51
|
Georgescu SR, Tampa M, Caruntu C, Sarbu MI, Mitran CI, Mitran MI, Matei C, Constantin C, Neagu M. Advances in Understanding the Immunological Pathways in Psoriasis. Int J Mol Sci 2019; 20:ijms20030739. [PMID: 30744173 PMCID: PMC6387410 DOI: 10.3390/ijms20030739] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2022] Open
Abstract
Psoriasis vulgaris is a chronic, immune-mediated, inflammatory, polygenic skin disorder affecting approximately 2% of the population. It has a great impact on quality of life; patients often experience depression, anxiety, stigma as well as suicidal behavior. Even though psoriasis is one of the most studied dermatological conditions, the pathogenesis of the disease is still not completely elucidated. The complex interactions between keratinocytes, dendritic cells, T-lymphocytes, neutrophils and mast cells are responsible for the histopathological changes seen in psoriasis. The pathogenic model leading to the formation of psoriatic plaques has however evolved a lot over the years. There is now enough evidence to support the role of interleukin (IL) -23, IL-17, IL-22, T helper (Th) -17 cells, Th-22 cells, T regulatory cells, transforming growth factor (TGF)-β1 and IL-10 in the pathogenesis of the disease. Moreover, several inflammatory and anti-inflammatory molecules are currently being investigated, some of them showing promising results. The aim of this paper is to look over the most recent advances in the immunological pathways involved in the pathogenesis of psoriasis vulgaris.
Collapse
Affiliation(s)
- Simona-Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Victor Babes Hospital of Infectious Diseases, 030303 Bucharest, Romania.
| | - Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Victor Babes Hospital of Infectious Diseases, 030303 Bucharest, Romania.
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania.
| | - Maria-Isabela Sarbu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Cristina-Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Madalina-Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | - Carolina Constantin
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania.
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania.
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania.
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania.
| |
Collapse
|
52
|
Terrinoni A, Palombo R, Pitolli C, Caporali S, De Berardinis R, Ciccarone S, Lanzillotta A, Mauramati S, Porta G, Minieri M, Melino G, Bernardini S, Bruno E. Role of the TAp63 Isoform in Recurrent Nasal Polyps. Folia Biol (Praha) 2019; 65:170-180. [PMID: 31903890 DOI: 10.14712/fb2019065040170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The pathogenic molecular mechanisms underlying the insurgence of nasal polyps has not been completely defined. In some patients, these lesions can have a recurrence after surgery removal, and the difference between recurrent and not recurrent patients is still unclear. To molecularly characterize and distinguish between these two classes, a cohort of patients affected by nasal polyposis was analysed. In all patients we analysed the p63 isoform expression using fresh tissues taken after surgery. Moreover, confocal immunofluorescence analysis of fixed sections was performed. The results show high ΔNp63 expression in samples from the nasal polyps of patients compared to the normal epithelia. Analysis of the expression level of the TAp63 isoform shows differential expression between the patients with recurrence compared to those not recurring. The data, considered as the ΔN/TAp63 ratio, really discriminate the two groups. In fact, even though ΔNp63 is expressed in non-recurrent patients, the resulting ratio ΔN/TAp63 is significantly lower in these patients. This clearly indicates that the status of TAp63 expression, represented by the ΔN/TAp63 ratio, could be considered a prognostic marker of low recurrence probability. In these samples we also investigated the expression of OTX2 transcription factor, known to be a selective activator of TAp63, detecting a significant correlation. Database analysis of HNSCC patients showed increased survival for the patients presenting OTX2 amplification and/or overexpression. These results, together with the fact that TAp63 can be selectively upregulated by HDAC inhibitors, open the possibility to consider local treatment of recurrent nasal polyps with these molecules.
