51
|
Wang Y, Zhao H, Liu Y, Li J, Nie X, Huang P, Xing M. Environmentally relevant concentration of sulfamethoxazole-induced oxidative stress-cascaded damages in the intestine of grass carp and the therapeutic application of exogenous lycopene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116597. [PMID: 33540255 DOI: 10.1016/j.envpol.2021.116597] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/06/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Due to the unreasonable use and discharge of the aquaculture industry, over standard of the antibiotics has been frequent in different types of water environments, causing adverse effects on aquatic organisms. Lycopene (LYC) is an esculent carotenoid, which is considered to be a strong antioxidant. This study was designed to explore the therapeutic effect of LYC on antibiotic (sulfamethoxazole (SMZ)) induced intestinal injury in grass carp Ctenopharyngodon idella. The 120 carps (the control, LYC, SMZ, and co-administration groups) were treated for 30 days. We found that treatment with LYC significantly suppressed SMZ-induced intestinal epithelial cell damage and tight junction protein destruction through histopathological observation, transmission electron microscopy and detection of related genes (Claudin-1/3/4, Occludin and zonula occludens (ZO)-1/2). Furthermore, LYC mitigated SMZ-induced dysregulation of oxidative stress markers, including elevated malondialdehyde (MDA) levels, and consumed super oxide dimutese (SOD), catalase (CAT) activities and glutathione (GSH) content. In the same treatment, LYC reduced inflammation and apoptosis by a detectable change in pro-inflammatory factors (tumor necrosis factor-alpha (TNF-β), interleukin (IL)-1β, IL-6 and IL-8), anti-inflammatory factors (transforming growth factor-beta (TGF-β) and IL-10) and pro-apoptosis related genes (p53, p53 upregulated modulator of apoptosis (PUMA), Bax/Bcl-2 ratio, caspase-3/9). In addition, activation of autophagy (as indicated by increased autophagy-related genes through AMPK/ATK/MTOR signaling pathway) under the stress of SMZ was also dropped back to the original levels by LYC co-administration. Collectively, our findings identified that LYC can serve as a protectant agent against SMZ-induced intestinal injury.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Jingyan Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Xiaopan Nie
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Puyi Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
52
|
Zhao H, Wang Y, Guo M, Liu Y, Yu H, Xing M. Environmentally relevant concentration of cypermethrin or/and sulfamethoxazole induce neurotoxicity of grass carp: Involvement of blood-brain barrier, oxidative stress and apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143054. [PMID: 33127128 DOI: 10.1016/j.scitotenv.2020.143054] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
In water environment, the interaction between environmental pollutants is very complex, among which pesticides and antibiotics are dominant. However, most studies only focus on individual toxic effects, rather combined. In this study, the sub-chronic exposure effect of cypermethrin (CMN, 0.65 μg/L), sulfamethoxazole (SMZ, 0.30 μg/L) and their mixture on grass crap (Ctenopharyngodon idellus) was investigated. The brain tight junction, oxidative stress and apoptosis-related indices were determined after 42 days of exposure. In terms of brain function, acetyl cholinesterase (AChE) activity was significantly inhibited by CMN, SMZ and their mixtures during exposure periods. Obvious histological damage from cellular and subcellular levels were also observed, which were further confirmed by a decrease in tight junction protein levels. Malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG) contents were significantly increased by individual compounds and mixtures, in which the content of glutathione (GSH) displayed the opposite trend. In mechanism, nuclear factor (erythrocyte derived 2) like 2(Nrf2) pathway was activated, which may trigger cellular protection to cope with CMN and SMZ exposure. However, apoptosis was also detected from the level of mRNA and histochemistry. In general, these two exogenous induced similar biological responses. The neurotoxicity of CMN was strengthened by SMZ with regard to these indices in most cases and vice versa. This study will reveal the potential co-ecological risks of pesticide and antibiotic in the aquatic organism, and provide basic data for their safety and risk assessment.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongxian Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
53
|
Zhao X, Wang S, Li X, Liu H, Xu S. Cadmium exposure induces TNF-α-mediated necroptosis via FPR2/TGF-β/NF-κB pathway in swine myocardium. Toxicology 2021; 453:152733. [PMID: 33626375 DOI: 10.1016/j.tox.2021.152733] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is one common environmental pollutant with systemic toxicity. Lipoxin A4 (LXA4) can regulate transforming growth factor-β (TGF-β) pathway and alleviate tissue injury via binding to formyl peptide receptor 2 (FPR2). The activation of nuclear factor-κB (NF-κB) pathway can promote the occurence of necroptosis. However, whether Cd exposure induces necroptosis in swine myocardium and the role of FPR2/TGF-β/NF-κB pathway in this process are unclear. Hence, we established Cd-exposed swine myocardial injury model by feeding a CdCl2 added diet (20 mg Cd/kg diet). Hematoxylin-eosin (H&E) staining was used to observe the morphological changes, and inductively coupled plasma mass spectrometry (ICP-MS) was performed to detect the levels of ion elements in myocardium. We further detected LXA4 and its receptor FPR2, TGF-β, Nrf2, NF-κB pathway and necroptosis related-genes expressions by RT-PCR and western blot. The results showed that Cd exposure induced necrotic cell death and ion homeostasis imbalance in swine myocardium. Moreover, Cd exposure increased the LXA4 content, inhibited the FPR2 expression, activated TGF-β pathway and suppressed Nrf2 pathway, activating the NF-κB pathway. In addition, Cd exposure increased the expressions of necroptosis related-genes TNF-α, TNFR1, RIP1, RIP3 and MLKL. It indicated Cd exposure induced necroptosis via FPR2/TGF-β/NF-κB pathway, revealing the potential mechanism of Cd-induced cardiotoxicity in swine myocardium.
Collapse
Affiliation(s)
- Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
54
|
Yu ZM, Wan XM, Xiao M, Zheng C, Zhou XL. Puerarin induces Nrf2 as a cytoprotective mechanism to prevent cadmium-induced autophagy inhibition and NLRP3 inflammasome activation in AML12 hepatic cells. J Inorg Biochem 2021; 217:111389. [PMID: 33607539 DOI: 10.1016/j.jinorgbio.2021.111389] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022]
Abstract
Liver is the main target organ of cadmium (Cd) toxicity and puerarin (PU) has been shown to prevent Cd-induced hepatic cell damage via its antioxidant activity. Nrf2 acts as a critical regulator of cellular defense against various oxidative insults, but its role in the protection of PU against Cd-induced hepatic damage has not yet been clarified. Hereby, this study was designed to investigate the underlying mechanism using mouse hepatocyte line AML-12. Data firstly showed that Cd-inhibited Nrf2 pathway was markedly restored by PU treatment, assessed by Nrf2 nuclear translocation, protein levels of Keap1 and Nrf2 downstream target genes. Accordingly, Cd-reduced protein levels of antioxidant enzymes were significantly up-regulated by PU. Next, Nrf2 silencing cellular model was established to further elucidate the role of Nrf2 in the protection of PU against Cd-induced hepatic damage. Attenuation of Cd-induced autophagy inhibition and autophagosome accumulation by PU was remarkably countered by Nrf2 silencing. Moreover, alleviation of Cd-induced NLRP3 inflammasome activation by PU was distinctly prevented by Nrf2 knockdown, assessed by protein levels of NLRP3 inflammosome complex and downstream IL-18 and IL-1β production. Collectively, our data suggest that PU restores Cd-induced Nrf2 inhibition to prevent autophagy inhibition and NLRP3 inflammasome activation, providing novel insights into the protection of PU against Cd-induced hepatic cell damage.
Collapse
Affiliation(s)
- Zhao-Ming Yu
- Dazhou Women's and Children's Hospital, No. 99 Baqu East Road, Tongchuan district, Dazhou, Sichuan 635000, China
| | - Xue-Mei Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Min Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Chuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611130, China.
| | - Xue-Lei Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China.
| |
Collapse
|
55
|
Yiming Z, Hang Y, Bing S, Hua X, Bo H, Honggui L, Shu L. Antagonistic effect of VDR/CREB1 pathway on cadmium-induced apoptosis in porcine spleen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111819. [PMID: 33360786 DOI: 10.1016/j.ecoenv.2020.111819] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a toxic trace element that can enter the environment with industrial waste and accumulate in the body but the health effects of Cd on ternary pigs are still lacking in research. In order to explore the effect of Cd on the apoptosis of pig spleen and its mechanism, this study chose ternary pig as the research object to detect relevant indicators in pig spleen under Cd exposure. The results of this study showed that Cd exposure can induce apoptosis by promoting the absorption of various toxic trace elements in the spleen and inducing oxidative stress. We also found that the mechanism of Cd-induced apoptosis is closely related to the VDR/CREB1 pathway. On the one hand, Cd exposure can activate VDR, and indirectly regulate the CYP family, affecting the normal function of the spleen. On the other hand, VDR and its downstream genes antagonize the toxicity of Cd by maintaining the stability of the mitochondrial-related endoplasmic reticulum membrane structure. Our research will help researchers to further understand the physiological toxicity of Cd.
Collapse
Affiliation(s)
- Zhang Yiming
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yin Hang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shao Bing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xue Hua
- Natl Selenium Rich Prod Qual Supervis & Inspect C, Enshi 445000, China
| | - Huang Bo
- Natl Selenium Rich Prod Qual Supervis & Inspect C, Enshi 445000, China
| | - Liu Honggui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Li Shu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
56
|
Wang Y, Zhao H, Mu M, Guo M, Xing M. Zinc offers splenic protection through suppressing PERK/IRE1-driven apoptosis pathway in common carp (Cyprinus carpio) under arsenic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111473. [PMID: 33068983 DOI: 10.1016/j.ecoenv.2020.111473] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) occurs naturally and concentrations in water bodies can reach high levels, leading to accumulation in vital organs like the spleen. Being an important organ in immune response and blood development processes, toxic effects of As on the spleen could compromise immunity and cause associated disorders in affected individuals. Splenic detoxification is key to improving the chances of survival but relatively little is known about the mechanisms involved. Essential trace elements like zinc have shown immune-modulatory effects humans and livestock. This study aimed to investigate the mechanisms involved in As-induced splenic toxicity in the common carp (Cyprinus carpio), and the protective effects of zinc (Zn). Our findings suggest that environmental exposure to As caused severe histological injuries and Ca2+ accumulation in the spleen of common carp. Additionally, transcriptional and translational profiles of endoplasmic reticulum stress, apoptosis and autophagy-related genes of the spleen showed upward trends under As toxicity. Treatment with Zn appears to offer protection against As-induced splenic injury in common carp and the pathologic changes above were alleviated. Our results provide additional insight into the mechanism of As toxicity in common carp while elucidating the role of Zn, a natural immune-modulator, as a potential antidote against As poisoning.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
57
|
Zhao Y, Li ZF, Zhang D, Wang ZY, Wang L. Quercetin alleviates Cadmium-induced autophagy inhibition via TFEB-dependent lysosomal restoration in primary proximal tubular cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111743. [PMID: 33396069 DOI: 10.1016/j.ecoenv.2020.111743] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Autophagy dysregulation plays a pivotal role in cadmium (Cd)-induced nephrotoxicity. Quercetin (Qu), a flavonoid antioxidant with autophagy-enhancing effect, has protective effect on Cd-induced toxicity, but whether it can prevent Cd-induced nephrotoxicity via restoration of autophagy remains unknown. Here, primary rat proximal tubular (rPT) cells were exposed to Cd and/or Qu in vitro to clarify this issue. Data first showed that Cd-impaired autophagic flux was markedly alleviated by Qu, including decreased levels of autophagy marker proteins and recovery of autophagosome-lysosome fusion targeted for lysosomes. Meanwhile, Cd-induced lysosomal alkalization due to v-ATPases inhibition was prominently recovered by Qu. Accordingly, Qu enhanced Cd-diminished lysosomal degradation capacity and lysosome-related gene transcription levels. Notably, Qu improved Cd-inhibited TFEB nuclear translocation and its gene transcription level. Furthermore, data showed that the restoration of Cd-impaired autophagy-lysosome pathway and resultant alleviation of cytotoxicity by Qu are TFEB-dependent using TFEB gene silencing and overexpression technologies. In summary, these data provide novel evidences that the protective action of Qu against Cd-induced autophagy inhibition is attributed to its restoration of lysosomal dysfunction, which is dependent on TFEB.
