51
|
Miao Y, Yang J, Yun Y, Sun J, Wang X. Synthesis and anti-rheumatoid arthritis activities of 3-(4-aminophenyl)-coumarin derivatives. J Enzyme Inhib Med Chem 2021; 36:450-461. [PMID: 33557646 PMCID: PMC7889190 DOI: 10.1080/14756366.2021.1873978] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rheumatoid arthritis is a chronic systemic disease characterised by an unknown aetiology of inflammatory synovitis. A large number of studies have shown that synoviocytes show tumour-like dysplasia in the pathological process of RA, and the changes in the expression of related cytokines are closely related to the pathogenesis of RA. In this thesis, a series of novel 3-(4-aminophenyl) coumarins containing different substituents were synthesised to find new coumarin anti-inflammatory drugs for the treatment of rheumatoid arthritis. The results of preliminary activity screening showed that compound 5e had the strongest inhibitory activity on the proliferation of fibroid synovial cells, and it also had inhibitory effect on RA-related cytokines IL-1, IL-6, and TNF-α. The preliminary mechanism study showed that compound 5e could inhibit the activation of NF-κB and MAPKs signal pathway. The anti-inflammatory activity of compound 5ein vivo was further determined in the rat joint inflammation model.
Collapse
Affiliation(s)
- Yuhang Miao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Yang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yinling Yun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
52
|
Zhou MY, Cai L, Feng XW, Mu YR, Meng B, Liu FY, Li R. Lentivirus-Mediated Overexpression or Silencing of Aquaporin 1 Affects the Proliferation, Migration and Invasion of TNF-α-Stimulated Rheumatoid Arthritis Fibroblast-Like Synoviocytes by Wnt/β-Catenin Signaling Pathway. J Inflamm Res 2021; 14:1945-1957. [PMID: 34017191 PMCID: PMC8131072 DOI: 10.2147/jir.s312783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction Previous studies have confirmed the pathologic role of synovial aquaporin 1 (AQP1) in rheumatoid arthritis (RA), but its associations with the abnormal biologic behaviors of fibroblast-like synoviocytes (FLS) remain unclear. Herein, we examined the roles of AQP1 in the proliferation, migration and invasion of TNF-α-stimulated RA FLS (MH7A cells) and explored the underlying mechanisms. Materials and Methods Lentivirus-mediated AQP1 overexpression or silencing MH7A cells was constructed. Assays of MTT, flow cytometry (PI staining and Annexin V-PE/7-AAD staining), TMRM staining, wound-healing, transwell and phalloidin staining were performed to detect cell proliferation, cycle distribution, apoptosis, migration and invasion. The involvement of Wnt/β-catenin pathway was revealed by Western blot and β-catenin immunofluorescence staining. Results AQP1 overexpression promoted cell proliferation of TNF-α-stimulated MH7A by facilitating transformation from G0/G1 to S phase and inhibiting cell apoptosis (ie, reduced apoptosis rates, raised mitochondrial membrane potential, increased Bcl-2 protein level and decreased levels of Bax and cleaved caspase 3 protein). Also, AQP1 overexpression increased the migration index as well as the numbers of migrated and invasive cells. Furthermore, AQP1 overexpression promoted the activation of Wnt/β-catenin pathway, and XAV939, an inhibitor of Wnt/β-catenin, canceled the above effects of AQP1 overexpression on MH7A cells. As expected, AQP1 silencing exhibited the opposite effects on TNF-α-stimulated MH7A cells, which could be reversed by LiCl, an activator of Wnt/β-catenin. Conclusion AQP1 can affect the proliferation, migration and invasion of MH7A cells by Wnt/β-catenin signaling pathway, and AQP1 can be as a crucial determiner that can regulate RA FLS biologic behaviors.
Collapse
Affiliation(s)
- Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China.,Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Xiao-Wen Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Yu-Rong Mu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Bo Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Fang-Yuan Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, People's Republic of China
| |
Collapse
|
53
|
Yu L, Shao M, Zhou T, Xie H, Wang F, Kong J, Xu S, Shuai Z, Pan F. Association of CTLA-4 (+49 A/G) polymorphism with susceptibility to autoimmune diseases: A meta-analysis with trial sequential analysis. Int Immunopharmacol 2021; 96:107617. [PMID: 33866246 DOI: 10.1016/j.intimp.2021.107617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/13/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES In recent years, more and more studies have been focusing on the association between Cytotoxic T lymphocyte antigen-4 (CTLA-4) (+49 A/G) gene polymorphism and autoimmune diseases. However, the results of previous studies are still controversial. The meta-analysis is aiming at determining the association in CTLA-4 (+49 A/G) gene rs231775 polymorphism and ankylosing spondylitis (AS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE). METHODS We searched PubMed, Web of Science, Chinese National Knowledge Infrastructure (CNKI) and Chinese Biomedical Database (CBM) up to November 2020, use random or fixed-effect models to perform meta-analysis to compare alleles and other genetic models, including homozygous, heterozygous, recessive and dominant models. The odds ratio (OR) with a 95% confidence interval (95% CI) was used to assess the correlation between CTLA-4 (+49 A/G) gene polymorphism and the genetic affectability of AS, RA, and SLE. Meanwhile, we used sequential trial analysis (TSA) to analyze the reliability of the results. Finally, we searched the relevant data of genome-wide association studies (GWAS) to further verify the accuracy of the experimental results. RESULTS 47 studies with 11,893 cases and 12,032 healthy controls were included. The rs231775 G allele was relevant to high risk of autoimmune disease over all people (P < 0.05). The G allele of rs231775 was significantly related to RA susceptibility (P < 0.05), but not with AS or SLE. Subgroup analysis by ethnicity indicated that rs231775 G allele was closely related to RA in Caucasian populations and Mongolian populations (P < 0.05). A strong connection within rs231775 G allele and AS affectability was uncovered in Caucasian populations (P < 0.05). The analysis of the TSA shows that the meta-analysis can draw the conclusion. CONCLUSION CTLA-4 (+49 A/G) gene rs231775 G allele increases the risk of autoimmune diseases in Caucasian populations. And it also increases the risk of RA in Caucasian and Mongolian populations. More sample size and more elaborately designed studies are needed to elucidate the relationship in CTLA-4 (+49 A/G) gene rs231775 G allele and autoimmune diseases, especially AS, SLE.