Collapse
Affiliation(s)
- A Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Palombo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - C Pitolli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - S Caporali
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
| | - R De Berardinis
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - S Ciccarone
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - A Lanzillotta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - S Mauramati
- University of Pavia, Italy and Department of Otorhinolaryngology, University of Pavia, Foundation IRCCS Policlinico "San Matteo", Pavia, Italy
| | - G Porta
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - M Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - G Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - S Bernardini
- Department of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
| | - E Bruno
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
53
|
Ran LW, Wang H, Lan D, Jia HX, Yu SS. Effect of RNA Interference Targeting STAT3 Gene Combined with Ultrasonic Irradiation and SonoVue Microbubbles on Proliferation and Apoptosis in Keratinocytes of Psoriatic Lesions. Chin Med J (Engl) 2018; 131:2097-2104. [PMID: 30127220 PMCID: PMC6111672 DOI: 10.4103/0366-6999.239297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background Signal transducer and activator of transcription 3 (STAT3) was strongly expressed and activated in psoriatic keratinocytes (KCs) and correlated with the severity of psoriasis. The study aimed to investigate the effects of STAT3 small interfering RNA (siRNA) combined with ultrasonic irradiation and SonoVue microbubbles on the proliferation and apoptosis in KCs of psoriatic lesions and the relative mechanisms. Methods Psoriatic KCs were transfected under four experimental conditions: (1) STAT3 siRNA carried by Lipofectamine 3000 combined with ultrasonic irradiation and SonoVue microbubbles (LUS group); (2) STAT3 siRNA only carried by Lipofectamine 3000 (L group); (3) the negative control of siRNA carried by Lipofectamine 3000 combined with ultrasonic irradiation and SonoVue microbubbles (siRNA-NC); (4) not treated as Blank. Cell Counting Kit-8 assay was used to evaluate the cell proliferation. Cell cycle analysis was detected with cycle test Plus DNA reagent kit associated with flow cytometer. FITC Annexin V apoptosis detection kit associated with flow cytometer was applied for apoptosis analysis. Fluo calcium indicator associated with flow cytometer was used to analyze intracellular free calcium concentration ([Ca2+]i). The expressions of cyclin D1 and Bcl-xL were detected both at the mRNA level by real-time reverse transcription-polymerase chain reaction (RT-PCR) and at the protein level by Western blotting. The obtained data were statistically evaluated by two-way analysis of variance. Results STAT3 siRNA inhibited the growth of KCs in a time-dependent manner showing the highest proliferation inhibition in LUS group with proliferation ratio of 45.38% ± 5.85% at 72h (P < 0.05 vs. L group, siRNA-NC, or Blank). STAT3 siRNA induced an altered cell cycle distribution of KCs showing the highest increases in G2/M-phase population up to 18.06% ± 0.36% in LUS group (P < 0.05 vs. L group, siRNA-NC, or Blank). STAT3 siRNA induced late apoptosis of KCs with the highest late apoptosis percentage of 22.87% ± 1.28% in LUS group (P < 0.05 vs. L group, siRNA-NC, or Blank). STAT3 siRNA induced the elevation of [Ca2+]iof KCs with the highest calcium fluorescence intensity mean of 1213.67 ± 60.51 in LUS group (P < 0.05 vs. L group, siRNA-NC, or Blank). STAT3 siRNA induced the downregulation of cyclin D1 and Bcl-xL expressions of KCs at mRNA and protein levels with the lowest expressions in LUS group with cyclin D1 expression of 51.81% ± 9.58% and 70.17% ± 4.22% at mRNA level and at protein level, respectively, and with Bcl-xL expression of 37.58% ± 4.92% and 64.06% ± 7.78% at mRNA level and at protein level, respectively (P < 0.05 vs. L group, siRNA-NC, or Blank). Conclusions STAT3 siRNA inhibited the growth and induced the apoptosis in psoriatic KCs likely partly through altering cell cycle distribution, elevating [Ca2+]i, and downregulating cyclin D1 and Bcl-xL expressions. Silencing the target gene STAT3 in psoriatic KCs with siRNA combined with ultrasonic irradiation and microbubbles would contribute to a significant innovation as a new clinical therapy for psoriasis.
Collapse
Affiliation(s)
- Li-Wei Ran
- Department of Dermatology, Jingxi Campus, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Hao Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Dong Lan
- Department of Dermatology, Jingxi Campus, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Hong-Xia Jia
- Department of Dermatology, Jingxi Campus, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Si-Si Yu
- Department of Dermatology, Jingxi Campus, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| |
Collapse
|
54
|
Mercurio L, Morelli M, Scarponi C, Eisenmesser EZ, Doti N, Pagnanelli G, Gubinelli E, Mazzanti C, Cavani A, Ruvo M, Dinarello CA, Albanesi C, Madonna S. IL-38 has an anti-inflammatory action in psoriasis and its expression correlates with disease severity and therapeutic response to anti-IL-17A treatment. Cell Death Dis 2018; 9:1104. [PMID: 30377293 PMCID: PMC6207563 DOI: 10.1038/s41419-018-1143-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/10/2018] [Accepted: 10/08/2018] [Indexed: 12/29/2022]
Abstract
IL-36 cytokines, a subgroup of IL-1 family, comprise IL-36α, IL-36β, and IL-36γ agonists, abundantly expressed in psoriatic skin, and IL-36RA and IL-38 antagonists. In psoriatic skin, IL-36 cytokines interfere with keratinocyte cornification programs and induce the release of antimicrobial peptides and chemokines active on neutrophils and Th17 lymphocytes. To date, the role of IL-38 antagonist in psoriasis remains to be defined. Here, we demonstrate that skin and circulating IL-38 levels are reduced in psoriatic patients and in other skin diseases characterized by neutrophilic infiltrate. In psoriasis, the balance of IL-36γ agonist/IL-38 antagonist serum levels is in favor of agonists and is closely associated with disease severity. Interestingly, IL-38 is upregulated by anti-IL-17A biological treatment and positively correlates with the therapeutic efficacy of secukinumab in psoriatic patients. The downregulation of IL-38 expression is strictly related to keratinocyte de-differentiation triggered by the inflammatory cytokines IL-36γ, IL-17, and IL-22. Finally, we demonstrate that administration of recombinant full-length IL-38 counteracts in vitro the biological processes induced by IL-36γ in human keratinocytes and endothelial cells and attenuates in vivo the severity of the psoriasiform phenotype induced by IMQ in mice. Such effects are achieved by restoring the physiological programs of keratinocyte proliferation and differentiation, and reducing the immune cell infiltrates.