Collapse
Affiliation(s)
- Yuan Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Zi-Fa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dong Zhang
- Shandong Provincial Center for Animal Disease Control and Prevention, Ji'nan City, Shandong Province 250022, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
58
|
Kumar SK, Prakash T, Vetriselvan M, Mani KP. Trehalose protects the endothelium from cadmium-induced dysfunction. Cell Biol Int 2021; 45:957-964. [PMID: 33372726 DOI: 10.1002/cbin.11539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 11/11/2022]
Abstract
The objective of the present study is to identify the possible regulatory role of trehalose (Tre) against cadmium chloride (CdCl2 )-induced endothelial cell dysfunction. To screen the dose-dependent effect of both Tre and CdCl2 , a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was performed. Interestingly, MTT assay results have shown that co-incubation of Tre (1 mM) with CdCl2 significantly decreased the CdCl2 (5 µM) cytotoxicity. Nitric oxide (NO) measurement using Griess assay and 4-amino-5-methylamino-2',7'-difluorofluorescein fluorescence probe results have shown that CdCl2 decreases NO production in endothelial cells. Western blotting analysis results showed that CdCl2 decreases endothelial nitric oxide synthase (eNOS) and phospho endothelial nitric oxide synthase (peNOS) expression. The present study results have also observed that CdCl2 treatment increases reactive oxygen species (ROS) production. However, combination treatment (Tre + CdCl2 ) could restore the NO production in CdCl2 -treated cells. In addition, combination treatment could also restore eNOS and peNOS expression in endothelial cells. Moreover, Tre treatment was found to decrease CdCl2 -induced ROS production. Collectively, the present study results demonstrate that Tre possesses a significant protective action against CdCl2 -mediated endothelial dysfunction by increasing NO production, eNOS and peNOS expression, and by decreasing oxidative stress.
Collapse
Affiliation(s)
- Sarwareddy K Kumar
- Vascular Research Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Tarun Prakash
- Vascular Research Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Miralini Vetriselvan
- Vascular Research Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Krishna Priya Mani
- Vascular Research Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
59
|
Wang Q, Liu W, Liu G, Li P, Guo X, Zhang C. AMPK-mTOR-ULK1-mediated autophagy protects carbon tetrachloride-induced acute hepatic failure by inhibiting p21 in rats. J Toxicol Pathol 2021; 34:73-82. [PMID: 33627946 PMCID: PMC7890163 DOI: 10.1293/tox.2020-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a lysosomal-dependent degradation pathway in eukaryotic cells. Recent
studies have reported that autophagy can facilitate the activation of hepatic stellate
cells (HSCs) and fibrogenesis of the liver during long-term carbon tetrachloride
(CCl4) exposure. However, little is known about the role of autophagy in
CCl4-induced acute hepatic failure (AHF). This study aimed to identify
whether modulation of autophagy can affect CCl4-induced AHF and evaluate the
upstream signaling pathways mediated by CCl4-induced autophagy in rats. The
accumulation of specific punctate distribution of endogenous LC3-II, increased expression
of LC3-II, Atg5, and Atg7 genes/proteins, and decreased expression of p62 gene were
observed after acute liver injury was induced by CCl4 in rats, indicating that
CCl4 resulted in a high level of autophagy. Moreover, loss of autophagic
function by using chloroquine (CQ, an autophagic inhibitor) aggravated liver function,
leading to increased expression of p21 (a cyclin-dependent kinase inhibitor) in
CCl4-treated rats. Furthermore, the AMPK-mTORC1-ULK1 axis was found to serve
a function in CCl4-induced autophagy. These results reveal that
AMPK-mTORC1-ULK1 signaling-induced autophagy has a protective role in
CCl4-induced hepatotoxicity by inhibiting the p21 pathway. This study suggests
a useful strategy aimed at ameliorating CCl4-induced acute hepatotoxicity by
autophagy.
Collapse
Affiliation(s)
- Qiwen Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Weixia Liu
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Gaopeng Liu
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Pan Li
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Xueqiang Guo
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| |
Collapse
|
60
|
Li G, Li PL. Lysosomal TRPML1 Channel: Implications in Cardiovascular and Kidney Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:275-301. [PMID: 35138619 PMCID: PMC9899368 DOI: 10.1007/978-981-16-4254-8_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lysosomal ion channels mediate ion flux from lysosomes and regulate membrane potential across the lysosomal membrane, which are essential for lysosome biogenesis, nutrient sensing, lysosome trafficking, lysosome enzyme activity, and cell membrane repair. As a cation channel, the transient receptor potential mucolipin 1 (TRPML1) channel is mainly expressed on lysosomes and late endosomes. Recently, the normal function of TRPML1 channels has been demonstrated to be important for the maintenance of cardiovascular and renal glomerular homeostasis and thereby involved in the pathogenesis of some cardiovascular and kidney diseases. In arterial myocytes, it has been found that Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP), an intracellular second messenger, can induce Ca2+ release through the lysosomal TRPML1 channel, leading to a global Ca2+ release response from the sarcoplasmic reticulum (SR). In podocytes, it has been demonstrated that lysosomal TRPML1 channels control lysosome trafficking and exosome release, which contribute to the maintenance of podocyte functional integrity. The defect or functional deficiency of lysosomal TRPML1 channels has been shown to critically contribute to the initiation and development of some chronic degeneration or diseases in the cardiovascular system or kidneys. Here we briefly summarize the current evidence demonstrating the regulation of lysosomal TRPML1 channel activity and related signaling mechanisms. We also provide some insights into the canonical and noncanonical roles of TRPML1 channel dysfunction as a potential pathogenic mechanism for certain cardiovascular and kidney diseases and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
61
|
Shi H, Sun X, Kong A, Ma H, Xie Y, Cheng D, Wong CKC, Zhou Y, Gu J. Cadmium induces epithelial-mesenchymal transition and migration of renal cancer cells by increasing PGE2 through a cAMP/PKA-COX2 dependent mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111480. [PMID: 33254385 DOI: 10.1016/j.ecoenv.2020.111480] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Environmental or occupational exposure of Cadmium (Cd) is concerned to be a threat to human health. The kidney is main target of Cd accumulation, which increases the risk of renal cell carcinoma (RCC). In addition, low content of Cd had been determined in kidney cancer, however, the roles of presence of Cd in renal tumors progression are still unclear. The present study is proposed to determine the effect of low-dose Cd exposure on the renal cancer cells and aimed to clarify the underlying mechanisms. The cell viability, cytotoxicity, and the migratory effect of low-dose Cd on the renal cancer cells were detected. Moreover, the roles of reactive oxygen species (ROS), Ca2+, and cyclic AMP (cAMP)/protein kinase A (PKA)-cyclooxygenase2 (COX2) signaling, as well as COX2 catalytic product prostaglandin E2 (PGE2) on cell migration and invasion were identified. Our results suggested that low dose Cd exposure promoted migration of renal cancer Caki-1 cells, which was not dependent on Cd-induced ROS and intracellular Ca2+ levels. Cd exposure induced cAMP/PKA-COX2, which mediated cell migration and invasion, and decreased expressions of epithelial-mesenchymal transition (EMT) marker, E-cadherin, but increased expressions of N-cadherin and Vimentin. Moreover, Cd-induced secretion of PGE2 feedback on activation of cAMP/PKA-COX2 signaling, also promoted EMT, migration and invasion of renal cancer Caki-1 cells. This study might contribute to understanding of the mechanism of Cd-induce progression of renal cancer and future studies on the prevention and therapy of renal cell carcinomas.
Collapse
Affiliation(s)
- Haifeng Shi
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Xi Sun
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Anqi Kong
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Haiyan Ma
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Yimin Xie
- Affiliated Hospital of Jiangsu University-Yixing Hospital, Jiangsu, Yixing 214200, China
| | - Dongrui Cheng
- General Hospital of Nanjing Military Region, East Zhongshan Road 305, Xuanwu District, Jiangsu, Nanjing 210002, China
| | | | - Yang Zhou
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Jiangsu, Zhenjiang 212000, China.
| |
Collapse
|
62
|
Xia WH, Wang L, Niu XD, Wang JH, Wang YM, Li QL, Wang ZY. Supplementation with beta-1,3-glucan improves productivity, immunity and antioxidative status in transition Holstein cows. Res Vet Sci 2020; 134:120-126. [PMID: 33360572 DOI: 10.1016/j.rvsc.2020.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022]
Abstract
Dairy cows undergo dramatic physiological changes during the transition from late pregnancy to early lactation, which make them vulnerable to metabolic stress and immune dysfunction. The objective of this study was to evaluate the effects of a commercial beta-1,3-glucan product (Aleta™, containing 50% beta-1,3-glucan) on productivity, immunity and antioxidative status in transition cows. Fifty-four multiparous Holstein cows received a control diet or a diet supplemented with 5 or 10 g of beta-1,3-glucan per cow per day from 21 days before expected calving to 21 days after parturition. Blood samples were collected at day -21, 1, and 21 relative to calving. Colostrum and milk were collected at day 1 and 21 after calving, respectively. Data showed that supplementation with beta-1,3-glucan had no effect on milk composition, but increased milk production. Beta-1,3-glucan treatment also improved the milk quality, as shown by reduced milk somatic cell count and increased immunoglobulin levels in colostrum. Notably, beta-1,3-glucan markedly reduced serum levels of pro-inflammatory cytokines and C-reactive protein, while elevated serum immunoglobulin levels, indicating its immunity enhancement in transition cows. Moreover, beta-1,3-glucan addition reduced the serum malondialdehyde level and enhanced the activities of serum superoxide dismutase and catalase, which enhanced the antioxidative capacity in transition cows. In summary, supplementation with beta-1,3-glucan improves productivity, immunity and antioxidative status in transition dairy cows.
