51
|
Talib M, Boon CJF. Retinal Dystrophies and the Road to Treatment: Clinical Requirements and Considerations. Asia Pac J Ophthalmol (Phila) 2020; 9:159-179. [PMID: 32511120 PMCID: PMC7299224 DOI: 10.1097/apo.0000000000000290] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
: Retinal dystrophies (RDs) comprise relatively rare but devastating causes of progressive vision loss. They represent a spectrum of diseases with marked genetic and clinical heterogeneity. Mutations in the same gene may lead to different diagnoses, for example, retinitis pigmentosa or cone dystrophy. Conversely, mutations in different genes may lead to the same phenotype. The age at symptom onset, and the rate and characteristics of peripheral and central vision decline, may vary widely per disease group and even within families. For most RD cases, no effective treatment is currently available. However, preclinical studies and phase I/II/III gene therapy trials are ongoing for several RD subtypes, and recently the first retinal gene therapy has been approved by the US Food and Drug Administration for RPE65-associated RDs: voretigene neparvovec-rzyl (Luxturna). With the rapid advances in gene therapy studies, insight into the phenotypic spectrum and long-term disease course is crucial information for several RD types. The vast clinical heterogeneity presents another important challenge in the evaluation of potential efficacy in future treatment trials, and in establishing treatment candidacy criteria. This perspective describes these challenges, providing detailed clinical descriptions of several forms of RD that are caused by genes of interest for ongoing and future gene or cell-based therapy trials. Several ongoing and future treatment options will be described.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology, Leiden, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, University of Amsterdam. Amsterdam, The Netherlands
| |
Collapse
|
52
|
Abstract
Developments of new strategies to restore vision and improving on current strategies by harnessing new advancements in material and electrical sciences, and biological and genetic-based technologies are of upmost health priorities around the world. Federal and private entities are spending billions of dollars on visual prosthetics technologies. This review describes the most current and state-of-the-art bioengineering technologies to restore vision. This includes a thorough description of traditional electrode-based visual prosthetics that have improved substantially since early prototypes. Recent advances in molecular and synthetic biology have transformed vision-assisted technologies; For example, optogenetic technologies that introduce light-responsive proteins offer excellent resolution but cortical applications are restricted by fiber implantation and tissue damage. Other stimulation modalities, such as magnetic fields, have been explored to achieve non-invasive neuromodulation. Miniature magnetic coils are currently being developed to activate select groups of neurons. Magnetically-responsive nanoparticles or exogenous proteins can significantly enhance the coupling between external electromagnetic devices and any neurons affiliated with these modifications. The need to minimize cytotoxic effects for nanoparticle-based therapies will likely restrict the number of usable materials. Nevertheless, advances in identifying and utilizing proteins that respond to magnetic fields may lead to non-invasive, cell-specific stimulation and may overcome many of the limitations that currently exist with other methods. Finally, sensory substitution systems also serve as viable visual prostheses by converting visual input to auditory and somatosensory stimuli. This review also discusses major challenges in the field and offers bioengineering strategies to overcome those.
Collapse
Affiliation(s)
- Alexander Farnum
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
53
|
Sridharan A, Shah A, Kumar SS, Kyeh J, Smith J, Blain-Christen J, Muthuswamy J. Optogenetic modulation of cortical neurons using organic light emitting diodes (OLEDs). Biomed Phys Eng Express 2020; 6:025003. [DOI: 10.1088/2057-1976/ab6fb7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
54
|
Regulation of Electromagnetic Perceptive Gene Using Ferromagnetic Particles for the External Control of Calcium Ion Transport. Biomolecules 2020; 10:biom10020308. [PMID: 32075263 PMCID: PMC7072303 DOI: 10.3390/biom10020308] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 01/02/2023] Open
Abstract
Developing synthetic biological devices to allow the noninvasive control of cell fate and function, in vivo can potentially revolutionize the field of regenerative medicine. To address this unmet need, we designed an artificial biological “switch” that consists of two parts: (1) the electromagnetic perceptive gene (EPG) and (2) magnetic particles. Our group has recently cloned the EPG from the Kryptopterus bicirrhis (glass catfish). The EPG gene encodes a putative membrane-associated protein that responds to electromagnetic fields (EMFs). This gene’s primary mechanism of action is to raise the intracellular calcium levels or change in flux through EMF stimulation. Here, we developed a system for the remote regulation of [Ca2+]i (i.e., intracellular calcium ion concentration) using streptavidin-coated ferromagnetic particles (FMPs) under a magnetic field. The results demonstrated that the EPG-FMPs can be used as a molecular calcium switch to express target proteins. This technology has the potential for controlled gene expression, drug delivery, and drug developments.
Collapse
|
55
|
|
56
|
Kamar S, Howlett MHC, Klooster J, de Graaff W, Csikós T, Rabelink MJWE, Hoeben RC, Kamermans M. Degenerated Cones in Cultured Human Retinas Can Successfully Be Optogenetically Reactivated. Int J Mol Sci 2020; 21:ijms21020522. [PMID: 31947650 PMCID: PMC7014344 DOI: 10.3390/ijms21020522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Biblical references aside, restoring vision to the blind has proven to be a major technical challenge. In recent years, considerable advances have been made towards this end, especially when retinal degeneration underlies the vision loss such as occurs with retinitis pigmentosa. Under these conditions, optogenetic therapies are a particularly promising line of inquiry where remaining retinal cells are made into "artificial photoreceptors". However, this strategy is not without its challenges and a model system using human retinal explants would aid its continued development and refinement. Here, we cultured post-mortem human retinas and show that explants remain viable for around 7 days. Within this period, the cones lose their outer segments and thus their light sensitivity but remain electrophysiologically intact, displaying all the major ionic conductances one would expect for a vertebrate cone. We optogenetically restored light responses to these quiescent cones using a lentivirus vector constructed to express enhanced halorhodopsin under the control of the human arrestin promotor. In these 'reactivated' retinas, we show a light-induced horizontal cell to cone feedback signal in cones, indicating that transduced cones were able to transmit their light response across the synapse to horizontal cells, which generated a large enough response to send a signal back to the cones. Furthermore, we show ganglion cell light responses, suggesting the cultured explant's condition is still good enough to support transmission of the transduced cone signal over the intermediate retinal layers to the final retinal output level. Together, these results show that cultured human retinas are an appropriate model system to test optogenetic vision restoration approaches and that cones which have lost their outer segment, a condition occurring during the early stages of retinitis pigmentosa, are appropriate targets for optogenetic vision restoration therapies.
Collapse
Affiliation(s)
- Sizar Kamar
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam-Zuidoost, The Netherlands; (S.K.); (M.H.C.H.); (J.K.); (W.d.G.); (T.C.)
- Department of Ophthalmology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Marcus H. C. Howlett
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam-Zuidoost, The Netherlands; (S.K.); (M.H.C.H.); (J.K.); (W.d.G.); (T.C.)
| | - Jan Klooster
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam-Zuidoost, The Netherlands; (S.K.); (M.H.C.H.); (J.K.); (W.d.G.); (T.C.)
| | - Wim de Graaff
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam-Zuidoost, The Netherlands; (S.K.); (M.H.C.H.); (J.K.); (W.d.G.); (T.C.)
| | - Tamás Csikós
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam-Zuidoost, The Netherlands; (S.K.); (M.H.C.H.); (J.K.); (W.d.G.); (T.C.)
| | - Martijn J. W. E. Rabelink
- Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.J.W.E.R.); (R.C.H.)
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (M.J.W.E.R.); (R.C.H.)
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam-Zuidoost, The Netherlands; (S.K.); (M.H.C.H.); (J.K.); (W.d.G.); (T.C.)
