51
|
Li P, Shen Y, Cui P, Hu Y, Zhang Y, Miao F, Zhang A, Zhang J. Neuronal NLRC5 regulates MHC class I expression in Neuro-2a cells and also during hippocampal development. J Neurochem 2019; 152:182-194. [PMID: 31549732 DOI: 10.1111/jnc.14876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/20/2019] [Accepted: 09/17/2019] [Indexed: 12/25/2022]
Abstract
Major histocompatibility Complex class I (MHC I) molecules are ubiquitously expressed, being found in most nucleated cells, where they are central mediators of both the adaptive and innate immune responses. Recent studies have shown that MHC I are also expressed in the developing brain where they participate in synapse elimination and plasticity. Up-regulation of MHC I within the developing brain has been reported, however, the mechanism(s) regulating this developmental up-regulation of neuronal MHC I remains unknown. Here, we show NLR family CARD domain containing 5 (NLRC5), a newly identified member of the NLR family, is widely expressed in hippocampal neurons, and the expression pattern of NLRC5 coincides with increased MHC I mRNA in the developing hippocampus. Using a luciferase assay in Neuro-2a cells we demonstrate that NLRC5 can induce the activation of MHC I and this induction requires the W/S-X-Y motif. Further studies show that transcription factors regulatory factor X (RFX) and CREB1, which bind to X1 and X2 box, are crucial for NLRC5-mediated induction. Moreover immunoprecipitation experiments reveal that NLRC5 interacts with RFX subunits RFX5 and RFXANK. Knockout of Nlrc5 dramatically impairs basal expression of MHC I in mouse hippocampus. Taken together, our findings identify NLRC5 as a key regulator of MHC I up-regulation in the developing hippocampus and suggest an important role for NLRC5 in neurons. Cover Image for this issue: doi: 10.1111/jnc.14729.
Collapse
Affiliation(s)
- Ping Li
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Pengfei Cui
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Yue Hu
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ying Zhang
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China.,Jiangsu key laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
52
|
Kercher EM, Nath S, Rizvi I, Spring BQ. Cancer Cell-targeted and Activatable Photoimmunotherapy Spares T Cells in a 3D Coculture Model. Photochem Photobiol 2019; 96:295-300. [PMID: 31424560 DOI: 10.1111/php.13153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) is an established therapeutic modality that uses nonionizing near-infrared light to activate photocytotoxicity of endogenous or exogenous photosensitizers (PSs). An ongoing avenue of cancer research involves leveraging PDT to stimulate antitumor immune responses; however, these effects appear to be best elicited in low-dose regimens that do not provide significant tumor reduction using conventional, nonspecific PSs. The loss of immune enhancement at higher PDT doses may arise in part from indiscriminate damage to local immune cell populations, including tumor-infiltrating T cells. We previously introduced "tumor-targeted, activatable photoimmunotherapy" (taPIT) using molecular-targeted and cell-activatable antibody-PS conjugates to realize precision tumor photodamage with microscale fidelity. Here, we investigate the immune cell sparing effect provided by taPIT in a 3D model of the tumor immune microenvironment. We report that high-dose taPIT spares 25% of the local immune cell population, five times more than the conventional PDT regimen, in a 3D coculture model incorporating epithelial ovarian cancer cells and T cells. These findings suggest that the enhanced selectivity of taPIT may be utilized to achieve local tumor reduction with sparing of intratumor effector immune cells that would otherwise be lost if treated with conventional PDT.
Collapse
Affiliation(s)
- Eric M Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA.,Department of Physics, Northeastern University, Boston, MA
| | - Shubhankar Nath
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina State University, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Bryan Q Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA.,Department of Physics, Northeastern University, Boston, MA.,Department of Bioengineering, Northeastern University, Boston, MA
| |
Collapse
|
53
|
Vargas-Lagos C, Martínez D, Oyarzún R, Avendaño-Herrera R, Yáñez AJ, Pontigo JP, Vargas-Chacoff L. High doses of Francisella noatunensis induces an immune response in Eleginops maclovinus. FISH & SHELLFISH IMMUNOLOGY 2019; 90:1-11. [PMID: 31015063 DOI: 10.1016/j.fsi.2019.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Francisella noatunensis subsp. noatunensis, the etiological agent of Francisellosis, affects a large number of farmed species such as Salmo salar. This species coexists with several native species in the same ecosystem, including Eleginops maclovinus. Our objective was to evaluate the susceptibility, presence of clinical symptoms, and the ability of Eleginops maclovinus to respond to Francisella infection. For this, healthy individuals were inoculated with 1.5 × 101, 1.5 × 105, and 1.5 × 1010 bact/μL of Francisella by intraperitoneal injection, subsequently the fish were sampled on days 1, 3, 7, 14, 21, and 28 post injection (dpi). At the end of the experiment, no mortality, nor internal and external clinical signs were observed, although in the high dose anaemia was detected. Additionally, bacteria were detected in all three doses, however there was replication at day 28 only in the liver in the high dose. Analysis of gene expression by qPCR showed that the spleen generated an immune response against infection from day 1 dpi, however at day 7 dpi most of the genes suffered repressed expression; observing over expression of the genes C3, NLRC3, NLRC5, MHCI, IgM. In contrast, expression in the anterior kidney did not vary significantly during the challenge. IgM quantification showed the production of antibodies in the medium and high doses. This study provides new knowledge about Francisella infection and the long-lasting and specific immune response generated by Eleginops maclovinus. It also demonstrates its susceptibility to Francisellosis where there is a difference in the immune response according to the tissue.
Collapse
Affiliation(s)
- C Vargas-Lagos
- Programa de Magíster en Ciencias, Mención Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; (c)Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| | - D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - R Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - R Avendaño-Herrera
- (c)Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña Del Mar, Chile
| | - A J Yáñez
- (c)Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - J P Pontigo
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
54
|
Luan P, Jian W, Xu X, Kou W, Yu Q, Hu H, Li D, Wang W, Feinberg MW, Zhuang J, Xu Y, Peng W. NLRC5 inhibits neointima formation following vascular injury and directly interacts with PPARγ. Nat Commun 2019; 10:2882. [PMID: 31253783 PMCID: PMC6599027 DOI: 10.1038/s41467-019-10784-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
NLR Family CARD Domain Containing 5 (NLRC5), an important immune regulator in innate immunity, is involved in regulating inflammation and antigen presentation. However, the role of NLRC5 in vascular remodeling remains unknown. Here we report the role of NLRC5 on vascular remodeling and provide a better understanding of its underlying mechanism. Nlrc5 knockout (Nlrc5−/−) mice exhibit more severe intimal hyperplasia compared with wild-type mice after carotid ligation. Ex vivo data shows that NLRC5 deficiency leads to increased proliferation and migration of human aortic smooth muscle cells (HASMCs). NLRC5 binds to PPARγ and inhibits HASMC dedifferentiation. NACHT domain of NLRC5 is essential for the interaction with PPARγ and stimulation of PPARγ activity. Pioglitazone significantly rescues excessive intimal hyperplasia in Nlrc5−/− mice and attenuates the increased proliferation and dedifferentiation in NLRC5-deficient HASMCs. Our study demonstrates that NLRC5 regulates vascular remodeling by directly inhibiting SMC dysfunction via its interaction with PPARγ. NLRC5 is known for its role in inflammation and antigen presentation. Here Luan et al. find that NLRC5 protects mice from intimal hyperplasia following vascular injury, and regulates the response of vascular smooth muscle cells to injury through direct interaction with PPARγ.
Collapse
Affiliation(s)
- Peipei Luan
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.,Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Weixia Jian
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200092, China
| | - Xu Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Handan Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, 10032, USA
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
55
|
Inflammation research sails through the sea of immunology to reach immunometabolism. Int Immunopharmacol 2019; 73:128-145. [PMID: 31096130 DOI: 10.1016/j.intimp.2019.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 02/08/2023]
Abstract
Inflammation occurs as a result of acute trauma, invasion of the host by different pathogens, pathogen-associated molecular patterns (PAMPs) or chronic cellular stress generating damage-associated molecular patterns (DAMPs). Thus inflammation may occur under both sterile inflammatory conditions including certain cancers, autoimmune or autoinflammatory diseases (Rheumatic arthritis (RA)) and infectious diseases including sepsis, pneumonia-associated acute lung inflammation (ALI) or acute respiratory distress syndrome (ARDS). The pathogenesis of inflammation involves dysregulation of an otherwise protective immune response comprising of various innate and adaptive immune cells and humoral (cytokines and chemokines) mediators secreted by these immune cells upon the activation of signaling mechanisms regulated by the activation of different pattern recognition receptors (PRRs). However, the pro-inflammatory and anti-inflammatory action of these immune cells is determined by the metabolic stage of the immune cells. The metabolic process of immune cells is called immunometabolism and its shift determined by inflammatory stimuli is called immunometabolic reprogramming. The article focuses on the involvement of various immune cells generating the inflammation, their interaction, immunometabolic reprogramming, and the therapeutic targeting of the immunometabolism to manage inflammation.
Collapse
|
56
|
D'Orazio SEF. Innate and Adaptive Immune Responses during Listeria monocytogenes Infection. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0065-2019. [PMID: 31124430 PMCID: PMC11086964 DOI: 10.1128/microbiolspec.gpp3-0065-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/15/2022] Open
Abstract
It could be argued that we understand the immune response to infection with Listeria monocytogenes better than the immunity elicited by any other bacteria. L. monocytogenes are Gram-positive bacteria that are genetically tractable and easy to cultivate in vitro, and the mouse model of intravenous (i.v.) inoculation is highly reproducible. For these reasons, immunologists frequently use the mouse model of systemic listeriosis to dissect the mechanisms used by mammalian hosts to recognize and respond to infection. This article provides an overview of what we have learned over the past few decades and is divided into three sections: "Innate Immunity" describes how the host initially detects the presence of L. monocytogenes and characterizes the soluble and cellular responses that occur during the first few days postinfection; "Adaptive Immunity" discusses the exquisitely specific T cell response that mediates complete clearance of infection and immunological memory; "Use of Attenuated Listeria as a Vaccine Vector" highlights the ways that investigators have exploited our extensive knowledge of anti-Listeria immunity to develop cancer therapeutics.