Collapse
Affiliation(s)
- Wei-Hao Xia
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, China
| | - Xu-Dong Niu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, China
| | - Jun-Hong Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan-Ming Wang
- Kemin (China) Technologies Animal Nutrition and Health, Zhuhai 519040, China
| | - Qing-Lei Li
- Shandong Hi-speed Bioengineering Co., Ltd., Jinan 251400, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an City 271018, China.
| |
Collapse
|
63
|
Wang C, Nie G, Zhuang Y, Hu R, Wu H, Xing C, Li G, Hu G, Yang F, Zhang C. Inhibition of autophagy enhances cadmium-induced apoptosis in duck renal tubular epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111188. [PMID: 32836151 DOI: 10.1016/j.ecoenv.2020.111188] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Increasing evidence indicates autophagy and apoptosis are involved in the toxicity mechanism of heavy metals. Our previous studies showed that cadmium (Cd) could induce autophagy and apoptosis in duck kidneys in vivo, nevertheless, the interaction between them has yet to be elucidated. Herein, the cells were either treated with 3CdSO4·8H2O (0, 1.25, 2.5, 5.0 μM Cd) or/and 3-methyladenine (3-MA) (2.5 μM) for 12 h and the indictors related autophagy and apoptosis were detected to assess the correlation between autophagy and apoptosis induced by Cd in duck renal tubular epithelial cells. The results demonstrated that Cd exposure notably elevated intracellular and extracellular Cd contents, the number of autophagosomes and LC3 puncta, up-regulated LC3A, LC3B, Beclin-1, Atg5 mRNA levels, and Beclin-1 and LC3II/LC3I protein levels, down-regulated mTOR, p62 and Dynein mRNA levels and p62 protein level. Additionally, autophagy inhibitor 3-MA decreased Beclin-1, LC3II/LC3I protein levels and increased p62 protein level. Moreover, co-treatment with Cd and 3-MA could notably elevate Caspase-3, Cyt C, Bax, and Bak-1 mRNA levels, Caspase-3 and cleaved Caspase-3 protein levels, and cell apoptotic rate as well as cell damage, decreased mitochondrial membrane potential (MMP), Bcl-2 mRNA level and the ratio of Bcl-2 to Bax compared to treatment with Cd alone. Overall, these results indicate Cd exposure can induce autophagy in duck renal tubular epithelial cells, and inhibition of autophagy might aggravate Cd-induced apoptosis through mitochondria-mediated pathway.
Collapse
Affiliation(s)
- Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West Street, Economic and Technological Development District, Nanchang, 330032, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huansheng Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
64
|
Zou H, Yuan J, Zhang Y, Wang T, Chen Y, Yuan Y, Bian J, Liu Z. Gap Junction Intercellular Communication Negatively Regulates Cadmium-Induced Autophagy and Inhibition of Autophagic Flux in Buffalo Rat Liver 3A Cells. Front Pharmacol 2020; 11:596046. [PMID: 33390984 PMCID: PMC7774522 DOI: 10.3389/fphar.2020.596046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022] Open
Abstract
Cadmium is an important environmental pollutant that poses a serious threat to the health of humans and animals. A large number of studies have shown that the liver is one of the important target organs of cadmium. Stimulation of cells can lead to rapid changes in gap junction intercellular communication (GJIC) and autophagy. Previous studies have shown that cadmium can inhibit GJIC and induce autophagy. In order to understand the dynamic changes of GJIC and autophagy in the process of cadmium-induced hepatotoxic injury and the effects of GJIC on autophagy, a time-gradient model of cadmium cytotoxicity was established. The results showed that within 24 h of cadmium exposure, 5 μmol/L cadmium inhibited GJIC by down regulating the expression levels of connexin 43 (Cx43) and disturbing the localization of Cx43 in Buffalo rat liver 3A (BRL 3A) cells. In addition, cadmium induced autophagy and then inhibited autophagic flux in the later stage. During this process, inhibiting of GJIC could exacerbate the cytotoxic damage of cadmium and induce autophagy, but further blocked autophagic flux, promoting GJIC in order to obtain the opposite results.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Junzhao Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yi Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
65
|
Qing Z, Kaixin Z, Yanfei H, Yiming Z, Hua X, Ling Z, Guangliang S, Shu L. MicroRNA-223 triggers inflammation in porcine aorta by activating NLRP3 inflammasome under selenium deficiency. J Cell Physiol 2020; 236:4555-4564. [PMID: 33241567 DOI: 10.1002/jcp.30178] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
Selenium (Se) is an essential trace element in organism. Se deficiency can cause many diseases, including vascular disease. Studies have shown that inflammation is the main inducement of vascular disease, microRNA (miRNA) can influence inflammation in various ways, and Se deficiency can affect miRNAs expression. To study the mechanism of aorta damage caused by Se deficiency, we constructed a Se deficiency porcine aorta model and found that Se deficiency can significantly inhibit miR-223, which downregulates the expression of nucleotide-binding oligomerization domain-like receptor family 3 (NLRP3). Subsequently, we found that in Se deficiency group, NLRP3, and its downstream (caspase-1, apoptosis-related spot-like protein [ASC], IL-18, IL-1β) expression was significantly increased. In vitro, we cultured pig iliac endothelium cell lines, and constructed miR-223 knockdown and overexpression models. NLRP3 messenger RNA and protein levels were significant increased in the knockdown group, and decreased in the overexpression group. The results of this study show that Se deficiency in porcine arteries can induce inflammation through miR-223/NLRP3.
Collapse
Affiliation(s)
- Zhang Qing
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhang Kaixin
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Han Yanfei
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhang Yiming
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xue Hua
- National Selenium-Rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Zhou Ling
- National Selenium-Rich Product Quality Supervision and Inspection Center, Enshi, People's Republic of China
| | - Shi Guangliang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Li Shu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
66
|
Chen L, Xia YF, Shen SF, Tang J, Chen JL, Qian K, Chen Z, Qin ZH, Sheng R. Syntaxin 17 inhibits ischemic neuronal injury by resuming autophagy flux and ameliorating endoplasmic reticulum stress. Free Radic Biol Med 2020; 160:319-333. [PMID: 32828953 DOI: 10.1016/j.freeradbiomed.2020.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Previous studies have shown that syntaxin 17 (STX17) is involved in mediating the fusion of autophagosomes and lysosomes. This study aimed to investigate the role and mechanism of STX17 in neuronal injury following cerebral ischemia/reperfusion. The ischemia/reperfusion (I/R) models were established by transient middle cerebral artery occlusion (tMCAO) in mice and oxygen glucose deprivation/reperfusion (O/R) in primary cultured cortical neurons and HT22 cells. Cerebral ischemia/reperfusion significantly up-regulated the expression of STX17 in neurons. Lentivirus mediated knockdown of STX17 in neurons reduced neuronal viability and increased LDH leakage. Injection of AAV9-shSTX17 into the brain of mice then subjected to tMCAO also significantly augmented the infarct area and exacerbated neurobehavioral deficits and mortality. Depletion of STX17 caused accumulation of autophagic marker/substrate LC3 II and p62, blockade of the autophagic flux, and the accumulation of dysfunctional lysosomes. Knockdown of STX17 also aggravated endoplasmic reticulum (ER) stress-dependent neuronal apoptosis induced by ischemia/reperfusion. Importantly, induction of autophagy-lysosomal pathway and alleviation of ER stress partially rescued STX17 knockdown-induced neuronal damage. These results suggest that STX17 may ameliorate ischemia/reperfusion-induced neuronal damage by enhancing autophagy flux and reducing ER stress-dependent neuronal apoptosis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Yun-Fei Xia
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Shu-Fang Shen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jie Tang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jia-Li Chen
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Ke Qian
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
67
|
Wang L, Wang L, Shi X, Xu S. Chlorpyrifos induces the apoptosis and necroptosis of L8824 cells through the ROS/PTEN/PI3K/AKT axis. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122905. [PMID: 32768820 DOI: 10.1016/j.jhazmat.2020.122905] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/26/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Excessive chlorpyrifos (CPF) in the environment causes toxicity to nontarget organisms by triggering oxidative stress. Phosphatase and tensin homolog deleted on chromosome ten (PTEN) plays an important role in controlling apoptosis and necrosis by negatively regulating the phosphatidylinositol 3-kinase/threonine kinase (PI3K/AKT) pathway. However, the effects of different concentrations of CPF on grass fish liver cell injury and the role of the ROS/PTEN/PI3K/AKT axis remain poorly understood. In this study, L8824 cells treated with different concentrations of CPF (0, 40, 60, or 80 μM) were used as the research object. The results showed that the median inhibitory concentration (IC50) was 112.226 μM. As the CPF concentrations increased, the ROS and MDA levels increased, and the T-AOC levels and SOD/GPx/GST activities decreased. As PTEN expression increased, PI3K/AKT, BCL-2, and Caspase-8 expression dramatically decreased. Conversely, RIPK1/RIPK3/MLKL and Bax/Cyt-c/Caspase-3 expression increased. Additionally, necroptosis increased in a dose-dependent manner, while apoptosis first increased and then decreased. In conclusion, our study showed that CPF could trigger oxidative stress and induce apoptosis and necroptosis in fish liver cells by regulating the ROS/PTEN/PI3K/AKT axis, and the type of damage induced was dose-dependent. These results are meaningful for toxicological studies of CPF and efforts to protect the ecosystem.