- Department of Biomedical Engineering & Physics, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
57
|
Lee SCS, Martin PR, Grünert U. Topography of Neurons in the Rod Pathway of Human Retina. Invest Ophthalmol Vis Sci 2019; 60:2848-2859. [PMID: 31260035 DOI: 10.1167/iovs.19-27217] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The objective of this study was to map the distribution and density of the three major components of the classical scotopic "night vision" pathway (rods, rod bipolar, and AII amacrine cells) in postmortem human retinas. Methods Four postmortem donor eyes (male and female, aged 44-56 years) were used to cut vertical sections through the temporal horizontal meridian. The sections were processed for immunohistochemistry and imaged using high-resolution multichannel confocal microscopy. Rods, rod bipolar, and AII amacrine cells were counted along the temporal horizontal meridian. Two additional retinas were used for intracellular injections. Results Rod peak density is close to 150,000 cells/mm2 at 4 to 5 mm (15° to 20°) eccentricity, declining to below 70,000 cells/mm2 in peripheral retina. Rod bipolar density is lower but follows a similar distribution with peak density near 10,000 cells/mm2 between 2 and 4 mm (7° to 15°) eccentricity declining to below 4000 cells/mm2 in peripheral retina. The peak density of AII amacrine cells (near 4000 cells/mm2) is located close to the fovea, at 0.5- to 2 mm-eccentricity (2° to 7°) and declines to below 1000 cells/mm2 in the periphery. Thus, convergence between rods and AII cells increases from central to peripheral retina. Conclusions Comparison with human psychophysics and ganglion cell density indicates that the spatial resolution of scotopic vision is limited by the AII mosaic at eccentricities below 15° and by the midget ganglion cell mosaic at eccentricities above 15°.
Collapse
Affiliation(s)
- Sammy C S Lee
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Martin
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| | - Ulrike Grünert
- The University of Sydney, Faculty of Medicine and Health, Save Sight Institute and Discipline of Clinical Ophthalmology, Sydney, New South Wales, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
58
|
Lunghi C, Galli-Resta L, Binda P, Cicchini GM, Placidi G, Falsini B, Morrone MC. Visual Cortical Plasticity in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 60:2753-2763. [PMID: 31247082 PMCID: PMC6746622 DOI: 10.1167/iovs.18-25750] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Retinitis pigmentosa is a family of genetic diseases inducing progressive photoreceptor degeneration. There is no cure for retinitis pigmentosa, but prospective therapeutic strategies are aimed at restoring or substituting retinal input. Yet, it is unclear whether the visual cortex of retinitis pigmentosa patients retains plasticity to react to the restored visual input. Methods To investigate short-term visual cortical plasticity in retinitis pigmentosa, we tested the effect of short-term (2 hours) monocular deprivation on sensory ocular dominance (measured with binocular rivalry) in a group of 14 patients diagnosed with retinitis pigmentosa with a central visual field sparing greater than 20° in diameter. Results After deprivation most patients showed a perceptual shift in ocular dominance in favor of the deprived eye (P < 0.001), as did control subjects, indicating a level of visual cortical plasticity in the normal range. The deprivation effect correlated negatively with visual acuity (r = −0.63, P = 0.015), and with the amplitude of the central 18° focal electroretinogram (r = −0.68, P = 0.015) of the deprived eye, revealing that in retinitis pigmentosa stronger visual impairment is associated with higher plasticity. Conclusions Our results provide a new tool to assess the ability of retinitis pigmentosa patients to adapt to altered visual inputs, and suggest that in retinitis pigmentosa the adult brain has sufficient short-term plasticity to benefit from prospective therapies.
Collapse
Affiliation(s)
- Claudia Lunghi
- Laboratoire des systèmes perceptifs, Département d'études Cognitives, École Normale Supérieure, PSL University, CNRS, Paris, France.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Paola Binda
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Institute of Neuroscience CNR, Pisa, Italy
| | | | - Giorgio Placidi
- Department of Ophthalmology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetto Falsini
- Department of Ophthalmology, Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Concetta Morrone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Stella Maris, Calambrone (Pisa), Italy
| |
Collapse
|
59
|
Montazeri L, El Zarif N, Trenholm S, Sawan M. Optogenetic Stimulation for Restoring Vision to Patients Suffering From Retinal Degenerative Diseases: Current Strategies and Future Directions. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1792-1807. [PMID: 31689206 DOI: 10.1109/tbcas.2019.2951298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Optogenetic strategies for vision restoration involve photosensitizing surviving retinal neurons following retinal degeneration, using emerging optogenetic techniques. This approach opens the door to a minimally-invasive retinal vision restoration approach. Moreover, light stimulation has the potential to offer better spatial and temporal resolution than conventional retinal electrical prosthetics. Although proof-of-concept studies in animal models have demonstrated the possibility of restoring vision using optogenetic techniques, and initial clinical trials are underway, there are still hurdles to pass before such an approach restores naturalistic vision in humans. One limitation is the development of light stimulation devices to activate optogenetic channels in the retina. Here we review recent progress in the design and implementation of optogenetic stimulation devices and outline the corresponding technological challenges. Finally, while most work to date has focused on providing therapy to patients suffering from retinitis pigmentosa, we provide additional insights into strategies for applying optogenetic vision restoration to patients suffering from age-related macular degeneration.
Collapse
|
60
|
Sardoiwala MN, Srivastava AK, Karmakar S, Roy Choudhury S. Nanostructure Endows Neurotherapeutic Potential in Optogenetics: Current Development and Future Prospects. ACS Chem Neurosci 2019; 10:3375-3385. [PMID: 31244053 DOI: 10.1021/acschemneuro.9b00246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Optogenetics have evolved as a promising tool to control the processes at a cellular level via photons. Specially, it confers a specific control over cellular function through real-time cytomodulation even in freely moving animals. Neuronal stimulation is prerequisite for deep tissue light penetration or insertion of optrode for light illumination to the neurons that have been proven to be compromised due to poor light penetration and invasiveness of the procedure, respectively. In this review, the application of nanotechnology is being elaborated by the use of metal nanoparticles (AuNPs), upconversion nanocrystals (UCNPs), and quantum dots (CdSe) for targeting particular organs or tissues, and their potential to emit a specific light on excitation to overcome the limitations associated with earlier methods has been elucidated. The optothermal and magnetothermal properties, photoluminescence, and higher photostability of nanomaterials are explored in context of therapeutic applicability of optogenetics. The nanostructure characteristics and specific ion channel targeting have shown promising therapeutic potential against neurodegenerative disorders (Alzheimer's, Parkinson's, Huntington's), epilepsy, and blindness. This review compiles mechanical and optical characteristics of nanomaterials that endow superior optogenetic therapeutic potentials to cure immedicable infirmities.
Collapse
Affiliation(s)
| | - Anup K. Srivastava
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab 160062, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab 160062, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab 160062, India
| |
Collapse
|
61
|
Optogenetics in Brain Research: From a Strategy to Investigate Physiological Function to a Therapeutic Tool. PHOTONICS 2019. [DOI: 10.3390/photonics6030092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dissecting the functional roles of neuronal circuits and their interaction is a crucial step in basic neuroscience and in all the biomedical field. Optogenetics is well-suited to this purpose since it allows us to study the functionality of neuronal networks on multiple scales in living organisms. This tool was recently used in a plethora of studies to investigate physiological neuronal circuit function in addition to dysfunctional or pathological conditions. Moreover, optogenetics is emerging as a crucial technique to develop new rehabilitative and therapeutic strategies for many neurodegenerative diseases in pre-clinical models. In this review, we discuss recent applications of optogenetics, starting from fundamental research to pre-clinical applications. Firstly, we described the fundamental components of optogenetics, from light-activated proteins to light delivery systems. Secondly, we showed its applications to study neuronal circuits in physiological or pathological conditions at the cortical and subcortical level, in vivo. Furthermore, the interesting findings achieved using optogenetics as a therapeutic and rehabilitative tool highlighted the potential of this technique for understanding and treating neurological diseases in pre-clinical models. Finally, we showed encouraging results recently obtained by applying optogenetics in human neuronal cells in-vitro.
Collapse
|
62
|
Storchi R, Rodgers J, Gracey M, Martial FP, Wynne J, Ryan S, Twining CJ, Cootes TF, Killick R, Lucas RJ. Measuring vision using innate behaviours in mice with intact and impaired retina function. Sci Rep 2019; 9:10396. [PMID: 31316114 PMCID: PMC6637134 DOI: 10.1038/s41598-019-46836-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/26/2019] [Indexed: 01/23/2023] Open
Abstract
Measuring vision in rodents is a critical step for understanding vision, improving models of human disease, and developing therapies. Established behavioural tests for perceptual vision, such as the visual water task, rely on learning. The learning process, while effective for sighted animals, can be laborious and stressful in animals with impaired vision, requiring long periods of training. Current tests that that do not require training are based on sub-conscious, reflex responses (e.g. optokinetic nystagmus) that don't require involvement of visual cortex and higher order thalamic nuclei. A potential alternative for measuring vision relies on using visually guided innate defensive responses, such as escape or freeze, that involve cortical and thalamic circuits. In this study we address this possibility in mice with intact and degenerate retinas. We first develop automatic methods to detect behavioural responses based on high dimensional tracking and changepoint detection of behavioural time series. Using those methods, we show that visually guided innate responses can be elicited using parametisable stimuli, and applied to describing the limits of visual acuity in healthy animals and discriminating degrees of visual dysfunction in mouse models of retinal degeneration.
