51
|
Riedlinger T, Dommerholt MB, Wijshake T, Kruit JK, Huijkman N, Dekker D, Koster M, Kloosterhuis N, Koonen DP, de Bruin A, Baker D, Hofker MH, van Deursen J, Jonker JW, Schmitz ML, van de Sluis B. NF-κB p65 serine 467 phosphorylation sensitizes mice to weight gain and TNFα-or diet-induced inflammation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1785-1798. [DOI: 10.1016/j.bbamcr.2017.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/23/2017] [Accepted: 07/14/2017] [Indexed: 01/04/2023]
|
52
|
Wu GR, Mu TC, Gao ZX, Wang J, Sy MS, Li CY. Prion protein is required for tumor necrosis factor α (TNFα)-triggered nuclear factor κB (NF-κB) signaling and cytokine production. J Biol Chem 2017; 292:18747-18759. [PMID: 28900035 PMCID: PMC5704461 DOI: 10.1074/jbc.m117.787283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/10/2017] [Indexed: 12/18/2022] Open
Abstract
The expression of normal cellular prion protein (PrP) is required for the pathogenesis of prion diseases. However, the physiological functions of PrP remain ambiguous. Here, we identified PrP as being critical for tumor necrosis factor (TNF) α-triggered signaling in a human melanoma cell line, M2, and a pancreatic ductal cell adenocarcinoma cell line, BxPC-3. In M2 cells, TNFα up-regulates the expression of p-IκB-kinase α/β (p-IKKα/β), p-p65, and p-JNK, but down-regulates the IκBα protein, all of which are downstream signaling intermediates in the TNF receptor signaling cascade. When PRNP is deleted in M2 cells, the effects of TNFα are no longer detectable. More importantly, p-p65 and p-JNK responses are restored when PRNP is reintroduced into the PRNP null cells. TNFα also activates NF-κB and increases TNFα production in wild-type M2 cells, but not in PrP-null M2 cells. Similar results are obtained in the BxPC-3 cells. Moreover, TNFα activation of NF-κB requires ubiquitination of receptor-interacting serine/threonine kinase 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). TNFα treatment increases the binding between PrP and the deubiquitinase tumor suppressor cylindromatosis (CYLD), in these treated cells, binding of CYLD to RIP1 and TRAF2 is reduced. We conclude that PrP traps CYLD, preventing it from binding and deubiquitinating RIP1 and TRAF2. Our findings reveal that PrP enhances the responses to TNFα, promoting proinflammatory cytokine production, which may contribute to inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Gui-Ru Wu
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China.,the University of Chinese Academy of Sciences, Beijing 100000, China
| | - Tian-Chen Mu
- the Department of Life Sciences, Wuhan University, Wuhan 430010, China
| | - Zhen-Xing Gao
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Jun Wang
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Man-Sun Sy
- the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Chao-Yang Li
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China, .,the Wuhan Brain Hospital, No. 5 Huiji Road, Jiang'an District, Wuhan 430010, China
| |
Collapse
|
53
|
Valproic acid increases NF-κB transcriptional activation despite decreasing DNA binding ability in P19 cells, which may play a role in VPA-initiated teratogenesis. Reprod Toxicol 2017; 74:32-39. [PMID: 28865949 DOI: 10.1016/j.reprotox.2017.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/14/2017] [Accepted: 08/29/2017] [Indexed: 12/15/2022]
Abstract
The nuclear factor-kappa B (NF-κB) family of transcription factors regulate gene expression in response to diverse stimuli. We previously demonstrated that valproic acid (VPA) exposure in utero decreases total cellular protein expression of the NF-κB subunit p65 in CD-1 mouse embryos with a neural tube defect but not in phenotypically normal littermates. This study evaluated p65 mRNA and protein expression in P19 cells and determined the impact on DNA binding ability and activity. Exposure to 5mM VPA decreased p65 mRNA and total cellular protein expression however, nuclear p65 protein expression was unchanged. VPA reduced NF-κB DNA binding and nuclear protein of the p65 DNA-binding partner, p50. NF-κB transcriptional activity was increased with VPA alone, despite decreased phosphorylation of p65 at Ser276, and when combined with tissue necrosis factor α. These results demonstrate that VPA increases NF-κB transcriptional activity despite decreasing DNA binding, which may play a role in VPA-initiated teratogenesis.
Collapse
|
54
|
Riera‐Romo M. COMMD1: A Multifunctional Regulatory Protein. J Cell Biochem 2017; 119:34-51. [DOI: 10.1002/jcb.26151] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Mario Riera‐Romo
- Department of PharmacologyInstitute of Marine SciencesHavanaCuba
| |
Collapse
|
55
|
Mu P, Akashi T, Lu F, Kishida S, Kadomatsu K. A novel nuclear complex of DRR1, F-actin and COMMD1 involved in NF-κB degradation and cell growth suppression in neuroblastoma. Oncogene 2017; 36:5745-5756. [DOI: 10.1038/onc.2017.181] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
|
56
|
S100-alarmin-induced innate immune programming protects newborn infants from sepsis. Nat Immunol 2017; 18:622-632. [PMID: 28459433 DOI: 10.1038/ni.3745] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/11/2017] [Indexed: 12/22/2022]
Abstract
The high risk of neonatal death from sepsis is thought to result from impaired responses by innate immune cells; however, the clinical observation of hyperinflammatory courses of neonatal sepsis contradicts this concept. Using transcriptomic, epigenetic and immunological approaches, we demonstrated that high amounts of the perinatal alarmins S100A8 and S100A9 specifically altered MyD88-dependent proinflammatory gene programs. S100 programming prevented hyperinflammatory responses without impairing pathogen defense. TRIF-adaptor-dependent regulatory genes remained unaffected by perinatal S100 programming and responded strongly to lipopolysaccharide, but were barely expressed. Steady-state expression of TRIF-dependent genes increased only gradually during the first year of life in human neonates, shifting immune regulation toward the adult phenotype. Disruption of this critical sequence of transient alarmin programming and subsequent reprogramming of regulatory pathways increased the risk of hyperinflammation and sepsis. Collectively these data suggest that neonates are characterized by a selective, transient microbial unresponsiveness that prevents harmful hyperinflammation in the delicate neonate while allowing for sufficient immunological protection.
Collapse
|
57
|
Fedoseienko A, Wieringa HW, Wisman GBA, Duiker E, Reyners AKL, Hofker MH, van der Zee AGJ, van de Sluis B, van Vugt MATM. Nuclear COMMD1 Is Associated with Cisplatin Sensitivity in Ovarian Cancer. PLoS One 2016; 11:e0165385. [PMID: 27788210 PMCID: PMC5082896 DOI: 10.1371/journal.pone.0165385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/11/2016] [Indexed: 01/18/2023] Open
Abstract
Copper metabolism MURR1 domain 1 (COMMD1) protein is a multifunctional protein, and its expression has been correlated with patients’ survival in different types of cancer. In vitro studies revealed that COMMD1 plays a role in sensitizing cancer cell lines to cisplatin, however, the mechanism and its role in platinum sensitivity in cancer has yet to be established. We evaluated the role of COMMD1 in cisplatin sensitivity in A2780 ovarian cancer cells and the relation between COMMD1 expression and response to platinum-based therapy in advanced stage high-grade serous ovarian cancer (HGSOC) patients. We found that elevation of nuclear COMMD1 expression sensitized A2780 ovarian cancer cells to cisplatin-mediated cytotoxicity. This was accompanied by a more effective G2/M checkpoint, and decreased protein expression of the DNA repair gene BRCA1, and the apoptosis inhibitor BCL2. Furthermore, COMMD1 expression was immunohistochemically analyzed in two tissue micro-arrays (TMAs), representing a historical cohort and a randomized clinical trial-based cohort of advanced stage HGSOC tumor specimens. Expression of COMMD1 was observed in all ovarian cancer samples, however, specifically nuclear expression of COMMD1 was only observed in a subset of ovarian cancers. In our historical cohort, nuclear COMMD1 expression was associated with an improved response to chemotherapy (OR = 0.167; P = 0.038), although this association could not be confirmed in the second cohort, likely due to sample size. Taken together, these results suggest that nuclear expression of COMMD1 sensitize ovarian cancer to cisplatin, possibly by modulating the G2/M checkpoint and through controlling expression of genes involved in DNA repair and apoptosis.
Collapse
Affiliation(s)
- Alina Fedoseienko
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hylke W. Wieringa
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Gynecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G. Bea A. Wisman
- Department of Gynecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Evelien Duiker
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna K. L. Reyners
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marten H. Hofker
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ate G. J. van der Zee
- Department of Gynecological Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail: (BvdS); (MATMvV)
| | - Marcel A. T. M. van Vugt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail: (BvdS); (MATMvV)
| |
Collapse
|
58
|
Pradère JP, Hernandez C, Koppe C, Friedman RA, Luedde T, Schwabe RF. Negative regulation of NF-κB p65 activity by serine 536 phosphorylation. Sci Signal 2016; 9:ra85. [PMID: 27555662 DOI: 10.1126/scisignal.aab2820] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nuclear factor κB (NF-κB) is a master regulator of inflammation and cell death. Whereas most of the activity of NF-κB is regulated through the inhibitor of κB (IκB) kinase (IKK)-dependent degradation of IκB, IKK also phosphorylates subunits of NF-κB. We investigated the contribution of the phosphorylation of the NF-κB subunit p65 at the IKK phosphorylation site serine 536 (Ser(536)) in humans, which is thought to be required for the activation and nuclear translocation of NF-κB. Through experiments with knock-in mice (S534A mice) expressing a mutant p65 with an alanine-to-serine substitution at position 534 (the murine homolog of human Ser(536)), we observed increased expression of NF-κB-dependent genes after injection of mice with the inflammatory stimulus lipopolysaccharide (LPS) or exposure to gamma irradiation, and the enhanced gene expression was most pronounced at late time points. Compared to wild-type mice, S534A mice displayed increased mortality after injection with LPS. Increased NF-κB signaling in the S534A mice was at least in part explained by the increased stability of the S534A p65 protein compared to that of the Ser(534)-phosphorylated wild-type protein. Together, our results suggest that Ser(534) phosphorylation of p65 in mice (and, by extension, Ser(536) phosphorylation of human p65) is not required for its nuclear translocation, but instead inhibits NF-κB signaling to prevent deleterious inflammation.