Collapse
Affiliation(s)
- Lanqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Lanxi Wang
- College of Basic Medicine, Harbin Medical University, Harbin 150081, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
68
|
Wang Y, Liu J, Chen R, Qi M, Tao D, Xu S. The Antagonistic Effects of Selenium Yeast (SeY) on Cadmium-Induced Inflammatory Factors and the Heat Shock Protein Expression Levels in Chicken Livers. Biol Trace Elem Res 2020; 198:260-268. [PMID: 32016827 DOI: 10.1007/s12011-020-02039-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a ubiquitous toxic heavy metal in the natural environment that can cause multiple organ damage to the bodies of animals and humans. Selenium yeast (SeY) is a kind of organic selenium (Se) that has a very strong function against Cd-induced injury to tissues or organs. The aim of the current study was to investigate the roles of inflammatory factors and heat shock proteins (HSPs) in inflammatory injury triggered by Cd and to analyze the protective effects of SeY on Cd-induced damnification in the livers of chickens. Two hundred 120-day-old layers were randomly divided into four groups and raised on a conventional diet, or with Se (0.5 mg/kg SeY), Cd (150 mg/kg CdCl2), or Se + Cd (0.5 mg/kg SeY and 150 mg/kg CdCl2) in their basic diets for 120 days. Then, the liver histopathology, production of nitric oxide (NO), activity of inducible NO synthase (iNOS), and mRNA and protein expression levels of inflammatory factors (iNOS, NF-κB, TNF-α, and PTGE) and heat shock proteins (HSPs 27, 40, 60, 70, and 90) were examined. The results showed that exposure to Cd obviously increased Cd accumulation, NO production, iNOS activity, inflammatory factor, and HSP mRNA and protein expression levels and further caused an inflammatory response. Supplementation with SeY had an antagonistic effect on Cd-induced inflammatory injury in chicken livers. Thus, the present study suggests that SeY can be taken as a potential therapeutic for Cd-induced liver inflammatory injury in chickens.
Collapse
Affiliation(s)
- Yong Wang
- College of Animal Science, Tarim University, Alar, 843300, Xinjiang Uygur Autonomous Region, China
| | - Junfeng Liu
- College of Animal Science, Tarim University, Alar, 843300, Xinjiang Uygur Autonomous Region, China
| | - Rong Chen
- College of Animal Science, Tarim University, Alar, 843300, Xinjiang Uygur Autonomous Region, China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, 843300, Xinjiang Uygur Autonomous Region, China
| | - Dayong Tao
- College of Animal Science, Tarim University, Alar, 843300, Xinjiang Uygur Autonomous Region, China.
| | - Shiwen Xu
- College of Animal Science, Tarim University, Alar, 843300, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
69
|
mTORC1 activation contributes to autophagy inhibition via its recruitment to lysosomes and consequent lysosomal dysfunction in cadmium-exposed rat proximal tubular cells. J Inorg Biochem 2020; 212:111231. [DOI: 10.1016/j.jinorgbio.2020.111231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022]
|
70
|
Zhao H, Wang Y, Guo M, Mu M, Yu H, Xing M. Grass carps co-exposed to environmentally relevant concentrations of cypermethrin and sulfamethoxazole bear immunodeficiency and are vulnerable to subsequent Aeromonas hydrophila infection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115156. [PMID: 32663629 DOI: 10.1016/j.envpol.2020.115156] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
The aquatic ecosystem is seriously damaged because of the heavy use of pesticides and antibiotics. Fish is the indispensable link between environmental pollution and human health. However, the toxic effects of environment-related concentrations of pesticides and antibiotics in fish have not been thoroughly studied. In this study, grass carps exposed to cypermethrin (CMN, 0.651 μg/L) or/and sulfamethoxazole (SMZ, 0.3 μg/L) for 42 days caused oxidative stress, apoptosis and immunodeficiency in the spleen of grass carps. CMN or/and SMZ exposure led to oxidative damage (consumption of antioxidant enzymes (superoxide dismutase and catalase)) and lipid peroxidation (accumulation of malondialdehyde), induced apoptosis (increases in TUNEL index, Bax/bcl-2, p53, puma and Caspase family expression). In addition, the levels of immunoglobulin M (IgM), complement 3 (C3) were significantly decreased in all treatment groups, which trend was also found in C-reactive protein in CMN and MIX group, and lysozyme in MIX group. Transcription of almost all genes involved in the Toll-like receptors (TLR) signaling pathway was up-regulated under CMN or/and SMZ exposure. However, when subsequently attacked by Aeromonas hydrophila for 2 days, the TLR pathway was inhibited in spleens of all treatment groups accompanied by higher mortality. Overall, the environmentally relevant concentration of CMN and SMZ damages the immune system, triggering oxidative stress and apoptosis in carps. And by affecting the conduction of TLR signaling pathway, CMN or/and SMZ exposure inhibits the innate immune response of fish and reducing their disease resistance. This study highlights the importance of rational and regulated use of these pesticides and antibiotics.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China; Department of Ecology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongxian Yu
- Department of Ecology, College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
71
|
Zou H, Sun J, Wu B, Yuan Y, Gu J, Bian J, Liu X, Liu Z. Effects of Cadmium and/or Lead on Autophagy and Liver Injury in Rats. Biol Trace Elem Res 2020; 198:206-215. [PMID: 32006201 DOI: 10.1007/s12011-020-02045-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Exposure to cadmium (Cd) and lead (Pb) can induce liver damage. However, the effects of the combined exposure to Cd and Pb on liver function have not been fully clarified. In the present study, we investigated the liver function in rats co-exposed to Cd and Pb. A total of 24 female SD rats were divided into 4 groups as follows: control group (DDW), Cd group (50 mg/l Cd), Pb group (300 mg/l Pb), Pb + Cd group (300 mg/l + 50 mg/l Cd). Following 12 weeks of continuous exposure, the results showed a large accumulation of Cd and Pb in the liver. The Liver weight and Liver coefficient were decreased, as well as liver structure and function was destroyed. In addition, Pb + Cd group exhibited additional pathological alterations. Moreover, the indices of oxidative stress and related trace elements were detected following treatment. The results showed that the single treatment of Pb or Cd and the combined Cd and Pb treatment could upregulate the contents of antioxidant enzymes and related trace elements. We further examined the expression levels of autophagy-related proteins and mRNAs, and we found that the single treatment of Pb or Cd and the combined Cd and Pb treatment could upregulate the expression of levels of autophagy-related proteins and mRNAs (Atg5, Atg7, Beclin-1, p62, and LC3). Transmission electron microscopy revealed the presence of autophagosomes in the exposed groups. All the results indicated that Cd and Pb may affect the level of oxidative stress and autophagy in hepatocytes, whereas the combination of Cd and Pb showed a tendency of escalation compared with the single treatment group.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Bo Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
| |
Collapse
|
72
|
Chu JH, Yan YX, Gao PC, Chen XW, Fan RF. Response of selenoproteins gene expression profile to mercuric chloride exposure in chicken kidney. Res Vet Sci 2020; 133:4-11. [PMID: 32916514 DOI: 10.1016/j.rvsc.2020.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 12/26/2022]
Abstract
Kidney is a primary target organ for mercuric chloride (HgCl2) toxicity. Selenium (Se) can exert antagonistic effect on heavy metals-induced organ toxicity by regulating the expression of selenoproteins. The objective of this study was to investigate the effect of HgCl2 on the gene expression of selenoproteins in chicken kidney. Sixty male Hyline brown chickens were randomly and evenly divided into two groups. After acclimatization for one week, chickens were provided with the standard diet as well as non-treated water (CON group), and standard diet as well as HgCl2-treated water (250 ppm, HgCl2 group). After seven weeks, kidney tissues were collected to examine the mRNA expression levels of 25 selenoproteins genes and protein expression levels of 4 selenoproteins. Moreover, correlation analysis and principal component analysis (PCA) were used to analyze the expression patterns of 25 selenoproteins. The results showed that HgCl2 exposure significantly decreased the mRNA expression of Glutathione peroxidase 1 (GPX1), GPX4, Thioredoxin reductase 2 (TXNRD2), Iodothyronine deiodinase 1 (DIO1), Methionine-Rsulfoxide reductase 1 (SELR), 15-kDa selenoprotein (SEP15), selenoprotein I (SELI), SELK, SELM, SELN, SELP, SELS, SELT, SELW, and SEPHS2. Meanwhile, HgCl2 exposure significantly increased the mRNA expression of GPX3, TXNRD1, and SELU. Western blot analysis showed that the expression levels of GPX3, TXNRD1, SELK, and SELN were concordant with these mRNA expression levels. Analysis results of selenoproteins expression patterns showed that HgCl2-induced the main disorder expression of selenoproteins with antioxidant activity and endoplasmic reticulum resident selenoproteins. In conclusion, selenoproteins respond to HgCl2 exposure in a characteristic manner in chicken kidney.
Collapse
Affiliation(s)
- Jia-Hong Chu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Yu-Xue Yan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
73
|
Jiang J, Wang F, Wang L, Xiao J, Guo D. Manganese Chloride Exposure Causes Disorder of Energy Metabolism and Induces Oxidative Stress and Autophagy in Chicken Liver. Biol Trace Elem Res 2020; 197:254-261. [PMID: 31916180 DOI: 10.1007/s12011-019-01960-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
Manganese (Mn) pollution is an important environmental problem because of the potential toxicity to human and animal health. However, the effects of Mn on energy metabolism and autophagy are not clear. Consequently, we examined the effects of excessive and chronic exposure to Mn on liver function, oxidative stress, respiratory chain complex activity, and autophagy in chicken liver. Our results indicated that the accumulation of Mn in the liver and levels of AST and ALT in the serum of the Mn-exposed group were significantly higher (P < 0.05) than those in the control group at 90 days; the activities of GSH-Px, SOD, CAT, Na+-K+-ATPase, Mg2+-ATPase, Ca2+-ATPase, and respiratory chain complexes (I, II, III) in the Mn-exposed group were significantly decreased (P < 0.05) compared to the control group. However, the MDA content, NO content, iNOS activity, mRNA and protein levels of iNOS, and autophagy-related genes in the Mn-exposed group were significantly increased (P < 0.05) compared to the control group. In contrast, the mRNA level and protein expression of mTOR were significantly decreased (P < 0.05) compared to the control group. Furthermore, the characteristic autophagic vacuolar organelles were observed in the Mn-exposed group. These results suggested that excess Mn exposure can cause a disorder of energy metabolism by mitochondrial injury and induce oxidative stress and autophagy, which eventually lead to liver damage.