Collapse
Affiliation(s)
- R Storchi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - J Rodgers
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - M Gracey
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - F P Martial
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J Wynne
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - S Ryan
- Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - C J Twining
- School of Computer Science, University of Manchester, Manchester, UK
| | - T F Cootes
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R Killick
- Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - R J Lucas
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
63
|
Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: A pluripotent stem cell-based approach. Prog Retin Eye Res 2019; 71:1-25. [DOI: 10.1016/j.preteyeres.2019.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
64
|
Abstract
Visual prostheses serve to restore visual function following acquired blindness. Acquired blindness (as opposed to congenital blindness) has many causes, including diseases such as retinitis pigmentosa, glaucoma, and macular degeneration, or trauma such as caused by automobile accident or blast damage from explosions. Many of the blindness-causing diseases target the retina or other ocular structure. Often, despite the loss of sensitivity to light, the remainder of the visual pathway is still functional, enabling electrical devices to deliver effective and meaningful visual information to the brain via arrays of electrodes. These arrays can be placed in any part of the early visual pathway, such as the retina, optic nerve, lateral geniculate nucleus, or visual cortex. A camera or other imaging source is used to drive electrical stimulation of remaining healthy cells or structures to create artificial vision and provide restoration of function. In this review, each approach to visual prostheses is described, including advantages and disadvantages as well as assessments of the current state of the art. Most of the work to-date has been targeting stimulation of (a) the retina, with three devices approved for general use and two more in clinical testing; (b) the lateral geniculate nucleus, with efforts still in the pre-clinical stage; and (c) the cortex, with three devices in clinical testing and none currently approved for general use despite the longest history of investigation of the three major approaches. Each class of device has different medical indications, and different levels of invasiveness required for implantation. All contemporary devices deliver relatively poor vision. There has been remarkable progress since the first proof-of-concept demonstration that used stimulation of the primary visual cortex, with the field exploring all viable options for restoration of function. Much of the progress has been recent, driven by advances in microelectronics and biocompatibility. With three devices currently approved for general use in various parts of the world, and a handful of additional devices well along in the pipeline toward approval, prospects for wide deployment of a device-based therapy to treat acquired blindness are good.
Collapse
|
65
|
Ganjawala TH, Lu Q, Fenner MD, Abrams GW, Pan ZH. Improved CoChR Variants Restore Visual Acuity and Contrast Sensitivity in a Mouse Model of Blindness under Ambient Light Conditions. Mol Ther 2019; 27:1195-1205. [PMID: 31010741 DOI: 10.1016/j.ymthe.2019.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 11/15/2022] Open
Abstract
Severe photoreceptor cell death in retinal degenerative diseases leads to partial or complete blindness. Optogenetics is a promising strategy to treat blindness. The feasibility of this strategy has been demonstrated through the ectopic expression of microbial channelrhodopsins (ChRs) and other genetically encoded light sensors in surviving retinal neurons in animal models. A major drawback for ChR-based visual restoration is low light sensitivity. Here, we report the development of highly operational light-sensitive ChRs by optimizing the kinetics of a recently reported ChR variant, Chloromonas oogama (CoChR). In particular, we identified two CoChR mutants, CoChR-L112C and CoChR-H94E/L112C/K264T, with markedly enhanced light sensitivity. The improved light sensitivity of the CoChR mutants was confirmed by ex vivo electrophysiological recordings in the retina. Furthermore, the CoChR mutants restored the vision of a blind mouse model under ambient light conditions with remarkably good contrast sensitivity and visual acuity, as evidenced by the results of behavioral assays. The ability to restore functional vision under normal light conditions with the improved CoChR variants removed a major obstacle for ChR-based optogenetic vision restoration.
Collapse
Affiliation(s)
- Tushar H Ganjawala
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Qi Lu
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mitchell D Fenner
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gary W Abrams
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
66
|
A light in the dark: state of the art and perspectives in optogenetics and optopharmacology for restoring vision. Future Med Chem 2019; 11:463-487. [DOI: 10.4155/fmc-2018-0315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the last decade, innovative therapeutic strategies against inherited retinal degenerations (IRDs) have emerged. In particular, chemical- and opto-genetics approaches or a combination of them have been identified for modulating neuronal/optical activity in order to restore vision in blinding diseases. The ‘chemical-genetics approach’ (optopharmacology) uses small molecules (exogenous photoswitches) for restoring light sensitivity by activating ion channels. The ‘opto-genetics approach’ employs light-activated photosensitive proteins (exogenous opsins), introduced by viral vectors in injured tissues, to restore light response. These approaches offer control of neuronal activities with spatial precision and limited invasiveness, although with some drawbacks. Currently, a combined therapeutic strategy (optogenetic pharmacology) is emerging. This review describes the state of the art and provides an overview of the future perspectives in vision restoration.
Collapse
|
67
|
Rizzo S, Cinelli L, Finocchio L, Tartaro R, Santoro F, Gregori NZ. Assessment of Postoperative Morphologic Retinal Changes by Optical Coherence Tomography in Recipients of an Electronic Retinal Prosthesis Implant. JAMA Ophthalmol 2019; 137:272-278. [PMID: 30605209 PMCID: PMC6439717 DOI: 10.1001/jamaophthalmol.2018.6375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 11/09/2018] [Indexed: 01/10/2023]
Abstract
Importance The postoperative retinal changes at the interface between an implant electrode array and the retina and whether these anatomic changes have an association with the patient visual performance are unknown. Objective To report morphologic changes in recipients of an Argus II Retinal Prosthesis. Design, Setting, and Participants This consecutive, noncomparative case series study included a retrospective review of the preoperative and postoperative optical coherence tomography of 33 eyes among 33 individuals who underwent Argus II Retinal Prosthesis System implantation between October 28, 2011, and June 8, 2017, at 2 different centers, by the same surgeon (S.R.). Thirteen patients received an implant at Azienda Ospedaliero Universitaria Pisana, Pisa, Italy, between October 28, 2011, and October 27, 2014, and 20 patients underwent surgery at Azienda Ospedaliera Universitaria Careggi, Florence, Italy, between December 20, 2014, and June 8, 2017. Patients were excluded if they did not reach the 6-month follow-up. Main Outcomes and Measures All patients were evaluated before surgery, during the first postoperative day, and at 1, 3, 6, 12, and 24 months (subsequently once a year, except for patient-related adverse events), with a comprehensive ophthalmic examination, retinal fundus photography, spectral-domain optical coherence tomography, and visual function tests to evaluate the stability or improvement of their visual performance. Results Of the 20 patients included in the analysis, all were of white race/ethnicity, 12 (60%) were male, and the mean (SD) age was 57.4 (11.6) years. Optical coherence tomography revealed the development of a fibrosislike hyperreflective tissue limited at the interface between the array and retina in 10 eyes (50%). In 9 of 10 patients (90%), fibrosis evolved and progressed to retinal schisis. Despite the development of the fibrosis and schisis, there was no deterioration in the patient's visual performance evaluated prospectively with visual function tests (square localization and direction of motion). Conclusions and Relevance Optical coherence tomography may be used to observe the retinal anatomic changes in patients with an Argus II Prothesis. This analysis revealed the development of a fibrosislike hyperreflective tissue limited at the interface between array and retina that progressed to retinal schisis but with no deterioration in the patients' visual performance.