Collapse
Affiliation(s)
- Lingxiang Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ming Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Tingting Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Huimin Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Feier Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Jiangping Kong
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Shenqian Xu
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
54
|
Mousavi MJ, Karami J, Aslani S, Tahmasebi MN, Vaziri AS, Jamshidi A, Farhadi E, Mahmoudi M. Transformation of fibroblast-like synoviocytes in rheumatoid arthritis; from a friend to foe. AUTO- IMMUNITY HIGHLIGHTS 2021; 12:3. [PMID: 33546769 PMCID: PMC7863458 DOI: 10.1186/s13317-020-00145-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Swelling and the progressive destruction of articular cartilage are major characteristics of rheumatoid arthritis (RA), a systemic autoimmune disease that directly affects the synovial joints and often causes severe disability in the affected positions. Recent studies have shown that type B synoviocytes, which are also called fibroblast-like synoviocytes (FLSs), as the most commonly and chiefly resident cells, play a crucial role in early-onset and disease progression by producing various mediators. During the pathogenesis of RA, the FLSs' phenotype is altered, and represent invasive behavior similar to that observed in tumor conditions. Modified and stressful microenvironment by FLSs leads to the recruitment of other immune cells and, eventually, pannus formation. The origins of this cancerous phenotype stem fundamentally from the significant metabolic changes in glucose, lipids, and oxygen metabolism pathways. Moreover, the genetic abnormalities and epigenetic alterations have recently been implicated in cancer-like behaviors of RA FLSs. In this review, we will focus on the mechanisms underlying the transformation of FLSs to a cancer-like phenotype during RA. A comprehensive understanding of these mechanisms may lead to devising more effective and targeted treatment strategies.
Collapse
Affiliation(s)
- Mohammad Javad Mousavi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jafar Karami
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arash Sharafat Vaziri
- Joint Reconstruction Reseach Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
55
|
Xu Y, Chen F. Acid-Sensing Ion Channel-1a in Articular Chondrocytes and Synovial Fibroblasts: A Novel Therapeutic Target for Rheumatoid Arthritis. Front Immunol 2021; 11:580936. [PMID: 33584647 PMCID: PMC7876322 DOI: 10.3389/fimmu.2020.580936] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a member of the extracellular H+-activated cation channel family. Emerging evidence has suggested that ASIC1a plays a crucial role in the pathogenesis of rheumatoid arthritis (RA). Specifically, ASIC1a could promote inflammation, synovial hyperplasia, articular cartilage, and bone destruction; these lead to the progression of RA, a chronic autoimmune disease characterized by chronic synovial inflammation and extra-articular lesions. In this review, we provided a brief overview of the molecular properties of ASIC1a, including the basic biological characteristics, tissue and cell distribution, channel blocker, and factors influencing the expression and function, and focused on the potential therapeutic targets of ASIC1a in RA and possible mechanisms of blocking ASIC1a to improve RA symptoms, such as regulation of apoptosis, autophagy, pyroptosis, and necroptosis of articular cartilage, and synovial inflammation and invasion of fibroblast-like cells in synovial tissue.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Feihu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
56
|
An updated advance of autoantibodies in autoimmune diseases. Autoimmun Rev 2020; 20:102743. [PMID: 33333232 DOI: 10.1016/j.autrev.2020.102743] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Autoantibodies are abnormal antibodies which are generated by pathogenic B cells when targeting an individual's own tissue. Autoantibodies have been identified as a symbol of autoimmune disorders and are frequently considered a clinical marker of these disorders. Autoimmune diseases, including system lupus erythematosus and rheumatoid arthritis, consist of a series of disorders that share some similarities and differences. They are characterized by chronic, systemic, excessive immune activation and inflammation and involve in almost all body tissues. Autoimmune diseases occur more frequently in women than men due to hormonal impacts. In this review we systemically introduce and summarize the latest advances of various autoantibodies in multiple autoimmune diseases.
Collapse
|
57
|
Liu Y, Cao F, Sun B, Bellanti JA, Zheng SG. Magnetic nanoparticles: A new diagnostic and treatment platform for rheumatoid arthritis. J Leukoc Biol 2020; 109:415-424. [PMID: 32967052 DOI: 10.1002/jlb.5mr0420-008rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory condition characterized by articular synovitis that eventually leads to the destruction of cartilage and bone in the joints with resulting pain and disability. The current therapies for RA are divided into 4 categories: non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, nonbiological disease-modifying anti-rheumatic drugs (DMARDs), and biological DMARDs. Each drug grouping is beset with significant setbacks that not only include limited drug bioavailability and high clearance, but also varying degrees of drug toxicity to normal tissues. Recently, nanotechnology has provided a promising tool for the development of novel therapeutic and diagnostic systems in the area of malignant and inflammatory diseases. Among these, magnetic nanoparticles (MNPs) have provided an attractive carrier option for delivery of therapeutic agents. Armed with an extra magnetic probe, MNPs are capable of more accurately targeting the local lesion with avoidance of unpleasant systemic side effects. This review aims to provide an introduction to the applications of magnetic nanoparticles in RA, focusing on the latest advances, challenges, and opportunities for future development.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fenglin Cao
- Department of Internal Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia, United States
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
58
|
Baart VM, Houvast RD, de Geus-Oei LF, Quax PHA, Kuppen PJK, Vahrmeijer AL, Sier CFM. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Res 2020; 10:87. [PMID: 32725278 PMCID: PMC7387399 DOI: 10.1186/s13550-020-00673-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The urokinase plasminogen activator receptor (uPAR) plays a multifaceted role in almost any process where migration of cells and tissue-remodeling is involved such as inflammation, but also in diseases as arthritis and cancer. Normally, uPAR is absent in healthy tissues. By its carefully orchestrated interaction with the protease urokinase plasminogen activator and its inhibitor (plasminogen activator inhibitor-1), uPAR localizes a cascade of proteolytic activities, enabling (patho)physiologic cell migration. Moreover, via the interaction with a broad range of cell membrane proteins, like vitronectin and various integrins, uPAR plays a significant, but not yet completely understood, role in differentiation and proliferation of cells, affecting also disease progression. The implications of these processes, either for diagnostics or therapeutics, have received much attention in oncology, but only limited beyond. Nonetheless, the role of uPAR in different diseases provides ample opportunity to exploit new applications for targeting. Especially in the fields of oncology, cardiology, rheumatology, neurology, and infectious diseases, uPAR-targeted molecular imaging could offer insights for new directions in diagnosis, surveillance, or treatment options.