Collapse
Affiliation(s)
| | - Céline Hernandez
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Christiane Koppe
- Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
59
|
Singha B, Gatla HR, Phyo S, Patel A, Chen ZS, Vancurova I. IKK inhibition increases bortezomib effectiveness in ovarian cancer. Oncotarget 2016; 6:26347-58. [PMID: 26267322 PMCID: PMC4694906 DOI: 10.18632/oncotarget.4713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/08/2015] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer is associated with increased expression of the pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8), which induces tumor cell proliferation, angiogenesis, and metastasis. Even though bortezomib (BZ) has shown remarkable anti-tumor activity in hematological malignancies, it has been less effective in ovarian cancer; however, the mechanisms are not understood. We have recently shown that BZ unexpectedly induces the expression of IL-8 in ovarian cancer cells in vitro, by IκB kinase (IKK)-dependent mechanism. Here, we tested the hypothesis that IKK inhibition reduces the IL-8 production and increases BZ effectiveness in reducing ovarian tumor growth in vivo. Our results demonstrate that the combination of BZ and the IKK inhibitor Bay 117085 significantly reduces the growth of ovarian tumor xenografts in nude mice when compared to either drug alone. Mice treated with the BZ/Bay 117085 combination exhibit smallest tumors, and lowest levels of IL-8. Furthermore, the reduced tumor growth in the combination group is associated with decreased tumor levels of S536P-p65 NFκB and its decreased recruitment to IL-8 promoter in tumor tissues. These data provide the first in vivo evidence that combining BZ with IKK inhibitor is effective, and suggest that using IKK inhibitors may increase BZ effectiveness in ovarian cancer treatment.
Collapse
Affiliation(s)
- Bipradeb Singha
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | | | - Sai Phyo
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Atish Patel
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
60
|
The Ubiquitination of NF-κB Subunits in the Control of Transcription. Cells 2016; 5:cells5020023. [PMID: 27187478 PMCID: PMC4931672 DOI: 10.3390/cells5020023] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
Nuclear factor (NF)-κB has evolved as a latent, inducible family of transcription factors fundamental in the control of the inflammatory response. The transcription of hundreds of genes involved in inflammation and immune homeostasis require NF-κB, necessitating the need for its strict control. The inducible ubiquitination and proteasomal degradation of the cytoplasmic inhibitor of κB (IκB) proteins promotes the nuclear translocation and transcriptional activity of NF-κB. More recently, an additional role for ubiquitination in the regulation of NF-κB activity has been identified. In this case, the ubiquitination and degradation of the NF-κB subunits themselves plays a critical role in the termination of NF-κB activity and the associated transcriptional response. While there is still much to discover, a number of NF-κB ubiquitin ligases and deubiquitinases have now been identified which coordinate to regulate the NF-κB transcriptional response. This review will focus the regulation of NF-κB subunits by ubiquitination, the key regulatory components and their impact on NF-κB directed transcription.
Collapse
|
61
|
Christian F, Smith EL, Carmody RJ. The Regulation of NF-κB Subunits by Phosphorylation. Cells 2016; 5:cells5010012. [PMID: 26999213 PMCID: PMC4810097 DOI: 10.3390/cells5010012] [Citation(s) in RCA: 559] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
The NF-κB transcription factor is the master regulator of the inflammatory response and is essential for the homeostasis of the immune system. NF-κB regulates the transcription of genes that control inflammation, immune cell development, cell cycle, proliferation, and cell death. The fundamental role that NF-κB plays in key physiological processes makes it an important factor in determining health and disease. The importance of NF-κB in tissue homeostasis and immunity has frustrated therapeutic approaches aimed at inhibiting NF-κB activation. However, significant research efforts have revealed the crucial contribution of NF-κB phosphorylation to controlling NF-κB directed transactivation. Importantly, NF-κB phosphorylation controls transcription in a gene-specific manner, offering new opportunities to selectively target NF-κB for therapeutic benefit. This review will focus on the phosphorylation of the NF-κB subunits and the impact on NF-κB function.
Collapse
Affiliation(s)
- Frank Christian
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Emma L Smith
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
62
|
Wallach D. The cybernetics of TNF: Old views and newer ones. Semin Cell Dev Biol 2016; 50:105-14. [DOI: 10.1016/j.semcdb.2015.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/09/2015] [Indexed: 01/08/2023]
|
63
|
Liu X, Berry CT, Ruthel G, Madara JJ, MacGillivray K, Gray CM, Madge LA, McCorkell KA, Beiting DP, Hershberg U, May MJ, Freedman BD. T Cell Receptor-induced Nuclear Factor κB (NF-κB) Signaling and Transcriptional Activation Are Regulated by STIM1- and Orai1-mediated Calcium Entry. J Biol Chem 2016; 291:8440-52. [PMID: 26826124 DOI: 10.1074/jbc.m115.713008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 12/18/2022] Open
Abstract
T cell activation following antigen binding to the T cell receptor (TCR) involves the mobilization of intracellular Ca(2+) to activate the key transcription factors nuclear factor of activated T lymphocytes (NFAT) and NF-κB. The mechanism of NFAT activation by Ca(2+) has been determined. However, the role of Ca(2+) in controlling NF-κB signaling is poorly understood, and the source of Ca(2+) required for NF-κB activation is unknown. We demonstrate that TCR- but not TNF-induced NF-κB signaling upstream of IκB kinase activation absolutely requires the influx of extracellular Ca(2+) via STIM1-dependent Ca(2+) release-activated Ca(2+)/Orai channels. We further show that Ca(2+) influx controls phosphorylation of the NF-κB protein p65 on Ser-536 and that this posttranslational modification controls its nuclear localization and transcriptional activation. Notably, our data reveal that this role for Ca(2+) is entirely separate from its upstream control of IκBα degradation, thereby identifying a novel Ca(2+)-dependent distal step in TCR-induced NF-κB activation. Finally, we demonstrate that this control of distal signaling occurs via Ca(2+)-dependent PKCα-mediated phosphorylation of p65. Thus, we establish the source of Ca(2+) required for TCR-induced NF-κB activation and define a new distal Ca(2+)-dependent checkpoint in TCR-induced NF-κB signaling that has broad implications for the control of immune cell development and T cell functional specificity.
Collapse
Affiliation(s)
| | - Corbett T Berry
- From the Departments of Pathobiology and the School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | | | | | | | - Carolyn M Gray
- Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Lisa A Madge
- Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | - Kelly A McCorkell
- Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | | | - Uri Hershberg
- the School of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania 19104
| | - Michael J May
- Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and
| | | |
Collapse
|
64
|
Esposito E, Napolitano G, Pescatore A, Calculli G, Incoronato MR, Leonardi A, Ursini MV. COMMD7 as a novel NEMO interacting protein involved in the termination of NF-κB signaling. J Cell Physiol 2016; 231:152-61. [PMID: 26060140 DOI: 10.1002/jcp.25066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/05/2015] [Indexed: 11/08/2022]
Abstract
NEMO/IKKγ is the regulatory subunit of the IκB Kinase (IKK) complex, required for the activation of the NF-κB pathway, which is involved in a variety of key processes, including immunity, inflammation, differentiation, and cell survival. Termination of NF-κB activity on specific -κB responsive genes, which is crucial for the resolution of inflammatory responses, can be achieved by direct degradation of the chromatin-bound NF-κB subunit RelA/p65, a process mediated by a protein complex that contains Copper Metabolism Murr1 Domain 1 (COMMD1). In this study, we identify COMMD7, another member of the COMMDs protein family, as a novel NEMO-interacting protein. We show that COMMD7 exerts an inhibitory effect on NF-κB activation upon TNFα stimulation. COMMD7 interacts with COMMD1 and together they cooperate to down-regulate NF-κB activity. Accordingly, termination of TNFα-induced NF-κB activity on the -κB responsive gene, Icam1, is defective in cells silenced for COMMD7 expression. Furthermore, this impairment is not greatly increased when we silence the expression of both COMMD7 and COMMD1 indicating that the two proteins participate in the same pathway of termination of TNFα-induced NF-κB activity. Importantly, we have demonstrated that COMMD7's binding to NEMO does not interfere with the binding to the IKKs, and that the disruption of the IKK complex through the use of the NBP competitor impairs the termination of NF-κB activity. We propose that an intact IKK complex is required for the termination of NF-κB-dependent transcription and that COMMD7 acts as a scaffold in the IKK-mediated NF-κB termination.