Collapse
Affiliation(s)
- Stanislao Rizzo
- Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina e Chirurgia Traslazionale, University of Florence, Florence, Italy
| | - Laura Cinelli
- Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina e Chirurgia Traslazionale, University of Florence, Florence, Italy
| | - Lucia Finocchio
- Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina e Chirurgia Traslazionale, University of Florence, Florence, Italy
| | - Ruggero Tartaro
- Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina e Chirurgia Traslazionale, University of Florence, Florence, Italy
| | - Francesca Santoro
- Azienda Ospedaliera Universitaria Careggi, Dipartimento di Medicina e Chirurgia Traslazionale, University of Florence, Florence, Italy
| | - Ninel Z. Gregori
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
68
|
Wang AL, Knight DK, Vu TTT, Mehta MC. Retinitis Pigmentosa: Review of Current Treatment. Int Ophthalmol Clin 2019; 59:263-280. [PMID: 30585930 DOI: 10.1097/iio.0000000000000256] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
69
|
Abstract
Retinal imaging has advanced to enable noninvasive in vivo visualization of macular photoreceptors with cellular resolution. Images of retinal structure are best interpreted in the context of visual function, but clinical measures of visual function lack resolution on the scale of individual cells. Combined with cross-sectional measures of retinal structure acquired with optical coherence tomography (OCT), macular photoreceptor function can be evaluated using visual acuity and fundus-guided microperimetry, but the resolution of these measures is limited to relatively large retinal areas. By incorporating adaptive optics correction of aberrations in light entering and exiting the pupil, individual photoreceptors can be visualized and stimulated to assess structure and function. Discrepancy between structural images and visual function can shed light on the origin of visible features and their relation to visual function. Dysflective cones, cones with abnormal waveguiding properties on confocal adaptive optics scanning laser ophthalmoscopy (AOSLO) images and measurable function, provide insight into the visual significance of features in retinal images and may facilitate identification of patients who could benefit from therapies.
Collapse
Affiliation(s)
- Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, USA.
| | - Austin Roorda
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, CA, USA
| |
Collapse
|
70
|
Keppeler D, Merino RM, Lopez de la Morena D, Bali B, Huet AT, Gehrt A, Wrobel C, Subramanian S, Dombrowski T, Wolf F, Rankovic V, Neef A, Moser T. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos. EMBO J 2018; 37:embj.201899649. [PMID: 30396994 DOI: 10.15252/embj.201899649] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
Optogenetic tools, providing non-invasive control over selected cells, have the potential to revolutionize sensory prostheses for humans. Optogenetic stimulation of spiral ganglion neurons (SGNs) in the ear provides a future alternative to electrical stimulation used in cochlear implants. However, most channelrhodopsins do not support the high temporal fidelity pertinent to auditory coding because they require milliseconds to close after light-off. Here, we biophysically characterized the fast channelrhodopsin Chronos and revealed a deactivation time constant of less than a millisecond at body temperature. In order to enhance neural expression, we improved its trafficking to the plasma membrane (Chronos-ES/TS). Following efficient transduction of SGNs using early postnatal injection of the adeno-associated virus AAV-PHPB into the mouse cochlea, fiber-based optical stimulation elicited optical auditory brainstem responses (oABR) with minimal latencies of 1 ms, thresholds of 5 μJ and 100 μs per pulse, and sizable amplitudes even at 1,000 Hz of stimulation. Recordings from single SGNs demonstrated good temporal precision of light-evoked spiking. In conclusion, efficient virus-mediated expression of targeting-optimized Chronos-ES/TS achieves ultrafast optogenetic control of neurons.
Collapse
Affiliation(s)
- Daniel Keppeler
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Ricardo Martins Merino
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Biophysics of Neural Computation Group, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Neurophysics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - David Lopez de la Morena
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Burak Bali
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Restorative Cochlear Genomics Group, German Primate Center, Göttingen, Germany
| | - Antoine Tarquin Huet
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Biophysics of Neural Computation Group, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Anna Gehrt
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Christian Wrobel
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Swati Subramanian
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tobias Dombrowski
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Neurophysics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Bernstein Center for Computational Neuroscience, Göttingen, Germany.,Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
| | - Vladan Rankovic
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany .,Restorative Cochlear Genomics Group, German Primate Center, Göttingen, Germany
| | - Andreas Neef
- Biophysics of Neural Computation Group, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany .,Neurophysics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany .,Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Biophysics of Neural Computation Group, Bernstein Center for Computational Neuroscience Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| |
Collapse
|
71
|
Lee W, Zernant J, Nagasaki T, Tsang SH, Allikmets R. Deep Scleral Exposure: A Degenerative Outcome of End-Stage Stargardt Disease. Am J Ophthalmol 2018; 195:16-25. [PMID: 30055151 DOI: 10.1016/j.ajo.2018.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE To describe a distinct phenotypic outcome of outer retinal degeneration in a cohort of genetically confirmed patients with recessive Stargardt disease (STGD1). DESIGN Retrospective case series. METHODS Twelve patients, who were clinically diagnosed with STGD1 and exhibited a unique degenerative phenotype, were included in the study. Two disease-causing mutations were found in all patients by direct sequencing of the ABCA4 gene. Clinical characterization of patients were defined on fundus photographs, autofluorescence images (488-nm and 532-nm excitation), spectral-domain optical coherence tomography (SD-OCT), and full-field electroretinogram (ffERG) testing. RESULTS Mean age at initial presentation was 67.8 years and reported age of symptomatic onset was 14.1 years (mean disease duration = 53.8 years). Best-corrected visual acuity ranged from 20/400 to hand motion. All patients exhibited advanced degeneration across the posterior pole resulting in a reflectively pale, blonde fundus owing to unobstructed exposure of the underlying sclera. SD-OCT revealed complete loss of the outer retinal bands (external limiting membrane, ellipsoid zone, interdigitation zone, and retinal pigment epithelium) and choroidal layers. Scotopic and photopic waveforms on ffERG were nonrecordable or severely attenuated in 8 patients who were tested. CONCLUSIONS Widespread scleral exposure is a clinical outcome in a subset of STGD1 following a long duration of disease progression (∼50 years). The blonde fundus in such cases may exhibit phenotypic overlap and shared therapeutic implications with other aggressive chorioretinal dystrophies such as end-stage choroideremia, gyrate atrophy, or RPE65-Leber congenital amaurosis.
Collapse
Affiliation(s)
- Winston Lee
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, USA; Department of Pathology & Cell Biology, Columbia University, New York, New York, USA.
| |
Collapse
|
72
|
Dong N, Berlinguer-Palmini R, Soltan A, Ponon N, O'Neil A, Travelyan A, Maaskant P, Degenaar P, Sun X. Opto-electro-thermal optimization of photonic probes for optogenetic neural stimulation. JOURNAL OF BIOPHOTONICS 2018; 11:e201700358. [PMID: 29603666 DOI: 10.1002/jbio.201700358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Implantable photonic probes are of increasing interest to the field of biophotonics and in particular, optogenetic neural stimulation. Active probes with onboard light emissive elements allow for electronic multiplexing and can be manufactured through existing microelectronics methods. However, as the optogenetics field moves towards clinical practice, an important question arises as to whether such probes will cause excessive thermal heating of the surrounding tissue. Light emitting diodes typically produce more heat than light. The resultant temperature rise of the probe surface therefore needs to be maintained under the regulatory limit of 2°C. This work combines optical and thermal modelling, which have been experimental verified. Analysis has been performed on the effect of probe/emitter geometries, emitter, and radiance requirements. Finally, the effective illumination volume has been calculated within thermal limits for different probe emitter types and required thresholds.
Collapse
Affiliation(s)
- Na Dong
- National Research Center for Optical Sensing/Communications Integrated Networking, Department of Electronics Engineering, Southeast University, Nanjing, China
| | | | - Ahmed Soltan
- School of Engineering, University of Newcastle upon Tyne, Newcastle, UK
| | - Nikhil Ponon
- School of Engineering, University of Newcastle upon Tyne, Newcastle, UK
| | - Anthony O'Neil
- School of Engineering, University of Newcastle upon Tyne, Newcastle, UK
| | - Andrew Travelyan
- Institute of Neuroscience, University of Newcastle upon Tyne, Newcastle, UK
| | - Pleun Maaskant
- Tyndall Institute, University College Cork, Cork, Ireland
| | - Patrick Degenaar
- School of Engineering, University of Newcastle upon Tyne, Newcastle, UK
| | - Xiaohan Sun
- National Research Center for Optical Sensing/Communications Integrated Networking, Department of Electronics Engineering, Southeast University, Nanjing, China
| |
Collapse
|
73
|
Lu Q, Ganjawala TH, Hattar S, Abrams GW, Pan ZH. A Robust Optomotor Assay for Assessing the Efficacy of Optogenetic Tools for Vision Restoration. Invest Ophthalmol Vis Sci 2018; 59:1288-1294. [PMID: 29625451 PMCID: PMC5839255 DOI: 10.1167/iovs.17-23278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose To develop an animal behavioral assay for the quantitative assessment of the functional efficacy of optogenetic therapies. Methods A triple-knockout (TKO) mouse line, Gnat1−/−Cnga3−/−Opn4−/−, and a double-knockout mouse line, Gnat1−/−Cnga3−/−, were employed. The expression of channelrhodopsin-2 (ChR2) and its three more light-sensitive mutants, ChR2-L132C, ChR2-L132C/T159C, and ChR2-132C/T159S, in inner retinal neurons was achieved using rAAV2 vectors via intravitreal delivery. Pupillary constriction was assessed by measuring the pupil diameter. The optomotor response (OMR) was examined using a homemade optomotor system equipped with light-emitting diodes as light stimulation. Results A robust OMR was restored in the ChR2-mutant-expressing TKO mice; however, significant pupillary constriction was observed only for the ChR2-L132C/T159S mutant. The ability to evoke an OMR was dependent on both the light intensity and grating frequency. The most light-sensitive frequency for the three ChR2 mutants was approximately 0.042 cycles per degree. Among the three ChR2 mutants, ChR2-L132C/T159S was the most light sensitive, followed by ChR2-L132C/T159C and ChR2-L132C. Melanopsin-mediated pupillary constriction resulted in a substantial reduction in the light sensitivity of the ChR2-mediated OMR. Conclusions The OMR assay using TKO mice enabled the quantitative assessment of the efficacy of different optogenetic tools and the properties of optogenetically restored vision. Thus, the assay can serve as a valuable tool for developing effective optogenetic therapies.