Collapse
Affiliation(s)
- Jiancheng Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Fengfeng Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Lina Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Jiawei Xiao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| |
Collapse
|
74
|
Selenium relieves oxidative stress, inflammation, and apoptosis within spleen of chicken exposed to mercuric chloride. Poult Sci 2020; 99:5430-5439. [PMID: 33142460 PMCID: PMC7647867 DOI: 10.1016/j.psj.2020.08.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/30/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mercuric chloride (HgCl2) is a widely distributed environmental pollutant with multiorgan toxicity including immune organs such as spleen. Selenium (Se) is an essential trace element in animal nutrition and exerts biological activity to antagonize organ toxicity caused by heavy metals. The objective of this study was to explore the underlying mechanism of the protective effects of Se against spleen damage caused by HgCl2 in chicken. Ninety male Hyline brown chicken were randomly divided into 3 groups namely Cont, HgCl2, and HgCl2+Se group. Chicken were provided with the standard diet and nontreated water, standard diet and HgCl2-treated water (250 ppm), and sodium selenite-treated diet (10 ppm) plus HgCl2-treated water (250 ppm), respectively. After being fed for 7 wk, the spleen tissues were collected, and spleen index, the microstructure of the spleen, and the indicators of oxidative stress, inflammation, apoptosis as well as heat shock proteins (HSP) were detected. First, the results of spleen index and pathological examination confirmed that Se exerted an antagonistic effect on the spleen injury induced by HgCl2. Second, Se ameliorated HgCl2-induced oxidative stress by decreasing the level of malondialdehyde and increasing the levels of glutathione, glutathione peroxidase, and total antioxidant capacity. Third, Se attenuated HgCl2-induced inflammation by decreasing the protein expression of nuclear factor kappa-B, inducible nitric oxide synthase, and cyclooxygenase-2, and the gene expression of interleukin (IL)-1β, IL-6, IL-8, IL-12β, IL-18 as well as tumor necrosis factor-α. Fourth, Se inhibited HgCl2-induced apoptosis by downregulating the protein expression of BCL2 antagonist/killer 1 and upregulating the protein expression of B-cell lymphoma-2. Finally, Se reversed HgCl2-triggered activation of HSP 60, 70, and 90. In conclusion, Se antagonized HgCl2-induced spleen damage in chicken, partially through the regulation of oxidative stress, inflammatory, and apoptotic signaling.
Collapse
|
75
|
Li M, Zhang Y, Li S. Effects of selenium deficiency on testis development and autophagy in chicks. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1786739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ming Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Life and environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
76
|
Wang J, Zhu H, Wang K, Yang Z, Liu Z. Protective effect of quercetin on rat testes against cadmium toxicity by alleviating oxidative stress and autophagy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25278-25286. [PMID: 32347499 DOI: 10.1007/s11356-020-08947-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd), a highly toxic heavy metal, adversely affects human and animal health. Quercetin (Que) is a kind of flavonoid that can protect many tissues from the toxic effect of heavy metals. Although many studies have explored the adverse effects of cadmium on rats and other animals, the mechanism of Cd-induced testicular autophagy and the antagonistic effect of Que on cadmium remain unclear. In this study, Sprague-Dawley rats were treated with Cd, Que or Cd, and Que supplements to explore the mechanisms of Que-alleviated testis injury caused by Cd exposure. The rat body weight and relative testicular weight were measured. Morphological changes in testes and indices of oxidative stress were also examined. The expression levels of autophagy-related genes were detected as well. Results showed that Cd decreased the rat body weight and relative testicular weight and induced pathological changes in testes. Conversely, Que alleviated these changes. We also found that Cd increased the malondialdehyde content and decreased the contents of total superoxide dismutase, glutathione peroxidase, catalase, and glutathione. Moreover, the protein expression levels of P62 and LC3-II increased under Cd exposure conditions. Conversely, Que obviously alleviated these toxic activities induced by Cd. Overall, this study showed that Cd accumulated in rat testes, leading to oxidative stress and autophagy. Que can reduce cadmium toxicity by reducing oxidative stress and inhibiting autophagy. The specific mechanism of Que antagonizing Cd toxicity can provide new insights into countering cadmium toxicity.
Collapse
Affiliation(s)
- Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang, 471023, People's Republic of China.
| | - Huali Zhu
- Law hospital, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang, 471023, People's Republic of China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang, 471023, People's Republic of China
| | - Zijun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang, 471023, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, No.12, East Wenhui Road, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
77
|
Zheng HJ, Zhang X, Guo J, Zhang W, Ai S, Zhang F, Wang Y, Liu WJ. Lysosomal dysfunction-induced autophagic stress in diabetic kidney disease. J Cell Mol Med 2020; 24:8276-8290. [PMID: 32583573 PMCID: PMC7412686 DOI: 10.1111/jcmm.15301] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
The catabolic process that delivers cytoplasmic constituents to the lysosome for degradation, known as autophagy, is thought to act as a cytoprotective mechanism in response to stress or as a pathogenic process contributing towards cell death. Animal and human studies have shown that autophagy is substantially dysregulated in renal cells in diabetes, suggesting that activating autophagy could be a therapeutic intervention. However, under prolonged hyperglycaemia with impaired lysosome function, increased autophagy induction that exceeds the degradative capacity in cells could contribute toward autophagic stress or even the stagnation of autophagy, leading to renal cytotoxicity. Since lysosomal function is likely key to linking the dual cytoprotective and cytotoxic actions of autophagy, it is important to develop novel pharmacological agents that improve lysosomal function and restore autophagic flux. In this review, we first provide an overview of the autophagic-lysosomal pathway, particularly focusing on stages of lysosomal degradation during autophagy. Then, we discuss the role of adaptive autophagy and autophagic stress based on lysosomal function. More importantly, we focus on the role of autophagic stress induced by lysosomal dysfunction according to the pathogenic factors (including high glucose, advanced glycation end products (AGEs), urinary protein, excessive reactive oxygen species (ROS) and lipid overload) in diabetic kidney disease (DKD), respectively. Finally, therapeutic possibilities aimed at lysosomal restoration in DKD are introduced.
Collapse
Affiliation(s)
- Hui Juan Zheng
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xueqin Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Sinan Ai
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Fan Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
78
|
Tang KK, Liu XY, Wang ZY, Qu KC, Fan RF. Trehalose alleviates cadmium-induced brain damage by ameliorating oxidative stress, autophagy inhibition, and apoptosis. Metallomics 2020; 11:2043-2051. [PMID: 31650140 DOI: 10.1039/c9mt00227h] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cadmium (Cd) is a persistent environmental contaminant and induces neurotoxicity in animals. Trehalose (Tre) exhibits powerful neuroprotective effects in certain brain injury models. Herein, we revealed the specific molecular mechanism underlying the protective effects of Tre against Cd-induced brain damage in rats. Firstly, the results showed that Tre significantly ameliorated brain pathological injury induced by Cd. Secondly, Cd-induced down-regulation of total anti-oxidation capacity (T-AOC) and up-regulation of methane dicarboxylic aldehyde (MDA) in brain tissues were significantly reversed by Tre treatment. Importantly, the augmentation of nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) caused by Cd was significantly inhibited by Tre treatment. Thirdly, the levels of autophagy marker proteins were measured and the results showed that Tre significantly reversed the up-regulation of light chain 3II (LC-3II) and sequestosome 1 (SQSTM-1/p62) caused by Cd exposure. Finally, the apoptosis rate and the levels of apoptosis marker proteins including B cell leukemia/lymphoma 2 (Bcl2) and Bcl2-associated X protein (Bax) were also measured and the results showed that Cd-induced apoptosis was markedly inhibited by Tre treatment. Collectively, our data suggested that Tre exerted its neuroprotective effects by ameliorating oxidative stress, autophagy inhibition, and apoptosis induced by Cd in rat brains. In addition, the Nrf2 signaling pathway, which is continuously activated by Cd, may contribute to brain injury.
Collapse
Affiliation(s)
- Kou-Kou Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| | | | | | | | | |
Collapse
|
79
|
Shi X, Wang W, Zheng S, Zhang Q, Xu S. Selenomethionine relieves inflammation in the chicken trachea caused by LPS though inhibiting the NF-κB pathway. Biol Trace Elem Res 2020; 194:525-535. [PMID: 31325027 DOI: 10.1007/s12011-019-01789-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Selenomethionine is able to relieve the effect of inflammation in various tissues and organs. However, there are few studies about the influences of organic selenium resisting inflammation induced by LPS in chicken trachea. Therefore, the purpose of this experiment is to explore the organic selenium (selenomethionine) can raise immune function and relieve the LPS-induced inflammation of chicken trachea via inhibiting the NF-κB pathway. To investigate the mechanism of organic selenium on chicken trachea, the supplement of selenomethionine and/or LPS-induced chicken models were established. One hundred 46-week-old isa chickens were randomly divided into four groups (n = 25). The four groups were the control group, the selenomethionine group (Se group), the LPS-induced group (LPS group), and the Se and LPS interaction group (Se + LPS group). Then, the expressions of inflammatory factors (including induced nitric oxide synthase (iNOS), nuclear factor-kappa B(NF-κB), tumor necrosis factor (TNF-α), cyclooxygenase-2 (COX-2), and prostaglandin E (PTGEs) synthase), inflammation-related cytokines (including interleukin (IL-2, IL-6, IL-8, IL-17) and immunoglobulin (IgA, IgM, IgY)), the marker of immune function (avian β-defensins (AvBD6, AvBD7)), heat shock proteins (including HSP60, HSP90), and selenoproteins (including Selo, Sels, Selm, Selh, Selu, Seli, SPS2, GPx1, GPx2, Dio1, Sepx1, Sep15, Sepp1, Txnrd1) were detected in our experiment. The above genes were significantly changed in different groups (p < 0.05). We can conclude that organic selenium can increase the function of immunity and the expression of selenoproteins, and mitigate the inflammation induced by LPS via suppression of the NF-κB pathway.
Collapse
Affiliation(s)
- Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shufang Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
80
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
81
|
The effect of selenium on the autophagy of macrophage infected by Staphylococcus aureus. Int Immunopharmacol 2020; 83:106406. [PMID: 32193097 DOI: 10.1016/j.intimp.2020.106406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
Selenium can alleviate the inflammatory reaction infected by Staphylococcus aureus (S. aureus). However, the role of selenium on the autophagy in RAW264.7 macrophages infected by S. aureus has not been reported. The goal of this study was to clarify the effect of selenium on the autophagy and related inflammatory pathways (MAPK and NF-κB) in RAW264.7 macrophages infected by S. aureus. RAW264.7 macrophages were co-treated with Na2SeO3 and S. aureus. The expression of related inflammatory pathways (MAPK and NF-κB) and autophagy-related proteins were detected by Western blotting. The microtubule-binding protein light chain 3 (LC3) puncta were measured with immunofluorescence staining. The ultrastructure of RAW264.7 macrophages infected by S. aureus was detected by transmission electron microscope (TEM). And plate counting method was used to detect the proliferation of S. aureus in RAW264.7 macrophages. The results showed that the expression levels of LC3 II increased and the expression levels of p62 decreased after adding selenium, compared with S. aureus infection group. Compared with S. aureus infection group, the intracellular LC3 puncta and autophagic vesicles, autophagosomes, and autolysosomes increased with selenium supplementation. The number of S. aureus proliferation decreased with addition of selenium, compared with S. aureus infection group. Selenium could significantly inhibit the phosphorylation of MAPK and NF-κB signaling pathway key proteins, compared with S. aureus infection group. In summary, selenium could promote the autophagy in macrophages infected by S. aureus, alleviate the blockade of autophagic flow, depress the transcription of MAPK and NF-κB signaling pathways, and inhibit the proliferation of S. aureus in RAW264.7 macrophages.