Collapse
Affiliation(s)
- V M Baart
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - R D Houvast
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - L F de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - P H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - P J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands. .,Percuros BV, Leiden, The Netherlands.
| |
Collapse
|
59
|
Zhu S, Ye Y, Shi Y, Dang J, Feng X, Chen Y, Liu F, Olsen N, Huang J, Zheng SG. Sonic Hedgehog Regulates Proliferation, Migration and Invasion of Synoviocytes in Rheumatoid Arthritis via JNK Signaling. Front Immunol 2020; 11:1300. [PMID: 32670287 PMCID: PMC7326768 DOI: 10.3389/fimmu.2020.01300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Activated fibroblast-like synoviocytes (FLSs) play a central role in the formation of synovial pannus and joint destruction in rheumatoid arthritis (RA). Targeting FLSs could be a potential therapeutic strategy. The objective of this study is to explore the role of c-Jun N-terminal kinase (JNK) in proliferation, migration and invasion of FLSs promoted by the sonic hedeghog (SHH) signaling pathway in patients with RA. Activation of SHH signaling was evaluated by real-time PCR and Western Blot. Levels of phosphorylation of JNK and c-Jun were detected by Western Blot. FLSs proliferation was quantified by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Cell migration and invasion were assessed by wound healing assay and Transwell chamber assay. Invasiveness of FLSs in vivo was evaluated using a humanized synovitis animal model. We observed that treatment of SHH agonist (SAG) significantly increased the levels of phosphorylation of JNK and c-Jun, while SHH antagonist (cyclopamine) significantly decreased the expression of phospho-JNK and phospho-c-Jun in FLSs. The elevated level of phospho-c-Jun stimulated by SAG was decreased in the presence of JNK inhibitor (SP600125) (P < 0.001). FLSs proliferation, migration and invasion were promoted by SHH agonist (P < 0.05). However, the enhanced aggressiveness of FLSs was abolished in the presence of JNK inhibitor (P < 0.05). In vivo study showed that the invasion of FLSs into cartilage was increased by SHH overexpression and the excessive invasiveness was inhibited by blockade of JNK signaling (P < 0.01). These results suggest that JNK is one of the downstream molecules mediating the effect of SHH signaling in FLSs. These findings indicate that SHH-JNK signaling could be a potential therapeutic target to suppress the aggressiveness of FLSs and prevent articular damage of RA.
Collapse
Affiliation(s)
- Shangling Zhu
- Department of Rheumatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanmei Ye
- Department of Rheumatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiming Shi
- Department of Internal Care Unit, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junlong Dang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoxue Feng
- Department of Rheumatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingdi Chen
- Department of Rheumatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fang Liu
- Department of Rheumatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nancy Olsen
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, United States
| | - Jianlin Huang
- Department of Rheumatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
60
|
Wu Q, Cao F, Tao J, Li X, Zheng SG, Pan HF. Pentraxin 3: A promising therapeutic target for autoimmune diseases. Autoimmun Rev 2020; 19:102584. [PMID: 32534154 DOI: 10.1016/j.autrev.2020.102584] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022]
Abstract
Pentraxin 3 (PTX3) is a prototypic humoral soluble pattern recognition molecule that exerts a pivotal role in innate immune response and inflammation, as well as in tissue damage and remodeling. Recently, emerging evidence has revealed that PTX3 is involved in the occurrence and development of various autoimmune diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), ankylosing spondylitis (AS), systemic sclerosis (SSc), inflammatory bowel disease (IBD), multiple sclerosis (MS) and psoriasis, etc. In this review, we have succinctly summarized the complex immunological functions of PTX3 and mostly focused on recent findings of the pleiotropic activities played by PTX3 in the pathogenesis of autoimmune diseases, aiming at hopefully offering possible future therapeutic alternatives.
Collapse
Affiliation(s)
- Qian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Fan Cao
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaomei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui, China
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210, USA.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
61
|
Xu H, Zheng SG, Fox D. Editorial: Immunomodulatory Functions of Fibroblast-like Synoviocytes in Joint Inflammation and Destruction during Rheumatoid Arthritis. Front Immunol 2020; 11:955. [PMID: 32508834 PMCID: PMC7251023 DOI: 10.3389/fimmu.2020.00955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center and College of Medicine, Columbus, OH, United States
| | - David Fox
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
62
|
Wang Z, Liu X, Cao F, Bellanti JA, Zhou J, Zheng SG. Prospects of the Use of Cell Therapy to Induce Immune Tolerance. Front Immunol 2020; 11:792. [PMID: 32477335 PMCID: PMC7235417 DOI: 10.3389/fimmu.2020.00792] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Conditions in which abnormal or excessive immune responses exist, such as autoimmune diseases (ADs), graft-versus-host disease, transplant rejection, and hypersensitivity reactions, are serious hazards to human health and well-being. The traditional immunosuppressive drugs used to treat these conditions can lead to decreased immune function, a higher risk of infection, and increased tumor susceptibility. As an alternative therapeutic approach, cell therapy, in which generally intact and living cells are injected, grafted, or implanted into a patient, has the potential to overcome the limitations of traditional drug treatment and to alleviate the symptoms of many refractory diseases. Cell therapy could be a powerful approach to induce immune tolerance and restore immune homeostasis with a deeper understanding of immune tolerance mechanisms and the development of new techniques. The purpose of this review is to describe the current panoramic scope of cell therapy for immune-mediated disorders, discuss the advantages and disadvantages of different types of cell therapy, and explore novel directions and future prospects for these tolerogenic therapies.
Collapse
Affiliation(s)
- Zhenkun Wang
- Central Laboratory of Hematology and Oncology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaolong Liu
- Central Laboratory of Hematology and Oncology, First Affiliated Hospital, Harbin Medical University, Harbin, China
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Fenglin Cao
- Central Laboratory of Hematology and Oncology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Joseph A. Bellanti
- Departments of Pediatrics and Microbiology-Immunology, The International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, United States
| | - Jin Zhou
- Department of Hematology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
63
|
Jiang X, Chen Y, Liu D, Shi T, Cheng X, He W, Li Y, Ryffel B, Zheng SG, Zheng Y. Secoeudesma sesquiterpenes lactone A alleviates inflammation and offers adjuvant protection in severe infection of carbapenem-resistant Klebsiella pneumoniae. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112605. [PMID: 31981749 DOI: 10.1016/j.jep.2020.112605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/07/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Secoeudesma sesquiterpenes lactone A (SESLA) is a sesquiterpene compound isolated from Inula japonica Thunb. (I. japonica). It is an herb widely distributed in Asian countries often used for the treatment of various conditions including tumors, bronchitis and bacterial and viral infections. It has been reported that SESLA could significantly inhibit the production of nitric oxide (NO) by lipopolysaccharide (LPS) in Raw264.7 cells. However, the mechanism responsible for this anti-inflammatory role and its role in the treatment of antibiotic-resistant bacterial infection, e.g., carbapenem-resistant Klebsiella pneumoniae (CRKP), remain to be investigated. AIM OF THE STUDY This study was carried out to investigate the protective anti-inflammatory role and the underlying molecular mechanisms of SESLA in LPS or CRKP evoked inflammation. MATERIALS AND METHODS ELISA and PCR were utilized to detect the expression of inflammatory mediators in LPS or heat-killed CRKP (HK CRKP)-stimulated immune cells containing different concentrations of SESLA. The protective role of SESLA was observed in mice challenged with a lethal dose of CRKP. Mice were intraperitoneally injected with CRKP to create a septic mouse model to evaluate the protective role of SESLA in vivo. Phosphorylated proteins, which represented the activation of signaling pathways, were examined by Western blot. RESULTS SESLA was showed to inhibit the expression of inflammatory mediators in various macrophages and dendritic cells upon stimulation of LPS or HK CRKP. It also facilitated phagocytosis of bacteria by Raw264.7 cells. The combined use of SELSA and the ineffective antibiotic, meropenem, increased the survival rate of CRKP infected mice from 25% to 50%. ERK, NF-κB and PI3K/Akt pathways accounted for the anti-inflammatory role of SESLA with the stimulation of LPS. CONCLUSION According to the notable anti-inflammatory effect in vitro and its joint protective effects on a septic mouse model, SESLA might act as an adjuvant drug candidate for sepsis, even those caused by antibiotic-resistant bacteria, e.g., CRKP.