Collapse
Affiliation(s)
- Qi Lu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States.,Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Tushar H Ganjawala
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Samer Hattar
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Gary W Abrams
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Zhuo-Hua Pan
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States.,Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
74
|
Krishnamurthy VV, Zhang K. Chemical physics in living cells — Using light to visualize and control intracellular signal transduction. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1806152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Vishnu V. Krishnamurthy
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
75
|
Duncan JL, Pierce EA, Laster AM, Daiger SP, Birch DG, Ash JD, Iannaccone A, Flannery JG, Sahel JA, Zack DJ, Zarbin MA. Inherited Retinal Degenerations: Current Landscape and Knowledge Gaps. Transl Vis Sci Technol 2018; 7:6. [PMID: 30034950 PMCID: PMC6052953 DOI: 10.1167/tvst.7.4.6] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Amy M Laster
- Foundation Fighting Blindness, Columbia, MD, USA
| | - Stephen P Daiger
- Human Genetics Center, School of Public Health, and Ruiz Department of Ophthalmology and Visual Science, The University of Texas Health Science Center, Houston, TX, USA
| | - David G Birch
- Rose-Silverthorne Retinal Degenerations Laboratory, Retina Foundation of the Southwest, Dallas, TX, USA
| | - John D Ash
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Alessandro Iannaccone
- Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - John G Flannery
- Vision Science, the Helen Wills Neuroscience Institute, the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - José A Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Institut de la Vision-Sorbonne Université, Inserm, CNRS-Paris, France
| | - Donald J Zack
- Departments of Ophthalmology, Neuroscience, Molecular Biology and Genetics, and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marco A Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | | |
Collapse
|
76
|
Barriga-Rivera A, Suaning GJ. Visual prostheses, optogenetics, stem cell and gene therapies: splitting the cake. Neural Regen Res 2018; 13:805-806. [PMID: 29863005 PMCID: PMC5998616 DOI: 10.4103/1673-5374.232469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Alejandro Barriga-Rivera
- Division of Neuroscience, University Pablo de Olavide, Sevilla, Spain; Faculty of Engineering and Information Technologies, The University of Sydney, Sydney, Australia
| | - Gregg J Suaning
- Faculty of Engineering and Information Technologies, The University of Sydney, Sydney, Australia
| |
Collapse
|
77
|
DiCarlo JE, Mahajan VB, Tsang SH. Gene therapy and genome surgery in the retina. J Clin Invest 2018; 128:2177-2188. [PMID: 29856367 DOI: 10.1172/jci120429] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Precision medicine seeks to treat disease with molecular specificity. Advances in genome sequence analysis, gene delivery, and genome surgery have allowed clinician-scientists to treat genetic conditions at the level of their pathology. As a result, progress in treating retinal disease using genetic tools has advanced tremendously over the past several decades. Breakthroughs in gene delivery vectors, both viral and nonviral, have allowed the delivery of genetic payloads in preclinical models of retinal disorders and have paved the way for numerous successful clinical trials. Moreover, the adaptation of CRISPR-Cas systems for genome engineering have enabled the correction of both recessive and dominant pathogenic alleles, expanding the disease-modifying power of gene therapies. Here, we highlight the translational progress of gene therapy and genome editing of several retinal disorders, including RPE65-, CEP290-, and GUY2D-associated Leber congenital amaurosis, as well as choroideremia, achromatopsia, Mer tyrosine kinase- (MERTK-) and RPGR X-linked retinitis pigmentosa, Usher syndrome, neovascular age-related macular degeneration, X-linked retinoschisis, Stargardt disease, and Leber hereditary optic neuropathy.
Collapse
Affiliation(s)
- James E DiCarlo
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, California, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
78
|
Abstract
Restoring vision to the blind by retinal repair has been a dream of medicine for centuries, and the first successful procedures have recently been performed. Although we are still far from the restoration of high-resolution vision, step-by-step developments are overcoming crucial bottlenecks in therapy development and have enabled the restoration of some visual function in patients with specific blindness-causing diseases. Here, we discuss the current state of vision restoration and the problems related to retinal repair. We describe new model systems and translational technologies, as well as the clinical conditions in which new methods may help to combat blindness.
Collapse
|
79
|
Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Klevering BJ. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018; 66:157-186. [PMID: 29597005 DOI: 10.1016/j.preteyeres.2018.03.005] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic, 20-30% of patients with RP also have an associated non-ocular condition. RP typically manifests with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors; central vision loss occurs later in life due to cone dysfunction. Photoreceptor function measured with an electroretinogram is markedly reduced or even absent. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging show a progressive loss of outer retinal layers and altered lipofuscin distribution in a characteristic pattern. Over the past three decades, a vast number of disease-causing variants in more than 80 genes have been associated with non-syndromic RP. The wide heterogeneity of RP makes it challenging to describe the clinical findings and pathogenesis. In this review, we provide a comprehensive overview of the clinical characteristics of RP specific to genetically defined patient subsets. We supply a unique atlas with color fundus photographs of most RP subtypes, and we discuss the relevant considerations with respect to differential diagnoses. In addition, we discuss the genes involved in the pathogenesis of RP, as well as the retinal processes that are affected by pathogenic mutations in these genes. Finally, we review management strategies for patients with RP, including counseling, visual rehabilitation, and current and emerging therapeutic options.
Collapse
Affiliation(s)
- Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
80
|
Kim H, Beack S, Han S, Shin M, Lee T, Park Y, Kim KS, Yetisen AK, Yun SH, Kwon W, Hahn SK. Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29363198 DOI: 10.1002/adma.201701460] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/20/2017] [Indexed: 05/08/2023]
Abstract
The last decade has seen dramatic progress in the principle, design, and fabrication of photonic nanomaterials with various optical properties and functionalities. Light-emitting and light-responsive nanomaterials, such as semiconductor quantum dots, plasmonic metal nanoparticles, organic carbon, and polymeric nanomaterials, offer promising approaches to low-cost and effective diagnostic, therapeutic, and theranostic applications. Reasonable endeavors have begun to translate some of the promising photonic nanomaterials to the clinic. Here, current research on the state-of-the-art and emerging photonic nanomaterials for diverse biomedical applications is reviewed, and the remaining challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Hyemin Kim
- PHI BIOMED Co., #613, 12 Gangnam-daero 65-gil, Seocho-gu, Seoul, 06612, South Korea
| | - Songeun Beack
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seulgi Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Myeonghwan Shin
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Taehyung Lee
- Department of Chemical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Yoonsang Park
- Department of Chemical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Ki Su Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Ali K Yetisen
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, MA, 02139, USA
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Seoul, 04310, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
81
|
Weiland JD, Walston ST, Humayun MS. Electrical Stimulation of the Retina to Produce Artificial Vision. Annu Rev Vis Sci 2018; 2:273-294. [PMID: 28532361 DOI: 10.1146/annurev-vision-111815-114425] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal prostheses aim to restore vision to blind individuals suffering from retinal diseases such as retinitis pigmentosa and age-related macular degeneration. These devices function by electrically stimulating surviving retinal neurons, whose activation is interpreted by the brain as a visual percept. Many prostheses are currently under development. They are categorized as epiretinal, subretinal, and suprachoroidal prostheses on the basis of the placement of the stimulating microelectrode array. Each can activate ganglion cells through direct or indirect stimulation. The response of retinal neurons to these modes of stimulation are discussed in detail and are placed in context of the visual percept they are likely to evoke. This article further reviews challenges faced by retinal prosthesis and discusses potential solutions to address them.