Collapse
|
82
|
Liu S, Yang Y, Gao H, Zhou N, Wang P, Zhang Y, Zhang A, Jia Z, Huang S. Trehalose attenuates renal ischemia-reperfusion injury by enhancing autophagy and inhibiting oxidative stress and inflammation. Am J Physiol Renal Physiol 2020; 318:F994-F1005. [PMID: 32068461 DOI: 10.1152/ajprenal.00568.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Renal ischemia-reperfusion (IR) injury is one of the most common acute kidney injuries, but there is still a lack of effective treatment in the clinical setting. Trehalose (Tre), a natural disaccharide, has been demonstrated to protect against oxidative stress, inflammation, and apoptosis. However, whether it could protect against IR-induced renal injury needs to be investigated. In an in vivo experiment, C57BL/6J mice were pretreated with or without Tre (2 g/kg) through a daily single intraperitoneal injection from 3 days before renal IR surgery. Renal function, apoptosis, oxidative stress, and inflammation were analyzed to evaluate kidney injury. In an in vitro experiment, mouse proximal tubular cells were treated with or without Tre under a hypoxia/reoxygenation condition. Western blot analysis, autophagy flux detection, and apoptosis assay were performed to evaluate the level of autophagy and antiapoptotic effect of Tre. The in vivo results showed that the renal damage induced by IR was ameliorated by Tre treatment, as renal histology and renal function were improved and the enhanced protein levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin were blocked. Moreover, autophagy was activated by Tre pretreatment along with inhibition of the IR injury-induced apoptosis, oxidative stress, and inflammation. The in vitro results showed that Tre treatment activated autophagy and protected against hypoxia/reoxygenation-induced tubular cell apoptosis and oxidative stress. Our results demonstrated that Tre protects against IR-induced renal injury, possibly by enhancing autophagy and blocking oxidative stress, inflammation, and apoptosis, suggesting its potential use for the clinical treatment of renal IR injury.
Collapse
Affiliation(s)
- Suwen Liu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yunwen Yang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Huiping Gao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Ning Zhou
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Peipei Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
83
|
Wang C, Nie G, Yang F, Chen J, Zhuang Y, Dai X, Liao Z, Yang Z, Cao H, Xing C, Hu G, Zhang C. Molybdenum and cadmium co-induce oxidative stress and apoptosis through mitochondria-mediated pathway in duck renal tubular epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121157. [PMID: 31518807 DOI: 10.1016/j.jhazmat.2019.121157] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 05/16/2023]
Abstract
High doses of molybdenum (Mo) and cadmium (Cd) cause adverse reactions on animals, but the joint toxic effects of Mo and Cd on duck renal tubular epithelial cells are not fully illustrated. To investigate the combined effects of Mo and Cd on oxidative stress and mitochondrial apoptosis in primary duck renal tubular epithelial cells, the cells were either treated with (NH4)6Mo7O24·4H2O (480, 960 μM Mo), 3CdSO4·8H2O (2.5, 5.0 μM Cd) or combination of Mo and Cd for 12 h, and then the joint cytotoxicity was evaluated. The results demonstrated that Mo or/and Cd exposure could induce release of intracellular lactate dehydrogenase, reactive oxygen species generation, acidification, increase levels of malondialdehyde and [Ca2+]i, decrease levels of glutathione, glutathione peroxidase, catalase, superoxide dismutase, total antioxidant capacity, Na+/K+-ATPase, Ca2+-ATPase, and mitochondrial membrane potential; upregulate mRNA levels of Caspase-3, Bak-1, Bax, and cytochrome C, inhibit Bcl-2 mRNA level, and induce cell apoptosis in a dose-dependent manner. Furthermore, the changes of these indicators in co-treated groups were more remarkable. The results indicated that exposure to Mo or/and Cd could induce oxidative stress and apoptosis via the mitochondrial pathway in duck renal tubular epithelial cells and the two metals may have a synergistic effect.
Collapse
Affiliation(s)
- Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West street, Economic and Technological Development District, Nanchang 330032, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jian Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhiyue Liao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhi Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
84
|
Gu J, Ren Z, Zhao J, Peprah FA, Xie Y, Cheng D, Wang Y, Liu H, Chu Wong CK, Zhou Y, Shi H. Calcimimetic compound NPS R-467 protects against chronic cadmium-induced mouse kidney injury by restoring autophagy process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110052. [PMID: 31830606 DOI: 10.1016/j.ecoenv.2019.110052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
In the kidney, disturbance of calcium homeostasis can cause renal hemodynamic changes, leading to glomerulonephritis, tubular damage and renal vascular disease, and thus promotes the development of chronic kidney disease (CKD). Cadmium (Cd) is a toxic heavy metals proved to induce disturbances of calcium homeostasis and nephrotoxicity. Calcium sensing receptor (CaSR) is abundantly expressed in the kidney and plays an important role in maintaining body calcium homeostasis. Our previous study suggested that the activation of CaSR could act as a protective pathway to reduce Cd-induced cytotoxicity in renal proximal tubular cells. However, its application in animal models, its treatment efficacy and underlying mechanisms are still unclear. Therefore, an in vivo animal model (ICR male mouse, n = 5) subjected to Cd-induced nephrotoxicity was used in this study. In the present study, the results indicated that long-term (4 weeks) but not short-term (7 days) Cd exposure induced kidney injury, including induced glomerular atrophy, renal proximal tubule damage, increased malondialdehyde (MDA) level, elevated urine protein quantity, and upregulated kidney injury molecule 1 (KIM-1). It was further observed that chronic Cd exposure induced inhibition of autophagy flux, which triggered kidney apoptosis and injury. However, NPS R-467 restored Cd-inhibited autophagy flux and reduced Cd-induced kidney apoptosis and injury. Finding from this study indicated that activation of CaSR in prevention from nephrotoxicity and kidney injury caused by Cd, which might be helpful for the treatment of clinical CKD.
Collapse
Affiliation(s)
- Jie Gu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Zhen Ren
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Jinfeng Zhao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Frank Addai Peprah
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Yimin Xie
- Affiliated Hospital of Jiangsu University-Yixing Hospital, Yixing, Jiangsu, 214200, China
| | - Dongrui Cheng
- General Hospital of Nanjing Military Region, East Zhongshan Road 305, Xuanwu District, Nanjing, Jiangsu, 210002, China
| | - Yanwei Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Haitao Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | | | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212000, China.
| |
Collapse
|
85
|
Identification of two novel prenylated flavonoids in mulberry leaf and their bioactivities. Food Chem 2020; 315:126236. [PMID: 32000079 DOI: 10.1016/j.foodchem.2020.126236] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
Abstract
Mulberry leaf is a vegetable used in daily diet. It can bring delicious taste and multiple health benefits. However, the chemicals responsible for these health benefits remain unveiled. In this work, two novel prenylated flavonoids were isolated from mulberry leaf. Their structures were identified and named as morachalcone D and morachalcone E. The protective effects of these two compounds were investigated, against endogenous oxidative damage (oxytosis/ferroptosis) induced by glutamate and erastin in HT22 cells. The results revealed that morachalcone D was much more potent in preventing from glutamate- and erastin-induced cell death than morachalcone E. The neuroprotective effect of morachalcone D was related to the prevention of ROS production, glutathione depletion, and iron accumulation. Morachalcone D upregulated the expression of genes involved in antioxidant defense, including GPx4, CAT, SOD2, Nrf2, HMOX1 and SLC7A11. These findings indicated that morachalcone D was responsible for the health benefits of mulberry leaf, and could be a potent neuroprotective agent for use in dietary supplements and functional foods.
Collapse
|
86
|
He X, Chen S, Li C, Ban J, Wei Y, He Y, Liu F, Chen Y, Chen J. Trehalose Alleviates Crystalline Silica-Induced Pulmonary Fibrosis via Activation of the TFEB-Mediated Autophagy-Lysosomal System in Alveolar Macrophages. Cells 2020; 9:cells9010122. [PMID: 31947943 PMCID: PMC7016807 DOI: 10.3390/cells9010122] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/16/2022] Open
Abstract
Silicosis is an occupational lung disease characterized by persistent inflammation and irreversible fibrosis. Crystalline silica (CS) particles are mainly phagocytized by alveolar macrophages (AMs), which trigger apoptosis, inflammation, and pulmonary fibrosis. Previously, we found that autophagy-lysosomal system dysfunction in AMs was involved in CS-induced inflammation and fibrosis. Induction of autophagy and lysosomal biogenesis by transcription factor EB (TFEB) nuclear translocation can rescue fibrotic diseases. However, the role of TFEB in silicosis is unknown. In this study, we found that CS induced TFEB nuclear localization and increased TFEB expression in macrophages both in vivo and in vitro. However, TFEB overexpression or treatment with the TFEB activator trehalose (Tre) alleviated lysosomal dysfunction and enhanced autophagic flux. It also reduced apoptosis, inflammatory cytokine levels, and fibrosis. Both pharmacologically inhibition of autophagy and TFEB knockdown in macrophages significantly abolished the antiapoptotic and anti-inflammatory effects elicited by either TFEB overexpression or Tre treatment. In conclusion, these results uncover a protective role of TFEB-mediated autophagy in silicosis. Our study suggests that restoration of autophagy-lysosomal function by Tre-induced TFEB activation may be a novel strategy for the treatment of silicosis.
Collapse
Affiliation(s)
- Xiu He
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Shi Chen
- School of Medicine, Hunan Normal University, No.36 Lushan Road, Changsha 410013, China;
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Jiaqi Ban
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Yungeng Wei
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Yangyang He
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (X.H.); (C.L.); (J.B.); (Y.W.); (Y.H.); (F.L.); (Y.C.)
- Correspondence: ; Tel.: +86-24-31939079
| |
Collapse
|
87
|
Fan RF, Li ZF, Zhang D, Wang ZY. Involvement of Nrf2 and mitochondrial apoptotic signaling in trehalose protection against cadmium-induced kidney injury. Metallomics 2020; 12:2098-2107. [PMID: 33226392 DOI: 10.1039/d0mt00213e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) poisoning is characterized by multiple organ dysfunction in organisms, and the kidney is the main target organ of Cd toxicity. Trehalose (Tr), a multifunctional bioactive disaccharide, possesses potential kidney protective properties. Nevertheless, the specific biological function of Tr in antagonizing kidney injury induced by Cd remains to be elucidated. Herein, an in vivo model of Tr antagonizing Cd nephrotoxicity was established and the indictors related to kidney function, oxidative stress, and apoptosis were detected to investigate the molecular mechanism underlying the Tr-protection against Cd-induced kidney injury of rats. Firstly, Tr significantly declined the levels of blood urea nitrogen (BUN) and serum creatinine, and partially restored renal pathological changes caused by Cd. Secondly, Cd exposure significantly increased the malondialdehyde (MDA) content, and decreased the levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and glutathione (GSH) in serum. However, Tr significantly ameliorated these abnormal alterations. Moreover, Tr regulated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway to suppress the Cd-induced nuclear translocation of Nrf2 and the up-regulation of heme oxygenase-1 (HO-1) and NAD (P) H quinone reductase-1 (NQO1). Meanwhile, Tr significantly reversed the increased Sequestosome-1(SQSTM1/p62) and decreased Kelch-like ECH associated protein-1 (Keap1) protein levels induced by Cd. Thirdly, further mechanistic exploration suggested that Tr inhibited the mitochondrial apoptotic signaling pathway induced by Cd. Collectively, the results indicated that Tr exerts antioxidant and anti-apoptosis functions involving the Nrf2 and mitochondrial apoptotic signaling pathways to protect against Cd-induced kidney injury in rats.