Collapse
Affiliation(s)
- Sarah E F D'Orazio
- University of Kentucky, Microbiology, Immunology & Molecular Genetics, Lexington, KY 40536-0298
| |
Collapse
|
57
|
Wang M, Wang L, Fang L, Li S, Liu R. NLRC5 negatively regulates LTA‐induced inflammation via TLR2/NF‐κB and participates in TLR2‐mediated allergic airway inflammation. J Cell Physiol 2019; 234:19990-20001. [PMID: 30945291 DOI: 10.1002/jcp.28596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Muzi Wang
- Department of Geriatric Respiratory and Critical Care, Provincial Key Laboratory of Molecular Medicine for Geriatric Disease, Anhui Geriatric Institute The First Affiliated Hospital of Anhui Medical University Hefei Anhui China
| | - Lixia Wang
- Department of Geriatric Respiratory and Critical Care, Provincial Key Laboratory of Molecular Medicine for Geriatric Disease, Anhui Geriatric Institute The First Affiliated Hospital of Anhui Medical University Hefei Anhui China
| | - Lei Fang
- Department of Geriatric Respiratory and Critical Care, Provincial Key Laboratory of Molecular Medicine for Geriatric Disease, Anhui Geriatric Institute The First Affiliated Hospital of Anhui Medical University Hefei Anhui China
| | - Shuai Li
- Department of Intensive Care Unit The Fourth Affiliated Hospital of Anhui Medical University Hefei Anhui China
| | - Rongyu Liu
- Department of Geriatric Respiratory and Critical Care, Provincial Key Laboratory of Molecular Medicine for Geriatric Disease, Anhui Geriatric Institute The First Affiliated Hospital of Anhui Medical University Hefei Anhui China
| |
Collapse
|
58
|
Sun T, Ferrero RL, Girardin SE, Gommerman JL, Philpott DJ. NLRC5 deficiency has a moderate impact on immunodominant CD8 + T-cell responses during rotavirus infection of adult mice. Immunol Cell Biol 2019; 97:552-562. [PMID: 30768806 DOI: 10.1111/imcb.12244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/23/2023]
Abstract
The NOD-like receptor (NLR) family plays an important role in innate immunity. Class II transactivator and NOD-like receptor caspase activation and recruitment domain CARD containing 5 (NLRC5) are unusual members of the NLR family that instead of recognizing pathogen-associated or damage-associated molecular patterns, form enhanceosomes with adaptor molecules and modulate major histocompatibility complex (MHC) class II and MHC class I expression, respectively. While NLRC5 has been shown to play a role during intracellular pathogen infection and tumor cell immune evasion, its role in regulating antigen-specific CD8+ T-cell responses at the intestinal mucosa has not been investigated. Here, we take advantage of the rotavirus model in adult mice to dissect the impact of NLRC5 on CD8+ T-cell responses to this viral infection at the gut mucosa. We show that while Nlrc5-/- mice exhibited normal proportions of T-cell subpopulations in the intraepithelial and lamina propria compartments, these mice had decreased baseline MHC class I expression on various immune cells in the lamina propria. Upon rotavirus infection, Nlrc5 deficiency resulted in impaired H2-Kb -restricted antigen-specific CD8+ T-cell responses, which were recapitulated in mice deficient for Nlrc5 within the dendritic cell compartment. The impaired CD8+ T-cell response in Nlrc5-/- mice was not significant enough to impact viral titers, suggesting compensation in Nlrc5-/- mice, perhaps as a result of higher numbers of activated B cells in the mesenteric lymph nodes and normal rotavirus-specific immunoglobulin A responses. Collectively, our results demonstrate a minor role for NLRC5 in modulating H2-Kb -restricted antigen-specific CD8+ T-cell responses in the small intestine during rotavirus infection in adult mice.
Collapse
Affiliation(s)
- Tian Sun
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Stephen E Girardin
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jennifer L Gommerman
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dana J Philpott
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
59
|
Wu Y, Shi T, Li J. NLRC5: A paradigm for NLRs in immunological and inflammatory reaction. Cancer Lett 2019; 451:92-99. [PMID: 30867141 DOI: 10.1016/j.canlet.2019.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 12/29/2022]
Abstract
The nucleotide-binding domain leucine-rich repeat containing (NLR) family of proteins is mainly involved in microbial pathogen recognition, inflammatory responses, and cell death. NLRC5, the largest member of the NLR family, is currently receiving an increasing level of attention. NLRC5 has been demonstrated to be a potent negative regulator of NF-κB signaling pathway-mediated inflammatory response. Moreover, accumulating evidence has indicated that NLRC5 is closely related to pathological processes of various cancers. In this review, we present an overview on NLRC5, addressing its underlying molecular mechanisms and implications in host defense, inflammatory response, and associated cancers.
Collapse
Affiliation(s)
- Yuting Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, PR China.
| | - Tianlu Shi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China.
| | - Jun Li
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, PR China.
| |
Collapse
|
60
|
The Obligate Intracellular Bacterium Orientia tsutsugamushi Targets NLRC5 To Modulate the Major Histocompatibility Complex Class I Pathway. Infect Immun 2019; 87:IAI.00876-18. [PMID: 30559222 DOI: 10.1128/iai.00876-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Orientia tsutsugamushi is an obligate intracellular bacterium that infects mononuclear and endothelial cells to cause the emerging global health threat scrub typhus. The ability of O. tsutsugamushi to survive in monocytes facilitates bacterial dissemination to endothelial cells, which can subsequently lead to several potentially fatal sequelae. As a strict intracellular pathogen that lives in the cytoplasm of host cells, O. tsutsugamushi has evolved to counter adaptive immunity. How the pathogen does so and the outcome of this strategy in monocytes versus endothelial cells are poorly understood. This report demonstrates that O. tsutsugamushi reduces cellular levels of NOD-, LRR-, and CARD-containing 5 (NLRC5), a recently identified specific transactivator of major histocompatibility complex class I (MHC-I) component gene expression, to inhibit MHC-I biosynthesis. Importantly, the efficacy of this approach varies with the host cell type infected. In nonprofessional antigen-presenting HeLa and primary human aortic endothelial cells, the O. tsutsugamushi-mediated reduction of NLRC5 results in lowered MHC-I component transcription and, consequently, lower total and/or surface MHC-I levels throughout 72 h of infection. However, in infected THP-1 monocytes, which are professional antigen-presenting cells, the reductions in NLRC5 and MHC-I observed during the first 24 h reverse thereafter. O. tsutsugamushi is the first example of a microbe that targets NLRC5 to modulate the MHC-I pathway. The differential ability of O. tsutsugamushi to modulate this pathway in nonprofessional versus professional antigen-presenting cells could influence morbidity and mortality from scrub typhus.
Collapse
|
61
|
Vijayan S, Sidiq T, Yousuf S, van den Elsen PJ, Kobayashi KS. Class I transactivator, NLRC5: a central player in the MHC class I pathway and cancer immune surveillance. Immunogenetics 2019; 71:273-282. [PMID: 30706093 DOI: 10.1007/s00251-019-01106-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Major histocompatibility complex (MHC) class I and class II molecules play critical roles in the activation of the adaptive immune system by presenting antigens to CD8+ and CD4+ T cells, respectively. Although it has been well known that CIITA (MHC class II transactivator), an NLR (nucleotide-binding domain, leucine-rich-repeat containing) protein, as a master regulator of MHC class II gene expression, the mechanism of MHC class I gene transactivation was unclear. Recently, another NLR protein, NLRC5 (NLR family, CARD domain-containing 5), was identified as an MHC class I transactivator (CITA). NLRC5 is a critical regulator for the transcriptional activation of MHC class I genes and other genes involved in the MHC class I antigen presentation pathway. CITA/NLRC5 plays a crucial role in human cancer immunity through the recruitment and activation of tumor killing CD8+ T cells. Here, we discuss the molecular function and mechanism of CITA/NLRC5 in the MHC class I pathway and its role in cancer.
Collapse
Affiliation(s)
- Saptha Vijayan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Tabasum Sidiq
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Suhail Yousuf
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Peter J van den Elsen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.,Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, 77843, USA. .,Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
62
|
Chen Y, Li H, Xiao C, Zeng X, Xiao X, Zhou Q, Xiao P. NLRC5: potential novel non-invasive biomarker for predicting and reflecting the progression of IgA nephritis. J Transl Med 2018; 16:317. [PMID: 30453994 PMCID: PMC6245714 DOI: 10.1186/s12967-018-1694-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/13/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The nucleotide oligomerization domain-like receptor subfamily C5 (NLRC5) is primarily expressed in the adaptive and innate immune systems. NLRC5 was recently discovered to regulate immunity and inflammatory responses. Abnormal immune and inflammatory responses are considered critical pathogenesis in IgA nephritis (IgAN). However, the role of NLRC5 in IgAN is unknown. We previously showed that NLRC5 can be detected in patients with IgAN; herein, we further examined the pathophysiological significance of NLRC5 in the serum and renal deposits of patients with IgAN. This study is the first to find that NLRC5 is closely correlated with IgAN. METHODS IgAN patients (n = 50) who were diagnosed by renal biopsy provided blood and renal biopsy tissue, and age-matched healthy control subjects (blood donators n = 22; tissue donators n = 5) were included. Renal biopsies were diagnosed, and blood biochemical parameters were tested. Serum creatinine, urea, proteinuria, haematuria, albumin, and immunoglobulin A levels were recorded. Serum NLRC5 concentrations were detected by enzyme-linked immunosorbent assay, and tissue NLRC5 expression in kidney tissue was detected by immunohistochemical analysis. ROC curve analysis was used to evaluate the diagnostic value of the serum NLRC5 concentration in IgAN. RESULTS Serum NLRC5 concentration was significantly decreased in the IgAN group compared to that in the healthy control group (P < 0.0001), especially in S1 (Oxford classification) patients (P < 0.0001). Furthermore, serum NLRC5 concentration had a negative correlation with Lee's grade (r = 0.3526, P = 0.0060) and proteinuria levels (r = 0.4571, P = 0.0004). Tissue NLRC5 expression was significantly increased in the IgAN group compared to that in the healthy control group (P < 0.0001); a more significant increase was identified in the S1 group (P < 0.05) and had a positive correlation with Lee's grade (r = 0.497, P < 0.0001). We proposed a cut-off value of 1415 pg/ml for serum NLRC5 concentration, which was able to predict IgAN with 77.27% sensitivity and 87.5% specificity. CONCLUSIONS Serum NLRC5 concentrations in IgAN are significantly decreased, and tissue NLRC5 expression is significantly increased in IgAN renal tissue, which is consistent with pathological severity. This finding suggests that NLRC5 could potentially be a diagnostic index and represents a prognostic factor in IgAN patients.