Collapse
Affiliation(s)
- James D Weiland
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90007; .,USC Roski Eye Institute, University of Southern California, Los Angeles, California 90033.,Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California 90033
| | - Steven T Walston
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90007;
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90007; .,USC Roski Eye Institute, University of Southern California, Los Angeles, California 90033.,Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
82
|
Noh KN, Park SI, Qazi R, Zou Z, Mickle AD, Grajales-Reyes JG, Jang KI, Gereau RW, Xiao J, Rogers JA, Jeong JW. Miniaturized, Battery-Free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:10.1002/smll.201702479. [PMID: 29215787 PMCID: PMC5912318 DOI: 10.1002/smll.201702479] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/21/2017] [Indexed: 05/20/2023]
Abstract
Combination of optogenetics and pharmacology represents a unique approach to dissect neural circuitry with high specificity and versatility. However, conventional tools available to perform these experiments, such as optical fibers and metal cannula, are limited due to their tethered operation and lack of biomechanical compatibility. To address these issues, a miniaturized, battery-free, soft optofluidic system that can provide wireless drug delivery and optical stimulation for spatiotemporal control of the targeted neural circuit in freely behaving animals is reported. The device integrates microscale inorganic light-emitting diodes and microfluidic drug delivery systems with a tiny stretchable multichannel radiofrequency antenna, which not only eliminates the need for bulky batteries but also offers fully wireless, independent control of light and fluid delivery. This design enables a miniature (125 mm3 ), lightweight (220 mg), soft, and flexible platform, thus facilitating seamless implantation and operation in the body without causing disturbance of naturalistic behavior. The proof-of-principle experiments and analytical studies validate the feasibility and reliability of the fully implantable optofluidic systems for use in freely moving animals, demonstrating its potential for wireless in vivo pharmacology and optogenetics.
Collapse
Affiliation(s)
- Kyung Nim Noh
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sung Il Park
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
- Center for Remote Health Science Technologies, Texas A&M University, College Station, TX, 77843, USA
| | - Raza Qazi
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Zhanan Zou
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Aaron D Mickle
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Jose G Grajales-Reyes
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Kyung-In Jang
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Robert W Gereau
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, 63130, USA
- Department of Neuroscience, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Jianliang Xiao
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - John A Rogers
- Department of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical and Computer Science, Northwestern University, Evanston, IL, 60208, USA
- Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Jae-Woong Jeong
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
- School of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
83
|
Gaub BM, Berry MH, Visel M, Holt A, Isacoff EY, Flannery JG. Optogenetic Retinal Gene Therapy with the Light Gated GPCR Vertebrate Rhodopsin. Methods Mol Biol 2018; 1715:177-189. [PMID: 29188513 DOI: 10.1007/978-1-4939-7522-8_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In retinal disease, despite the loss of light sensitivity as photoreceptors die, many retinal interneurons survive in a physiologically and metabolically functional state for long periods. This provides an opportunity for treatment by genetically adding a light sensitive function to these cells. Optogenetic therapies are in development, but, to date, they have suffered from low light sensitivity and narrow dynamic response range of microbial opsins. Expression of light-sensitive G protein coupled receptors (GPCRs), such as vertebrate rhodopsin , can increase sensitivity by signal amplification , as shown by several groups. Here, we describe the methods to (1) express light gated GPCRs in retinal neurons, (2) record light responses in retinal explants in vitro, (3) record cortical light responses in vivo, and (4) test visually guided behavior in treated mice.
Collapse
Affiliation(s)
- Benjamin M Gaub
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zürich, Basel, Switzerland
| | - Michael H Berry
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Meike Visel
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Amy Holt
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.,Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - John G Flannery
- Vision Science Graduate Group, School of Optometry, University of California, Berkeley, CA, USA. .,The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA. .,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
84
|
Scholl HPN, Strauss RW, Singh MS, Dalkara D, Roska B, Picaud S, Sahel JA. Emerging therapies for inherited retinal degeneration. Sci Transl Med 2017; 8:368rv6. [PMID: 27928030 DOI: 10.1126/scitranslmed.aaf2838] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022]
Abstract
Inherited retinal degenerative diseases, a genetically and phenotypically heterogeneous group of disorders, affect the function of photoreceptor cells and are among the leading causes of blindness. Recent advances in molecular genetics and cell biology are elucidating the pathophysiological mechanisms underlying these disorders and are helping to identify new therapeutic approaches, such as gene therapy, stem cell therapy, and optogenetics. Several of these approaches have entered the clinical phase of development. Artificial replacement of dying photoreceptor cells using retinal prostheses has received regulatory approval. Precise retinal imaging and testing of visual function are facilitating more efficient clinical trial design. In individual patients, disease stage will determine whether the therapeutic strategy should comprise photoreceptor cell rescue to delay or arrest vision loss or retinal replacement for vision restoration.
Collapse
Affiliation(s)
- Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland. .,Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rupert W Strauss
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA.,Moorfields Eye Hospital, London EC1V 2PD, U.K.,UCL Institute of Ophthalmology, University College London, London EC1V 9EL, U.K.,Department of Ophthalmology, Medical University Graz, Graz, Austria.,Department of Ophthalmology, Johannes Kepler University Linz, 4021 Linz, Austria
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Deniz Dalkara
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France
| | - Botond Roska
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland.,Neural Circuit Laboratories, Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Serge Picaud
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France
| | - José-Alain Sahel
- INSERM, UMR S 968, 75012 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Institut de la Vision, Paris, France.,CNRS, UMR 7210, 75012 Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France.,Centre d'Investigation Clinique 1423, INSERM-Center Hospitalier National d'Ophtalmologie des Quinze-Vingts, 75012 Paris, France.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
85
|
Chen Y, Fu J, Chu D, Li R, Xie Y. An image-processing strategy to extract important information suitable for a low-size stimulus pattern in a retinal prosthesis. BIOMED ENG-BIOMED TE 2017; 62:591-598. [PMID: 28258971 DOI: 10.1515/bmt-2016-0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 11/01/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND A retinal prosthesis is designed to help the blind to obtain some sight. It consists of an external part and an internal part. The external part is made up of a camera, an image processor and an RF transmitter. The internal part is made up of an RF receiver, implant chip and microelectrode. METHODS Currently, the number of microelectrodes is in the hundreds, and we do not know the mechanism for using an electrode to stimulate the optic nerve. A simple hypothesis is that the pixels in an image correspond to the electrode. The images captured by the camera should be processed by suitable strategies to correspond to stimulation from the electrode. Thus, it is a question of how to obtain the important information from the image captured in the picture. Here, we use the region of interest (ROI), a useful algorithm for extracting the ROI, to retain the important information, and to remove the redundant information. RESULTS This paper explains the details of the principles and functions of the ROI. Because we are investigating a real-time system, we need a fast processing ROI as a useful algorithm to extract the ROI. Thus, we simplified the ROI algorithm and used it in an outside image-processing digital signal processing (DSP) system of the retinal prosthesis. CONCLUSION The results show that our image-processing strategies are suitable for a real-time retinal prosthesis and can eliminate redundant information and provide useful information for expression in a low-size image.
Collapse
|
86
|
Barriga-Rivera A, Bareket L, Goding J, Aregueta-Robles UA, Suaning GJ. Visual Prosthesis: Interfacing Stimulating Electrodes with Retinal Neurons to Restore Vision. Front Neurosci 2017; 11:620. [PMID: 29184478 PMCID: PMC5694472 DOI: 10.3389/fnins.2017.00620] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023] Open
Abstract
The bypassing of degenerated photoreceptors using retinal neurostimulators is helping the blind to recover functional vision. Researchers are investigating new ways to improve visual percepts elicited by these means as the vision produced by these early devices remain rudimentary. However, several factors are hampering the progression of bionic technologies: the charge injection limits of metallic electrodes, the mechanical mismatch between excitable tissue and the stimulating elements, neural and electric crosstalk, the physical size of the implanted devices, and the inability to selectively activate different types of retinal neurons. Electrochemical and mechanical limitations are being addressed by the application of electromaterials such as conducting polymers, carbon nanotubes and nanocrystalline diamonds, among other biomaterials, to electrical neuromodulation. In addition, the use of synthetic hydrogels and cell-laden biomaterials is promising better interfaces, as it opens a door to establishing synaptic connections between the electrode material and the excitable cells. Finally, new electrostimulation approaches relying on the use of high-frequency stimulation and field overlapping techniques are being developed to better replicate the neural code of the retina. All these elements combined will bring bionic vision beyond its present state and into the realm of a viable, mainstream therapy for vision loss.