Collapse
Affiliation(s)
- Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| | | | | | | |
Collapse
|
88
|
Mu M, Zhao H, Wang Y, Liu J, Fei D, Xing M. Arsenic trioxide or/and copper sulfate co-exposure induce glandular stomach of chicken injury via destruction of the mitochondrial dynamics and activation of apoptosis as well as autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109678. [PMID: 31557571 DOI: 10.1016/j.ecoenv.2019.109678] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Arsenic and copper are naturally occurring element. Contamination from natural processes and anthropogenic activities can be discovered all over the world and their unique interactions with the environment lead to widespread toxicity. When the content was excessive, the organism would be hurt seriously. The glandular stomach is an important organ of the poultry gastrointestinal tract. This study was aimed to investigate the toxicity of arsenic trioxide or/and copper sulfate (As or/and Cu) on chicken glandular stomach. Seventy-two 1-day-old Hy-Line chickens were randomly divided into control (C) group, arsenic trioxide (As) group, copper sulfate (Cu) group and arsenic trioxide and copper sulfate (AsCu) group, and exposed to 30 mg/kg arsenic trioxide or/and 300 mg/kg copper sulphates for 12 weeks. The indicators of mitochondrial dynamics, apoptosis and autophagy were tested in the glandular stomach. The results showed that exposure to As or/and Cu caused mitochondrial dynamic imbalance. Additionally, the levels of pro-apoptosis and autophagy indicators were increased and the levels of anti-apoptosis indicators were decreased in the treatment groups. Beyond that, in the treatment groups, we could clearly see karyopyknosis and chromatin condensation were associated with increased apoptosis rate, as well as the disappearance of the nuclear membrane, the swelling of mitochondria and the accumulation of autophagosomes were involved in the death of cells. It was worth noting that the glandular stomach lesions were time-dependent, and the combination of As and Cu were worse than the As and Cu alone. Collectively, our results suggest that As or/and Cu aggravate mitochondrial dysfunction, apoptosis and autophagy in a time-dependent manner, and the combined toxicity of As and Cu was higher.
Collapse
Affiliation(s)
- Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Juanjuan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Dongxue Fei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
89
|
Qu KC, Wang ZY, Tang KK, Zhu YS, Fan RF. Trehalose suppresses cadmium-activated Nrf2 signaling pathway to protect against spleen injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:224-230. [PMID: 31195231 DOI: 10.1016/j.ecoenv.2019.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd), as a kind of ubiquitous and highly toxic heavy metal pollutants, has been known to result in immunotoxicity in animals. As a multifunctional bioactivity disaccharide, trehalose (Tre) is characterized by antioxidative, antiapoptotic, and accelerating autophagy. In this study, Sprague-Dawley (SD) rats were fed with cadmium chloride (CdCl2) and/or Tre to explore the molecular mechanisms of Tre-protected against spleen injury caused by Cd exposure. Firstly, the results showed that Tre partially recovered splenic pathological changes induced by Cd exposure. Secondly, Tre dramatically declined the level of methane dicarboxylic aldehyde (MDA) and elevated the level of total antioxidant capacity (T-AOC) to weaken oxidative stress caused by Cd exposure in spleen tissue. Moreover, the results showed that Tre significantly suppressed Cd-induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and up-regulated the protein expression of nuclear Nrf2. Thirdly, Tre remarkably reduced the protein expression of sequestosome 1 (p62/SQSTM1) and microtubule-associated protein light chain 3II (LC-3II) to restore autophagy inhibition induced by Cd exposure. Finally, the results of TUNEL and the expression of apoptosis marker proteins showed that Tre significantly inhibited Cd-induced apoptosis in spleen tissue to exert its protective effects. In summary, the results indicated that Tre modulated Nrf2 signaling pathway, which interacted with apoptosis and autophagy to against Cd-induced spleen injury, providing potential therapeutic strategies for the prevention and treatment of Cd-related immune system diseases.
Collapse
Affiliation(s)
- Kui-Chao Qu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Kou-Kou Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Yi-Song Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
90
|
Zhao H, Wang Y, Fei D, Guo M, Yang X, Mu M, Yu H, Xing M. Destruction of redox and mitochondrial dynamics co-contributes to programmed cell death in chicken kidney under arsenite or/and copper (II) exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:167-174. [PMID: 31039459 DOI: 10.1016/j.ecoenv.2019.04.062] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sub-chronic arsenic (arsenite) exposure-induced oxidative toxicity leads to adverse effects in various organ systems, especially the kidney. Copper sulphate (Cu2+), known for its extensive uses in agriculture, has also been reported to have pro-oxidation properties. Both of these two potential toxic elements can bio-accumulate through food chain, thus endangering human health. However, their interaction study in the kidney is scanty. AIM To investigate the synergism effects of Cu2+ in arseniasis-elicited oxidative stress and cascaded renal injury in chickens. RESULTS Arsenite intoxication decreased renal antioxidant system along with ATPases. Arsenite exposure also significantly elicited disequilibrium of mitochondrial homeostasis, accompanying by elevated apoptotic and autophagic cell death. The disturbed morphological and ultrastructural changes further corroborated arsenite nephrotoxicity. These anomalies aligned with the findings in Cu2+ groups, which co-administrated with arsenic further deteriorated these pathological changes. This synergism was achieved partially via the inactivation of phosphoinositide-3-kinase/protein kinase b/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway through the activation of P53. CONCLUSIONS Copper excess and arsenic exposure can function independently or cooperatively to affect oxidative stress, mitochondrial dynamics and programmed cell death. These results highlighted the need to take precautions against copper and arsenic co-exposure when considering their impact in susceptible animals/populations.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxue Fei
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xin Yang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongxian Yu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
91
|
Cai L, Jeong YW, Hyun SH, Yu IJ, Hwang WS, Jeon Y. Trehalose supplementation during porcine oocytes in vitro maturation improves the developmental capacity of parthenotes. Theriogenology 2019; 141:91-97. [PMID: 31521883 DOI: 10.1016/j.theriogenology.2019.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/20/2019] [Accepted: 09/05/2019] [Indexed: 01/29/2023]
Abstract
Autophagy is a critical process in early mammalian embryogenesis. Mammalian target of rapamycin (mTOR) inhibitors are major regulators of autophagy. However, mTOR plays a vital role in major signaling pathways controlling cell growth and metabolism; thus, more secure autophagy activation methods should be considered. The present study investigated the effects of supplementary trehalose, a novel mTOR-independent autophagy enhancer, on oocyte maturation and embryonic development after parthenogenetic activation (PA). Trehalose treatment during in vitro maturation (IVM) did not affect the nuclear maturation rates of oocytes. Oocytes treated with 25 mM trehalose during IVM had a significantly higher (P < 0.05) blastocyst formation rate (64.2%) after PA compared to that in control oocytes (52.0%). Blastocyst quality was also improved in the trehalose-treated group. The total cell numbers for blastocyst formation and expanded blastocyst formation were significantly increased in the trehalose-treated group (52.2% and 27.7%, respectively) compared to those in the control group (36.9% and 11.0%, respectively). Trehalose treatment led to the increased expression of LC3, an autophagy marker, in metaphase II oocytes and 4-cell stage embryos. Gene expression analysis revealed that the expression of several autophagy related genes (LAMP2, pATG5, and LC3) increased, while the Bax/Bcl2 ratio and pro-apoptotic Bak transcript levels were decreased in the trehalose-treated group. In conclusion, these results indicate that treatment with trehalose during IVM improved the developmental potential of porcine embryos by down-regulation of pro-apoptotic genes and up-regulation of autophagy-related genes and marker. Trehalose may be useful for the large-scale production of high-quality porcine blastocysts in vitro.
Collapse
Affiliation(s)
- Lian Cai
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea; Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yeon-Woo Jeong
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea
| | - Sang-Hwan Hyun
- Institute for Stem Cell and Regenerative Medicine (ISCRM), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Woo-Suk Hwang
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea
| | - Yubyeol Jeon
- Sooam Biotech Research Foundation, Seoul, 08359, Republic of Korea; Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
92
|
Endoplasmic reticulum stress and autophagy contribute to cadmium-induced cytotoxicity in retinal pigment epithelial cells. Toxicol Lett 2019; 311:105-113. [DOI: 10.1016/j.toxlet.2019.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 04/28/2019] [Accepted: 05/01/2019] [Indexed: 01/15/2023]
|
93
|
Molecular Interactions Between Reactive Oxygen Species and Autophagy in Kidney Disease. Int J Mol Sci 2019; 20:ijms20153791. [PMID: 31382550 PMCID: PMC6696055 DOI: 10.3390/ijms20153791] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) are highly reactive signaling molecules that maintain redox homeostasis in mammalian cells. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of ROS, culminating in oxidative stress and the associated oxidative damage of cellular components. ROS and oxidative stress play a vital role in the pathogenesis of acute kidney injury and chronic kidney disease, and it is well documented that increased oxidative stress in patients enhances the progression of renal diseases. Oxidative stress activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular oxidized and damaged macromolecules and dysfunctional organelles. In this review, we report the current understanding of the molecular regulation of autophagy in response to oxidative stress in general and in the pathogenesis of kidney diseases. We summarize how the molecular interactions between ROS and autophagy involve ROS-mediated activation of autophagy and autophagy-mediated reduction of oxidative stress. In particular, we describe how ROS impact various signaling pathways of autophagy, including mTORC1-ULK1, AMPK-mTORC1-ULK1, and Keap1-Nrf2-p62, as well as selective autophagy including mitophagy and pexophagy. Precise elucidation of the molecular mechanisms of interactions between ROS and autophagy in the pathogenesis of renal diseases may identify novel targets for development of drugs for preventing renal injury.