Collapse
Affiliation(s)
- Elio Esposito
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | - Gennaro Napolitano
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | - Alessandra Pescatore
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | - Giuseppe Calculli
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy
| | | | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, via S. Pansini 5, Naples, Italy
| | - Matilde Valeria Ursini
- Institute of Genetics and Biophysics, 'Adriano Buzzati-Traverso' (CNR), Naples, Italy.,IRCCS SDN, Via E. Gianturco 113, Naples, Italy
| |
Collapse
|
65
|
Small ubiquitin-related modifier 2/3 interacts with p65 and stabilizes it in the cytoplasm in HBV-associated hepatocellular carcinoma. BMC Cancer 2015; 15:675. [PMID: 26458400 PMCID: PMC4603762 DOI: 10.1186/s12885-015-1665-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 09/30/2015] [Indexed: 11/17/2022] Open
Abstract
Background SUMOylation, an important post-translational modification, associates with the development of hepatocellular carcinoma (HCC). p65, one of the most important subunits of NF-κB, is a key regulator in the development of HCC and has been reported to be SUMOylated by exogenous small ubiquitin-related modifier 3 (SUMO3) in HEK 293T cells. However, the relationship between p65 and SUMO2/3 in HCC remains unknown. This study was to investigate the interaction between p65 and SUMO2/3 and explore the potential roles involved in HCC. Methods The expressions of p65 and SUMO2/3 in the liver tissues were detected by using immunohistochemistry. We performed double-labeled immunofluorescence and co-immunoprecipitation assay to verify the interaction between p65 and SUMO2/3. The extraction of nuclear and cytoplasmic proteins was performed, and the subcellular localization of p65 was detected. The proliferation and migration of hepatoma cells were observed using MTT, colony formation, and transwell assays. Results We found a strong SUMO2/3-positive immunoreactivity in the cytoplasm in the non-tumor tissues of HCC. However, SUMO2/3 level was down regulated in the tumor tissues as compared with the adjacent non-tumor tissues. In accordance with this finding, p65 was up regulated in the adjacent non-tumor tissues and almost localized in the cytoplasm. There was a close correlation between SUMO2/3 and p65 expressions in the liver tissues (R = 0.800, p = 0.006). The interaction between p65 and SUMO2/3 was verified by co-immunoprecipitation and double-labeled immunofluorescent assays. TNF-α (10 ng/ml) treatment for 30 min not only up regulated the cytoplasmic conjugated SUMO2/3, but also enhanced SUMO2/3-p65 interaction. Furthermore, we found that SUMO2/3 up regulated the cytoplasmic p65 protein level in a dose-dependent manner, but not affected its mRNA level. The increase of p65 protein by SUMO2/3 was abolished by MG132 treatment, a reversible inhibitor of proteasome. Meanwhile, TNF-α-induced increase of SUMO2/3-conjugated p65 was along with the reduction of the ubiquitin-conjugated p65. The further study showed that SUMO2/3 over-expression decreased the proliferative ability of hepatoma cells, but did not affect the migration. Conclusion SUMO2/3-p65 interaction may be a novel mechanism involved in the transformation from chronic hepatitis B to HCC via stabilizing cytoplasmic p65, which might shed light on understanding the tumorigenesis and development. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1665-3) contains supplementary material, which is available to authorized users.
Collapse
|
66
|
Baig MS, Zaichick SV, Mao M, de Abreu AL, Bakhshi FR, Hart PC, Saqib U, Deng J, Chatterjee S, Block ML, Vogel SM, Malik AB, Consolaro MEL, Christman JW, Minshall RD, Gantner BN, Bonini MG. NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1. ACTA ACUST UNITED AC 2015; 212:1725-38. [PMID: 26324446 PMCID: PMC4577833 DOI: 10.1084/jem.20140654] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/06/2015] [Indexed: 11/04/2022]
Abstract
The NF-κB pathway is central to the regulation of inflammation. Here, we demonstrate that the low-output nitric oxide (NO) synthase 1 (NOS1 or nNOS) plays a critical role in the inflammatory response by promoting the activity of NF-κB. Specifically, NOS1-derived NO production in macrophages leads to proteolysis of suppressor of cytokine signaling 1 (SOCS1), alleviating its repression of NF-κB transcriptional activity. As a result, NOS1(-/-) mice demonstrate reduced cytokine production, lung injury, and mortality when subjected to two different models of sepsis. Isolated NOS1(-/-) macrophages demonstrate similar defects in proinflammatory transcription on challenge with Gram-negative bacterial LPS. Consistently, we found that activated NOS1(-/-) macrophages contain increased SOCS1 protein and decreased levels of p65 protein compared with wild-type cells. NOS1-dependent S-nitrosation of SOCS1 impairs its binding to p65 and targets SOCS1 for proteolysis. Treatment of NOS1(-/-) cells with exogenous NO rescues both SOCS1 degradation and stabilization of p65 protein. Point mutation analysis demonstrated that both Cys147 and Cys179 on SOCS1 are required for its NO-dependent degradation. These findings demonstrate a fundamental role for NOS1-derived NO in regulating TLR4-mediated inflammatory gene transcription, as well as the intensity and duration of the resulting host immune response.
Collapse
Affiliation(s)
- Mirza Saqib Baig
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607 Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607
| | - Sofia V Zaichick
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607 Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607
| | - Mao Mao
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607 Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607
| | - Andre L de Abreu
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607 Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607 Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa 87020-900, Brazil
| | - Farnaz R Bakhshi
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607
| | - Peter C Hart
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607 Department of Anatomy and Cell Biology, Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN 46202
| | - Uzma Saqib
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607
| | - Jing Deng
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607
| | - Saurabh Chatterjee
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607
| | - Michelle L Block
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607
| | - Stephen M Vogel
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607
| | - Asrar B Malik
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607
| | - Marcia E L Consolaro
- Programa de Biociencias Aplicadas a Farmacia (PBF), Universidade Estadual de Maringa, Maringa 87020-900, Brazil
| | - John W Christman
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607
| | - Richard D Minshall
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607 Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208
| | - Benjamin N Gantner
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607
| | - Marcelo G Bonini
- Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607 Department of Medicine, Department of Pharmacology, Department of Anesthesiology, and Department of Pathology, University of Illinois College of Medicine, Chicago, IL 60607 Department of Anatomy and Cell Biology, Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN 46202
| |
Collapse
|
67
|
Davis ME, Gack MU. Ubiquitination in the antiviral immune response. Virology 2015; 479-480:52-65. [PMID: 25753787 PMCID: PMC4774549 DOI: 10.1016/j.virol.2015.02.033] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 01/07/2023]
Abstract
Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, 'atypical' non-degradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS.
Collapse
Affiliation(s)
- Meredith E Davis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| | - Michaela U Gack
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
68
|
Singh V, Gupta D, Arora R. NF-kB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova) 2015; 3:e35. [PMID: 32309561 PMCID: PMC7159829 DOI: 10.15190/d.2015.27] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor (NF)-κB is a transcription factor that plays significant role in immunity, cellular survival and inhibition of apoptosis, through the induction of genetic networks. Depending on the stimulus and the cell type, the members of NF-κB related family (RelA, c-Rel, RelB, p50, and p52), forms different combinations of homo and hetero-dimers. The activated complexes (Es) translocate into the nucleus and bind to the 10bp κB site of promoter region of target genes in stimulus specific manner. In response to radiation, NF-κB is known to reduce cell death by promoting the expression of anti-apoptotic proteins and activation of cellular antioxidant defense system. Constitutive activation of NF-κB associated genes in tumour cells are known to enhance radiation resistance, whereas deletion in mice results in hypersensitivity to IR-induced GI damage. NF-κB is also known to regulate the production of a wide variety of cytokines and chemokines, which contribute in enhancing cell proliferation and tissue regeneration in various organs, such as the GI crypts stem cells, bone marrow etc., following exposure to IR. Several other cytokines are also known to exert potent pro-inflammatory effects that may contribute to the increase of tissue damage following exposure to ionizing radiation. Till date there are a series of molecules or group of compounds that have been evaluated for their radio-protective potential, and very few have reached clinical trials. The failure or less success of identified agents in humans could be due to their reduced radiation protection efficacy.
In this review we have considered activation of NF-κB as a potential marker in screening of radiation countermeasure agents (RCAs) and cellular radiation responses. Moreover, we have also focused on associated mechanisms of activation of NF-κB signaling and their specified family member activation with respect to stimuli. Furthermore, we have categorized their regulated gene expressions and their function in radiation response or modulation. In addition, we have discussed some recently developed radiation countermeasures in relation to NF-κB activation
Collapse
Affiliation(s)
- Vijay Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Rajesh Arora
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| |
Collapse
|
69
|
Taura M, Kudo E, Kariya R, Goto H, Matsuda K, Hattori S, Vaeteewoottacharn K, McDonald F, Suico MA, Shuto T, Kai H, Okada S. COMMD1/Murr1 reinforces HIV-1 latent infection through IκB-α stabilization. J Virol 2015; 89:2643-2658. [PMID: 25520503 PMCID: PMC4325709 DOI: 10.1128/jvi.03105-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/09/2014] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The transcription factor NF-κB is important for HIV-1 transcription initiation in primary HIV-1 infection and reactivation in latently HIV-1-infected cells. However, comparative analysis of the regulation and function of NF-κB in latently HIV-1-infected cells has not been done. Here we show that the expression of IκB-α, an endogenous inhibitor of NF-κB, is enhanced by latent HIV-1 infection via induction of the host-derived factor COMMD1/Murr1 in myeloid cells but not in lymphoid cells by using four sets of latently HIV-1-infected cells and the respective parental cells. IκB-α protein was stabilized by COMMD1, which attenuated NF-κB signaling during Toll-like receptor ligand and tumor necrosis factor alpha treatment and enhanced HIV-1 latency in latently HIV-1-infected cells. Activation of the phosphoinositol 3-kinase (PI3K)-JAK pathway is involved in COMMD1 induction in latently HIV-1-infected cells. Our findings indicate that COMMD1 induction is the NF-κB inhibition mechanism in latently HIV-1-infected cells that contributes to innate immune deficiency and reinforces HIV-1 latency. Thus, COMMD1 might be a double-edged sword that is beneficial in primary infection but not beneficial in latent infection when HIV-1 eradication is considered. IMPORTANCE HIV-1 latency is a major barrier to viral eradication in the era of combination antiretroviral therapy. In this study, we found that COMMD1/Murr1, previously identified as an HIV-1 restriction factor, inhibits the proteasomal degradation of IκB-α by increasing the interaction with IκB-α in latently HIV-1-infected myeloid cells. IκB-α protein was stabilized by COMMD1, which attenuated NF-κB signaling during the innate immune response and enhanced HIV-1 latency in latently HIV-1-infected cells. Activation of the PI3K-JAK pathway is involved in COMMD1 induction in latently HIV-1-infected cells. Thus, the host-derived factor COMMD1 is beneficial in suppressing primary infection but enhances latent infection, indicating that it may be a double-edged sword in HIV-1 eradication.