Collapse
Affiliation(s)
- Alejandro Barriga-Rivera
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, Australia
- Division of Neuroscience, University Pablo de Olavide, Sevilla, Spain
| | - Lilach Bareket
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, Australia
| | - Josef Goding
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Gregg J. Suaning
- Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
87
|
Galvan A, Stauffer WR, Acker L, El-Shamayleh Y, Inoue KI, Ohayon S, Schmid MC. Nonhuman Primate Optogenetics: Recent Advances and Future Directions. J Neurosci 2017; 37:10894-10903. [PMID: 29118219 PMCID: PMC5678022 DOI: 10.1523/jneurosci.1839-17.2017] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Optogenetics is the use of genetically coded, light-gated ion channels or pumps (opsins) for millisecond resolution control of neural activity. By targeting opsin expression to specific cell types and neuronal pathways, optogenetics can expand our understanding of the neural basis of normal and pathological behavior. To maximize the potential of optogenetics to study human cognition and behavior, optogenetics should be applied to the study of nonhuman primates (NHPs). The homology between NHPs and humans makes these animals the best experimental model for understanding human brain function and dysfunction. Moreover, for genetic tools to have translational promise, their use must be demonstrated effectively in large, wild-type animals such as Rhesus macaques. Here, we review recent advances in primate optogenetics. We highlight the technical hurdles that have been cleared, challenges that remain, and summarize how optogenetic experiments are expanding our understanding of primate brain function.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center and Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia 30329,
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Leah Acker
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yasmine El-Shamayleh
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, Washington 98195
| | - Ken-Ichi Inoue
- Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Shay Ohayon
- McGovern Institute for Brain Research, Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Michael C Schmid
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom NE2 4HH
| |
Collapse
|
88
|
Peynshaert K, Devoldere J, Forster V, Picaud S, Vanhove C, De Smedt SC, Remaut K. Toward smart design of retinal drug carriers: a novel bovine retinal explant model to study the barrier role of the vitreoretinal interface. Drug Deliv 2017; 24:1384-1394. [PMID: 28925755 PMCID: PMC8241179 DOI: 10.1080/10717544.2017.1375578] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022] Open
Abstract
Retinal gene delivery via intravitreal injection is hampered by various physiological barriers present in the eye of which the vitreoretinal (VR) interface represents the most serious hurdle. In this study, we present a retinal explant model especially designed to study the role of this interface as a barrier for the penetration of vectors into the retina. In contrast to all existing explant models, the developed model is bovine-derived and more importantly, keeps the vitreous attached to the retina at all times to guarantee an intact VR interface. After ex vivo intravitreal injection into the living retinal explant, the route of fluorescent carriers across the VR interface can be tracked. By applying two different imaging methods on this model, we discovered that the transfer through the VR barrier is size-dependent since 40 nm polystyrene particles are more easily taken up in the retina than 100 and 200 nm sized particles. In addition, we found that removing the vitreous, as commonly done for culture of conventional explants, leads to an overestimation of particle uptake, and conclude that the ultimate barrier to overcome for retinal uptake is undoubtedly the inner limiting membrane. Damaging this matrix resulted in a massive increase in particle transfer into the retina. In conclusion, we have developed a highly relevant ex vivo model that maximally mimics the human in vivo physiology which can be applied as a representative test set-up to assess the potential of promising drug delivery carriers to cross the VR interface.
Collapse
Affiliation(s)
- Karen Peynshaert
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
| | - Joke Devoldere
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
| | - Valérie Forster
- Institut de la Vision, INSERM, Université Paris 6, Paris, France
| | - Serge Picaud
- Institut de la Vision, INSERM, Université Paris 6, Paris, France
| | - Christian Vanhove
- Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Stefaan C. De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
| | - Katrien Remaut
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
| |
Collapse
|
89
|
Kaplan HJ, Wang W, Dean DC. Restoration of Cone Photoreceptor Function in Retinitis Pigmentosa. Transl Vis Sci Technol 2017; 6:5. [PMID: 28900578 PMCID: PMC5588910 DOI: 10.1167/tvst.6.5.5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 07/17/2017] [Indexed: 01/12/2023] Open
Affiliation(s)
- Henry J Kaplan
- University of Louisville, Department of Ophthalmology and Visual Sciences, Louisville, KY, USA
| | - Wei Wang
- University of Louisville, Department of Ophthalmology and Visual Sciences, Louisville, KY, USA
| | - Douglas C Dean
- University of Louisville, Department of Ophthalmology and Visual Sciences, Louisville, KY, USA.,University of Louisville, Molecular Targets Program, James Graham Brown Cancer Center, Louisville, KY, USA
| |
Collapse
|
90
|
Khamo JS, Krishnamurthy VV, Sharum SR, Mondal P, Zhang K. Applications of Optobiology in Intact Cells and Multicellular Organisms. J Mol Biol 2017; 429:2999-3017. [PMID: 28882542 DOI: 10.1016/j.jmb.2017.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
Collapse
Affiliation(s)
- John S Khamo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Savanna R Sharum
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Payel Mondal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
91
|
Stingl K, Schippert R, Bartz-Schmidt KU, Besch D, Cottriall CL, Edwards TL, Gekeler F, Greppmaier U, Kiel K, Koitschev A, Kühlewein L, MacLaren RE, Ramsden JD, Roider J, Rothermel A, Sachs H, Schröder GS, Tode J, Troelenberg N, Zrenner E. Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations. Front Neurosci 2017; 11:445. [PMID: 28878616 PMCID: PMC5572402 DOI: 10.3389/fnins.2017.00445] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/20/2017] [Indexed: 11/13/2022] Open
Abstract
Purpose: We assessed the safety and efficacy of a technically advanced subretinal electronic implant, RETINA IMPLANT Alpha AMS, in end stage retinal degeneration in an interim analysis of two ongoing prospective clinical trials. The purpose of this article is to describe the interim functional results (efficacy). Methods: The subretinal visual prosthesis RETINA IMPLANT Alpha AMS (Retina Implant AG, Reutlingen, Germany) was implanted in 15 blind patients with hereditary retinal degenerations at four study sites with a follow-up period of 12 months (www.clinicaltrials.gov NCT01024803 and NCT02720640). Functional outcome measures included (1) screen-based standardized 2- or 4-alternative forced-choice (AFC) tests of light perception, light localization, grating detection (basic grating acuity (BaGA) test), and Landolt C-rings; (2) gray level discrimination; (3) performance during activities of daily living (ADL-table tasks). Results: Implant-mediated light perception was observed in 13/15 patients. During the observation period implant mediated localization of visual targets was possible in 13/15 patients. Correct grating detection was achieved for spatial frequencies of 0.1 cpd (cycles per degree) in 4/15; 0.33 cpd in 3/15; 0.66 cpd in 2/15; 1.0 cpd in 2/15 and 3.3 cpd in 1/15 patients. In two patients visual acuity (VA) assessed with Landolt C- rings was 20/546 and 20/1111. Of 6 possible gray levels on average 4.6 ± 0.8 (mean ± SD, n = 10) were discerned. Improvements (power ON vs. OFF) of ADL table tasks were measured in 13/15 patients. Overall, results were stable during the observation period. Serious adverse events (SAEs) were reported in 4 patients: 2 movements of the implant, readjusted in a second surgery; 4 conjunctival erosion/dehiscence, successfully treated; 1 pain event around the coil, successfully treated; 1 partial reduction of silicone oil tamponade leading to distorted vision (silicon oil successfully refilled). The majority of adverse events (AEs) were transient and mostly of mild to moderate intensity. Conclusions: Psychophysical and subjective data show that RETINA IMPLANT Alpha AMS is reliable, well tolerated and can restore limited visual functions in blind patients with degenerations of the outer retina. Compared with the previous implant Alpha IMS, longevity of the new implant Alpha AMS has been considerably improved. Alpha AMS has meanwhile been certified as a commercially available medical device, reimbursed in Germany by the public health system.