Collapse
Affiliation(s)
- Laura Mercurio
- Laboratory of Experimental Immunology and Integrated Research Center for PSOriasis (CRI-PSO), Istituto Dermopatico dell'Immacolata IDI-IRCCS, via Monti di Creta, 104, ROME, Italy
| | - Martina Morelli
- Laboratory of Experimental Immunology and Integrated Research Center for PSOriasis (CRI-PSO), Istituto Dermopatico dell'Immacolata IDI-IRCCS, via Monti di Creta, 104, ROME, Italy
- Section of Dermatology, Department of Medicine, University of Verona, P.zza Stefani, 1, Verona, 37126, Italy
| | - Claudia Scarponi
- Laboratory of Experimental Immunology and Integrated Research Center for PSOriasis (CRI-PSO), Istituto Dermopatico dell'Immacolata IDI-IRCCS, via Monti di Creta, 104, ROME, Italy
| | - Elan Z Eisenmesser
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado Denver, Anschutz Campus, Aurora, 80045, CO, USA
| | - Nunzianna Doti
- Istituto di Biostrutture e Bioimmagini-CNR and CIRPEB, Via Mezzocannone, 16, Naples, 80134, Italy
| | - Gianluca Pagnanelli
- 1st Division of Dermatology and CRI-PSO, Istituto Dermopatico dell'Immacolata IDI-IRCCS, via Monti di Creta, 104, Rome, 00167, Italy
| | - Emanuela Gubinelli
- CRI-PSO Istituto Dermopatico dell'Immacolata, IDI-IRCCS, via Monti di Creta, 104, Rome, 00167, Italy
| | - Cinzia Mazzanti
- 1st Division of Dermatology and CRI-PSO, Istituto Dermopatico dell'Immacolata IDI-IRCCS, via Monti di Creta, 104, Rome, 00167, Italy
| | - Andrea Cavani
- INMP/NIHMP, via di S.Gallicano, 25, Rome, 00153, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini-CNR and CIRPEB, Via Mezzocannone, 16, Naples, 80134, Italy
| | - Charles A Dinarello
- Department of Medicine, Radboud University Medical Center, 6525 HP, Nijmegen, The Netherlands
- Department of Medicine, School of Medicine, University of Colorado, Denver, Anschutz Campus, Aurora, CO, USA
| | - Cristina Albanesi
- Laboratory of Experimental Immunology and Integrated Research Center for PSOriasis (CRI-PSO), Istituto Dermopatico dell'Immacolata IDI-IRCCS, via Monti di Creta, 104, ROME, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology and Integrated Research Center for PSOriasis (CRI-PSO), Istituto Dermopatico dell'Immacolata IDI-IRCCS, via Monti di Creta, 104, ROME, Italy.
| |
Collapse
|
55
|
Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:342-358. [PMID: 29801717 DOI: 10.1016/j.jep.2018.05.019] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity. AIM OF THE REVIEW This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug. MATERIALS AND METHODS We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents. RESULTS Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)- 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases. CONCLUSION In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
56
|
Nguyen LTH, Ahn SH, Nguyen UT, Yang IJ. Dang-Gui-Liu-Huang Tang a traditional herbal formula, ameliorates imiquimod-induced psoriasis-like skin inflammation in mice by inhibiting IL-22 production. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 47:48-57. [PMID: 30166108 DOI: 10.1016/j.phymed.2018.04.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/12/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The traditional herbal formula, Dang-Gui-Liu-Huang Tang (DGLHT) has been previously shown to inhibit T lymphocyte proliferation and suppress dendritic cell function. Hypothesis/Purpose: To assess the therapeutic value of DGLHT for the treatment of psoriasis, a Th1 and/or Th17 cell-mediated inflammatory skin disease, and to investigate the underlying molecular mechanisms. METHODS An in vivo mouse model of imiquimod (IMQ)-induced psoriasis-like inflammation was used to investigate the effect of DGLHT. The anti-inflammatory effects of an ethanolic extract of DGLHT (DGLHT-E) and the mechanism responsible were examined in an in vitro model using IL-1α, IL-17A, IL-22, oncostatin M, plus TNF-α (M5) stimulated HaCaT cells. The anti-proliferative effect of DGLHT-E was examined by analyzing the expression levels of K16, K17 and Ki67 in IL-22 stimulated HaCaT cells. RESULTS Topical application of 1% DGLHT-E significantly reduced psoriasis-like symptoms including scaling and epidermal hyperplasia in IMQ-treated mice. Immunohistochemical studies showed that DGLHT-E exerted potent anti-inflammatory effects by inhibiting IL-22 production in local skin lesions. DGLHT-E also attenuated the productions of CXCL10 and CCL20 in M5-stimulated HaCaT cells by suppressing the ERK1/2, JNK and STAT3 signaling pathways. Furthermore, berberine hydrochloride, a primary constituent of DGLHT-E inhibited the expressions of the proliferation markers K16 and K17 in IL-22 stimulated HaCaT cells. CONCLUSION These results suggested that DGLHT-E offers a possible treatment for psoriasis, and that berberine hydrochloride might be a useful component of ointment-based treatments for psoriatic lesions.