Collapse
Affiliation(s)
- Xinru Jiang
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijian Chen
- Institute of Antibiotics, Huashan Hospital, Fudan University & Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, China
| | - Dan Liu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Shi
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Cheng
- Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weigang He
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinhong Li
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Song Guo Zheng
- Division of Immunology and Rheumatology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, USA.
| | - Yuejuan Zheng
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
64
|
Bi X, Guo XH, Mo BY, Wang ML, Luo XQ, Chen YX, Liu F, Olsen N, Pan YF, Zheng SG. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis. EBioMedicine 2019; 50:408-420. [PMID: 31791845 PMCID: PMC6921299 DOI: 10.1016/j.ebiom.2019.11.024] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have drawn increasing attention because they play a pivotal role in various types of autoimmune diseases, including rheumatoid arthritis (RA). Fibroblast-like synoviocytes (FLSs), a prominent component of hyperplastic synovial pannus tissue, are the primary effector cells in RA synovial hyperplasia and invasion which can lead to joint destruction. In this study, we investigated whether lncRNAs could act as competing endogenous RNAs to regulate the pathological behaviors of RA-FLSs. Methods LncRNA microarray was conducted to establish lncRNA expression profiles in FLSs isolated from RA patients and healthy controls (HCs). Differentially expressed lncRNAs were verified by quantitative real-time PCR (qRT-PCR) on RA-FLSs and synovial fluid. The functional role of lncRNA PICSAR downregulation was evaluated in RA-FLSs. We conducted molecular biological analysis to predict miRNAs which have a potential binding site for PICSAR and further refined the results by qRT-PCR. Luciferase reporter assay was adopted to validate the interaction of lncRNA PICSAR and miR-4701-5p. Western Blot and qPCR were used to identify the target gene and protein. The functional role of miR-4701-5p upregulation was examined in RA-FLSs. Findings We identified a long intergenic non-protein-coding RNA162 (LINC00162), also known as lncRNA PICSAR (p38 inhibited cutaneous squamous cell carcinoma associated lincRNA), has significantly higher expression in RA-FLSs and RA synovial fluid. The cell proliferation, migration, invasion and proinflammatory cytokines production of RA-FLSs showed significant alterations after the lncRNA PICSAR suppression. Mechanistically, lncRNA PICSAR functioned through sponging miR-4701-5p in RA-FLSs. Interpretation Our results reveal PICSAR may exert an essential role in promoting synovial invasion and joint destruction by sponging miR-4701-5p in RA and that lncRNA PICSAR may act as a biomarker of RA.
Collapse
Affiliation(s)
- Xuan Bi
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Xing Hua Guo
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Bi Yao Mo
- Division of Rheumatology, Department of Internal Medicine, Hainan General Hospital, Haikou, China
| | - Man Li Wang
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Xi Qing Luo
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Yi Xiong Chen
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Fang Liu
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nancy Olsen
- Department of Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Yun Feng Pan
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China.
| | - Song Guo Zheng
- Department of Internal Medicine, the Ohio State University Wexner Medical Center, Columbus, OH 43210, United States.
| |
Collapse
|
65
|
Dang J, Zhu S, Wang J. A protocol for humanized synovitis mice model. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2019; 8:47-52. [PMID: 31777685 PMCID: PMC6872480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disease that causes progressive chronic inflammation of the joints and destruction of articular cartilage and bone erosion. Cartilage destruction is a key characteristic in patients with RA. RA fibroblast-like synoviocytes (FLS) mainly contributes to local production of cytokines, inflammatory mediators and MMPs, and to migrate and destruct joint cartilage. Here, we summarized a detailed protocol for developing a humanized synovitis animal model. A cartilage-sponge complex without RA FLS was implanted under the left flank skin of a SCID mouse primarily, two weeks later, cartilage-sponge complex containing RA FLS was inserted under the right skin of the contralateral flank. The H&E staining clearly helps to identify the cartilage damage on the day 45 after second implantation. This model is highly significant to investigate the role and mechanisms of agents or cells in targeting RA FLS in vivo.
Collapse
Affiliation(s)
- Junlong Dang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
- Division of Rheumatology, Department of Medicine, Penn State University College of MedicineHershey 17033, USA
| | - Shangling Zhu
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Julie Wang
- Division of Rheumatology, Department of Medicine, Penn State University College of MedicineHershey 17033, USA
- Division of Immunology and Rheumatology, Department of Internal Medicine, Ohio State University College of MedicineColumbus 43210, USA
| |
Collapse
|
66
|
Li JY, Ren KK, Zhang WJ, Xiao L, Wu HY, Liu QY, Ding T, Zhang XC, Nie WJ, Ke Y, Deng KY, Liu QW, Xin HB. Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway. Stem Cell Res Ther 2019; 10:247. [PMID: 31399039 PMCID: PMC6688220 DOI: 10.1186/s13287-019-1366-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background Increasing evidence has shown that mesenchymal stem cells (MSCs) yield a favorable therapeutic benefit for thermal burn skin wounds. Human amniotic MSCs (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammatory potential which makes them suitable for treating skin wounds. However, the exact effects of hAMSCs on the healing of thermal burn skin wounds and their potential mechanisms are not explored. Methods hAMSCs were isolated from amniotic membrane and characterized by RT-PCR, flow cytometry, immunofluorescence, and tumorigenicity test. We assessed the effects of hAMSCs and hAMSC conditional medium (CM) on wound healing in a deep second-degree burn injury model of mice. We then investigated the biological effects of hAMSCs and hAMSC-CM on the apoptosis and proliferation of heat stress-injured human keratinocytes HaCAT and dermal fibroblasts (DFL) both in vivo and in vitro. Next, we explored the underlying mechanisms by assessing PI3K/AKT and GSK3β/β-catenin signaling pathways in heat injured HaCAT and DFL cells after hAMSCs and hAMSC-CM treatments using PI3K inhibitor LY294002 and β-catenin inhibitor ICG001. Antibody array assay was used to identify the cytokines secreted by hAMSCs that may activate PI3K/AKT signaling pathway. Results Our results showed that hAMSCs expressed various markers of embryonic stem cells and mesenchymal stem cells and have low immunogenicity and no tumorigenicity. hAMSC and hAMSC-CM transplantation significantly promoted thermal burn wound healing by accelerating re-epithelialization with increased expression of CK19 and PCNA in vivo. hAMSCs and hAMSC-CM markedly inhibited heat stress-induced apoptosis in HaCAT and DFL cells in vitro through activation of PI3K/AKT signaling and promoted their proliferation by activating GSK3β/β-catenin signaling. Furthermore, we demonstrated that hAMSC-mediated activation of GSK3β/β-catenin signaling was dependent on PI3K/AKT signaling pathway. Antibody array assay showed that a panel of cytokines including PAI-1, C-GSF, periostin, and TIMP-1 delivered from hAMSCs may contribute to the improvement of the wound healing through activating PI3K/AKT signaling pathway. Conclusion Our results demonstrated that hAMSCs and hAMSC-CM efficiently cure heat stress-induced skin injury by inhibiting apoptosis of skin cells and promoting their proliferation through activating PI3K/AKT signaling pathway, suggesting that hAMSCs and hAMSC-CM may provide an alternative therapeutic approach for the treatment of skin injury. Electronic supplementary material The online version of this article (10.1186/s13287-019-1366-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing-Yuan Li
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, People's Republic of China.,School of Life and Science, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Kang-Kang Ren
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, People's Republic of China
| | - Wen-Jie Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, People's Republic of China
| | - Ling Xiao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, People's Republic of China
| | - Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, People's Republic of China
| | - Qian-Yu Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, People's Republic of China
| | - Ting Ding
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, People's Republic of China
| | - Xiang-Cheng Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Wen-Jia Nie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, People's Republic of China
| | - Yu Ke
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, People's Republic of China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, People's Republic of China
| | - Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, People's Republic of China.