Collapse
Affiliation(s)
- Yusa Chen
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Huihui Li
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Chenggen Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Xiangli Zeng
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Ping Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China.
| |
Collapse
|
63
|
Li Y, Zhang M, Zheng X. High Expression of NLRC5 Is Associated with Prognosis of Gastric Cancer. Open Med (Wars) 2018; 13:443-449. [PMID: 30426081 PMCID: PMC6227742 DOI: 10.1515/med-2018-0066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To explore the relationships of NLRC5 with clinicopathological characteristics and prognosis of gastric cancer patients. METHODS A total of 97 gastric cancer patients undergoing radical gastrectomy were enrolled. All patients were diagnosed by immunohistochemical staining. The relationship between NLRC5 expression and clinicopatho-logical characteristics of gastric cancer was analyzed via univariate and multivariate Cox regressions. RESULTS NLRC5 expression was positive in 70 cases (72.2%) and negative in 27 cases (27.8%). No significant differences in age, sex, or tumor size or differentiation were found between the negative and positive groups. NLRC5 expression was related to tumor site, and in the positive group, it was high in the fundus and low in the pylorus (χ2=7.359, P=0.125). NLRC5 expression was significantly related to lymph nodes and tumor node metastasis (TNM) staging (χ2=6.295; χ2=6.268). Multivariate Cox regression indicated positive NLRC5 expression was independently and significantly associated with prognosis of gastric cancer patients (HR=2.92, 95%CI: 1.51-5.63). CONCLUSIONS NLRC5 is closely related to TNM staging and lymph node metastasis of gastric cancer and is an independent risk factor for the prognosis of gastric cancer patients.
Collapse
Affiliation(s)
- Yuemei Li
- School of Basic Medical Sciences of Pingdingshan University, Pingdingshan, Henan Province 467000, China
| | - Min Zhang
- Department of Pathology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450014China
| | - Xinhua Zheng
- School of Basic Medical Sciences of Pingdingshan University, Pingdingshan, Chongwen Middle Road, Xinhua District, Pingdingshan City, Henan Province 467000, China
| |
Collapse
|
64
|
Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, Song X, Qian Y. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med 2018; 215:2850-2867. [PMID: 30224386 PMCID: PMC6219735 DOI: 10.1084/jem.20172026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/20/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022] Open
Abstract
Although usp38 has recently been reported to be in a chromosome locus associated with human asthma in a GWAS study, its potential pathological role remains unknown. Chen et al. now demonstrate that usp38 is essential for asthmatic pathogenesis. USP38 is induced by TCR signaling and in turn promotes JunB stabilization to specifically regulate Th2 cell differentiation. Th2 immune response is critical for allergic asthma pathogenesis. Molecular mechanisms for regulating Th2 immunity are still not well understood. Here we report that the ubiquitin-specific protease USP38 is crucial for Th2-mediated allergic asthma. TCR stimulation up-regulated the USP38 level, and USP38 in turn mediated the protein stabilization of JunB, a transcription factor specific for Th2 development. Consequently, USP38 was specifically required for TCR-induced production of Th2 cytokines and Th2 development both in vitro and in vivo, and USP38-deficient mice were resistant to asthma pathogenesis induced by OVA or HDM. Mechanistically, USP38 directly associated with JunB, deubiquitinated Lys-48–linked poly-ubiquitination of JunB, and consequently blocked TCR-induced JunB turnover. USP38 represents the first identified deubiquitinase specifically for Th2 immunity and the associated asthma.
Collapse
Affiliation(s)
- Siyuan Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fenglin Yun
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yikun Yao
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mengtao Cao
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yifan Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyang Song
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Youcun Qian
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
65
|
Cao L, Wu XM, Hu YW, Xue NN, Nie P, Chang MX. The discrepancy function of NLRC5 isoforms in antiviral and antibacterial immune responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:153-163. [PMID: 29454830 DOI: 10.1016/j.dci.2018.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
NOD-like receptors (NLRs) are a family of intracellular pattern recognition receptors (PRRs) that play critical roles in innate immunity against pathogens infection. NLRC5, the largest member of NLR family, has been characterized as a regulator of innate immunity and MHC class I expression. Alternative splicing of NLRC5 is only reported in human and zebrafish. However, the function of NLRC5 isoforms in the innate immune responses remains unknown. In the present study, we report the functional characterization of zfNLRC5a and zfNLRC5d, two splicing isoforms of zebrafish NLRC5. zfNLRC5a and zfNLRC5d are generated by exon skipping, and whose alternative splicing sites exist in the region of LRRs. Fluorescence microscopy showed that zfNLRC5 isoforms were located throughout the entire cell including nuclear staining. The expression of zfNLRC5 isoform was inducible in response to bacterial and viral infections. During SVCV infection, the in vitro and in vivo studies found that zfNLRC5d overexpression increased protection against viral infection; however zfNLRC5a overexpression had no significant effect on antiviral activity. Interestingly, zfNLRC5 isoforms but not zfNLRC5 were involved in transcriptional regulation of TLRs and NF-κB signaling. Overexpression of zfNLRC5 isoforms also contributed to negative regulation of antibacterial immune response, with the decreased expression of nfkbiaa (IκBα). All together, these results firstly demonstrate the function of NLRC5 isoforms in antiviral and antibacterial immune responses both in vitro and in vivo.
Collapse
Affiliation(s)
- Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Na Na Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, 430072, China.
| |
Collapse
|
66
|
NLRC5 deficiency protects against acute kidney injury in mice by mediating carcinoembryonic antigen-related cell adhesion molecule 1 signaling. Kidney Int 2018; 94:551-566. [PMID: 29907459 DOI: 10.1016/j.kint.2018.02.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 12/26/2022]
Abstract
There is significant progress in understanding the structure and function of NLRC5, a member of the nucleotide oligomerization domain-like receptor family. However, in the context of MHC class I gene expression, the functions of NLRC5 in innate and adaptive immune responses beyond the regulation of MHC class I genes remain controversial and unresolved. In particular, the role of NLRC5 in the kidney is unknown. NLRC5 was significantly upregulated in the kidney from mice with renal ischemia/reperfusion injury. NLRC5 deficient mice significantly ameliorated renal injury as evidenced by decreased serum creatinine levels, improved morphological injuries, and reduced inflammatory responses versus wild type mice. Similar protective effects were also observed in cisplatin-induced acute kidney injury. Mechanistically, NLRC5 contributed to renal injury by promoting tubular epithelial cell apoptosis and reducing inflammatory responses were, at least in part, associated with the negative regulation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). To determine the relative contribution of NLRC5 expression by parenchymal cells or leukocytes to renal damage during ischemia/reperfusion injury, we generated bone marrow chimeric mice. NLRC5 deficient mice engrafted with wild type hematopoietic cells had significantly lower serum creatinine and less tubular damage than wild type mice reconstituted with NLRC5 deficient bone marrow. This suggests that NLRC5 signaling in renal parenchymal cells plays the dominant role in mediating renal damage. Thus, modulation of the NLRC5-mediated pathway may have important therapeutic implications for patients with acute kidney injury.
Collapse
|
67
|
Aslibekyan S, Agha G, Colicino E, Do AN, Lahti J, Ligthart S, Marioni RE, Marzi C, Mendelson MM, Tanaka T, Wielscher M, Absher DM, Ferrucci L, Franco OH, Gieger C, Grallert H, Hernandez D, Huan T, Iurato S, Joehanes R, Just AC, Kunze S, Lin H, Liu C, Meigs JB, van Meurs JBJ, Moore AZ, Peters A, Prokisch H, Räikkönen K, Rathmann W, Roden M, Schramm K, Schwartz JD, Starr JM, Uitterlinden AG, Vokonas P, Waldenberger M, Yao C, Zhi D, Baccarelli AA, Bandinelli S, Deary IJ, Dehghan A, Eriksson J, Herder C, Jarvelin MR, Levy D, Arnett DK. Association of Methylation Signals With Incident Coronary Heart Disease in an Epigenome-Wide Assessment of Circulating Tumor Necrosis Factor α. JAMA Cardiol 2018; 3:463-472. [PMID: 29617535 PMCID: PMC6100733 DOI: 10.1001/jamacardio.2018.0510] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Importance Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine with manifold consequences for mammalian pathophysiology, including cardiovascular disease. A deeper understanding of TNF-α biology may enhance treatment precision. Objective To conduct an epigenome-wide analysis of blood-derived DNA methylation and TNF-α levels and to assess the clinical relevance of findings. Design, Setting, and Participants This meta-analysis assessed epigenome-wide associations in circulating TNF-α concentrations from 5 cohort studies and 1 interventional trial, with replication in 3 additional cohort studies. Follow-up analyses investigated associations of identified methylation loci with gene expression and incident coronary heart disease; this meta-analysis included 11 461 participants who experienced 1895 coronary events. Exposures Circulating TNF-α concentration. Main Outcomes and Measures DNA methylation at approximately 450 000 loci, neighboring DNA sequence variation, gene expression, and incident coronary heart disease. Results The discovery cohort included 4794 participants, and the replication study included 816 participants (overall mean [SD] age, 60.7 [8.5] years). In the discovery stage, circulating TNF-α levels were associated with methylation of 7 cytosine-phosphate-guanine (CpG) sites, 3 of which were located in or near DTX3L-PARP9 at cg00959259 (β [SE] = -0.01 [0.003]; P = 7.36 × 10-8), cg08122652 (β [SE] = -0.008 [0.002]; P = 2.24 × 10-7), and cg22930808(β [SE] = -0.01 [0.002]; P = 6.92 × 10-8); NLRC5 at cg16411857 (β [SE] = -0.01 [0.002]; P = 2.14 × 10-13) and cg07839457 (β [SE] = -0.02 [0.003]; P = 6.31 × 10-10); or ABO, at cg13683939 (β [SE] = 0.04 [0.008]; P = 1.42 × 10-7) and cg24267699 (β [SE] = -0.009 [0.002]; P = 1.67 × 10-7), after accounting for multiple testing. Of these, negative associations between TNF-α concentration and methylation of 2 loci in NLRC5 and 1 in DTX3L-14 PARP9 were replicated. Replicated TNF-α-linked CpG sites were associated with 9% to 19% decreased risk of incident coronary heart disease per 10% higher methylation per CpG site (cg16411857: hazard ratio [HR], 0.86; 95% CI, 0.78-1.95; P = .003; cg07839457: HR, 0.89; 95% CI, 0.80-0.94; P = 3.1 × 10-5; cg00959259: HR, 0.91; 95% CI, 0.84-0.97; P = .002; cg08122652: HR, 0.81; 95% CI, 0.74-0.89; P = 2.0 × 10-5). Conclusions and Relevance We identified and replicated novel epigenetic correlates of circulating TNF-α concentration in blood samples and linked these loci to coronary heart disease risk, opening opportunities for validation and therapeutic applications.