Collapse
Affiliation(s)
- Manabu Taura
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Eriko Kudo
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hiroki Goto
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Kouki Matsuda
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Hattori
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Fiona McDonald
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
70
|
Abstract
NF-κB is an essential regulator of inflammation and is also required for normal immune development and homeostasis. The inducible activation of NF-κB by a wide range of immuno-receptors such as the toll-like receptors (TLR), Tumour Necrosis Factor receptor (TNFR), and antigen T cell and B cell receptors requires the ubiquitin-triggered proteasomal degradation of IκBα to promote the nuclear translocation and transcriptional activity of NF-κB dimers. More recently, an additional role for ubiquitination and proteasomal degradation in the control of NF-κB activity has been uncovered. In this case, it is the ubiquitination and proteasomal degradation of the NF-κB subunits that play a critical role in the termination of the NF-κB-dependent transcriptional response induced by receptor activation. The primary trigger of NF-κB ubiquitination is DNA binding by NF-κB dimers and is further controlled by specific phosphorylation events which regulate the interaction of NF-κB with the E3 ligase complex and the deubiquitinase enzyme USP7. It is the balance between ubiquitination and deubiquitination that shapes the NF-κB-mediated transcriptional response. This chapter describes methods for the analysis of NF-κB ubiquitination.
Collapse
Affiliation(s)
- Patricia E Collins
- Institute of Infection, Immunology and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | | | | |
Collapse
|
71
|
Azman R, Lappin DF, MacPherson A, Riggio M, Robertson D, Hodge P, Ramage G, Culshaw S, Preshaw PM, Taylor J, Nile C. Clinical associations between IL-17 family cytokines and periodontitis and potential differential roles for IL-17A and IL-17E in periodontal immunity. Inflamm Res 2014; 63:1001-12. [DOI: 10.1007/s00011-014-0776-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/14/2014] [Accepted: 10/10/2014] [Indexed: 12/31/2022] Open
|
72
|
Lu X, Yarbrough WG. Negative regulation of RelA phosphorylation: emerging players and their roles in cancer. Cytokine Growth Factor Rev 2014; 26:7-13. [PMID: 25438737 DOI: 10.1016/j.cytogfr.2014.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/03/2014] [Indexed: 01/25/2023]
Abstract
NF-κB signaling contributes to human disease processes, notably inflammatory diseases and cancer. Many advances have been made in understanding mechanisms responsible for abnormal NF-κB activation with RelA post-translational modification, particularly phosphorylation, proven to be critical for RelA function. While the majority of studies have focused on identifying kinases responsible for NF-κB phosphorylation and pathway activation, recently progress has also been made in understanding the negative regulators important for restraining RelA activity. Here we summarize negative regulators of RelA phosphorylation, their targeting sites in RelA and biological functions through negative regulation of RelA activation. Finally, we emphasize the tumor suppressor-like roles that these negative regulators can assume in human cancers.
Collapse
Affiliation(s)
- Xinyuan Lu
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA; Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Wendell G Yarbrough
- Division of Otolaryngology, Department of Surgery, Yale University, New Haven, CT, USA; Department of Pathology, Yale University, New Haven, CT, USA; Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
73
|
Weissmann L, Quaresma PGF, Santos AC, de Matos AHB, Pascoal VDB, Zanotto TM, Castro G, Guadagnini D, da Silva JM, Velloso LA, Bittencourt JC, Lopes-Cendes I, Saad MJA, Prada PO. IKKε is key to induction of insulin resistance in the hypothalamus, and its inhibition reverses obesity. Diabetes 2014; 63:3334-45. [PMID: 24812431 DOI: 10.2337/db13-1817] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
IKK epsilon (IKKε) is induced by the activation of nuclear factor-κB (NF-κB). Whole-body IKKε knockout mice on a high-fat diet (HFD) were protected from insulin resistance and showed altered energy balance. We demonstrate that IKKε is expressed in neurons and is upregulated in the hypothalamus of obese mice, contributing to insulin and leptin resistance. Blocking IKKε in the hypothalamus of obese mice with CAYMAN10576 or small interfering RNA decreased NF-κB activation in this tissue, relieving the inflammatory environment. Inhibition of IKKε activity, but not TBK1, reduced IRS-1(Ser307) phosphorylation and insulin and leptin resistance by an improvement of the IR/IRS-1/Akt and JAK2/STAT3 pathways in the hypothalamus. These improvements were independent of body weight and food intake. Increased insulin and leptin action/signaling in the hypothalamus may contribute to a decrease in adiposity and hypophagia and an enhancement of energy expenditure accompanied by lower NPY and increased POMC mRNA levels. Improvement of hypothalamic insulin action decreases fasting glycemia, glycemia after pyruvate injection, and PEPCK protein expression in the liver of HFD-fed and db/db mice, suggesting a reduction in hepatic glucose production. We suggest that IKKε may be a key inflammatory mediator in the hypothalamus of obese mice, and its hypothalamic inhibition improves energy and glucose metabolism.
Collapse
Affiliation(s)
- Laís Weissmann
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Paula G F Quaresma
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Andressa C Santos
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre H B de Matos
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Tamires M Zanotto
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gisele Castro
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Licio A Velloso
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jackson C Bittencourt
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mario J A Saad
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Patricia O Prada
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil School of Applied Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
74
|
O'Hara A, Simpson J, Morin P, Loveridge CJ, Williams AC, Novo SM, Stark LA. p300-mediated acetylation of COMMD1 regulates its stability, and the ubiquitylation and nucleolar translocation of the RelA NF-κB subunit. J Cell Sci 2014; 127:3659-65. [PMID: 25074812 PMCID: PMC4150058 DOI: 10.1242/jcs.149328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/20/2014] [Indexed: 12/02/2022] Open
Abstract
Nucleolar sequestration of the RelA subunit of nuclear factor (NF)-κB is an important mechanism for regulating NF-κB transcriptional activity. Ubiquitylation, facilitated by COMMD1 (also known as MURR1), acts as a crucial nucleolar-targeting signal for RelA, but how this ubiquitylation is regulated, and how it differs from cytokine-mediated ubiquitylation, which causes proteasomal degradation of RelA, is poorly understood. Here, we report a new role for p300 (also known as EP300) in controlling stimulus-specific ubiquitylation of RelA, through modulation of COMMD1. We show that p300 is required for stress-mediated ubiquitylation and nucleolar translocation of RelA, but that this effect is indirect. We also demonstrate that COMMD1 is acetylated by p300 and that acetylation protects COMMD1 from XIAP-mediated proteosomal degradation. Furthermore, we demonstrate that COMMD1 acetylation is enhanced by aspirin-mediated stress, and that this acetylation is absolutely required for the protein to bind RelA under these conditions. In contrast, tumour necrosis factor (TNF) has no effect on COMMD1 acetylation. Finally, we demonstrate these findings have relevance in a whole tissue setting. These data offer a new paradigm for the regulation of NF-κB transcriptional activity, and the multiple other pathways controlled by COMMD1.
Collapse
Affiliation(s)
- Andrew O'Hara
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - James Simpson
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Pierre Morin
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Carolyn J Loveridge
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Ann C Williams
- Colorectal Tumour Biology Group, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TH, UK
| | - Sonia M Novo
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Lesley A Stark
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
75
|
Participation of the E3-ligase TRIM13 in NF-κB p65 activation and NFAT-dependent activation of c-Rel upon T-cell receptor engagement. Int J Biochem Cell Biol 2014; 54:217-22. [PMID: 25088585 DOI: 10.1016/j.biocel.2014.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/28/2014] [Accepted: 07/16/2014] [Indexed: 01/24/2023]
Abstract
The nuclear factor κB (NF-κB) family members p65 and c-Rel chiefly orchestrate lymphocytes activation following T-cell receptor (TCR) engagement. In contrast to p65, which is rapidly mobilized, c-Rel activation occurs subsequently as it involves a nuclear factor of activated T-cells (NFAT)-dependent upregulation step. However, how TCR ligation drives p65 and c-Rel activation is not fully understood. Because several ubiquitylated components of NF-κB signaling cascade accumulate in close proximity to membranes, we screened a siRNA library against E3-ligases that contain transmembrane domains on TCR-mediated NF-κB activation. Here, we report the identification of the endoplasmic reticulum resident TRIM13 protein as an enhancer of NF-κB promoter activity. We found that knocking down TRIM13 by RNA interference reduced the activation of p65, while the translocation of c-Rel into the nucleus was blunted. We further observed that c-Rel induction was diminished without TRIM13, as NFAT activation was compromised. These results unveil that TRIM13 is a selective regulator of p65 and of c-Rel activation.
Collapse
|
76
|
Bartuzi P, Wijshake T, Dekker DC, Fedoseienko A, Kloosterhuis NJ, Youssef SA, Li H, Shiri-Sverdlov R, Kuivenhoven JA, de Bruin A, Burstein E, Hofker MH, van de Sluis B. A cell-type-specific role for murine Commd1 in liver inflammation. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2257-65. [PMID: 25072958 DOI: 10.1016/j.bbadis.2014.06.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 12/18/2022]
Abstract
The transcription factor NF-κB plays a critical role in the inflammatory response and it has been implicated in various diseases, including non-alcoholic fatty liver disease (NAFLD). Although transient NF-κB activation may protect tissues from stress, a prolonged NF-κB activation can have a detrimental effect on tissue homeostasis and therefore accurate termination is crucial. Copper Metabolism MURR1 Domain-containing 1 (COMMD1), a protein with functions in multiple pathways, has been shown to suppress NF-κB activity. However, its action in controlling liver inflammation has not yet been investigated. To determine the cell-type-specific contribution of Commd1 to liver inflammation, we used hepatocyte and myeloid-specific Commd1-deficient mice. We also used a mouse model of NAFLD to study low-grade chronic liver inflammation: we fed the mice a high fat, high cholesterol (HFC) diet, which results in hepatic lipid accumulation accompanied by liver inflammation. Depletion of hepatocyte Commd1 resulted in elevated levels of the NF-κB transactivation subunit p65 (RelA) but, surprisingly, the level of liver inflammation was not aggravated. In contrast, deficiency of myeloid Commd1 exacerbated diet-induced liver inflammation. Unexpectedly we observed that hepatic and myeloid Commd1 deficiency in the mice both augmented hepatic lipid accumulation. The elevated levels of proinflammatory cytokines in myeloid Commd1-deficient mice might be responsible for the increased level of steatosis. This increase was not seen in hepatocyte Commd1-deficient mice, in which increased lipid accumulation appeared to be independent of inflammation. Our mouse models demonstrate a cell-type-specific role for Commd1 in suppressing liver inflammation and in the progression of NAFLD.