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, People's Republic of China. .,School of Life and Science, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
67
|
Du H, Zhang X, Zeng Y, Huang X, Chen H, Wang S, Wu J, Li Q, Zhu W, Li H, Liu T, Yu Q, Wu Y, Jie L. A Novel Phytochemical, DIM, Inhibits Proliferation, Migration, Invasion and TNF-α Induced Inflammatory Cytokine Production of Synovial Fibroblasts From Rheumatoid Arthritis Patients by Targeting MAPK and AKT/mTOR Signal Pathway. Front Immunol 2019; 10:1620. [PMID: 31396207 PMCID: PMC6663984 DOI: 10.3389/fimmu.2019.01620] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/28/2019] [Indexed: 01/19/2023] Open
Abstract
In rheumatoid arthritis(RA) pathogenesis, activated RA fibroblast-like synoviocytes (RA-FLSs) exhibit similar proliferative features as tumor cells and subsequent erosion to cartilage will eventually lead to joint destruction. Therefore, it is imperative to search for compounds, which can effectively inhibit the abnormal activation of RA-FLSs, and retard RA progression.3′3-Diindolylmethane (DIM), the major product of the acid-catalyzed oligomerization of indole-3-carbinol from cruciferous vegetables, has been reported to be functionally relevant to inhibition of migration, invasion and carcinogenesis in some solid tumors. In this study, we explored the anti-proliferation, anti-metastasis and anti-inflammation effects of DIM on RA-FLSs as well as the underlying molecular mechanisms. To do this, primary RA-FLSs were isolated from RA patients and an animal model. Cell proliferation, migration and invasion were measured using CCK-8, scratch, and Transwell assays, respectively. The effects of DIM on Matrix metalloproteinases (MMPs) and some inflammatory factors mRNA and key molecules such as some inflammatory factors and those involved in aberrantly-activated signaling pathway in response to tumor necrosis factor α(TNF-α), a typical characteristic mediator in RA-FLS, were quantitatively measured by real-time PCR and western blotting. Moreover, the effect of DIM on adjuvant induced arthritis(AIA) models was evaluated with C57BL/6 mice in vivo. The results showed that DIM inhibited proliferation, migration and invasion of RA-FLS in vitro. Meanwhile, DIM dramatically suppressed TNF-α–induced increases in the mRNA levels of MMP-2, MMP-3, MMP-8, and MMP-9; as well as the proinflammatory factors IL-6, IL-8, and IL-1β. Mechanistic studies revealed that DIM is able to suppress phosphorylated activation not only of p38, JNK in MAPK pathway but of AKT, mTOR and downstream molecules in the AKT/mTOR pathway. Moreover, DIM treatment decreased expression levels of proinflammatory cytokines in the serum and alleviated arthritis severity in the knee joints of AIA mice. Taken together, our findings demonstrate that DIM could inhibit proliferation, migration and invasion of RA-FLSs and reduce proinflammatory factors induced by TNF-α in vitro by blocking MAPK and AKT/mTOR pathway and prevent inflammation and knee joint destruction in vivo, which suggests that DIM might have therapeutic potential for RA.
Collapse
Affiliation(s)
- Hongyan Du
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xi Zhang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yongchang Zeng
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaoming Huang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Hao Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Suihai Wang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Li
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Zhu
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Tiancai Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingsong Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ligang Jie
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
68
|
Margheri F, Laurenzana A, Giani T, Maggi L, Cosmi L, Annunziato F, Cimaz R, Del Rosso M. The protease systems and their pathogenic role in juvenile idiopathic arthritis. Autoimmun Rev 2019; 18:761-766. [PMID: 31181328 DOI: 10.1016/j.autrev.2019.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
Numerous proteases produced by synovial cells of arthritic joints, chondrocytes, macrophages and polymorphonuclear cells have been identified as responsible for the joint damage in rheumatoid arthritis. There are few scientific contributions aimed to identify similar mechanisms in the joints of patients with juvenile idiopathic arthritis. Recently, some mechanisms emerged, triggered by the TH17 and TH1/TH17 lymphocytes, which could shed new light on unexpected pathogenic pathways of joint damage in the JIA, mainly regarding the RANK-RANKL pathway. Other novelties are linked to the mechanisms of acidification of the synovial fluid, which create a microenvironment suitable for the extracellular activity of lysosomal enzymes. Some biological drugs currently used in the therapy of JIA can interfere with these mechanisms.
Collapse
Affiliation(s)
- Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| | - Teresa Giani
- Department of Pediatrics, Rheumatology Unit, Anna Meyer Children's Hospital, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | | | - Rolando Cimaz
- Department of Clinical Sciences and Community Health, University of Milano, Italy.