Collapse
Affiliation(s)
| | - Golareh Agha
- The Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York
| | - Elena Colicino
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Anh N. Do
- Department of Epidemiology, University of Alabama, Birmingham
- Now with Mount Sinai School of Medicine, New York, New York
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Riccardo E. Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Carola Marzi
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Michael M. Mendelson
- Framingham Heart Study, Framingham, Massachusetts
- Boston University School of Medicine, Boston, Massachusetts
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Matthias Wielscher
- Medical Research Council–Public Health England Centre for Environment and Health and Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Devin M. Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland
| | - Tianxiao Huan
- Framingham Heart Study, Framingham, Massachusetts
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Stella Iurato
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Roby Joehanes
- Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, Massachusetts
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, Bethesda, Maryland
- Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, Massachusetts
| | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sonja Kunze
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Chunyu Liu
- Framingham Heart Study, Framingham, Massachusetts
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - James B. Meigs
- Division of General Internal Medicine, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Program in Population and Medical Genetics, Broad Institute, Cambridge, Massachusetts
| | - Joyce B. J. van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ann Zenobia Moore
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Annette Peters
- Medical Research Council–Public Health England Centre for Environment and Health and Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- Institute of Epidemiology, Helmholtz Zentrum München German Research Centre for Environmental Health, Neuherberg, Germany
- Deutsches Zentrum fur Herz-Kreislauf-Forschung (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Heinrich-Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, Düsseldorf, Germany
- German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Katharina Schramm
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pantel Vokonas
- Veterans Affairs Normative Aging Study, VA Boston Healthcare System, Boston, Massachusetts
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Chen Yao
- Framingham Heart Study, Framingham, Massachusetts
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Degui Zhi
- School of Biomedical Informatics, University of Texas Health Science Center, Houston
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | | | - Ian J. Deary
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Abbas Dehghan
- Medical Research Council–Public Health England Centre for Environment and Health and Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Johan Eriksson
- Department of General Practice and Primary Health Care, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Christian Herder
- German Center for Diabetes Research, Neuherberg, Germany
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marjo-Riitta Jarvelin
- Medical Research Council–Public Health England Centre for Environment and Health and Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- Center for Life-Course Health Research, Northern Finland Cohort Center, Finland and Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Daniel Levy
- Framingham Heart Study, Framingham, Massachusetts
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
68
|
Scorpio DG, Choi KS, Dumler JS. Anaplasma phagocytophilum-Related Defects in CD8, NKT, and NK Lymphocyte Cytotoxicity. Front Immunol 2018; 9:710. [PMID: 29686681 PMCID: PMC5900440 DOI: 10.3389/fimmu.2018.00710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/22/2018] [Indexed: 12/19/2022] Open
Abstract
Human granulocytic anaplasmosis, caused by the tick-transmitted Anaplasma phagocytophilum, is not controlled by innate immunity, and induces a proinflammatory disease state with innate immune cell activation. In A. phagocytophilum murine infection models, hepatic injury occurs with production of IFNγ thought to be derived from NK, NKT cells, and CD8 T lymphocytes. Specific A. phagocytophilum ligands that drive inflammation and disease are not known, but suggest a clinical and pathophysiologic basis strikingly like macrophage activation syndrome (MAS) and hemophagocytic syndrome (HPS). We studied in vivo responses of NK, NKT, and CD8 T lymphocytes from infected animals for correlates of lymphocyte-mediated cytotoxicity and examined in vitro interactions with A. phagocytophilum-loaded antigen-presenting cells (APCs). Murine splenocytes were examined and found deficient in cytotoxicity as determined by CD107a expression in vitro for specific CTL effector subsets as determined by flow cytometry. Moreover, A. phagocytophilum-loaded APCs did not lead to IFNγ production among CTLs in vitro. These findings support the concept of impaired cytotoxicity with A. phagocytophilum presentation by APCs that express MHC class I and that interact with innate and adaptive immune cells with or after infection. The findings strengthen the concept of an enhanced proinflammatory phenotype, such as MAS and HPS disease states as the basis of disease and severity with A. phagocytophilum infection, and perhaps by other obligate intracellular bacteria.
Collapse
Affiliation(s)
- Diana G Scorpio
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kyoung-Seong Choi
- College of Ecology and Environmental Science, Kyungpook National University, Sangju, South Korea
| | - J Stephen Dumler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
69
|
Ozcan M, Janikovits J, von Knebel Doeberitz M, Kloor M. Complex pattern of immune evasion in MSI colorectal cancer. Oncoimmunology 2018; 7:e1445453. [PMID: 29900056 PMCID: PMC5993484 DOI: 10.1080/2162402x.2018.1445453] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Mismatch repair (MMR)-deficient cancers accumulate multiple insertion/deletion mutations at coding microsatellites (cMS), which give rise to frameshift peptide neoantigens. The high mutational neoantigen load of MMR-deficient cancers is reflected by pronounced anti-tumoral immune responses of the host and high responsiveness towards immune checkpoint blockade. However, immune evasion mechanisms can interfere with the immune response against MMR-deficient tumors. We here performed a comprehensive analysis of immune evasion in MMR-deficient colorectal cancers, focusing on HLA class I-mediated antigen presentation. 72% of MMR-deficient colorectal cancers of the DFCI database harbored alterations affecting genes involved in HLA class I-mediated antigen presentation, and 54% of these mutations were predicted to abrogate function. Mutations affecting the HLA class I transactivator NLRC5 were observed as a potential new immune evasion mechanism in 26% (6% abrogating) of the analyzed tumors. NLRC5 mutations in MMR-deficient cancers were associated with decreased levels of HLA class I antigen expression. In summary, the majority of MMR-deficient cancers display mutations interfering with HLA class I antigen presentation that reflect active immune surveillance and immunoselection during tumor development. Clinical studies focusing on immune checkpoint blockade in MSI cancer should account for the broad variety of immune evasion mechanisms as potential biomarkers of therapy success.
Collapse
Affiliation(s)
- Mine Ozcan
- Department of Applied Tumour Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Germany
| | - Jonas Janikovits
- Department of Applied Tumour Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumour Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Germany
| |
Collapse
|
70
|
Luan P, Zhuang J, Zou J, Li H, Shuai P, Xu X, Zhao Y, Kou W, Ji S, Peng A, Xu Y, Su Q, Jian W, Peng W. NLRC5 deficiency ameliorates diabetic nephropathy through alleviating inflammation. FASEB J 2018; 32:1070-1084. [PMID: 29070585 DOI: 10.1096/fj.201700511rr] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NOD-like receptor family caspase recruitment domain family domain containing 5 (NLRC5) has important roles in inflammation and innate immunity. NLRC5 was highly expressed in kidney from streptozotocin-induced diabetic mice, db/ db mice and patients with diabetes. Based on that evidence, the present study was designed to explore the roles of NLRC5 in the progression of diabetic nephropathy (DN). We examined kidney injury, including inflammation and fibrosis in Nlrc5 gene knockout ( Nlrc5-/-) and wild-type (WT) diabetic mice. We found that Nlrc5-/- mice developed less-severe diabetic kidney injury compared with WT mice, exhibiting lower albuminuria, less fibronectin and collagen IV expression, and reduced macrophage infiltration but greater levels of podocin and nephrin in the diabetic kidney. The underlying mechanisms were further investigated in vitro with peritoneal macrophages and mesangial cells treated with high glucose. Reduced proinflammatory effect was observed in peritoneal macrophages from Nlrc5-/- mice, associated with NF-κB pathway suppression. Knocking down of NLRC5 in mesangial cells in high-glucose conditions was also associated with reduced NF-κB and TGF-β/Smad signaling. Taken together, NLRC5 promotes inflammation and fibrosis during DN progression partly through the effects on NF-κB and TGF-β/Smad pathways. NLRC5 may, therefore, be a promising therapeutic target for DN treatment.-Luan, P., Zhuang, J., Zou, J., Li, H., Shuai, P., Xu, X., Zhao, Y., Kou, W., Ji, S., Peng, A., Xu, Y., Su, Q., Jian, W., Peng, W. NLRC5 deficiency ameliorates diabetic nephropathy through alleviating inflammation.
Collapse
Affiliation(s)
- Peipei Luan
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Zou
- Department of Nephropathy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Shuai
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Xiaopeng Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yifan Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuya Ji
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ai Peng
- Department of Nephropathy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weixia Jian
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
71
|
Dolasia K, Bisht MK, Pradhan G, Udgata A, Mukhopadhyay S. TLRs/NLRs: Shaping the landscape of host immunity. Int Rev Immunol 2017; 37:3-19. [PMID: 29193992 DOI: 10.1080/08830185.2017.1397656] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Innate immune system provides the first line of defense against pathogenic organisms. It has a varied and large collection of molecules known as pattern recognition receptors (PRRs) which can tackle the pathogens promptly and effectively. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are members of the PRR family that recognize pathogen associated molecular patterns (PAMPs) and play pivotal roles to mediate defense against infections from bacteria, fungi, virus and various other pathogens. In this review, we discuss the critical roles of TLRs and NLRs in the regulation of host immune-effector functions such as cytokine production, phagosome-lysosome fusion, inflammasome activation, autophagy, antigen presentation, and B and T cell immune responses that are known to be essential for mounting a protective immune response against the pathogens. This review may be helpful to design TLRs/NLRs based immunotherapeutics to control various infections and pathophysiological disorders.
Collapse
Affiliation(s)
- Komal Dolasia
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Manoj K Bisht
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Gourango Pradhan
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Atul Udgata
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| | - Sangita Mukhopadhyay
- a Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD) , Tuljaguda Complex, Nampally, Hyderabad , India
| |
Collapse
|
72
|
Activation of the Innate Immune Receptors: Guardians of the Micro Galaxy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:1-35. [DOI: 10.1007/978-981-10-5987-2_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
73
|
Deficiency of the NOD-Like Receptor NLRC5 Results in Decreased CD8 + T Cell Function and Impaired Viral Clearance. J Virol 2017; 91:JVI.00377-17. [PMID: 28615208 DOI: 10.1128/jvi.00377-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022] Open
Abstract
Pathogen recognition receptors are vital components of the immune system. Engagement of these receptors is important not only for instigation of innate immune responses to invading pathogens but also for initiating the adaptive immune response. Members of the NOD-like receptor (NLR) family of pathogen recognition receptors have important roles in orchestrating this response. The NLR family member NLRC5 regulates major histocompatibility complex class I (MHC-I) expression during various types of infections, but its role in immunity to influenza A virus (IAV) is not well studied. Here we show that Nlrc5-/- mice exhibit an altered CD8+ T cell response during IAV infection compared to that of wild-type (WT) mice. Nlrc5-/- mice have decreased MHC-I expression on hematopoietic cells and fewer CD8+ T cells prior to infection. NLRC5 deficiency does not affect the generation of antigen-specific CD8+ T cells following IAV infection; however, a change in epitope dominance is observed in Nlrc5-/- mice. Moreover, IAV-specific CD8+ T cells from Nlrc5-/- mice have impaired effector functions. This change in the adaptive immune response is associated with impaired viral clearance in Nlrc5-/- mice. Collectively, our results demonstrate an important role for NLRC5 in regulation of antiviral immune responses and viral clearance during IAV infection.IMPORTANCE The NOD-like receptor family member NLRC5 is known to regulate expression of MHC-I as well as other genes required for antigen processing. In addition, NLRC5 also regulates various immune signaling pathways. In this study, we investigated the role of NLRC5 during influenza virus infection and found a major role for NLRC5 in restricting virus replication and promoting viral clearance. The observed increases in viral titers in NLRC5-deficient mice correlated with impaired effector CD8+ T cell responses. Although NLRC5-deficient mice were defective at clearing the virus, they did not show an increase in morbidity or mortality following influenza virus infection because of other compensatory immune mechanisms. Therefore, our study highlights how NLRC5 regulates multiple immune effector mechanisms to promote the host defense during influenza virus infection.