Collapse
Affiliation(s)
- Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine Dongguk University, Gyeongju 38066, Republic of Korea
| | - Sang-Hyun Ahn
- Department of Anatomy, College of Korean Medicine Semyung University, Jecheon 27136, Republic of Korea
| | - Uy Thai Nguyen
- Department of Physiology, College of Korean Medicine Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine Dongguk University, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
57
|
Albanesi C, Madonna S, Gisondi P, Girolomoni G. The Interplay Between Keratinocytes and Immune Cells in the Pathogenesis of Psoriasis. Front Immunol 2018; 9:1549. [PMID: 30034395 PMCID: PMC6043636 DOI: 10.3389/fimmu.2018.01549] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/22/2018] [Indexed: 01/17/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease resulting from genetic, epigenetic, environmental, and lifestyle factors. To date, several immunopathogenic mechanisms of psoriasis have been elucidated, and, in the current model, the cross talk between autoreactive T cells and resident keratinocytes generates inflammatory and immune circuits responsible for the initiation, progression, and persistence of the disease. Several autoantigens derived from keratinocytes (i.e., LL37 cathelecidin/nucleic acid complexes, newly generated lipid antigens) have been identified, which may trigger initial activation of T cells, particularly IL-17-producing T cells, T helper (Th)1 and Th22 cells. Hence, lymphokines released in skin lesions are pivotal for keratinocyte activation and production of inflammatory molecules, which in turn lead to amplification of the local immune responses. Intrinsic genetic alterations of keratinocytes in the activation of signal transduction pathways dependent on T-cell-derived cytokines are also fundamental. The current review emphasizes the aberrant interplay of immune cells and skin-resident keratinocytes in establishing and sustaining inflammatory and immune responses in psoriasis.
Collapse
Affiliation(s)
- Cristina Albanesi
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata (IDI), IRCCS, Rome, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata (IDI), IRCCS, Rome, Italy
| | - Paolo Gisondi
- Section of Dermatology, Department of Medicine, University of Verona, Verona, Italy
| | - Giampiero Girolomoni
- Section of Dermatology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
58
|
Panatta E, Lena AM, Mancini M, Affinati M, Smirnov A, Annicchiarico-Petruzzelli M, Piro MC, Campione E, Bianchi L, Mazzanti C, Melino G, Candi E. Kruppel-like factor 4 regulates keratinocyte senescence. Biochem Biophys Res Commun 2018; 499:389-395. [DOI: 10.1016/j.bbrc.2018.03.172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 01/07/2023]
|
59
|
Chuang SY, Lin CH, Sung CT, Fang JY. Murine models of psoriasis and their usefulness for drug discovery. Expert Opin Drug Discov 2018; 13:551-562. [PMID: 29663834 DOI: 10.1080/17460441.2018.1463214] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Psoriasis is an autoimmune skin disease characterized by red plaques with silver or white multilayered scales with a thickened acanthotic epidermis. Using mouse models of cutaneous inflammation, IL-23/Th17 was identified to have a potential key role in psoriasis. New treatments to slow this inflammatory skin disorder are urgently needed. To aid their discovery, a psoriasis animal model mimicking human psoriasis is urgently needed for their early preclinical evaluation. Areas covered: The authors review animal models of psoriasis and analyze the features and molecular mechanisms involved in these mouse models. The application of various mouse models of psoriasis for drug discovery and development has also been reviewed and the possible molecular targets in psoriasis for future anti-psoriatic drug design is discussed. Expert opinion: So far, it has been difficult to create an animal model that exactly simulates a human disease or condition. The xenotransplantation model is regarded as the closest to incorporating the complete genetic, phenotypic, and immunopathogenic processes of psoriasis. However, the imiquimod (IMQ)-induced model is the most prevalent among psoriatic mouse models due to its ease of use, convenience, and low cost. Further efforts to develop psoriasis-like skin models in mice are needed for the study and treatment of this complex disease.