Collapse
Affiliation(s)
- Paulina Bartuzi
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Tobias Wijshake
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Daphne C Dekker
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alina Fedoseienko
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Niels J Kloosterhuis
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sameh A Youssef
- Dutch Molecular Pathology Center, Department of Pathology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, De Uithof, 3584 CL Utrecht, The Netherlands
| | - Haiying Li
- University of Texas Southwestern Medical Center, Departments of Internal Medicine and Molecular Biology, Dallas, TX 75390-9151, USA
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Jan-Albert Kuivenhoven
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alain de Bruin
- Dutch Molecular Pathology Center, Department of Pathology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, De Uithof, 3584 CL Utrecht, The Netherlands
| | - Ezra Burstein
- University of Texas Southwestern Medical Center, Departments of Internal Medicine and Molecular Biology, Dallas, TX 75390-9151, USA
| | - Marten H Hofker
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Bart van de Sluis
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Molecular Genetics Section, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
77
|
Li H, Chan L, Bartuzi P, Melton SD, Weber A, Ben-Shlomo S, Varol C, Raetz M, Mao X, Starokadomskyy P, van Sommeren S, Mokadem M, Schneider H, Weisberg R, Westra HJ, Esko T, Metspalu A, Kumar V, Faubion WA, Yarovinsky F, Hofker M, Wijmenga C, Kracht M, Franke L, Aguirre V, Weersma RK, Gluck N, van de Sluis B, Burstein E. Copper metabolism domain-containing 1 represses genes that promote inflammation and protects mice from colitis and colitis-associated cancer. Gastroenterology 2014; 147:184-195.e3. [PMID: 24727021 PMCID: PMC4086320 DOI: 10.1053/j.gastro.2014.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/21/2014] [Accepted: 04/05/2014] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Activation of the transcription factor nuclear factor-κB (NF-κB) has been associated with the development of inflammatory bowel disease (IBD). Copper metabolism MURR1 domain containing 1 (COMMD1), a regulator of various transport pathways, has been shown to limit NF-κB activation. We investigated the roles of COMMD1 in the pathogenesis of colitis in mice and IBD in human beings. METHODS We created mice with a specific disruption of Commd1 in myeloid cells (Mye-knockout [K/O] mice); we analyzed immune cell populations and functions and expression of genes regulated by NF-κB. Sepsis was induced in Mye-K/O and wild-type mice by cecal ligation and puncture or intraperitoneal injection of lipopolysaccharide (LPS), colitis was induced by administration of dextran sodium sulfate, and colitis-associated cancer was induced by administration of dextran sodium sulfate and azoxymethane. We measured levels of COMMD1 messenger RNA in colon biopsy specimens from 29 patients with IBD and 16 patients without (controls), and validated findings in an independent cohort (17 patients with IBD and 22 controls). We searched for polymorphisms in or near COMMD1 that were associated with IBD using data from the International IBD Genetics Consortium and performed quantitative trait locus analysis. RESULTS In comparing gene expression patterns between myeloid cells from Mye-K/O and wild-type mice, we found that COMMD1 represses expression of genes induced by LPS. Mye-K/O mice had more intense inflammatory responses to LPS and developed more severe sepsis and colitis, with greater mortality. More Mye-K/O mice with colitis developed colon dysplasia and tumors than wild-type mice. We observed a reduced expression of COMMD1 in colon biopsy specimens and circulating leukocytes from patients with IBD. We associated single-nucleotide variants near COMMD1 with reduced expression of the gene and linked them with increased risk for ulcerative colitis. CONCLUSIONS Expression of COMMD1 by myeloid cells has anti-inflammatory effects. Reduced expression or function of COMMD1 could be involved in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Haiying Li
- UT Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas, 75390-9151, U.S.A
| | - Lillienne Chan
- UT Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas, 75390-9151, U.S.A
| | - Paulina Bartuzi
- University of Groningen, University Medical Center Groningen, Section Molecular Genetics – Department of Pediatrics, Groningen, 9713 AV, The Netherlands
| | - Shelby D. Melton
- Dallas VA Medical Center, Department of Pathology, Dallas, Texas, 75216, U.S.A
| | - Axel Weber
- Justus Liebig University, Rudolf Buchheim Institute of Pharmacology, 35392 Giessen, Germany
| | - Shani Ben-Shlomo
- Tel Aviv Sourasky Medical Center, Gastroenterology Institute, Tel Aviv, 64239, Israel
| | - Chen Varol
- Tel Aviv Sourasky Medical Center, Gastroenterology Institute, Tel Aviv, 64239, Israel
| | - Megan Raetz
- UT Southwestern Medical Center, Department of Immunology, Dallas, Texas, 75390-9151, U.S.A
| | - Xicheng Mao
- UT Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas, 75390-9151, U.S.A
| | - Petro Starokadomskyy
- UT Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas, 75390-9151, U.S.A
| | - Suzanne van Sommeren
- University of Groningen, University Medical Center Groningen, Section Molecular Genetics – Department of Gastroenterology and Hepatology, Groningen, 9713 AV, The Netherlands
| | - Mohamad Mokadem
- UT Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas, 75390-9151, U.S.A
| | - Heike Schneider
- Institute of Physiological Chemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Reid Weisberg
- UT Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas, 75390-9151, U.S.A
| | - Harm-Jan Westra
- University of Groningen, University Medical Center Groningen, Section Molecular Genetics – Department of Genetics, Groningen, 9713 AV, The Netherlands
| | - Tõnu Esko
- University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Andres Metspalu
- University of Tartu, Estonian Genome Center, Tartu, 51010, Estonia
| | - Vinod Kumar
- University of Groningen, University Medical Center Groningen, Section Molecular Genetics – Department of Genetics, Groningen, 9713 AV, The Netherlands
| | - William A. Faubion
- Mayo Clinic, Division of Gastroenterology and Hepatology, Rochester, Minnesota, 55905, U.S.A
| | - Felix Yarovinsky
- UT Southwestern Medical Center, Department of Immunology, Dallas, Texas, 75390-9151, U.S.A
| | - Marten Hofker
- University of Groningen, University Medical Center Groningen, Section Molecular Genetics – Department of Pediatrics, Groningen, 9713 AV, The Netherlands
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Section Molecular Genetics – Department of Genetics, Groningen, 9713 AV, The Netherlands
| | - Michael Kracht
- Justus Liebig University, Rudolf Buchheim Institute of Pharmacology, 35392 Giessen, Germany
| | - Lude Franke
- University of Groningen, University Medical Center Groningen, Section Molecular Genetics – Department of Genetics, Groningen, 9713 AV, The Netherlands
| | - Vincent Aguirre
- UT Southwestern Medical Center, Department of Internal Medicine, Dallas, Texas, 75390-9151, U.S.A
| | - Rinse K. Weersma
- University of Groningen, University Medical Center Groningen, Section Molecular Genetics – Department of Gastroenterology and Hepatology, Groningen, 9713 AV, The Netherlands
| | - Nathan Gluck
- Tel Aviv Sourasky Medical Center, Gastroenterology Institute, Tel Aviv, 64239, Israel
| | - Bart van de Sluis
- University of Groningen, University Medical Center Groningen, Section Molecular Genetics – Department of Pediatrics, Groningen, 9713 AV, The Netherlands
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
78
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
79
|
Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells. Mol Cell Biol 2014; 34:2961-80. [PMID: 24891615 DOI: 10.1128/mcb.01693-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. Signal transduction kinases play a pivotal role as chromatin-anchored proteins in eukaryotes. Here we report for the first time that protein kinase C-theta (PKC-θ) promotes EMT by acting as a critical chromatin-anchored switch for inducible genes via transforming growth factor β (TGF-β) and the key inflammatory regulatory protein NF-κB. Chromatinized PKC-θ exists as an active transcription complex and is required to establish a permissive chromatin state at signature EMT genes. Genome-wide analysis identifies a unique cohort of inducible PKC-θ-sensitive genes that are directly tethered to PKC-θ in the mesenchymal state. Collectively, we show that cross talk between signaling kinases and chromatin is critical for eliciting inducible transcriptional programs that drive mesenchymal differentiation and CSC formation, providing novel mechanisms to target using epigenetic therapy in breast cancer.