Collapse
|
74
|
Abstract
The inflammasome is a large multimeric protein complex comprising an effector protein that demonstrates specificity for a variety of activators or ligands; an adaptor molecule; and procaspase-1, which is converted to caspase-1 upon inflammasome activation. Inflammasomes are expressed primarily by myeloid cells and are located within the cell. The macromolecular inflammasome structure can be visualized by cryo-electron microscopy. This complex has been found to play a role in a variety of disease models in mice, and several have been genetically linked to human diseases. In most cases, the effector protein is a member of the NLR (nucleotide-binding domain leucine-rich repeat-containing) or NOD (nucleotide oligomerization domain)-like receptor protein family. However, other effectors have also been described, with the most notable being AIM-2 (absent in melanoma 2), which recognizes DNA to elicit inflammasome function. This review will focus on the role of the inflammasome in myeloid cells and its role in health and disease.
Collapse
|
75
|
Yao Y, Chen S, Cao M, Fan X, Yang T, Huang Y, Song X, Li Y, Ye L, Shen N, Shi Y, Li X, Wang F, Qian Y. Antigen-specific CD8 + T cell feedback activates NLRP3 inflammasome in antigen-presenting cells through perforin. Nat Commun 2017; 8:15402. [PMID: 28537251 PMCID: PMC5458103 DOI: 10.1038/ncomms15402] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/28/2017] [Indexed: 12/25/2022] Open
Abstract
The connection between innate and adaptive immunity is best exemplified by antigen presentation. Although antigen-presenting cells (APCs) are required for antigen receptor-mediated T-cell activation, how T-cells feedback to APCs to sustain an antigen-specific immune response is not completely clear. Here we show that CD8+ T-cell (also called cytotoxic T lymphocytes, CTL) feedback activates the NLRP3 inflammasome in APCs in an antigen-dependent manner to promote IL-1β maturation. Perforin from antigen-specific CTLs is required for NLRP3 inflammasome activation in APCs. Furthermore, such activation of NLRP3 inflammasome contributes to the induction of antigen-specific antitumour immunity and pathogenesis of graft-versus-host diseases. Our study reveals a positive feedback loop between antigen-specific CTLs and APC to amplify adaptive immunity.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Bone Marrow Cells
- Bone Marrow Transplantation
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Disease Models, Animal
- Graft vs Host Disease/immunology
- Humans
- Inflammasomes/immunology
- Inflammasomes/metabolism
- Interleukin-1beta/immunology
- Interleukin-1beta/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Neoplasms/immunology
- Perforin/genetics
- Perforin/immunology
- Perforin/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yikun Yao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai
200233, China
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai
200031, China
| | - Siyuan Chen
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai
200031, China
| | - Mengtao Cao
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai
200031, China
| | - Xing Fan
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai
200031, China
| | - Tao Yang
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai
200031, China
| | - Yin Huang
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai
200031, China
| | - Xinyang Song
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai
200031, China
| | - Yongqin Li
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai
200031, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing
400038, China
| | - Nan Shen
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai
200031, China
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai
200001, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai
200031, China
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
44195, USA
| | - Feng Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai
200233, China
| | - Youcun Qian
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai
200233, China
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiaotong University School of Medicine, Shanghai
200031, China
| |
Collapse
|
76
|
Wu XM, Hu YW, Xue NN, Ren SS, Chen SN, Nie P, Chang MX. Role of zebrafish NLRC5 in antiviral response and transcriptional regulation of MHC related genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:58-68. [PMID: 27876605 DOI: 10.1016/j.dci.2016.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Intracellular NOD-like receptors (NLRs) are emerging as critical regulators of innate and adaptive immune responses. Although the NLR family member NLRC5 is functionally defined, the role of NLRC5 in regulating innate immune signaling has been controversial in mammals, and is poorly understood in teleost fish. In the present study, we report the functional characterization of zebrafish NLRC5. The cloned NLRC5 consists of 6435 bp which encodes 1746 amino acids. The N-terminal effector-binding domain of zebrafish NLRC5 is absent which is different from all other human NLRs. Fluorescence microscopy showed that zebrafish NLRC5 is located throughout the entire cell. The higher expression of zebrafish NLRC5 in embryo than in larvae was observed, suggesting the action phase of NLRC5 in zebrafish ontogenetic stages. When the modulation of NLRC5 in pathogen infection was analyzed, it was found that zebrafish NLRC5 was upregulated by both bacterial and viral infection. Overexpression of zebrafish NLRC5 resulted in significant inhibition of SVCV replication in vivo and in vitro, but failed to activate interferon (IFN) promoters and type I IFN signaling pathway. Interestingly, NLRC5 overexpression could activate mhc2dab promoter, and induce the expression of MHC class II genes. All together, these results demonstrate that zebrafish NLRC5 is involved in IFN-independent antiviral response, and also functions as a transcriptional regulator of MHC class II genes.
Collapse
Affiliation(s)
- Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Na Na Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shi Si Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China.
| |
Collapse
|
77
|
Velásquez LN, Milillo MA, Delpino MV, Trotta A, Fernández P, Pozner RG, Lang R, Balboa L, Giambartolomei GH, Barrionuevo P. Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1). J Leukoc Biol 2017; 101:759-773. [PMID: 27765819 DOI: 10.1189/jlb.4a0416-196r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/01/2016] [Accepted: 09/27/2016] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus is an intracellular pathogen capable of surviving inside of macrophages. The success of B. abortus as a chronic pathogen relies on its ability to orchestrate different strategies to evade the adaptive CD4+ T cell responses that it elicits. Previously, we demonstrated that B. abortus inhibits the IFN-γ-induced surface expression of MHC class II (MHC-II) molecules on human monocytes, and this phenomenon correlated with a reduction in antigen presentation. However, the molecular mechanisms, whereby B. abortus is able to down-regulate the expression of MHC-II, remained to be elucidated. In this study, we demonstrated that B. abortus infection inhibits the IFN-γ-induced transcription of MHC-II, transactivator (CIITA) and MHC-II genes. Accordingly, we observed that the synthesis of MHC-II proteins was also diminished. B. abortus was not only able to reduce the expression of mature MHC-II, but it also inhibited the expression of invariant chain (Ii)-associated immature MHC-II molecules. Outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, diminished the expression of MHC-II and CIITA transcripts to the same extent as B. abortus infection. IL-6 contributes to these down-regulatory phenomena. In addition, B. abortus and its lipoproteins, through IL-6 secretion, induced the transcription of the negative regulators of IFN-γ signaling, suppressor of cytokine signaling (SOCS)-1 and -3, without interfering with STAT1 activation. Yet, B. abortus lipoproteins via IL-6 inhibit the expression of IFN regulatory factor 1 (IRF-1), a critical regulatory transcription factor for CIITA induction. Overall, these results indicate that B. abortus inhibits the expression of MHC-II molecules at very early points in their synthesis and in this way, may prevent recognition by T cells establishing a chronic infection.
Collapse
Affiliation(s)
- Lis N Velásquez
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - M Ayelén Milillo
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - M Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Aldana Trotta
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Pablo Fernández
- Instituto de Inmunología, Genética y Metabolismo, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Roberto G Pozner
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Roland Lang
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Freidrich Alexander Universität Erlangen-Nürnberg, Germany
| | - Luciana Balboa
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Paula Barrionuevo
- Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, Buenos Aires, Argentina;
| |
Collapse
|
78
|
Benkő S, Kovács EG, Hezel F, Kufer TA. NLRC5 Functions beyond MHC I Regulation-What Do We Know So Far? Front Immunol 2017; 8:150. [PMID: 28261210 PMCID: PMC5313500 DOI: 10.3389/fimmu.2017.00150] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
NLRC5 is a member of the NLR family that acts as a transcriptional activator of MHC class I genes. In line with the function of several related NLR proteins in innate immune responses, there is, however, also ample evidence that NLRC5 contributes to innate and adaptive immune responses beyond the regulation of MHC class I genes. In human and murine cells, for example, NLRC5 was proposed to contribute to inflammatory and type I interferon responses. The role of NLRC5 in these and other cellular processes is hitherto still not well understood and blurred by discrepancies in the reported data. Here, we provide a detailed and critical discussion of the available experimental data on the emerging biological functions of NLRC5 in innate immune responses in men and mice. Better awareness of the multiple roles of NLRC5 will help to define its overall contribution to immune responses and cancer.
Collapse
Affiliation(s)
- Szilvia Benkő
- Faculty of Medicine, Department of Physiology, University of Debrecen , Debrecen , Hungary
| | - Elek Gergő Kovács
- Faculty of Medicine, Department of Physiology, University of Debrecen , Debrecen , Hungary
| | - Felix Hezel
- Institute of Nutritional Medicine, University of Hohenheim , Stuttgart , Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, University of Hohenheim , Stuttgart , Germany
| |
Collapse
|
79
|
NLRC5/CITA: A Key Player in Cancer Immune Surveillance. Trends Cancer 2017; 3:28-38. [PMID: 28718425 DOI: 10.1016/j.trecan.2016.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
Cancer cells need to escape immune surveillance for successful tumor growth. Loss of MHC class I has been described as a major immune evasion strategy in many cancers. MHC class I transactivator (CITA), NLRC5 [nucleotide-binding domain and leucine-rich repeats containing (NLR) family, caspase activation and recruitment domain (CARD) domain containing 5], is a key transcription coactivator of MHC class I genes. Recent genetic studies have revealed that NLRC5 is a major target for cancer immune evasion mechanisms. The reduced expression or activity of NLRC5 caused by promoter methylation, copy number loss, or somatic mutations is associated with defective MHC class I expression, impaired cytotoxic T cell activation, and poor patient prognosis. Here, we review the role of NLRC5 in cancer immune evasion and the future prospects for cancer research.