Collapse
Affiliation(s)
- Shih-Yi Chuang
- a Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine , Chang Gung University of Science and Technology , Taoyuan , Taiwan
| | - Chih-Hung Lin
- b Center for General Education , Chang Gung University of Science and Technology , Taoyuan , Taiwan
| | - Calvin T Sung
- c School of Medicine , University of California , Riverside , USA
| | - Jia-You Fang
- a Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine , Chang Gung University of Science and Technology , Taoyuan , Taiwan.,d Pharmaceutics Laboratory, Graduate Institute of Natural Products , Chang Gung University , Taoyuan , Taiwan.,e Chinese Herbal Medicine Research Team, Healthy Aging Research Center , Chang Gung University , Taoyuan , Taiwan.,f Department of Anesthesiology , Chang Gung Memorial Hospital , Taoyuan , Taiwan
| |
Collapse
|
60
|
Protection of Luteolin-7-O-glucoside against apoptosis induced by hypoxia/reoxygenation through the MAPK pathways in H9c2 cells. Mol Med Rep 2018; 17:7156-7162. [PMID: 29568918 PMCID: PMC5928668 DOI: 10.3892/mmr.2018.8774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023] Open
Abstract
Myocardial hypertrophy is often associated with myocardial infarction. Luteolin-7-O-glucoside (LUTG) has the prosperity of preventing cardiomyocyte injury. The current study aimed to explore the potential protective effect of LUTG and its relevant mechanisms in the heart. To establish the cardiac hypertrophy model in vitro, Angiotensin II (Ang II) was used to stimuli H9c2 cells in this study. The CCK-8 assay showed that LUTG pretreatment improved cell viability of cardiomyocytes co-treated with Ang II and ischemia/reperfusion. LUTG decreased the reactive oxygen species levels. Furthermore, it was demonstrated LUTG could reduce the release amount of lactate dehydrogenase and recover the catalase activity according to the flow cytometry analysis, and activity detection, respectively in Ang II-H/R-treated H9c2 cells. In addition, the flow cytometry analysis showed that the pretreatment of LUTG mitigated cell apoptosis induced by hypoxia/reoxygenation in the cardiac hypertrophy model. Meanwhile, reverse transcription-quantitative polymerase chain reaction and western blot assays showed that the apoptosis-related genes, including poly (ADP-ribose) polymerase, Fas, Fasl and Caspase-3 were downregulated at the transcriptional and translational levels. Notably, the protien expression of phosphorylated (p)-extracellular signal-regulated kinas (ERK) 1/2, p-janus kinase and p-P38 were reduced, while the expression of p-ERK5 was elevated in the LUTG pretreatment groups compared with the hypoxia/reoxygenation treatment group. Based on these results, it was suggested that the anti-apoptosis effect of LUTG may be associated with regulating the activation of mitogen-activated protein kinases signaling pathways.
Collapse
|
61
|
Luteoloside induces G0/G1 arrest and pro-death autophagy through the ROS-mediated AKT/mTOR/p70S6K signalling pathway in human non-small cell lung cancer cell lines. Biochem Biophys Res Commun 2017; 494:263-269. [DOI: 10.1016/j.bbrc.2017.10.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/08/2017] [Indexed: 11/18/2022]
|
62
|
van der Kammen R, Song JY, de Rink I, Janssen H, Madonna S, Scarponi C, Albanesi C, Brugman W, Innocenti M. Knockout of the Arp2/3 complex in epidermis causes a psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Development 2017; 144:4588-4603. [PMID: 29113991 DOI: 10.1242/dev.156323] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/30/2017] [Indexed: 12/28/2022]
Abstract
The Arp2/3 complex assembles branched actin filaments, which are key to many cellular processes, but its organismal roles remain poorly understood. Here, we employed conditional Arpc4 knockout mice to study the function of the Arp2/3 complex in the epidermis. We found that depletion of the Arp2/3 complex by knockout of Arpc4 results in skin abnormalities at birth that evolve into a severe psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Knockout of Arpc4 in cultured keratinocytes was sufficient to induce nuclear accumulation of Nrf2, upregulation of Nrf2 target genes and decreased filamentous actin levels. Furthermore, pharmacological inhibition of the Arp2/3 complex unmasked the role of branched actin filaments in Nrf2 regulation. Consistent with this, we revealed that Nrf2 associates with the actin cytoskeleton in cells and binds to filamentous actin in vitro Finally, we discovered that Arpc4 is downregulated in both human and mouse psoriatic epidermis. Thus, the Arp2/3 complex affects keratinocyte shape and transcriptome through an actin-based cell-autonomous mechanism that influences epidermal morphogenesis and homeostasis.