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy
| |
Collapse
|
69
|
Yang QX, Zhong S, He L, Jia XJ, Tang H, Cheng ST, Ren JH, Yu HB, Zhou L, Zhou HZ, Ren F, Hu ZW, Gong R, Huang AL, Chen J. PBK overexpression promotes metastasis of hepatocellular carcinoma via activating ETV4-uPAR signaling pathway. Cancer Lett 2019; 452:90-102. [PMID: 30914208 DOI: 10.1016/j.canlet.2019.03.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023]
Abstract
Invasion and metastasis are the predominant causes of lethal outcomes in patients with hepatocellular carcinoma (HCC). However, the molecular mechanism underlying the invasive or metastatic process are still insufficiently understood. Here, we first integrated several public databases and identified a novel protein kinase, PDZ-binding kinase (PBK) that was frequently upregulated and correlated with poor prognosis in patients with HCC. Gain- or loss-of-function analysis revealed that PBK promoted migration and invasion of HCC cells both in vitro and in vivo. Mechanistically, PBK enhanced uPAR expression by activating its promoter activity. Chromatin immunoprecipitation (ChIP) assay showed that ETV4 directly bound to the core region of uPAR promoter while PBK could enhance the binding of ETV4 to uPAR promoter. In orthotopic mouse model, PBK knockdown markedly inhibited the lung metastasis of HCC cells, while this effect was significantly restored by uPAR overexpression. Finally, there was a positive correlation between PBK and uPAR, ETV4 and uPAR in HCC clinical samples. Collectively, these findings revealed that PBK acted as a crucial kinase by promoting invasion and migration via the ETV4-uPAR signaling pathway, and it therefore could be a promising diagnostic biomarker and therapeutic target for HCC metastasis.
Collapse
Affiliation(s)
- Qiu-Xia Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shan Zhong
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lin He
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiao-Jiong Jia
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Tang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hai-Bo Yu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hong-Zhong Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhong-Wen Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Gong
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
70
|
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease and is supposed to have both genetic and environmental backgrounds. Plenty of studies have demonstrated the roles of long non-coding RNAs (lncRNAs) in the initiation and development of RA. Numerous lncRNAs have been found to be dysregulated in RA and to be correlated with disease activity of RA, which indicates potential diagnostic roles of lncRNAs. In addition to working as biomarkers for RA, lncRNAs participate in many specific pathological processes including inflammation, aberrant proliferation, migration, invasion and apoptosis. Further screenings and researches are required to validate the clinical potentials of lncRNAs as diagnostic and therapeutic targets in RA.
Collapse
Affiliation(s)
- Junyu Liang
- Division of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, Hangzhou, China
| | - Weiqian Chen
- Division of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, Hangzhou, China
| | - Jin Lin
- Division of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, Hangzhou, China
| |
Collapse
|
71
|
Wu J, Zhao FT, Fan KJ, Zhang J, Xu BX, Wang QS, Tang TT, Wang TY. Dihydromyricetin Inhibits Inflammation of Fibroblast-Like Synoviocytes through Regulation of Nuclear Factor- κB Signaling in Rats with Collagen-Induced Arthritis. J Pharmacol Exp Ther 2019; 368:218-228. [PMID: 30530730 DOI: 10.1124/jpet.118.253369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022] Open
Abstract
Dihydromyricetin (DMY), the main flavonoid of Ampelopsis grossedentata, has potent anti-inflammatory activity. However, the effect of DMY on chronic autoimmune arthritis remains undefined. In this study, we investigated the therapeutic effects of DMY on collagen-induced arthritis (CIA). Wistar rats were immunized with bovine type II collagen to establish CIA and were then administered DMY intraperitoneally (5, 25, and 50 mg/kg) every other day for 5 weeks. Paw swelling, clinical scoring, and histologic analysis were assessed to determine the therapeutic effects of DMY on the development of arthritis in CIA rats. The results showed that treatment with DMY significantly reduced erythema and swelling in the paws of CIA rats. Pathologic analysis of the knee joints and peripheral blood cytokine assay results confirmed the antiarthritic effects of DMY on synovitis and inflammation. Fibroblast-like synoviocytes (FLSs) were isolated from the synovium of CIA rats and treated with 10 ng/ml interleukin (IL)-1β DMY significantly inhibited the proliferation, migration, and inflammation of IL-1β-induced FLSs, whereas it significantly increased IL-1β-induced FLS apoptosis in a dose-dependent manner (6.25-25 μM). Moreover, DMY suppressed phosphorylation of IκB kinase (IKK) and inhibitor of NF-κB α and subsequently reduced the IL-1β-induced nucleus translocation of NF-κB in FLSs. Through a molecular docking assay, we demonstrated that DMY could directly bind to the Thr9 and Asp88 residues in IKKα and the Asp95, Asn142, and Gln167 residues in IKKβ These findings demonstrate that DMY could alleviate inflammation in CIA rats and attenuate IL-1β-induced activities in FLSs through suppression of NF-κB signaling.
Collapse
Affiliation(s)
- Jing Wu
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Fu-Tao Zhao
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Kai-Jian Fan
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Jun Zhang
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Bing-Xing Xu
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Qi-Shan Wang
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Ting-Ting Tang
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| | - Ting-Yu Wang
- Departments of Pharmacy (J.W., K.-J.F., B.-X.X., Q.-S.W., T.-Y.W.) and Rheumatology and Immunology (F.-T.Z.), and Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery (T.-T.T.), Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; and Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (J.Z.)
| |
Collapse
|
72
|
Liu F, Feng XX, Zhu SL, Huang HY, Chen YD, Pan YF, June RR, Zheng SG, Huang JL. Sonic Hedgehog Signaling Pathway Mediates Proliferation and Migration of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via MAPK/ERK Signaling Pathway. Front Immunol 2018; 9:2847. [PMID: 30568656 PMCID: PMC6290332 DOI: 10.3389/fimmu.2018.02847] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/19/2018] [Indexed: 01/05/2023] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are the major effector cells that lead to rheumatoid arthritis (RA) synovitis and joint destruction. Our previous studies showed that Sonic Hedgehog (SHH) signaling pathway is involved in aberrant activation of RA-FLSs and inhibition of SHH pathway decreases proliferation and migration of RA-FLSs. The objective of this study was to investigate if the SHH pathway mediates proliferation and migration of RA-FLSs via the mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) signaling pathway. SHH signaling was studied by using SHH agonist (Purmorphamine) and antagonist (Cyclopamine) targeting the Smoothened (SMO) in FLSs. U0126-EtOH was used to inhibit the MAPK/ERK signaling pathway. The phosphorylation of ERK 1/2 (p-ERKl/2) was examined by western blot. Cell viability was detected using cell proliferation and cytotoxicity kit-8 (CCK8), and cell cycle distribution and proliferating cells were evaluated by the flow cytometry. Cell migration was examined by Transwell assay. Results showed that, compared with the control group, Purmorphamine increased the levels of p-ERK1/2 in concentration-and time-dependent manners (P < 0.01). Co-treated with Purmorphamine and U0126-EtOH or Cyclopamine both decreased the levels of p-ERK1/2 (P < 0.05). RA-FLSs treated with Purmorphamine resulted in alteration of cell cycle distribution, increasing of proliferating cells, cell viability, and migration cells compared to controls (P < 0.01). However, the above phenomenon can be abolished by U0126-EtOH (P < 0.05). The findings suggest that SHH signaling pathway mediates proliferation and migration of RA-FLSs via MAPK/ERK pathway and may contribute to progression of RA. Targeting SHH signaling may have a therapeutic potential in patients with RA.