Collapse
|
80
|
Chelbi S, Dang A, Guarda G. Emerging Major Histocompatibility Complex Class I-Related Functions of NLRC5. Adv Immunol 2017; 133:89-119. [DOI: 10.1016/bs.ai.2016.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
81
|
Yang Q, Chen T, Chen Y, Lan D. Molecular characterization and expression analysis of the NLR family CARD containing five transcripts in the pig. Pol J Vet Sci 2016; 19:753-761. [DOI: 10.1515/pjvs-2016-0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
The NOD-like receptor (NLR) family caspase recruitment domain-containing 5 (NLRC5) is one of the newly discovered and largest NLR family members. The NLRC5 has recently received extensive attention because of its important role in regulating innate and adaptive immune responses. The NLRC5 in many vertebrates, such as humans, mice, cattle, and horses, has already been proven and studied. However, the NLRC5 gene characteristics of pigs remain unclear. Thus, we completely cloned the NLRC5 cDNA sequence of the pig using the rapid amplification of cDNA ends(RACE) technology. A characteristic and tissue expression analysis was also conducted on the pig sequence. The sequence analysis showed that the complete cDNA sequence of the NLRC5 of the pig is 6638 bp, and the open reading frame is 5538 bp which encoded 1846 amino acids. The protein prediction analysis indicates that the overall performance of the NLRC5 protein of the pig is hydrophilic and possesses a typical nucleotide binding and oligomerization domain(NBD) and 20 leucine-rich repeats(LRRs). The homology analysis result indicates that the NLRC5 transcript in pigs is highly homologous to cattle, sheep, macaques, and humans, and accounts for around 80%. The genetic evolutionary tree analysis shows that the NLRC5 transcript in pigs has the closest evolutionary relationship with cattle and sheep. Further tissue expression analysis shows that immune organ systems (e.g., lymph node and spleen) and mucosa organs (e.g., intestinal lymph node, stomach, and lungs) possess high expressions with NLRC5 mRNA. The result of this study indicates that the NLRC5 transcript in pigs is relatively conservative among mammals and may play a vital role in immune reaction, which provides a basis for further studies on the NLRC5 function in the pig immune system and the role in comparative immunity.
Collapse
|
82
|
Expression patterns of NLRC5 and key genes in the STAT1 pathway following infection with Salmonella pullorum. Gene 2016; 597:23-29. [PMID: 27771450 DOI: 10.1016/j.gene.2016.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/26/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023]
Abstract
NLRC5, a protein belonging to the NOD-like receptor protein family (NLRs), is highly expressed in immune tissues and cells. NLRC5 plays an important role in the immune response of humans, where its regulatory mechanism has been elucidated. However, the function and regulation of NLRC5 in chickens remains unclear. In this study, temporal expression characteristics of NLRC5 and associated genes in the STAT1 pathway in chickens following infection with Salmonella pullorum were investigated using quantitative real-time polymerase chain reaction and hierarchical cluster analyses. The role of transcription factor STAT1 in NLRC5 promoter activity was studied via point mutation of the STAT1-binding cis-element and dual-luciferase assays. Our results showed a strong correlation between NLRC5 and NF-κB. In addition, STAT1 played a crucial role in NLRC5 promoter activity, and may be activated via the interferon pathway. There was also a close relationship between CD80 and NF-κB, and CD80 may up-regulate NF-κB expression and enhance its protein activity in chickens. These findings reveal the temporal characteristics of chicken NLRC5 and STAT1 genes during S. pullorum infection, and highlight the role of STAT1 in NLRC5 promoter activity. This information aids our understanding of the regulatory mechanisms of NLRC5 and associated genes, and will help elucidate their function in the immune response of chickens.
Collapse
|
83
|
Zhang X, Justice AC, Hu Y, Wang Z, Zhao H, Wang G, Johnson EO, Emu B, Sutton RE, Krystal JH, Xu K. Epigenome-wide differential DNA methylation between HIV-infected and uninfected individuals. Epigenetics 2016; 11:750-760. [PMID: 27672717 PMCID: PMC5094631 DOI: 10.1080/15592294.2016.1221569] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic control of human immunodeficiency virus-1 (HIV-1) genes is critical for viral integration and latency. However, epigenetic changes in the HIV-1-infected host genome have not been well characterized. Here, we report the first large-scale epigenome-wide association study of DNA methylation for HIV-1 infection. We recruited HIV-infected (n = 261) and uninfected (n = 117) patients from the Veteran Aging Cohort Study (VACS) and all samples were profiled for 485,521 CpG sites in DNA extracted from the blood. After adjusting for cell type and clinical confounders, we identified 20 epigenome-wide significant CpGs for HIV-1 infection. Importantly, 2 CpGs in the promoter of the NLR family, CARD domain containing gene 5 (NLRC5), a key regulator of major histocompatibility complex class I gene expression, showed significantly lower methylation in HIV-infected subjects than in uninfected subjects (cg07839457: t = −6.03, Pnominal = 4.96 × 10−9; cg16411857: t = −7.63, Pnominal = 3.07 × 10−13). Hypomethylation of these 2 CpGs was replicated in an independent sample (GSE67705: cg07839457: t = −4.44, Pnominal = 1.61 × 10−5; cg16411857: t = −5.90; P = 1.99 × 10−8). Methylation of these 2 CpGs in NLRC5 was negatively correlated with viral load in the 2 HIV-infected samples (cg07839457: P = 1.8 × 10−4; cg16411857: P = 0.03 in the VACS; and cg07839457: P = 0.04; cg164111857: P = 0.01 in GSE53840). Our findings demonstrate that differential DNA methylation is associated with HIV infection and suggest the involvement of a novel host gene, NLRC5, in HIV pathogenesis.
Collapse
Affiliation(s)
- Xinyu Zhang
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| | - Amy C Justice
- c Yale University School of Medicine, New Haven Veterans Affairs Connecticut Healthcare System , West Haven , CT , USA
| | - Ying Hu
- d Center for Biomedical Informatics & Information Technology, National Cancer Institute , Bethesda , MD , USA
| | - Zuoheng Wang
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - Hongyu Zhao
- f Department of Biostatistics , Yale School of Public Health , New Haven , CT , USA
| | - Guilin Wang
- g Yale Center of Genomic Analysis, West Campus , Orange , CT , USA
| | - Eric O Johnson
- h Fellow Program and Behavioral Health and Criminal Justice Division, RTI International , Research Triangle Park, NC , USA
| | - Brinda Emu
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - Richard E Sutton
- e Department of Internal Medicine , Division of Infectious Disease, Yale University School of Medicine , New Haven , CT , USA
| | - John H Krystal
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| | - Ke Xu
- a Department of Psychiatry , Yale School of Medicine , New Haven , CT , USA.,b Connecticut Veteran Health System , West Haven , CT , USA
| |
Collapse
|
84
|
Sidiq T, Yoshihama S, Downs I, Kobayashi KS. Nod2: A Critical Regulator of Ileal Microbiota and Crohn's Disease. Front Immunol 2016; 7:367. [PMID: 27703457 PMCID: PMC5028879 DOI: 10.3389/fimmu.2016.00367] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
The human intestinal tract harbors large bacterial community consisting of commensal, symbiotic, and pathogenic strains, which are constantly interacting with the intestinal immune system. This interaction elicits a non-pathological basal level of immune responses and contributes to shaping both the intestinal immune system and bacterial community. Recent studies on human microbiota are revealing the critical role of intestinal bacterial community in the pathogenesis of both systemic and intestinal diseases, including Crohn’s disease (CD). NOD2 plays a key role in the regulation of microbiota in the small intestine. NOD2 is highly expressed in ileal Paneth cells that provide critical mechanism for the regulation of ileal microbiota through the secretion of anti-bacterial compounds. Genome mapping of CD patients revealed that loss of function mutations in NOD2 are associated with ileal CD. Genome-wide association studies further demonstrated that NOD2 is one of the most critical genetic factor linked to ileal CD. The bacterial community in the ileum is indeed dysregulated in Nod2-deficient mice. Nod2-deficient ileal epithelia exhibit impaired ability of killing bacteria. Thus, altered interactions between ileal microbiota and mucosal immunity through NOD2 mutations play significant roles in the disease susceptibility and pathogenesis in CD patients, thereby depicting NOD2 as a critical regulator of ileal microbiota and CD.
Collapse
Affiliation(s)
- Tabasum Sidiq
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| | - Sayuri Yoshihama
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| | - Isaac Downs
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| |
Collapse
|
85
|
Chelbi ST, Guarda G. NLRC5, a promising new entry in tumor immunology. J Immunother Cancer 2016; 4:39. [PMID: 27437103 PMCID: PMC4950760 DOI: 10.1186/s40425-016-0143-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023] Open
Abstract
The recent use of T cell-based cancer immunotherapies, such as adoptive T-cell transfer and checkpoint blockade, yields increasing clinical benefit to patients with different cancer types. However, decrease of MHC class I expression is a common mechanism transformed cells take advantage of to evade CD8(+) T cell-mediated antitumor responses, negatively impacting on the outcome of immunotherapies. Hence, there is an urgent need to develop novel approaches to overcome this limitation. NLRC5 has been recently described as a key transcriptional regulator controlling expression of MHC class I molecules. In this commentary, we summarize and put into perspective a study by Rodriguez and colleagues recently published in Oncoimmunology, addressing the role of NLRC5 in melanoma. The authors demonstrate that NLRC5 overexpression in B16 melanoma allows to recover MHC class I expression, rising tumor immunogenicity and counteracting immune evasion. Possible ways of manipulating NLRC5 activity in tumors will be discussed. Highlighting the therapeutic potential of modulating NLRC5 levels, this publication also encourages evaluation of NLRC5, and by extension MHC class I pathway, as clinical biomarker to select personalized immunotherapeutic strategies.
Collapse
Affiliation(s)
- Sonia T Chelbi
- Department of Biochemistry, University of Lausanne, Epalinges, 1066 Switzerland
| | - Greta Guarda
- Department of Biochemistry, University of Lausanne, Epalinges, 1066 Switzerland
| |
Collapse
|
86
|
Downs I, Vijayan S, Sidiq T, Kobayashi KS. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression. Biofactors 2016; 42:349-57. [PMID: 27087581 DOI: 10.1002/biof.1285] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 01/01/2023]
Abstract
Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016.