Collapse
Affiliation(s)
- Rob van der Kammen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Hans Janssen
- Division of Cell Biology II, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Fondazione Luigi Maria Monti - Istituto Dermopatico dell'Immacolata (IDI) - IRCCS, 00167 Rome, Italy
| | - Claudia Scarponi
- Laboratory of Experimental Immunology, Fondazione Luigi Maria Monti - Istituto Dermopatico dell'Immacolata (IDI) - IRCCS, 00167 Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, Fondazione Luigi Maria Monti - Istituto Dermopatico dell'Immacolata (IDI) - IRCCS, 00167 Rome, Italy
| | - Wim Brugman
- Genomics Core Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Metello Innocenti
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| |
Collapse
|
63
|
Liu S, Liu J, Pan J, Luo J, Niu X, Zhang T, Qiu F. Two Are Better than One: Halloysite Nanotubes-Supported Surface Imprinted Nanoparticles Using Synergy of Metal Chelating and Low pK a Boronic Acid Monomers for Highly Specific Luteolin Binding under Neutral Condition. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33191-33202. [PMID: 28885001 DOI: 10.1021/acsami.7b11426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface-imprinted nanoparticles with double recognition (DM-MIPs) are fabricated onto halloysite nanotubes (HNTs) for highly specific separation of natural flavone luteolin (LTL) under neutral condition. Specifically, a two-step strategy via consecutive surface-initiated atom transfer radical polymerization (SI-ATRP) is employed to introduce inherent recognition of molecular imprinting and reversible covalent affinity of boronic acid ligands and immobilized Zn2+ into DM-MIPs. First, Zn2+-immobilized poly(vinyl imidazole) (PVLD) shell based on the HNTs via the first SI-ATRP is prepared to capture LTL by metal chelating. Then HNTs-supported surface imprinted nanoparticles are prepared using low pKa boronic acid monomer 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AMC-FPBA) via the second SI-ATRP. Taking advantage of low apparent pKa of AMC-FPBA and large high-affinity binding site density, DM-MIPs possess a promising binding with cis-diol-containing LTL under neutral condition. In static adsorption, DM-MIPs show large LTL loading amount (83.42 mg g-1), fast capture kinetics, remarkable selectivity, and excellent recyclability at pH = 7.0. More importantly, by reducing the pH to 4.0, the loaded TLL can be simply released. As a proof of this concept, a commercially available LTL with 85% purity can be easily enriched and further purified, and the product exhibits the similar antibacterial performance with standard substance.
Collapse
Affiliation(s)
- Shucheng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Jinxin Liu
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Jialu Luo
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Xiangheng Niu
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| |
Collapse
|
64
|
Wan T, Pan J, Long Y, Yu K, Wang Y, Pan W, Ruan W, Qin M, Wu C, Xu Y. Dual roles of TPGS based microemulsion for tacrolimus: Enhancing the percutaneous delivery and anti-psoriatic efficacy. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
65
|
Moghadam FH, Mesbah-Ardakani M, Nasr-Esfahani MH. Effects of Oleo Gum Resin of Ferula assa-foetida L. on Senescence in Human Dermal Fibroblasts: - Asafoetida reverses senescence in fibroblasts. J Pharmacopuncture 2017; 20:213-219. [PMID: 30087798 PMCID: PMC5633674 DOI: 10.3831/kpi.2017.20.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 01/31/2023] Open
Abstract
Objectives Based on data from Chinese and Indian traditional herbal medicines, gum resin of Ferula assa-foetida (sometimes referred to asafetida or asafoetida) has several therapeutic applications. The authors of various studies have claimed that asafetida has cytotoxic, antiulcer, anti-neoplasm, anti-cancer, and anti-oxidative effects. In present study, the anti-aging effect of asafetida on senescent human dermal fibroblasts was evaluated. Methods Senescence was induced in in vitro cultured human dermal fibroblasts (HDFs) through exposure to H2O2, and the incidence of senescence was recognized by using cytochemical staining for the activity of β-galactosidase. Then, treatment with oleo gum resin of asafetida was started to evaluate its rejuvenating effect. The survival rate of fibroblasts was evaluated by using methyl tetrazolium bromide (MTT) assays. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot assays were performed to evaluate the expressions of apoptotic and anti-apoptotic markers. Results Our experiments show that asafetida in concentrations ranging from 5 × 10−8 to 10−7 g/mL has revitalizing effects on senescent fibroblasts and significantly reduces the β-galactosidase activity in these cells (P < 0.05). Likewise, treatment at these concentrations increases the proliferation rate of normal fibroblasts (P < 0.05). However, at concentrations higher than 5 × 10−7 g/mL, asafetida is toxic for cells and induces cell death. Conclusion The results of this study indicate that asafetida at low concentrations has a rejuvenating effect on senescent fibroblasts whereas at higher concentrations, it has the opposite effect of facilitating cellular apoptosis and death.