Collapse
Affiliation(s)
- Fang Liu
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital Sun Yat-sen University, Guangzhou, China
| | - Xiao Xue Feng
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shang Ling Zhu
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Yu Huang
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Ying Di Chen
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yun Feng Pan
- Division of Rheumatology, Department of Internal Medicine, The Third Affiliated Hospital Sun Yat-sen University, Guangzhou, China
| | - Rayford R June
- Division of Rheumatology, Milton S. Hershey Medical College at Penn State University, Hershey, PA, United States
| | - Song Guo Zheng
- Division of Rheumatology, Milton S. Hershey Medical College at Penn State University, Hershey, PA, United States
| | - Jian Lin Huang
- Division of Rheumatology, Department of Internal Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
73
|
Huang JM, Ren RY, Bao Y, Guo JC, Xiang W, Jing XZ, Shi J, Zhang GX, Li L, Tian Y, Kang H, Guo FJ. Ulinastatin Inhibits Osteoclastogenesis and Suppresses Ovariectomy-Induced Bone Loss by Downregulating uPAR. Front Pharmacol 2018; 9:1016. [PMID: 30245631 PMCID: PMC6137085 DOI: 10.3389/fphar.2018.01016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Abstract
Recent studies indicate that uPAR acts a crucial part in cell migration and the modulation of bone homeostasis. As a natural serine protease inhibitor, ulinastatin owns the capacity to reduce proinflammatory factors, downregulate the activation of NF-κB and mitogen-activated protein kinases (MAPKs) signaling pathways. Osteoclastogenesis has been demonstrated to be related with low-grade inflammation which involves cell migration, thus we speculate that ulinastatin may have a certain kind of impact on uPAR so as to be a potential inhibiting agent of osteoclastogenesis. In this research, we investigated the role which ulinastatin plays in RANKL-induced osteoclastogenesis both in vivo and in vitro. Ulinastatin inhibited osteoclast formation and bone resorption in a dose-dependent manner in primary bone marrow-derived macrophages (BMMs), and knockdown of uPAR could completely repress the formation of osteoclasts. At the molecular level, ulinastatin suppressed RANKL-induced activation of cathepsin K, TRAP, nuclear factor-κB (NF-κB) and MAPKs, and decreased the expression of uPAR. At the meantime, ulinastatin also decreased the expression of osteoclast marker genes, including cathepsin K, TRAP, RANK, and NFATc1. Besides, ulinastatin prevented bone loss in ovariectomized C57 mice by inhibiting the formation of osteoclasts. To sum up, this research confirmed that ulinastatin has the ability to inhibit osteoclastogenesis and prevent bone loss, and uPAR plays a crucial role in that process. Therefore, ulinastatin could be chosen as an effective alternative therapeutics for osteoclast-related diseases.
Collapse
Affiliation(s)
- Jun-Ming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran-Yue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Bao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Chao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Zhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Shi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Xiang Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Tian
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng-Jin Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
74
|
Chen W, Wang J, Xu Z, Huang F, Qian W, Ma J, Wee HB, Lewis GS, June RR, Schafer PH, Lin J, Zheng SG. Apremilast Ameliorates Experimental Arthritis via Suppression of Th1 and Th17 Cells and Enhancement of CD4 +Foxp3 + Regulatory T Cells Differentiation. Front Immunol 2018; 9:1662. [PMID: 30072998 PMCID: PMC6058600 DOI: 10.3389/fimmu.2018.01662] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/04/2018] [Indexed: 01/08/2023] Open
Abstract
Apremilast is a novel phosphodiesterase 4 (PDE4) inhibitor suppressing immune and inflammatory responses. We assessed the anti-inflammatory effects of Apremilast in type II collagen (CII)-induced arthritis (CIA) mouse model. To determine whether Apremilast can ameliorate arthritis onset in this model, Apremilast was given orally at day 14 after CII immunization. Bone erosion was measured by histological and micro-computed tomographic analysis. Anti-mouse CII antibody levels were measured by enzyme-linked immunosorbent assay, and Th17, Th1 cells, and CD4+Foxp3+ regulatory T (Treg) cells were assessed by flow cytometry in the lymph nodes. Human cartilage and rheumatoid arthritis (RA) synovial fibroblasts (RASFs) implantation in the severe combined immunodeficiency mouse model of RA were used to study the role of Apremilast in the suppression of RASF-mediated cartilage destruction in vivo. Compared with untreated and vehicle control groups, we found that Apremilast therapy delayed arthritis onset and reduced arthritis scores in the CIA model. Total serum IgG, IgG1, IgG2a, and IgG2b were all decreased in the Apremilast treatment groups. Moreover, Apremilast markedly prevented the development of bone erosions in CIA mice by CT analysis. Furthermore, in the Apremilast treated group, the frequency of Th17 cells and Th1 cells was significantly decreased while Treg cells’ frequency was significantly increased. The high dose of Apremilast (25 mg/kg) was superior to low dose (5 mg/kg) in treating CIA. Apremilast treatment reduced the migratory ability of RASFs and their destructive effect on cartilage. Compared with the model group, Apremilast treatment significantly reduced the RASFs invasion cartilage scores in both primary implant and contralateral implant models. Our data suggest that Apremilast is effective in treating autoimmune arthritis and preventing the bone erosion in the CIA model, implicating its therapeutic potential in patients with RA.