Collapse
|
80
|
Du J, An R, Chen L, Shen Y, Chen Y, Cheng L, Jiang Z, Zhang A, Yu L, Chu D, Shen Y, Luo Q, Chen H, Wan L, Li M, Xu X, Shen J. WITHDRAWN: Toxoplasma gondii virulence factor ROP18 inhibits the host NF-κB pathway by promoting p65 degradation. J Biol Chem 2014; 289:12578-92. [PMID: 24648522 PMCID: PMC4007449 DOI: 10.1074/jbc.m113.544718] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/10/2014] [Indexed: 01/09/2023] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii secretes effector molecules into the host cell to modulate host immunity. Previous studies have shown that T. gondii could interfere with host NF-κB signaling to promote their survival, but the effectors of type I strains remain unclear. The polymorphic rhoptry protein ROP18 is a key serine/threonine kinase that phosphorylates host proteins to modulate acute virulence. Our data demonstrated that the N-terminal portion of ROP18 is associated with the dimerization domain of p65. ROP18 phosphorylates p65 at Ser-468 and targets this protein to the ubiquitin-dependent degradation pathway. The kinase activity of ROP18 is required for p65 degradation and suppresses NF-κB activation. Consistently, compared with wild-type ROP18 strain, ROP18 kinase-deficient type I parasites displayed a severe inability to inhibit NF-κB, culminating in the enhanced production of IL-6, IL-12, and TNF-α in infected macrophages. In addition, studies have shown that transgenic parasites carrying kinase-deficient ROP18 induce M1-biased activation. These results demonstrate for the first time that the virulence factor ROP18 in T. gondii type I strains is responsible for inhibiting the host NF-κB pathway and for suppressing proinflammatory cytokine expression, thus providing a survival advantage to the infectious agent.
Collapse
Affiliation(s)
- Jian Du
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ran An
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lijian Chen
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yuxian Shen
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Ying Chen
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Li Cheng
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Zhongru Jiang
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Aimei Zhang
- Central Laboratory of Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, China, and
| | - Li Yu
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei 230032, China
| | - Deyong Chu
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei 230032, China
| | - Yujun Shen
- Institute of Biopharmaceuticals, Anhui Medical University, Hefei 230032, China
| | - Qingli Luo
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei 230032, China
| | - He Chen
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei 230032, China
| | - Lijuan Wan
- From the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Min Li
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei 230032, China
| | - Xiucai Xu
- Central Laboratory of Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, China, and
| | - Jilong Shen
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
81
|
The alpha 7 nicotinic receptor agonist PHA-543613 hydrochloride inhibits Porphyromonas gingivalis-induced expression of interleukin-8 by oral keratinocytes. Inflamm Res 2014; 63:557-68. [PMID: 24609617 PMCID: PMC4050294 DOI: 10.1007/s00011-014-0725-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 02/11/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022] Open
Abstract
Objective The alpha 7 nicotinic receptor (α7nAChR) is expressed by oral keratinocytes. α7nAChR activation mediates anti-inflammatory responses. The objective of this study was to determine if α7nAChR activation inhibited pathogen-induced interleukin-8 (IL-8) expression by oral keratinocytes. Materials and methods Periodontal tissue expression of α7nAChR was determined by real-time PCR. OKF6/TERT-2 oral keratinocytes were exposed to Porphyromonas gingivalis in the presence and absence of a α7nAChR agonist (PHA-543613 hydrochloride) alone or after pre-exposure to a specific α7nAChR antagonist (α-bungarotoxin). Interleukin-8 (IL-8) expression was measured by ELISA and real-time PCR. Phosphorylation of the NF-κB p65 subunit was determined using an NF-κB p65 profiler assay and STAT-3 activation by STAT-3 in-cell ELISA. The release of ACh from oral keratinocytes in response to P. gingivalis lipopolysaccharide was determined using a GeneBLAzer M3 CHO-K1-bla cell reporter assay. Results Expression of α7nAChR mRNA was elevated in diseased periodontal tissue. PHA-543613 hydrochloride inhibited P. gingivalis-induced expression of IL-8 at the transcriptional level. This effect was abolished when cells were pre-exposed to a specific α7nAChR antagonist, α-bungarotoxin. PHA-543613 hydrochloride downregulated NF-κB signalling through reduced phosphorylation of the NF-κB p65-subunit. In addition, PHA-543613 hydrochloride promoted STAT-3 signalling by maintenance of phosphorylation. Furthermore, oral keratinocytes upregulated ACh release in response to P. gingivalis lipopolysaccharide. Conclusion These data suggest that α7nAChR plays a role in regulating the innate immune responses of oral keratinocytes.
Collapse
|
82
|
Wang Y, Hu L, Tong X, Ye X. Casein kinase 1γ1 inhibits the RIG-I/TLR signaling pathway through phosphorylating p65 and promoting its degradation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1855-61. [PMID: 24442433 DOI: 10.4049/jimmunol.1302552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The casein kinase 1 (CK1) plays an important role in various biological processes by phosphorylating its target proteins. In this study, we demonstrate that CK1γ1 inhibits RNA virus-mediated activation of retinoic acid-inducible gene I (RIG-I) signaling by affecting the stability of NF-κB subunit p65. First, we found that ectopic expression of CK1γ1 inhibits RIG-I pathway-mediated activation of IFN-β, whereas knockdown of CK1γ1 potentiates the activation of IFN-β and NF-κB induced by Sendai virus (SeV). We then revealed that CK1γ1 interacts with p65 and specifically enhances its phosphorylation at Ser(536) induced by SeV. By using an in vitro kinase assay, we confirmed that CK1γ1 can phosphorylate p65 at Ser(536). We also showed that the kinase dead mutants CK1γ1K73A and CK1γ1N169A did not inhibit SeV-induced activation of IFN-β and NF-κB, suggesting that the kinase activity of CK1γ1 is critical for its inhibitory effect on RIG-I signaling. Additionally, we found that CK1γ1 also has the similar effect on TLR signaling. Further analysis indicated that CK1γ1 phosphorylates p65 and consequently promotes its degradation by ubiquitin E3 ligases CUL2 and COMMD1. These results revealed a novel negative regulatory manner of CK1γ1 on innate immune signaling.
Collapse
Affiliation(s)
- Yetao Wang
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | |
Collapse
|
83
|
Fedoseienko A, Bartuzi P, van de Sluis B. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis. Ann N Y Acad Sci 2014; 1314:6-14. [PMID: 24697840 DOI: 10.1111/nyas.12353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in humans and animals. At present, Wilson's disease is the best-described and best-studied copper-storage disorder in humans; it is caused by mutations in the ATP7B gene. In dogs, a mutation in the COMMD1 gene has been found to be associated with copper toxicosis. Using a liver-specific Commd1 knockout mouse, the biological role of Commd1 in copper homeostasis has been confirmed. Yet, the exact mechanism by which COMMD1 regulates copper homeostasis is still unknown. Here, we give an overview of the current knowledge and perspectives on the molecular function of COMMD1 in copper homeostasis.
Collapse
Affiliation(s)
- Alina Fedoseienko
- University of Groningen, University Medical Center Groningen, Molecular Genetics section, Groningen, the Netherlands
| | | | | |
Collapse
|
84
|
The cytokine-induced conformational switch of nuclear factor κB p65 is mediated by p65 phosphorylation. Biochem J 2014; 457:401-13. [DOI: 10.1042/bj20130780] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cytokine-induced phosphorylation of the NF-κB subunit p65 results in conformational changes of the protein.
Collapse
|
85
|
Tu YC, Huang DY, Shiah SG, Wang JS, Lin WW. Regulation of c-Fos gene expression by NF-κB: a p65 homodimer binding site in mouse embryonic fibroblasts but not human HEK293 cells. PLoS One 2013; 8:e84062. [PMID: 24386331 PMCID: PMC3875526 DOI: 10.1371/journal.pone.0084062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/11/2013] [Indexed: 11/26/2022] Open
Abstract
The immediate early gene c-Fos is reported to be regulated by Elk-1 and cAMP response element-binding protein (CREB), but whether nuclear factor (NF)-κB is also required for controlling c-Fos expression is unclear. In this study, we determined how NF-κB’s coordination with Elk/serum response factor (SRF) regulates c-fos transcription. We report that PMA strongly induced c-Fos expression, but tumor necrosis factor (TNF)-α did not. In mouse embryonic fibroblasts, the PMA induction of c-Fos was suppressed by a deficiency in IKKα, IKKβ, IKKγ, or p65. By contrast, in human embryonic kidney 293 cells, PMA induced c-Fos independently of p65. In accordance with these results, we identified an NF-κB binding site in the mouse but not human c-fos promoter. Under PMA stimulation, IKKα/β mediated p65 phosphorylation and the binding of the p65 homodimer to the NF-κB site in the mouse c-fos promoter. Furthermore, our studies demonstrated independent but coordinated functions of the IKKα/β-p65 and extracellular signal-regulated kinase (ERK)-Elk-1 pathways in the PMA induction of c-Fos. Collectively, these results reveal the distinct requirement of NF-κB for mouse and human c-fos regulation. Binding of the p65 homodimer to the κB site was indispensable for mouse c-fos expression, whereas the κB binding site was not present in the human c-fos promoter. Because of an inability to evoke sufficient ERK activation and Elk-1 phosphorylation, TNF-α induces c-Fos more weakly than PMA does in both mouse and human cells.
Collapse
Affiliation(s)
- Yu-Cheng Tu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Jang-Shiun Wang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
86
|
COMMD1 modulates noxious inflammation in cystic fibrosis. Int J Biochem Cell Biol 2013; 45:2402-9. [DOI: 10.1016/j.biocel.2013.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 11/23/2022]
|
87
|
Saleh A, Smith DR, Tessler L, Mateo AR, Martens C, Schartner E, Van der Ploeg R, Toth C, Zochodne DW, Fernyhough P. Receptor for advanced glycation end-products (RAGE) activates divergent signaling pathways to augment neurite outgrowth of adult sensory neurons. Exp Neurol 2013; 249:149-59. [DOI: 10.1016/j.expneurol.2013.08.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 11/26/2022]
|
88
|
Regulation of NF-κB signalling by the mono-ADP-ribosyltransferase ARTD10. Nat Commun 2013; 4:1683. [PMID: 23575687 DOI: 10.1038/ncomms2672] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 02/27/2013] [Indexed: 12/22/2022] Open
Abstract
Adenosine diphosphate-ribosylation is a post-translational modification mediated by intracellular and membrane-associated extracellular enzymes and many bacterial toxins. The intracellular enzymes modify their substrates either by poly-ADP-ribosylation, exemplified by ARTD1/PARP1, or by mono-ADP-ribosylation. The latter has been discovered only recently, and little is known about its physiological relevance. The founding member of mono-ADP-ribosyltransferases is ARTD10/PARP10. It possesses two ubiquitin-interaction motifs, a unique feature among ARTD/PARP enzymes. Here, we find that the ARTD10 ubiquitin-interaction motifs bind to K63-linked poly-ubiquitin, a modification that is essential for NF-κB signalling. We therefore studied the role of ARTD10 in this pathway. ARTD10 inhibits the activation of NF-κB and downstream target genes in response to interleukin-1β and tumour necrosis factor-α, dependent on catalytic activity and poly-ubiquitin binding of ARTD10. Mechanistically ARTD10 interferes with poly-ubiquitination of NEMO, which interacts with and is a substrate of ARTD10. Our findings identify a novel regulator of NF-κB signalling and provide evidence for cross-talk between K63-linked poly-ubiquitination and mono-ADP-ribosylation.