Collapse
Affiliation(s)
- Farshad Homayouni Moghadam
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Neurobiomedical Research Center, Shahid Sadoughi Yazd University of Medical Science, Yazd, Iran
| | - Mehrnaz Mesbah-Ardakani
- Imam Hossein Hospital of Sepidan, Shiraz University of Medical Sciences, Shiraz, Iran.,Neurobiomedical Research Center, Shahid Sadoughi Yazd University of Medical Science, Yazd, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
66
|
La Manna S, Scognamiglio PL, Di Natale C, Leone M, Mercurio FA, Malfitano AM, Cianfarani F, Madonna S, Caravella S, Albanesi C, Novellino E, Marasco D. Characterization of linear mimetic peptides of Interleukin-22 from dissection of protein interfaces. Biochimie 2017; 138:106-115. [PMID: 28479106 DOI: 10.1016/j.biochi.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022]
Abstract
Interleukin-22 (IL-22) belongs to the family of IL-10 cytokines and is involved in a wide number of human diseases, including inflammatory disorders and cancer pathology. The ligand-receptor complex IL-22/IL-22R plays a key role in several pathways especially in the regulation and resolution of immune responses. The identification of novel compounds able to modulate IL-22/IL-22R complex could open the route to new therapeutic strategies in multiple human diseases. In this study, we designed and characterized IL-22 derived peptides at protein interface regions: several sequences revealed able to interfere with the protein complex with IC50 in the micromolar range as evaluated through Surface Plasmon Resonance (SPR) experiments. Their conformational characterization was carried out through Circular Dichroism (CD) and Nuclear Magnetic Resonance (NMR) spectroscopies, shedding new light into the features of IL-22 fragments and on structural determinants of IL-22/IL-22R1 recognition. Finally, several peptides were tested on human keratinocyte cultures for evaluating their ability to mimic the activation of molecular pathways downstream to IL-22R in response to IL-22 binding.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Pasqualina Liana Scognamiglio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Concetta Di Natale
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, CNR, 80134, Naples, Italy
| | | | - Anna Maria Malfitano
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Francesca Cianfarani
- Laboratory of Cellular and Molecular Biology, Fondazione "Luigi Maria Monti", Istituto Dermopatico dell'Immacolata (IDI), IRCCS, Via Monti di Creta, 104, 00167, Rome, Italy
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Fondazione "Luigi Maria Monti", Istituto Dermopatico dell'Immacolata (IDI), IRCCS, Via Monti di Creta, 104, 00167, Rome, Italy
| | - Sergio Caravella
- Laboratory of Experimental Immunology, Fondazione "Luigi Maria Monti", Istituto Dermopatico dell'Immacolata (IDI), IRCCS, Via Monti di Creta, 104, 00167, Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, Fondazione "Luigi Maria Monti", Istituto Dermopatico dell'Immacolata (IDI), IRCCS, Via Monti di Creta, 104, 00167, Rome, Italy
| | - Ettore Novellino
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134, Naples, Italy.
| |
Collapse
|
67
|
Theoharides TC, Stewart JM, Tsilioni I. Tolerability and benefit of a tetramethoxyluteolin-containing skin lotion. Int J Immunopathol Pharmacol 2017; 30:146-151. [PMID: 28480804 PMCID: PMC5806797 DOI: 10.1177/0394632017707610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As many as 40% of people have sensitive skin and at least half of them suffer from pruritus associated with allergies, atopic dermatitis (AD), chronic urticaria (CU), cutaneous mastocytosis (CM), and psoriasis. Unfortunately, the available topical formulations contain antihistamines that are often not as effective as those containing corticosteroids. Certain natural flavonoids have anti-inflammatory actions. We recently reported that the natural flavonoid tetramethoxyluteolin has potent antiallergic and anti-inflammatory actions in vitro and in vivo. This flavonoid was formulated in a skin lotion along with olive fruit extract and was first tested for tolerability in 25 patients with mastocytosis or mast cell activation syndrome and very sensitive skin who reported back through a questionnaire. The skin lotion was then used by eight patients, four with AD and four with psoriasis, who had not received any topical treatment for at least 2 months, twice daily for 2 weeks. The use of this tetramethoxyluteolin formulation resulted in significant improvement of the skin lesions and could be useful adjuvant treatment for allergic and inflammatory skin conditions.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- 1 Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.,2 Sackler School of Graduate Biomedical Sciences and Tufts University School of Medicine, Boston, MA, USA.,3 Department of Internal Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, MA, USA
| | - Julia M Stewart
- 1 Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Irene Tsilioni
- 1 Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
68
|
Bockerstett KA, DiPaolo RJ. Regulation of Gastric Carcinogenesis by Inflammatory Cytokines. Cell Mol Gastroenterol Hepatol 2017; 4:47-53. [PMID: 28560288 PMCID: PMC5439239 DOI: 10.1016/j.jcmgh.2017.03.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
Chronic inflammation caused by infection with Helicobacter pylori and autoimmune gastritis increases an individual's risk of developing gastric cancer. More than 90% of gastric cancers are adenocarcinomas, which originate from epithelial cells in the chronically inflamed gastric mucosa. However, only a small subset of chronic gastritis patients develops gastric cancer, implying a role for genetic and environmental factors in cancer development. A number of DNA polymorphisms that increase gastric cancer risk have mapped to genes encoding cytokines. Many different cytokines secreted by immune cells and epithelial cells during chronic gastritis have been identified, but a better understanding of how cytokines regulate the severity of gastritis, epithelial cell changes, and neoplastic transformation is needed. This review summarizes studies in both human and mouse models, describing a number of different findings that implicate various cytokines in regulating the development of gastric cancer.