Collapse
Affiliation(s)
- Isaac Downs
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| | - Saptha Vijayan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| | - Tabasum Sidiq
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| |
Collapse
|
87
|
Ley K, Pramod AB, Croft M, Ravichandran KS, Ting JP. How Mouse Macrophages Sense What Is Going On. Front Immunol 2016; 7:204. [PMID: 27313577 PMCID: PMC4890338 DOI: 10.3389/fimmu.2016.00204] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/10/2016] [Indexed: 01/26/2023] Open
Abstract
Macrophages are central to both innate and adaptive immunity. With few exceptions, macrophages are the first cells that sense trouble and respond to disturbances in almost all tissues and organs. They sense their environment, inhibit or kill pathogens, take up apoptotic and necrotic cells, heal tissue damage, and present antigens to T cells. Although the origins (yolk sac versus monocyte-derived) and phenotypes (functions, gene expression profiles, surface markers) of macrophages vary between tissues, they have many receptors in common that are specific to one or a few molecular species. Here, we review the expression and function of almost 200 key macrophage receptors that help the macrophages sense what is going on, including pathogen-derived molecules, the state of the surrounding tissue cells, apoptotic and necrotic cell death, antibodies and immune complexes, altered self molecules, extracellular matrix components, and cytokines, including chemokines.
Collapse
Affiliation(s)
- Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Akula Bala Pramod
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, VA , USA
| | - Jenny P Ting
- Department of Genetics, The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| |
Collapse
|
88
|
NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc Natl Acad Sci U S A 2016; 113:5999-6004. [PMID: 27162338 DOI: 10.1073/pnas.1602069113] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers.
Collapse
|
89
|
Abstract
Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Hongbo Hu
- Department of Rheumatology and Immunology, State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Unit 902, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
90
|
Rodriguez GM, Bobbala D, Serrano D, Mayhue M, Champagne A, Saucier C, Steimle V, Kufer TA, Menendez A, Ramanathan S, Ilangumaran S. NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8(+) T lymphocytes. Oncoimmunology 2016; 5:e1151593. [PMID: 27471621 PMCID: PMC4938303 DOI: 10.1080/2162402x.2016.1151593] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 11/10/2022] Open
Abstract
Cancers can escape immunesurveillance by diminishing the expression of MHC class-I molecules (MHC-I) and components of the antigen-processing machinery (APM). Developing new approaches to reverse these defects could boost the efforts to restore antitumor immunity. Recent studies have shown that the expression of MHC-I and antigen-processing molecules is transcriptionally regulated by NOD-like receptor CARD domain containing 5 (NLRC5). To investigate whether NLRC5 could be used to improve tumor immunogenicity, we established stable lines of B16-F10 melanoma cells expressing NLRC5 (B16-5), the T cell co-stimulatory molecule CD80 (B16-CD80) or both (B16-5/80). Cells harboring NLRC5 constitutively expressed MHC-I and LMP2, LMP7 and TAP1 genes of the APM. The B16-5 cells efficiently presented the melanoma antigenic peptide gp10025–33 to Pmel-1 TCR transgenic CD8+ T cells and induced their proliferation. In the presence of CD80, B16-5 cells stimulated Pmel-1 cells even without the addition of gp100 peptide, indicating that NLRC5 facilitated the processing and presentation of endogenous tumor antigen. Upon subcutaneous implantation, B16-5 cells showed markedly reduced tumor growth in C57BL/6 hosts but not in immunodeficient hosts, indicating that the NLRC5-expressing tumor cells elicited antitumor immunity. Following intravenous injection, B16-5 and B16-5/80 cells formed fewer lung tumor foci compared to control cells. In mice depleted of CD8+ T cells, B16-5 cells formed large subcutaneous and lung tumors. Finally, immunization with irradiated B16-5 cells conferred protection against challenge by parental B16 cells. Collectively, our findings indicate that NLRC5 could be exploited to restore tumor immunogenicity and to stimulate protective antitumor immunity.
Collapse
Affiliation(s)
| | | | | | | | - Audrey Champagne
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Caroline Saucier
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; CRCHUS, Sherbrooke, Québec, Canada
| | - Viktor Steimle
- Department of Biology, Faculty of Sciences, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim , Stuttgart, Germany
| | - Alfredo Menendez
- CRCHUS, Sherbrooke, Québec, Canada; Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Immunology division, Department of Pediatrics; CRCHUS, Sherbrooke, Québec, Canada
| | - Subburaj Ilangumaran
- Immunology division, Department of Pediatrics; CRCHUS, Sherbrooke, Québec, Canada
| |
Collapse
|
91
|
Rota G, Ludigs K, Siegert S, Tardivel A, Morgado L, Reith W, De Gassart A, Guarda G. T Cell Priming by Activated Nlrc5-Deficient Dendritic Cells Is Unaffected despite Partially Reduced MHC Class I Levels. THE JOURNAL OF IMMUNOLOGY 2016; 196:2939-46. [PMID: 26944927 DOI: 10.4049/jimmunol.1502084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/01/2016] [Indexed: 11/19/2022]
Abstract
NLRC5, a member of the NOD-like receptor (NLR) protein family, has recently been characterized as the master transcriptional regulator of MHCI molecules in lymphocytes, in which it is highly expressed. However, its role in activated dendritic cells (DCs), which are instrumental to initiate T cell responses, remained elusive. We show in this study that, following stimulation of DCs with inflammatory stimuli, not only did NLRC5 level increase, but also its importance in directing MHCI transcription. Despite markedly reduced mRNA and intracellular H2-K levels, we unexpectedly observed nearly normal H2-K surface display in Nlrc5(-/-) DCs. Importantly, this discrepancy between a strong intracellular and a mild surface defect in H2-K levels was observed also in DCs with H2-K transcription defects independent of Nlrc5. Hence, alongside with demonstrating the importance of NLRC5 in MHCI transcription in activated DCs, we uncover a general mechanism counteracting low MHCI surface expression. In agreement with the decreased amount of neosynthesized MHCI, Nlrc5(-/-) DCs exhibited a defective capacity to display endogenous Ags. However, neither T cell priming by endogenous Ags nor cross-priming ability was substantially affected in activated Nlrc5(-/-) DCs. Altogether, these data show that Nlrc5 deficiency, despite significantly affecting MHCI transcription and Ag display, is not sufficient to hinder T cell activation, underlining the robustness of the T cell priming process by activated DCs.
Collapse
Affiliation(s)
- Giorgia Rota
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Kristina Ludigs
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Stefanie Siegert
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland; and
| | - Aubry Tardivel
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Leonor Morgado
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Aude De Gassart
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Greta Guarda
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland;
| |
Collapse
|
92
|
Liu X, Wu Y, Yang Y, Li W, Huang C, Meng X, Li J. Role of NLRC5 in progression and reversal of hepatic fibrosis. Toxicol Appl Pharmacol 2016; 294:43-53. [DOI: 10.1016/j.taap.2016.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/15/2022]
|
93
|
Oh JY, Ko JH, Ryu JS, Lee HJ, Kim MK, Wee WR. Transcription Profiling of NOD-like Receptors in the Human Cornea with Disease. Ocul Immunol Inflamm 2016; 25:364-369. [PMID: 26902715 DOI: 10.3109/09273948.2015.1130844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the expression of nucleotide-binding oligomerization domain-like receptors (NLRs) in human corneas with disease and corneal cells. METHODS The expression of NOD1, NOD2, NLRP1, and NLRP3 was analyzed using real-time RT-PCR in (1) corneas with active infection, history of herpetic stromal keratitis (HSK), chronic allograft rejection, and limbal stem cell deficiency (LSCD), and (2) human corneal cells after lipopolysaccharide (LPS) stimulation. Healthy corneas and cells without LPS served as controls. RESULTS The mRNA levels of NOD2 and NLRP3 were increased in corneas with infection and HSK. Conversely, the levels of NOD1, NOD2, NLRP1, and NLRP3 transcripts were decreased in corneas with LSCD. In corneas with rejection, the expression of NOD1 and NLRP1 was downregulated. Corneal endothelial cells upregulated the expression of NOD2 and NLRP3 upon LPS. CONCLUSIONS The changes in the NLR expression may reflect different susceptibility to infectious and non-infectious injuries in corneas with various diseases.
Collapse
Affiliation(s)
- Joo Youn Oh
- a Department of Ophthalmology , Seoul National University Hospital , Jongno-gu , Seoul , Korea.,b Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute , National University Hospital , Jongno-gu , Seoul , Korea
| | - Jung Hwa Ko
- b Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute , National University Hospital , Jongno-gu , Seoul , Korea
| | - Jin Suk Ryu
- b Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute , National University Hospital , Jongno-gu , Seoul , Korea
| | - Hyun Ju Lee
- b Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute , National University Hospital , Jongno-gu , Seoul , Korea
| | - Mee Kum Kim
- a Department of Ophthalmology , Seoul National University Hospital , Jongno-gu , Seoul , Korea.,b Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute , National University Hospital , Jongno-gu , Seoul , Korea
| | - Won Ryang Wee
- a Department of Ophthalmology , Seoul National University Hospital , Jongno-gu , Seoul , Korea.,b Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute , National University Hospital , Jongno-gu , Seoul , Korea
| |
Collapse
|
94
|
NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun 2016; 7:10554. [PMID: 26861112 PMCID: PMC4749981 DOI: 10.1038/ncomms10554] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 12/26/2015] [Indexed: 12/18/2022] Open
Abstract
NLRC5 is a transcriptional regulator of MHC class I (MHCI), which maintains high MHCI expression particularly in T cells. Recent evidence highlights an important NK–T-cell crosstalk, raising the question on whether NLRC5 specifically modulates this interaction. Here we show that NK cells from Nlrc5-deficient mice exhibit moderate alterations in inhibitory receptor expression and responsiveness. Interestingly, NLRC5 expression in T cells is required to protect them from NK-cell-mediated elimination upon inflammation. Using T-cell-specific Nlrc5-deficient mice, we show that NK cells surprisingly break tolerance even towards ‘self' Nlrc5-deficient T cells under inflammatory conditions. Furthermore, during chronic LCMV infection, the total CD8+ T-cell population is severely decreased in these mice, a phenotype reverted by NK-cell depletion. These findings strongly suggest that endogenous T cells with low MHCI expression become NK-cell targets, having thus important implications for T-cell responses in naturally or therapeutically induced inflammatory conditions. NK cell tolerance to self-MHCI levels is calibrated during their development. Here the authors show that this tolerance is overcome by an inflammatory environment and that NLRC5 protects T cells from NK cell-mediated elimination by maintaining high MHCI expression.