Collapse
|
89
|
Tuning NF-κB activity: a touch of COMMD proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2315-21. [PMID: 24080195 DOI: 10.1016/j.bbadis.2013.09.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/06/2013] [Accepted: 09/23/2013] [Indexed: 12/28/2022]
Abstract
NF-κB is an important regulator of immunity and inflammation, and its activation pathway has been studied extensively. The mechanisms that downregulate the activity of NF-κB have also received a lot of attention, particularly since its activity needs to be terminated to prevent chronic inflammation and subsequent tissue damage. The COMMD family has been identified as a new group of proteins involved in NF-κB termination. All ten COMMD members share the structurally conserved carboxy-terminal motif, the COMM domain, and are ubiquitously expressed. They seem to play distinct and non-redundant roles in various physiological processes, including NF-κB signaling. In this review, we describe the mechanisms and proteins involved in the termination of canonical NF-κB signaling, with a specific focus on the role of the COMMD family in the down-modulation of NF-κB.
Collapse
|
90
|
Mukherjee SP, Behar M, Birnbaum HA, Hoffmann A, Wright PE, Ghosh G. Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-κB-driven transcription. PLoS Biol 2013; 11:e1001647. [PMID: 24019758 PMCID: PMC3760798 DOI: 10.1371/journal.pbio.1001647] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
NF-κB plays a vital role in cellular immune and inflammatory response, survival, and proliferation by regulating the transcription of various genes involved in these processes. To activate transcription, RelA (a prominent NF-κB family member) interacts with transcriptional co-activators like CREB-binding protein (CBP) and its paralog p300 in addition to its cognate κB sites on the promoter/enhancer regions of DNA. The RelA:CBP/p300 complex is comprised of two components--first, DNA binding domain of RelA interacts with the KIX domain of CBP/p300, and second, the transcriptional activation domain (TAD) of RelA binds to the TAZ1 domain of CBP/p300. A phosphorylation event of a well-conserved RelA(Ser276) is prerequisite for the former interaction to occur and is considered a decisive factor for the overall RelA:CBP/p300 interaction. The role of the latter interaction in the transcription of RelA-activated genes remains unclear. Here we provide the solution structure of the latter component of the RelA:CBP complex by NMR spectroscopy. The structure reveals the folding of RelA-TA2 (a section of TAD) upon binding to TAZ1 through its well-conserved hydrophobic sites in a series of grooves on the TAZ1 surface. The structural analysis coupled with the mechanistic studies by mutational and isothermal calorimetric analyses allowed the design of RelA-mutants that selectively abrogated the two distinct components of the RelA:CBP/p300 interaction. Detailed studies of these RelA mutants using cell-based techniques, mathematical modeling, and genome-wide gene expression analysis showed that a major set of the RelA-activated genes, larger than previously believed, is affected by this interaction. We further show how the RelA:CBP/p300 interaction controls the nuclear response of NF-κB through the negative feedback loop of NF-κB pathway. Additionally, chromatin analyses of RelA target gene promoters showed constitutive recruitment of CBP/p300, thus indicating a possible role of CBP/p300 in recruitment of RelA to its target promoter sites.
Collapse
Affiliation(s)
- Sulakshana P. Mukherjee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marcelo Behar
- Signaling Systems Laboratory, University of California, San Diego, La Jolla, California, United States of America
| | - Harry A. Birnbaum
- Signaling Systems Laboratory, University of California, San Diego, La Jolla, California, United States of America
| | - Alexander Hoffmann
- Signaling Systems Laboratory, University of California, San Diego, La Jolla, California, United States of America
| | - Peter E. Wright
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (GG); (PEW)
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (GG); (PEW)
| |
Collapse
|
91
|
Reis AL, McCauley JW. The influenza virus protein PB1-F2 interacts with IKKβ and modulates NF-κB signalling. PLoS One 2013; 8:e63852. [PMID: 23704945 PMCID: PMC3660569 DOI: 10.1371/journal.pone.0063852] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/07/2013] [Indexed: 11/22/2022] Open
Abstract
PB1-F2, a protein encoded by a second open reading frame of the influenza virus RNA segment 2, has emerged as a modulator of lung inflammatory responses but the molecular mechanisms underlying this are only poorly understood. Here we show that PB1-F2 inhibits the activation of NF-κB dependent signalling pathways in luciferase reporter assays. PB1-F2 proteins from four different viruses interact with IKKβ in yeast two-hybrid assays and by co-immunoprecipitation. PB1-F2 expression did not inhibit IKKβ kinase activity or NF-κB translocation into the nucleus, but NF-κB binding to DNA was severely impaired in PB1-F2 transfected cells as assessed by Electrophoretic Mobility Shift Assay. Neither the N-terminal 57 amino acid truncated forms nor the C-terminus of PB1-F2 were able to inhibit NF-κB dependent signalling, indicating that the full length protein is necessary for the inhibition.
Collapse
Affiliation(s)
- Ana Luísa Reis
- Division of Virology, MRC National Institute for Medical Research, London, United Kingdom
| | - John W. McCauley
- Division of Virology, MRC National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
92
|
Starokadomskyy P, Gluck N, Li H, Chen B, Wallis M, Maine GN, Mao X, Zaidi IW, Hein MY, McDonald FJ, Lenzner S, Zecha A, Ropers HH, Kuss AW, McGaughran J, Gecz J, Burstein E. CCDC22 deficiency in humans blunts activation of proinflammatory NF-κB signaling. J Clin Invest 2013; 123:2244-56. [PMID: 23563313 DOI: 10.1172/jci66466] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 02/14/2013] [Indexed: 01/11/2023] Open
Abstract
NF-κB is a master regulator of inflammation and has been implicated in the pathogenesis of immune disorders and cancer. Its regulation involves a variety of steps, including the controlled degradation of inhibitory IκB proteins. In addition, the inactivation of DNA-bound NF-κB is essential for its regulation. This step requires a factor known as copper metabolism Murr1 domain-containing 1 (COMMD1), the prototype member of a conserved gene family. While COMMD proteins have been linked to the ubiquitination pathway, little else is known about other family members. Here we demonstrate that all COMMD proteins bind to CCDC22, a factor recently implicated in X-linked intellectual disability (XLID). We showed that an XLID-associated CCDC22 mutation decreased CCDC22 protein expression and impaired its binding to COMMD proteins. Moreover, some affected individuals displayed ectodermal dysplasia, a congenital condition that can result from developmental NF-κB blockade. Indeed, patient-derived cells demonstrated impaired NF-κB activation due to decreased IκB ubiquitination and degradation. In addition, we found that COMMD8 acted in conjunction with CCDC22 to direct the degradation of IκB proteins. Taken together, our results indicate that CCDC22 participates in NF-κB activation and that its deficiency leads to decreased IκB turnover in humans, highlighting an important regulatory component of this pathway.
Collapse
Affiliation(s)
- Petro Starokadomskyy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Kim JE, Kim DS, Jin Ryu H, Il Kim W, Kim MJ, Won Kim D, Young Choi S, Kang TC. The effect of P2X7 receptor activation on nuclear factor-κB phosphorylation induced by status epilepticus in the rat hippocampus. Hippocampus 2013; 23:500-14. [PMID: 23564500 DOI: 10.1002/hipo.22109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2013] [Indexed: 11/10/2022]
Abstract
Nuclear factor-kappa B (NFκB) signal is essential for neuronal survival and its activation may protect neuron against various stimuli. Since purinergic signals activate NFκB through the P2X7 receptor, we investigated the distinct pattern of NF-κB phosphorylation in neurons by P2X7 receptor activation following status epilepticus (SE) in an effort to understand the role of P2X7 receptor in epileptogenic insult. In non-SE animals, 2'(3')-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP, a P2X7R agonist) treatment increased only p52-Ser869 NF-κB phosphorylation in neuron. Following SE, p52-Ser865, p52-Ser869, p65-Ser276, p65-Ser311, p65-Ser468, and p65-Ser529 NF-κB phosphorylation was significantly decreased in CA1 and CA3 neurons. However, BzATP treatment prevented reductions in p65-Ser276, p65-Ser311, p65-Ser529, and p52-Ser869 NF-κB phosphorylations in CA1 and/or CA3 neurons induced by SE. Furthermore, BzATP treatment reduced SE-induced p65-Ser311, p65-Ser468, p65-Ser536, and p52-Ser869 NF-κB phosphorylations in astrocytes. These findings indicate that P2X7 functions may be involved in the regulation of SE-induced reactive astrocytes and neuronal degeneration via NF-κB phosphorylations in response to pilocarpine-induced SE in the rat hippocampus.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Guo W, Zhang D, Wang L, Zhang Y, Liu W. Disruption of asymmetric dimethylarginine-induced RelA/P65 association with actin in endothelial cells. Acta Biochim Biophys Sin (Shanghai) 2013; 45:229-35. [PMID: 23296075 DOI: 10.1093/abbs/gms120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Asymmetric dimethylarginine (ADMA) activates nuclear factor (NF)-κB in endothelial cells, while actin-stabilizing or -destabilizing drugs prevent ADMA-induced activation of NF-κB. Here we investigated how actin-targeting drugs regulated ADMA-induced NF-κB activation in endothelial cells. Human umbilical vein endothelial cells were treated with ADMA for 24 h in the absence and presence of cytochalasin D or jasplakinolide. Expression levels of proteins and genes were measured by immunoblotting and reverse-transcription polymerase chain reaction, respectively. Chromatin immunoprecipitation was used to detect the binding of NF-κB to the vascular cell adhesion molecule 1 (VCAM-1) promoter. The association of actin with RelA/P65 was detected by immunoprecipitation. It was demonstrated that ADMA induced IκBα degradation, increased nuclear RelA/P65 translocation, and promoted the binding of NF-κB to the VCAM-1 promoter. Consequently, this increased the expression of VCAM-1. In parallel studies, actin-stabilizing and -destabilizing drugs decreased ADMA-induced RelA/P65 nuclear translocation, interfered with NF-κB binding to the VCAM-1 promoter and prevented the expression of VCAM-1. This was independent of total RelA/P65 levels and ADMA-induced IκBα degradation. Most importantly, the association of RelA/P65 with actin was increased after stimulation with ADMA, and impaired after treatment with actin-targeting drugs. In brief, actin-stabilizing or -destabilizing drugs interfere with the ADMA-induced association of RelA/P65 with actin, and consequently disrupt NF-κB activation.