Collapse
Affiliation(s)
| | - Richard J. DiPaolo
- Correspondence Address correspondence to: Richard DiPaolo, PhD, 1100 South Grand Boulevard, DRC707, St. Louis, Missouri 63104. fax: (314) 977-8717.1100 South Grand Boulevard, DRC707St. LouisMissouri 63104
| |
Collapse
|
69
|
Peng C, Zhang S, Lei L, Zhang X, Jia X, Luo Z, Huang X, Kuang Y, Zeng W, Su J, Chen X. Epidermal CD147 expression plays a key role in IL-22-induced psoriatic dermatitis. Sci Rep 2017; 7:44172. [PMID: 28272440 PMCID: PMC5341158 DOI: 10.1038/srep44172] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/27/2017] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation and terminal differentiation. Interleukin-22 (IL-22) and the transcription factor Stat3 play pivotal roles in the pathogenesis of psoriasis. CD147 is a transmembrane glycosylation protein that belongs to the immunoglobulin superfamily. Our previous studies have shown that CD147 is a marker of high keratinocyte proliferation and poor keratinocyte differentiation as well as a psoriasis susceptibility gene. The current study demonstrates that CD147 is highly expressed in psoriatic skin lesions. Specific CD147 over-expression in the epidermis of K5-promoter transgenic mice promotes imiquimod (IMQ)-induced psoriasis-like inflammation characterized by acanthosis, granular layer loss and inflammatory cell infiltration. We also found that IL-22 increases CD147 transcription in vitro and in vivo and that Stat3 binds directly to the CD147 promoter between positions -854 and -440, suggesting that CD147 expression is up-regulated in patients with psoriasis through Stat3 activation. In addition, CD147 knockdown dramatically blocks IL-22-mediated Stat3 activation as well as IL-22-induced cytokine, chemokine and antimicrobial factor expression. Together, these findings show that CD147 is a novel and key mediator of IL-22-induced psoriatic alterations in the epidermis and might be a therapeutic target in patients with psoriasis.
Collapse
Affiliation(s)
- Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - ShengXi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Lei
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuekun Jia
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhongling Luo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoyan Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanhong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqi Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
70
|
Wan T, Pan W, Long Y, Yu K, Liu S, Ruan W, Pan J, Qin M, Wu C, Xu Y. Effects of nanoparticles with hydrotropic nicotinamide on tacrolimus: permeability through psoriatic skin and antipsoriatic and antiproliferative activities. Int J Nanomedicine 2017; 12:1485-1497. [PMID: 28260894 PMCID: PMC5328661 DOI: 10.2147/ijn.s126210] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The hybrid system based on nanoparticles (NPs) self-assembled by the conjugations of hyaluronic acid with cholesterol (HA–Chol NPs) combined with nicotinamide (NIC) for tacrolimus (FK506), ie, FK506 NPs–NIC, has been confirmed to exhibit a significant synergistic effect on FK506 permeation through and into intact skin; thus, it may be a promising approach for FK506 to effectively treat skin diseases. The aim of this study was to evaluate its potential for the treatment of psoriasis. In vitro permeation through the psoriatic skin was carried out, and the results revealed that the combination of NPs with NIC exhibited a significant synergistic effect on FK506 deposition within the psoriatic skin (3.40±0.67 μg/cm2) and penetration through the psoriatic skin (30.86±9.66 μg/cm2). The antipsoriatic activity of FK506 NPs–NIC was evaluated through the treatment for imiquimod (IMQ)-induced psoriasis. The psoriasis area and severity index (PASI) score demonstrated that FK506 HA–Chol NPs–NIC exerted the effect on ameliorating the skin lesions comparable to clobetasol propionate (a positive drug for psoriasis) and superior to commercial FK506 ointment (Protopic®), and the histological study showed that it presented a synergistic effect on antipsoriasis after FK506 incorporation into NPs combined with NIC hydrotropic system, which might ultimately increase the therapeutic effect and minimize the systemic side effects by reducing the overall dose of FK506. RAW 264.7 cell uptake presented the enhancement of drugs delivered into cells by HA–Chol NPs–NIC. The antiproliferative activity on HaCaT cells identified that FK506 HA–Chol NPs–NIC exhibited significant inhibiting effects on HaCaT proliferation. The results support that the combination of HA–Chol NPs with NIC is a promising approach for FK506 for the treatment of psoriasis.
Collapse
Affiliation(s)
- Tao Wan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenhui Pan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yueming Long
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Kaiyue Yu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Sibo Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenyi Ruan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jingtong Pan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mengyao Qin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chuanbin Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuehong Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|