Collapse
Affiliation(s)
- Weiqian Chen
- Division of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Division of Rheumatology, Department of Medicine, Penn State University Hershey College of Medicine, Hershey, PA, United States
| | - Julie Wang
- Division of Rheumatology, Department of Medicine, Penn State University Hershey College of Medicine, Hershey, PA, United States
| | - Zhenjian Xu
- Division of Rheumatology, Department of Medicine, Penn State University Hershey College of Medicine, Hershey, PA, United States.,Department of Clinical Immunology, Third Affiliated Hospital, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feng Huang
- Department of Clinical Immunology, Third Affiliated Hospital, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenbin Qian
- Division of Hematology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jilin Ma
- Division of Rheumatology, Immunology, and Nephrology, Zhejiang Traditional Chinese Medicine and Western Medicine Hospital, Hangzhou, China
| | - Hwa Bok Wee
- Department of Orthopaedics and Rehabilitation, Penn State University Hershey College of Medicine, Hershey, PA, United States
| | - Gregory S Lewis
- Department of Orthopaedics and Rehabilitation, Penn State University Hershey College of Medicine, Hershey, PA, United States
| | - Rayford R June
- Division of Rheumatology, Department of Medicine, Penn State University Hershey College of Medicine, Hershey, PA, United States
| | - Peter H Schafer
- Translational Development, Inflammation and Immunology, Celgene Corporation, Summit, NJ, United States
| | - Jin Lin
- Division of Rheumatology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Song Guo Zheng
- Division of Rheumatology, Department of Medicine, Penn State University Hershey College of Medicine, Hershey, PA, United States
| |
Collapse
|
75
|
Dinesh P, Rasool M. uPA/uPAR signaling in rheumatoid arthritis: Shedding light on its mechanism of action. Pharmacol Res 2018; 134:31-39. [PMID: 29859810 DOI: 10.1016/j.phrs.2018.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic autoimmune inflammatory disorder affecting multiple joints. Various cytokines, chemokines and growth factors synergistically modulate the joint physiology leading to bone erosion and cartilage degradation. Other than these conventional mediators that are well established in the past, the newly identified plasminogen activator (PA) family of proteins have been witnessed to possess a multifactorial approach in mediating RA pathogenesis. One such family of proteins comprises of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR)/soluble-type plasminogen activator receptor (suPAR). PA family of proteins are classified into two types namely: uPA and tissue type plasminogen activator (tPA). Both these subtypes have been implicated to play a key role in RA disease progression. However during RA pathogenesis, uPA secreted by neutrophils, chondrocytes, and monocytes are designated to interact with uPAR expressed on macrophages, fibroblast-like synoviocytes (FLS), chondrocytes and endothelial cells. Interaction of uPA/uPAR promotes the disease progression of RA through secretion of several cytokines, chemokines, growth factors and matrix metalloproteinases (MMPs). Moreover, uPA/uPAR initiates inflammatory responses in macrophages and FLS through activation of PI3K/Akt signaling pathways. Furthermore, uPAR plays a dual role in osteoclastogenesis under the presence/absence of growth factors like monocyte-colony stimulating factor (M-CSF). Overall, this review emphasizes the role of uPA/uPAR on various immune cells, signaling pathways and osteoclastogenesis involved in RA pathogenesis.
Collapse
Affiliation(s)
- Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| | - MahaboobKhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India.
| |
Collapse
|
76
|
Mo BY, Guo XH, Yang MR, Liu F, Bi X, Liu Y, Fang LK, Luo XQ, Wang J, Bellanti JA, Pan YF, Zheng SG. Long Non-Coding RNA GAPLINC Promotes Tumor-Like Biologic Behaviors of Fibroblast-Like Synoviocytes as MicroRNA Sponging in Rheumatoid Arthritis Patients. Front Immunol 2018; 9:702. [PMID: 29692777 PMCID: PMC5902673 DOI: 10.3389/fimmu.2018.00702] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/22/2018] [Indexed: 01/15/2023] Open
Abstract
Rapidly accumulating evidence has now suggested that the long non-coding RNAs (LncRNAs), a large and diverse class of non-coding transcribed RNA molecules with diverse functional roles and mechanisms, play a major role in the pathogenesis of many human inflammatory diseases. Although some LncRNAs are overexpressed in plasma, T cell, and synovial tissues of patients with rheumatoid arthritis (RA), there is a dearth of knowledge in what role these transcripts play in fibroblast-like synoviocytes (FLSs) of these patients. Here, our studies showed that GAPLINC, a newly identified functional LncRNA in oncology, displayed a greater degree of expression in FLSs from RA than in patients with traumatic injury. GAPLINC suppression in RA-FLS cells revealed significant alterations in cell proliferation, invasion, migration, and proinflammatory cytokines production. Additionally, we performed a preliminary bioinformatics analysis of GAPLINC gene sequence in order to find its target molecules, using miRanda, PITA, RNAhybrid algorithms, Kyoto encyclopedia of genes and genomes, and gene ontology analysis. Since the results predicted that some of microRNAs and mRNA may interact with GAPLINC, we simulated a gene co-action network model based on a competitive endogenous RNA theory. Further verification of this model demonstrated that silencing of GAPLINC increased miR-382-5p and miR-575 expression. The results of this study suggest that GAPLINC may function as a novel microRNAs sponging agent affecting the biological characteristics of RA-FLSs. Additionally, GAPLINC may also promote RA-FLS tumor-like behaviors in a miR-382-5p-dependent and miR-575-dependent manner. Based upon these findings, LncRNA GAPLINC may provide a novel valuable therapeutic target for RA patients.
Collapse
Affiliation(s)
- Bi Yao Mo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xing Hua Guo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Meng Ru Yang
- Department of Internal Medicine, Division of Rheumatology, The Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Liu
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuan Bi
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Liu
- Center for Clinic Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Kai Fang
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Qing Luo
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Julie Wang
- Department of Medicine, Division of Rheumatology, Hershey Medical Center at Penn State University, Hershey, PA, United States
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Yun Feng Pan
- Department of Internal Medicine, Division of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Medicine, Division of Rheumatology, Hershey Medical Center at Penn State University, Hershey, PA, United States
| |
Collapse
|
77
|
Ye Y, Gao X, Yang N. LncRNA ZFAS1 promotes cell migration and invasion of fibroblast-like synoviocytes by suppression of miR-27a in rheumatoid arthritis. Hum Cell 2017; 31:14-21. [PMID: 28721682 DOI: 10.1007/s13577-017-0179-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/01/2017] [Indexed: 02/05/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic inflammatory disease. Synoviocyte migration and invasion were found to be essential to the pathology of RA. Upregulation of long noncoding RNA ZFAS1 has been observed in cancers and promotes cell migration and invasion. To date, the functions and mechanisms of ZFAS1 in RA have not been revealed. In this study, we analyzed expression pattern of ZFAS1 in RA patients and found that ZFAS1 expression was increased in synovial tissue and fibroblast-like synoviocytes (FLS) from RA patients (RA-FLS) compared with that in healthy donors. Functional assays showed that silence of ZFAS1 suppressed RA-FLS migration and invasion, while overexpression of ZFAS1 showed the opposite effect. Further investigation demonstrated that ZFAS1 directly interacted with miR-27a and decreased miR-27a expression. ZFAS1 promotes RA-FLS migration and invasion in an miR-27a-dependent manner. Taken together, the present study provides the first evidence that ZFAS1 promotes cell migration and invasion through miR-27a in RA-FLS, suggesting that ZFAS1 may be an effective therapeutic target for RA patients.
Collapse
Affiliation(s)
- Yang Ye
- Immunology Department, Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan, China.
| | - Xiaomei Gao
- Immunology Department, Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan, China
| | - Nanping Yang
- Immunology Department, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|