis. The mutant heart showed dysregulation of ERK, BMP, and Wnt pathways, crucial signaling pathways for cardiac development. Endothelial/endocardial-specific expression of NrasG12D/+ caused the cardiac morphological defects and embryonic lethality as observed in NrasG12D/+; Mox2Cre/+ mutants, but myocardial-specific expression of NrasG12D/+ did not. Thus, oncogenic NrasG12D mutation may not be compatible with embryonic survival.
Collapse
Affiliation(s)
- Xiaona You
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Myung-Jeom Ryu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Eunjin Cho
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Yanzhi Sang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Alisa Damnernsawad
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Yun Zhou
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Yangang Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Youngsook Lee
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
98
|
Migliori AD, Patel LA, Neale C. The RIT1 C-terminus associates with lipid bilayers via charge complementarity. Comput Biol Chem 2021; 91:107437. [PMID: 33517146 DOI: 10.1016/j.compbiolchem.2021.107437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/30/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
RIT1 is a member of the Ras superfamily of small GTPases involved in regulation of cellular signaling. Mutations to RIT1 are involved in cancer and developmental disorders. Like many Ras subfamily members, RIT1 is localized to the plasma membrane. However, RIT1 lacks the C-terminal prenylation that helps many other subfamily members adhere to cellular membranes. We used molecular dynamics simulations to examine the mechanisms by which the C-terminal peptide (CTP) of RIT1 associates with lipid bilayers. We show that the CTP is unstructured and that its membrane interactions depend on lipid composition. While a 12-residue region of the CTP binds strongly to anionic bilayers containing phosphatidylserine lipids, the CTP termini fray from the membrane allowing for accommodation of the RIT1 globular domain at the membrane-water interface.
Collapse
Affiliation(s)
- Amy D Migliori
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States; Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
| | - Lara A Patel
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States; Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
| | - Chris Neale
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States.
| |
Collapse
|
99
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
100
|
Ogura Y, Kobayashi H, Imoto M, Watanabe H, Takikawa H. Unified synthesis and assessment of tumor cell migration inhibitory activity of optically active UTKO1, originally designed moverastin analog. Biosci Biotechnol Biochem 2021; 85:160-167. [PMID: 33577660 DOI: 10.1093/bbb/zbaa062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/05/2020] [Indexed: 11/14/2022]
Abstract
UTKO1 is a synthetic analog of a natural tumor cell migration inhibitor, moverastin, isolated from microbial extracts of Aspergillus sp. 7720. UTKO1 was initially developed as a mixture of the stereoisomers. In this study, a concise and unified synthesis of the 4 optically active stereoisomers of UTKO1 was achieved from a known optically pure dihydro-α-ionone through a 5-step sequence. The key transformation in the synthesis was a Nozaki-Hiyama-Kishi (NHK) reaction between an optically active enoltriflate and a known aldehyde to install the chiral allylic hydroxy group at C2'. Simple chromatographic separation of the 2 diastereomers with regard to the allylic hydroxy group was possible by the derivatization into the corresponding acetals with Nemoto's optical resolution reagent, (S)- or (R)-5-allyl-2-oxabicyclo[3.3.0]octene (ALBO). All 4 synthetic stereoisomers of UTKO1 exhibited comparable tumor cell migration inhibitory activity.
Collapse
Affiliation(s)
- Yusuke Ogura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hiroki Kobayashi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University , Hiyoshi, Kohoku-ku, Yokohama, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University , Hiyoshi, Kohoku-ku, Yokohama, Japan
| | - Hidenori Watanabe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|