Collapse
|
95
|
Listeria monocytogenes and the Inflammasome: From Cytosolic Bacteriolysis to Tumor Immunotherapy. Curr Top Microbiol Immunol 2016; 397:133-60. [PMID: 27460808 DOI: 10.1007/978-3-319-41171-2_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inflammasomes are cytosolic innate immune surveillance systems that recognize a variety of danger signals, including those from pathogens. Listeria monocytogenes is a Gram-positive intracellular bacterium evolved to live within the harsh environment of the host cytosol. Further, L. monocytogenes can activate a robust cell-mediated immune response that is being harnessed as an immunotherapeutic platform. Access to the cytosol is critical for both causing disease and inducing a protective immune response, and it is hypothesized that the cytosolic innate immune system, including the inflammasome, is critical for both host protection and induction of long-term immunity. L. monocytogenes can activate a variety of inflammasomes via its pore-forming toxin listeriolysin-O, flagellin, or DNA released through bacteriolysis; however, inflammasome activation attenuates L. monocytogenes, and as such, L. monocytogenes has evolved a variety of ways to limit inflammasome activation. Surprisingly, inflammasome activation also impairs the host cell-mediated immune response. Thus, understanding how L. monocytogenes activates or avoids detection by the inflammasome is critical to understand the pathogenesis of L. monocytogenes and improve the cell-mediated immune response generated to L. monocytogenes for more effective immunotherapies.
Collapse
|
96
|
Meng Q, Cai C, Sun T, Wang Q, Xie W, Wang R, Cui J. Reversible ubiquitination shapes NLRC5 function and modulates NF-κB activation switch. J Cell Biol 2015; 211:1025-40. [PMID: 26620909 PMCID: PMC4674279 DOI: 10.1083/jcb.201505091] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023] Open
Abstract
Reversible ubiquitination strictly controls NLRC5 function: K63-linked ubiquitination of NLRC5 at lysine 1,178 mediated by TRAF2/6 generates a coherent feedforward loop to sensitize switch-like activation of NF-κB, whereas USP14 specifically removes the polyubiquitin chains from NLRC5 to enhance NLRC5-mediated inhibition. NLRC5 is an important regulator in innate immune responses. However, the ability of NLRC5 to inhibit NF-κB activation is controversial in different cell types. How dynamic modification of NLRC5 shapes NF-κB signaling remains unknown. We demonstrated that NLRC5 undergoes robust ubiquitination by TRAF2/6 after lipopolysaccharide treatment, which leads to dissociation of the NLRC5–IκB kinase complex. Experimental and mathematical analyses revealed that the K63-linked ubiquitination of NLRC5 at lysine 1,178 generates a coherent feedforward loop to further sensitize NF-κB activation. Meanwhile, we found USP14 specifically removes the polyubiquitin chains from NLRC5 to enhance NLRC5-mediated inhibition of NF-κB signaling. Furthermore, we found that different cell types may exhibit different sensitivities to NF-κB activation in response to NLRC5 ablation, possibly as a result of the various intrinsic levels of deubiquitinases and NLRC5. This might partially reconcile controversial studies and explain why NLRC5 exhibits diverse inhibitory efficiencies. Collectively, our results provide the regulatory mechanisms of reversible NLRC5 ubiquitination and its role in the dynamic control of innate immunity.
Collapse
Affiliation(s)
- Qingcai Meng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chunmei Cai
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Tingzhe Sun
- School of Life Sciences, AnQing Normal University, AnQing 246011, China
| | - Qianliang Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Weihong Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongfu Wang
- Houston Methodist Research Institute, Houston, TX 77030
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
97
|
Hu Y. A feedforward loop of NLRC5 (de)ubiquitination keeps IKK-NF-κB in check. J Cell Biol 2015; 211:941-3. [PMID: 26620908 PMCID: PMC4674284 DOI: 10.1083/jcb.201511039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 11/22/2022] Open
Abstract
Many receptors signal via adaptors to the IKK-NF-κB axis, transducing extracellular cues to transcriptional regulation. In this issue, Meng et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201505091) reveal that the IKK regulator NLRC5 shapes NF-κB activity through a feedforward loop of NLRC5 ubiquitination and deubiquitination, highlighting a new pathway modulating IKK-NF-κB activity.
Collapse
Affiliation(s)
- Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701
| |
Collapse
|
98
|
Keller IE, Vosyka O, Takenaka S, Kloß A, Dahlmann B, Willems LI, Verdoes M, Overkleeft HS, Marcos E, Adnot S, Hauck SM, Ruppert C, Günther A, Herold S, Ohno S, Adler H, Eickelberg O, Meiners S. Regulation of immunoproteasome function in the lung. Sci Rep 2015; 5:10230. [PMID: 25989070 PMCID: PMC4437306 DOI: 10.1038/srep10230] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/07/2015] [Indexed: 12/24/2022] Open
Abstract
Impaired immune function contributes to the development of chronic obstructive pulmonary disease (COPD). Disease progression is further exacerbated by pathogen infections due to impaired immune responses. Elimination of infected cells is achieved by cytotoxic CD8+ T cells that are activated by MHC I-mediated presentation of pathogen-derived antigenic peptides. The immunoproteasome, a specialized form of the proteasome, improves generation of antigenic peptides for MHC I presentation thereby facilitating anti-viral immune responses. However, immunoproteasome function in the lung has not been investigated in detail yet. In this study, we comprehensively characterized the function of immunoproteasomes in the human and murine lung. Parenchymal cells of the lung express low constitutive levels of immunoproteasomes, while they are highly and specifically expressed in alveolar macrophages. Immunoproteasome expression is not altered in whole lung tissue of COPD patients. Novel activity-based probes and native gel analysis revealed that immunoproteasome activities are specifically and rapidly induced by IFNγ treatment in respiratory cells in vitro and by virus infection of the lung in mice. Our results suggest that the lung is potentially capable of mounting an immunoproteasome-mediated efficient adaptive immune response to intracellular infections.
Collapse
Affiliation(s)
- Ilona E Keller
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Vosyka
- 1] Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany [2] Research Unit Protein Science, Helmholtz Zentrum München, Munich, Germany
| | - Shinji Takenaka
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Alexander Kloß
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Burkhardt Dahlmann
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lianne I Willems
- Department of Bio-organic Synthesis, Leiden University, Leiden, The Netherlands
| | - Martijn Verdoes
- Department of Bio-organic Synthesis, Leiden University, Leiden, The Netherlands
| | - Hermen S Overkleeft
- Department of Bio-organic Synthesis, Leiden University, Leiden, The Netherlands
| | - Elisabeth Marcos
- INSERM U955, Département de Physiologie, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Serge Adnot
- INSERM U955, Département de Physiologie, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Munich, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities Giessen &Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Andreas Günther
- 1] Department of Internal Medicine, Justus-Liebig-University Giessen, Universities Giessen &Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany [2] Agaplesion Pneumologische Klinik Waldhof-Elgershausen, Greifenstein, Germany
| | - Susanne Herold
- Department of Internal Medicine II, Section of Infectious Diseases, Justus- Liebig-University, Universities Giessen &Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Shinji Ohno
- Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Heiko Adler
- Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
99
|
Chang G, Liu X, Ma T, Xu L, Wang H, Li Z, Guo X, Xu Q, Chen G. A mutation in the NLRC5 promoter limits NF-κB signaling after Salmonella Enteritidis infection in the spleen of young chickens. Gene 2015; 568:117-23. [PMID: 25979675 DOI: 10.1016/j.gene.2015.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 04/08/2015] [Accepted: 05/11/2015] [Indexed: 01/11/2023]
Abstract
To date, the functions of the NLRC5 in chickens remain undefined. In the current study, chicken NLRC5 was cloned and an A1017G mutation was detected in its promoter region. The relative expression levels of the NLRC5 and key NF-κB pathway genes, IKKα, IKKβ, NF-κB, IL-6, IL-1β and IFN-γ, in the spleens of wild and mutant type birds, AA and GG, were determined using FQ-PCR at 7 day post-infection (DPI) with Salmonella Enteritidis. Additionally, the bacterial burden in the caecum and various immune response parameters were measured to evaluate immune responses. All of the examined immune response parameters were significantly different between the AA chickens and the GG chickens. Specifically, the mRNA expression levels of IKKα, NF-κB, IL-6, IL-1β and IFN-γ were higher in AA chickens than those in GG chickens, while the mRNA expression levels of NLRC5 were lower in AA chickens than those in GG chickens (P<0.05). Moreover, the mRNA expression levels of TLR4 and MyD88 were not affected in either group. Collectively, considering former NLRC5 functional study in vitro, the wild genotype birds presented with better resistance to Salmonella Enteritidis through the actions of the NLRC5 and subsequent inhibition of the NF-κB pathway in chickens.
Collapse
Affiliation(s)
- Guobin Chang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiangping Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China
| | - Teng Ma
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lu Xu
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hongzhi Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiteng Li
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaomin Guo
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi Xu
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guohong Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
100
|
NLRC5 exclusively transactivates MHC class I and related genes through a distinctive SXY module. PLoS Genet 2015; 11:e1005088. [PMID: 25811463 PMCID: PMC4374748 DOI: 10.1371/journal.pgen.1005088] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 02/23/2015] [Indexed: 02/03/2023] Open
Abstract
MHC class II (MHCII) genes are transactivated by the NOD-like receptor (NLR) family member CIITA, which is recruited to SXY enhancers of MHCII promoters via a DNA-binding "enhanceosome" complex. NLRC5, another NLR protein, was recently found to control transcription of MHC class I (MHCI) genes. However, detailed understanding of NLRC5's target gene specificity and mechanism of action remained lacking. We performed ChIP-sequencing experiments to gain comprehensive information on NLRC5-regulated genes. In addition to classical MHCI genes, we exclusively identified novel targets encoding non-classical MHCI molecules having important functions in immunity and tolerance. ChIP-sequencing performed with Rfx5(-/-) cells, which lack the pivotal enhanceosome factor RFX5, demonstrated its strict requirement for NLRC5 recruitment. Accordingly, Rfx5-knockout mice phenocopy Nlrc5 deficiency with respect to defective MHCI expression. Analysis of B cell lines lacking RFX5, RFXAP, or RFXANK further corroborated the importance of the enhanceosome for MHCI expression. Although recruited by common DNA-binding factors, CIITA and NLRC5 exhibit non-redundant functions, shown here using double-deficient Nlrc5(-/-)CIIta(-/-) mice. These paradoxical findings were resolved by using a "de novo" motif-discovery approach showing that the SXY consensus sequence occupied by NLRC5 in vivo diverges significantly from that occupied by CIITA. These sequence differences were sufficient to determine preferential occupation and transactivation by NLRC5 or CIITA, respectively, and the S box was found to be the essential feature conferring NLRC5 specificity. These results broaden our knowledge on the transcriptional activities of NLRC5 and CIITA, revealing their dependence on shared enhanceosome factors but their recruitment to distinct enhancer motifs in vivo. Furthermore, we demonstrated selectivity of NLRC5 for genes encoding MHCI or related proteins, rendering it an attractive target for therapeutic intervention. NLRC5 and CIITA thus emerge as paradigms for a novel class of transcriptional regulators dedicated for transactivating extremely few, phylogenetically related genes.
Collapse
|