Collapse
|
94
|
Cong Y, Chi Q, Teng X, Li S. The Protection of Selenium Against Cadmium-Induced Mitochondrial Damage via the Cytochrome P450 in the Livers of Chicken. Biol Trace Elem Res 2019; 190:484-492. [PMID: 30392018 DOI: 10.1007/s12011-018-1557-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd) is a heavy metal in natural environment and has extreme toxicity. Selenium (Se) has protective effect against heavy metal-induced injury or oxidative stress. Cytochrome P450 (CYP450) enzymes are a family of hemoproteins primarily responsible for detoxification functions. In order to investigate whether CYP450 is related to the damage of livers caused by Cd exposure, we chose forty-eight 28-day-old healthy Hailan cocks for four groups: control group, Se group, Cd group, and Se + Cd group. After 90-day treatment, euthanized for experiment. Based on an established subchronic Cd poisoning model in chicken, this experiment was designed to detect mitochondrial structure, malondialdehyde (MDA), glutathione (GSH), DNA and protein crosslink (DPC) and protein carbonyl (PCO) content, the CYP450 and b5 contents, the aminopyrine-N-demethylase (AND), erythromycin N-demethylase (ERND), aniline 4-hydroxylase (AH) and NADPH-cytochrome C reducatase (CR) activities, and mRNA expression level in the livers. The present results indicated that the MDA content, PCO content, and DPC index in Cd group were higher than those observed in other three groups. Most of the mitochondrial structure is incomplete in Cd group. The contents of CYP450 and b5 were decreased in Cd group. The activities of AND, ERND, AH, and CR got reduced after Cd exposure, as observed in CYP450 gene expression. Our results showed that CYP450 system was involved in the entire process of injury and protection. This research provides a comprehensive evaluation of the oxidative stress effects of Cd related to CYP450 in chicken.
Collapse
Affiliation(s)
- Yimei Cong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
95
|
Abstract
PURPOSE OF REVIEW Trehalose is a disaccharide with manifold industrial, commercial and biomedical uses. In the decade following its initial definition as an autophagy-inducing agent, significant advances have been realized in regard to the applicable clinical and preclinical contexts in which trehalose can be deployed. Moreover, the mechanisms by which trehalose exerts its metabolic effects are only beginning to gain clarity. In this review, we will highlight the most recent advances regarding the effectiveness and mechanisms of trehalose actions in metabolic disease, and discuss barriers and opportunities for this class of compounds to advance as a clinical therapeutic. RECENT FINDINGS Trehalose reduced cardiometabolic disease burden in diet-induced and genetic models of atherosclerosis, dyslipidemia, hepatic steatosis and insulin tolerance and glucose tolerance. The mechanism by which these effects occurred were pleiotropic, and involved activation of fasting-like processes, including autophagic flux and transcription factor EB. These mechanisms depend heavily on route of administration and disease-specific context. Host and microbial trehalase activity is likely to influence trehalose efficacy in a tissue-dependent manner. SUMMARY Trehalose and its analogues are promising cardiometabolic therapeutic agents with pleiotropic effects across tissue types. It is likely that we are only beginning to uncover the broad efficacy and complex mechanisms by which these compounds modulate host metabolism.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian J. DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110
- To whom correspondence should be addressed. Brian DeBosch, Departments of Pediatrics and Cell Biology and Physiology, Washington University School of Medicine, 5107 McDonnell Pediatrics Research Building, 660 S. Euclid Ave, Box 8208, St. Louis, MO 63110. Telephone: 314-454-6173; FAX: 314-454-2412;
| |
Collapse
|
96
|
Liu J, Liang S, Du Z, Zhang J, Sun B, Zhao T, Yang X, Shi Y, Duan J, Sun Z. PM 2.5 aggravates the lipid accumulation, mitochondrial damage and apoptosis in macrophage foam cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:482-490. [PMID: 30928520 DOI: 10.1016/j.envpol.2019.03.045] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Epidemiological evidence showed that the particulate matter exposure is associated with atherosclerotic plaque progression, which may be related to foam cell formation, but the mechanism is still unknown. The study was aimed to investigate the toxic effects and possible mechanism of PM2.5 on the formation of macrophage foam cells induced by oxidized low density lipoprotein (ox-LDL). Results showed that PM2.5 induced cytotoxicity by decreasing the cell viability and increasing the LDH level in macrophage foam cells. PM2.5 aggravated the lipid accumulation in ox-LDL-stimulated macrophage RAW264.7 within markedly increasing level of intracellular lipid by Oil red O staining. The level of ROS increased obivously after co-exposure to PM2.5 and ox-LDL than single exposure group. In addition, serious mitochondrial damage such as the mitochondrial swelling, cristae rupturing and disappearance were observed in macrophage foam cells. The loss of the mitochondrial membrane potential (MMP) further exacerbated the mitochondrial damage in PM2.5-induced macrophage foam cells. The apoptotic rate increased more severely via up-regulated protein level of Bax, Cyt C, Caspase-9, Caspase-3, and down-regulated that of Bcl-2, indicating that PM2.5 activated the mitochondrial-mediated apoptosis pathway. In summary, our results demonstrated that PM2.5 aggravated the lipid accumulation, mitochondrial damage and apoptosis in macrophage foam cells, suggesting that PM2.5 was a risk factor of atherosclerosis progression.
Collapse
Affiliation(s)
- Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tong Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
97
|
Liu Q, Zhang R, Wang X, Shen X, Wang P, Sun N, Li X, Li X, Hai C. Effects of sub-chronic, low-dose cadmium exposure on kidney damage and potential mechanisms. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:177. [PMID: 31168458 DOI: 10.21037/atm.2019.03.66] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background The present study was to investigate the potential mechanisms underlying the sub-chronic low-dose cadmium (Cd) exposure induced renal injury in rats. Methods Totally 40 male adult SD rats were randomly divided into four groups: control group, low-dose Cd group (1 mg/kg CdCl2), moderate-dose Cd group (2.5 mg/kg) and high-dose Cd group (5 mg/kg). Results From the 3rd week, the body weight of rats in moderate-dose and high-dose declined significantly as compared to the control group (P<0.05); the liver to body weight ratio increased, the volumes of 24-hour urine and drinking-water decreased markedly (P<0.05), the BUN, SCr and β2-MG increased significantly, but the Fe2+ concentration decreased markedly as compared to the control group (P<0.05); the serum MDA and SOD1 content contents increased, but the serum SOD2 and CAT contents decreased significantly in Cd-treated groups (P<0.05); Renal injury deteriorated with the increase in Cd dose; swelling glomeruli showed stenotic renal-tubules, and epithelial-cell-necrosis, shedding and accumulation in the lumen, massive infiltrated inflammatory cells and interstitial hyperaemia were observed; The mitochondria in renal-tubular-epithelial-cells displayed swelling, deformation and vacuolation; the renal ROS content increased in Cd-exposure-groups; the renal SOD1 expression increased but the expression of SOD2 and CAT decreased (P<0.05). The Bcl-2 expression decreased, but Bax expression and Bax/Bcl-2 ratio increased significantly in a Cd-dose dependent manner. Conclusions Cd may cause renal injury in a dose dependent manner, which may be ascribed to the disordered Fe2+ absorption, redox imbalance and apoptosis in the kidney.
Collapse
Affiliation(s)
- Qiling Liu
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Air Force Medical University, Xi'an 710032, China.,The Department of Epidemic and Health statistics, the College of Public Health for the Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Rongqiang Zhang
- The Department of Epidemic and Health statistics, the College of Public Health for the Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiang Wang
- Department of Toxicology, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, The Air Force Medical University, Xi'an 710032, China
| | - Xiangli Shen
- The Department of Epidemic and Health statistics, the College of Public Health for the Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Peili Wang
- The Department of Epidemic and Health statistics, the College of Public Health for the Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Na Sun
- The Department of Epidemic and Health statistics, the College of Public Health for the Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiangwen Li
- The Department of Epidemic and Health statistics, the College of Public Health for the Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xinhui Li
- The Department of Epidemic and Health statistics, the College of Public Health for the Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Chunxu Hai
- Department of Toxicology, School of Public Health, The Air Force Medical University, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an 710032, China
| |
Collapse
|
98
|
Wang LY, Fan RF, Yang DB, Zhang D, Wang L. Puerarin reverses cadmium-induced lysosomal dysfunction in primary rat proximal tubular cells via inhibiting Nrf2 pathway. Biochem Pharmacol 2019; 162:132-141. [DOI: 10.1016/j.bcp.2018.10.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
|
99
|
Gong ZG, Wang XY, Wang JH, Fan RF, Wang L. Trehalose prevents cadmium-induced hepatotoxicity by blocking Nrf2 pathway, restoring autophagy and inhibiting apoptosis. J Inorg Biochem 2019; 192:62-71. [DOI: 10.1016/j.jinorgbio.2018.12.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 01/16/2023]
|
100
|
Cai J, Yang J, Liu Q, Gong Y, Zhang Y, Zheng Y, Yu D, Zhang Z. Mir-215-5p induces autophagy by targeting PI3K and activating ROS-mediated MAPK pathways in cardiomyocytes of chicken. J Inorg Biochem 2019; 193:60-69. [PMID: 30684759 DOI: 10.1016/j.jinorgbio.2019.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 02/01/2023]
Abstract
Our previous study revealed that selenium (Se) deficiency can cause myocardial injury through triggering autophagy. MicroRNAs (miRNAs) play crucial roles in autophagic cell death. However, the relationship between miRNAs and myocardial autophagy injury caused by Se deficiency remains unclear. We selected differential microRNA-215-5p (miR-215-5p) in Se-deficient myocardial tissue using high-throughput miRNA-sequencing. To further explore the role of miR-215-5p in myocardial injury, overexpression/knockdown of miR-215-5p in primary cardiomyocyte model was established by miRNAs interference technology. In this study, we report that miR-215-5p can promote myocardial autophagy by directly binding to the 3'untranslated region (3'UTR) of phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K). Its target gene PI3K was confirmed by dual luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot in cardiomyocytes. Our results showed that overexpression of miR-215-5p could trigger myocardial autophagy through PI3K-threonine-protein kinase (AKT)-target of rapamycin (TOR) pathway. Further studies revealed that autophagic cell death was dependent on the activation of extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 kinase (p38) and generation of reactive oxygen species (ROS) in overexpression of miR-215-5p in cardiomyocytes. On the contrary, miR-215-5p inhibitor can enhance cell survival capacity against autophagy by inhibiting ROS-mitogen-activated protein kinase (MAPK) pathways and activating the PI3K/AKT/TOR pathway in cardiomyocytes. Together, our findings support that miR-215-5p may modulate cell survival programs by regulating autophagy, and miR-215-5p acts as an autophagic regulator in the regulatory feedback loop that regulates cardiomyocyte survival by modulating the PI3K/AKT/TOR pathway and ROS-dependent MAPK pathways.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yafan Gong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingying Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Dahai Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|