Collapse
Affiliation(s)
- Weikang Guo
- Department of Nephrology, Affiliated Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing 100050, China
| | | | | | | | | |
Collapse
|
95
|
Xu X, Zhang H, Zhang Q, Huang Y, Dong J, Liang Y, Liu HJ, Tong D. Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression. Vet Microbiol 2013; 164:212-21. [PMID: 23562137 PMCID: PMC7117426 DOI: 10.1016/j.vetmic.2013.01.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/14/2013] [Accepted: 01/21/2013] [Indexed: 01/07/2023]
Abstract
Porcine epidemic diarrhea (PED) is an acute and highly contagious enteric disease of swine caused by porcine epidemic diarrhea virus (PEDV). The porcine intestinal epithelial cell is the PEDV target cell. In this study, we established a porcine intestinal epithelial cell (IEC) line which can stably express PEDV N protein. We also investigate the subcellular localization and function of PEDV N protein by examining its effects on cell growth, cycle progression, interleukin-8 (IL-8) expression, and survival. The results show that the PEDV N protein localizes in the endoplasmic reticulum (ER), inhibits the IEC growth and prolongs S-phase cell cycle. The S-phase is prolonged which is associated with a decrease of cyclin A transcription level and an increase of cyclin A degradation. The IEC expressing PEDV N protein can express higher levels of IL-8 than control cells. Further studies show that PEDV N protein induces ER stress and activates NF-κB, which is responsible for the up-regulation of IL-8 and Bcl-2 expression. This is the first report to demonstrate that PEDV N protein can induce cell cycle prolongation at the S-phase, ER stress and up-regulation interleukin-8 expression. These findings provide novel information on the function of the PEDV N protein and are likely to be very useful in understanding the molecular mechanisms responsible for PEDV pathogenesis.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Xu X, Zhang H, Zhang Q, Dong J, Liang Y, Huang Y, Liu HJ, Tong D. Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression. Virol J 2013; 10:26. [PMID: 23332027 PMCID: PMC3560205 DOI: 10.1186/1743-422x-10-26] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/16/2013] [Indexed: 11/13/2022] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV) is an important pathogen in swine and is responsible for substantial economic losses. Previous studies suggest that the PEDV E protein plays an important role in the viral assembly process. However, the subcellular localization and other functions of PEDV E protein still require more research. Methods The subcellular localization and function of PEDV E protein were investigated by examining its effects on cell growth, cell cycle progression, interleukin-8 (IL-8) expression and cell survival. Results The results show that plenty of PEDV E protein is localized in the ER, with small quantities localized in the nucleus. The PEDV E protein has no effect on the intestinal epithelial cells (IEC) growth, cell cycle and cyclin A expression. The cells expressing PEDV E protein express higher levels of IL-8 than control cells. Further studies show that PEDV E protein induced endoplasmic reticulum (ER) stress and activated NF-κB which is responsible for the up-regulation of IL-8 and Bcl-2 expression. Conclusions This study shows that the PEDV E protein is localized in the ER and the nucleus and it can cause ER stress. The PEDV E protein had no effect on the IEC growth and cell cycle. In addition, the PEDV E protein is able to up-regulate IL-8 and Bcl-2 expression.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Verhelst K, Verstrepen L, Carpentier I, Beyaert R. IκB kinase ε (IKKε): a therapeutic target in inflammation and cancer. Biochem Pharmacol 2013; 85:873-80. [PMID: 23333767 PMCID: PMC7111187 DOI: 10.1016/j.bcp.2013.01.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/04/2013] [Accepted: 01/11/2013] [Indexed: 01/10/2023]
Abstract
The innate immune system forms our first line of defense against invading pathogens and relies for a major part on the activation of two transcription factors, NF-κB and IRF3. Signaling pathways that activate these transcription factors are intertwined at the level of the canonical IκB kinases (IKKα, IKKβ) and non-canonical IKK-related kinases (IKKε, TBK1). Recently, significant progress has been made in understanding the function and mechanism of action of IKKε in immune signaling. In addition, IKKε impacts on cell proliferation and transformation, and is thereby also classified as an oncogene. Studies with IKKε knockout mice have illustrated a key role for IKKε in inflammatory and metabolic diseases. In this review we will highlight the mechanisms by which IKKε impacts on signaling pathways involved in disease development and discuss its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Kelly Verhelst
- Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Zwijnaarde (Ghent), Belgium
| | | | | | | |
Collapse
|
98
|
The Antitumor Peptide CIGB-552 Increases COMMD1 and Inhibits Growth of Human Lung Cancer Cells. JOURNAL OF AMINO ACIDS 2013; 2013:251398. [PMID: 23401744 PMCID: PMC3562689 DOI: 10.1155/2013/251398] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 11/17/2022]
Abstract
We have demonstrated that the peptide L-2 designed from an alanine scanning of the Limulus-derived LALF32-51 region is a potential candidate for the anticancer therapy and its cell-penetrating capacity is an associated useful property. By the modification in the primary structure of L-2, a second-generation peptide (CIGB-552) was developed. However, the molecular mechanism underlying its cytotoxic activity remains partially unknown. In this study, it was shown that CIGB-552 increases the levels of COMMD1, a protein involved in copper homeostasis, sodium transport, and the NF-κB signaling pathway. We found that CIGB-552 induces ubiquitination of RelA and inhibits the antiapoptotic activity regulated by NF-κB, whereas the knockdown of COMMD1 blocks this effect. We also found that CIGB-552 decreases the antioxidant capacity and induces the peroxidation of proteins and lipids in the tumor cells. Altogether, this study provides new insights into the mechanism of action of the peptide CIGB-552, which could be relevant in the design of future anticancer therapies.
Collapse
|
99
|
Cyclin-dependent kinase 6 phosphorylates NF-κB P65 at serine 536 and contributes to the regulation of inflammatory gene expression. PLoS One 2012; 7:e51847. [PMID: 23300567 PMCID: PMC3530474 DOI: 10.1371/journal.pone.0051847] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/07/2012] [Indexed: 11/20/2022] Open
Abstract
Nuclear factor kappa-B (NF-κB) activates multiple genes with overlapping roles in cell proliferation, inflammation and cancer. Using an unbiased approach we identified human CDK6 as a novel kinase phosphorylating NF-κB p65 at serine 536. Purified and reconstituted CDK6/cyclin complexes phosphorylated p65 in vitro and in transfected cells. The physiological role of CDK6 for basal as well as cytokine-induced p65 phosphorylation or NF-κB activation was revealed upon RNAi-mediated suppression of CDK6. Inhibition of CDK6 catalytic activity by PD332991 suppressed activation of NF-κB and TNF-induced gene expression. In complex with a constitutively active viral cyclin CDK6 stimulated NF-κB p65-mediated transcription in a target gene specific manner and this effect was partially dependent on its ability to phosphorylate p65 at serine 536. Tumor formation in thymi and spleens of v-cyclin transgenic mice correlated with increased levels of p65 Ser536 phosphorylation, increased expression of CDK6 and upregulaton of the NF-κB target cyclin D3. These results suggest that aberrant CDK6 expression or activation that is frequently observed in human tumors can contribute through NF-κB to chronic inflammation and neoplasia.
Collapse
|
100
|
Deubiquitination of NF-κB by Ubiquitin-Specific Protease-7 promotes transcription. Proc Natl Acad Sci U S A 2012; 110:618-23. [PMID: 23267096 DOI: 10.1073/pnas.1208446110] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
NF-κB is the master regulator of the immune response and is responsible for the transcription of hundreds of genes controlling inflammation and immunity. Activation of NF-κB occurs in the cytoplasm through the kinase activity of the IκB kinase complex, which leads to translocation of NF-κB to the nucleus. Once in the nucleus, NF-κB transcriptional activity is regulated by DNA binding-dependent ubiquitin-mediated proteasomal degradation. We have identified the deubiquitinase Ubiquitin Specific Protease-7 (USP7) as a regulator of NF-κB transcriptional activity. USP7 deubiquitination of NF-κB leads to increased transcription. Loss of USP7 activity results in increased ubiquitination of NF-κB, leading to reduced promoter occupancy and reduced expression of target genes in response to Toll-like- and TNF-receptor activation. These findings reveal a unique mechanism controlling NF-κB activity and demonstrate that the deubiquitination of NF-κB by USP7 is critical for target gene transcription.
Collapse
|