Collapse
Affiliation(s)
- Katarina Stingl
- Centre for Ophthalmology, University of TuebingenTuebingen, Germany
| | | | | | - Dorothea Besch
- Centre for Ophthalmology, University of TuebingenTuebingen, Germany
| | - Charles L Cottriall
- Nuffield Laboratory of Ophthalmology, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, University of OxfordOxford, United Kingdom
| | - Thomas L Edwards
- Nuffield Laboratory of Ophthalmology, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, University of OxfordOxford, United Kingdom
| | - Florian Gekeler
- Centre for Ophthalmology, University of TuebingenTuebingen, Germany.,Department of Ophthalmology, Katharinenhospital, Klinikum StuttgartStuttgart, Germany
| | | | - Katja Kiel
- Städtisches Klinikum Dresden Friedrichstadt, University Teaching HospitalDresden, Germany
| | - Assen Koitschev
- Division Pediatric Otorhinolaryngology and Otology - Olgahospital, Department of Otorhinolaryngology, Klinikum StuttgartStuttgart, Germany
| | - Laura Kühlewein
- Centre for Ophthalmology, University of TuebingenTuebingen, Germany
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, University of OxfordOxford, United Kingdom
| | - James D Ramsden
- Nuffield Laboratory of Ophthalmology, Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, University of OxfordOxford, United Kingdom
| | - Johann Roider
- Department of Ophthalmology, University of KielKiel, Germany
| | | | - Helmut Sachs
- Städtisches Klinikum Dresden Friedrichstadt, University Teaching HospitalDresden, Germany
| | | | - Jan Tode
- Department of Ophthalmology, University of KielKiel, Germany
| | | | - Eberhart Zrenner
- Centre for Ophthalmology, University of TuebingenTuebingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of TuebingenTuebingen, Germany
| |
Collapse
|
92
|
Tshilenge KT, Ameline B, Weber M, Mendes-Madeira A, Nedellec S, Biget M, Provost N, Libeau L, Blouin V, Deschamps JY, Le Meur G, Colle MA, Moullier P, Pichard V, Rolling F. Vitrectomy Before Intravitreal Injection of AAV2/2 Vector Promotes Efficient Transduction of Retinal Ganglion Cells in Dogs and Nonhuman Primates. Hum Gene Ther Methods 2017; 27:122-34. [PMID: 27229628 DOI: 10.1089/hgtb.2016.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) has emerged as a promising vector for retinal gene delivery to restore visual function in certain forms of inherited retinal dystrophies. Several studies in rodent models have shown that intravitreal injection of the AAV2/2 vector is the optimal route for efficient retinal ganglion cell (RGC) transduction. However, translation of these findings to larger species, including humans, is complicated by anatomical differences in the eye, a key difference being the comparatively smaller volume of the vitreous chamber in rodents. Here, we address the role of the vitreous body as a potential barrier to AAV2/2 diffusion and transduction in the RGCs of dogs and macaques, two of the most relevant preclinical models. We intravitreally administered the AAV2/2 vector carrying the CMV-eGFP reporter cassette in dog and macaque eyes, either directly into the vitreous chamber or after complete vitrectomy, a surgical procedure that removes the vitreous body. Our findings suggest that the vitreous body appears to trap the injected vector, thus impairing the diffusion and transduction of AAV2/2 to inner retinal neurons. We show that vitrectomy before intravitreal vector injection is an effective means of overcoming this physical barrier, improving the transduction of RGCs in dog and macaque retinas. These findings support the use of vitrectomy in clinical trials of intravitreal gene transfer techniques targeting inner retinal neurons.
Collapse
Affiliation(s)
| | - Baptiste Ameline
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Michel Weber
- 2 CHU de Nantes, Service d'Ophtalmologie, Nantes, France
| | | | - Steven Nedellec
- 3 Cellular and Tissular Imaging Core Facility of Nantes University, SFR Santé Francois Bonamy INSERM UMS016/CNRS UMS3556, Nantes, France
| | - Marine Biget
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Nathalie Provost
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Lyse Libeau
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Véronique Blouin
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Jack-Yves Deschamps
- 4 Emergency and Critical Care Unit, ONIRIS, Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | | | - Marie-Anne Colle
- 5 UMR 703 PAnTher INRA/ONIRIS, Nantes-Atlantic College of Veterinary Medicine Food Science and Engineering, Nantes, France
| | - Philippe Moullier
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France.,6 Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida , Gainesville, Florida
| | - Virginie Pichard
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Fabienne Rolling
- 1 Atlantic Gene Therapies, INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| |
Collapse
|
93
|
Beyeler M, Rokem A, Boynton GM, Fine I. Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies. J Neural Eng 2017; 14:051003. [PMID: 28612755 DOI: 10.1088/1741-2552/aa795e] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 'bionic eye'-so long a dream of the future-is finally becoming a reality with retinal prostheses available to patients in both the US and Europe. However, clinical experience with these implants has made it apparent that the visual information provided by these devices differs substantially from normal sight. Consequently, the ability of patients to learn to make use of this abnormal retinal input plays a critical role in whether or not some functional vision is successfully regained. The goal of the present review is to summarize the vast basic science literature on developmental and adult cortical plasticity with an emphasis on how this literature might relate to the field of prosthetic vision. We begin with describing the distortion and information loss likely to be experienced by visual prosthesis users. We then define cortical plasticity and perceptual learning, and describe what is known, and what is unknown, about visual plasticity across the hierarchy of brain regions involved in visual processing, and across different stages of life. We close by discussing what is known about brain plasticity in sight restoration patients and discuss biological mechanisms that might eventually be harnessed to improve visual learning in these patients.
Collapse
Affiliation(s)
- Michael Beyeler
- Department of Psychology, University of Washington, Seattle, WA, United States of America. Institute for Neuroengineering, University of Washington, Seattle, WA, United States of America. eScience Institute, University of Washington, Seattle, WA, United States of America
| | | | | | | |
Collapse
|
94
|
Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. SCIENCE ADVANCES 2017; 3:e1601649. [PMID: 28630894 PMCID: PMC5466371 DOI: 10.1126/sciadv.1601649] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/18/2017] [Indexed: 05/18/2023]
Abstract
Bidirectional interfacing with the nervous system enables neuroscience research, diagnosis, and therapy. This two-way communication allows us to monitor the state of the brain and its composite networks and cells as well as to influence them to treat disease or repair/restore sensory or motor function. To provide the most stable and effective interface, the tools of the trade must bridge the soft, ion-rich, and evolving nature of neural tissue with the largely rigid, static realm of microelectronics and medical instruments that allow for readout, analysis, and/or control. In this Review, we describe how the understanding of neural signaling and material-tissue interactions has fueled the expansion of the available tool set. New probe architectures and materials, nanoparticles, dyes, and designer genetically encoded proteins push the limits of recording and stimulation lifetime, localization, and specificity, blurring the boundary between living tissue and engineered tools. Understanding these approaches, their modality, and the role of cross-disciplinary development will support new neurotherapies and prostheses and provide neuroscientists and neurologists with unprecedented access to the brain.
Collapse
Affiliation(s)
- Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Palo Alto Research Center, Palo Alto, CA 94304, USA
- Corresponding author.
| | - Huiliang Wang
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Lief Fenno
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - George G. Malliaras
- Department of Bioelectronics, École Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne 13541, France
| |
Collapse
|
95
|
Jung H, Kang H, Nam Y. Digital micromirror based near-infrared illumination system for plasmonic photothermal neuromodulation. BIOMEDICAL OPTICS EXPRESS 2017; 8:2866-2878. [PMID: 28663912 PMCID: PMC5480435 DOI: 10.1364/boe.8.002866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/05/2017] [Accepted: 04/24/2017] [Indexed: 05/12/2023]
Abstract
Light-mediated neuromodulation techniques provide great advantages to investigate neuroscience due to its high spatial and temporal resolution. To generate a spatial pattern of neural activity, it is necessary to develop a system for patterned-light illumination to a specific area. Digital micromirror device (DMD) based patterned illumination system have been used for neuromodulation due to its simple configuration and design flexibility. In this paper, we developed a patterned near-infrared (NIR) illumination system for region specific photothermal manipulation of neural activity using NIR-sensitive plasmonic gold nanorods (GNRs). The proposed system had high power transmission efficiency for delivering power density up to 19 W/mm2. We used a GNR-coated microelectrode array (MEA) to perform biological experiments using E18 rat hippocampal neurons and showed that it was possible to inhibit neural spiking activity of specific area in neural circuits with the patterned NIR illumination. This patterned NIR illumination system can serve as a promising neuromodulation tool to investigate neuroscience in a wide range of physiological and clinical applications.
Collapse
|
96
|
|
97
|
Will cardiac optogenetics find the way through the obscure angles of heart physiology? Biochem Biophys Res Commun 2016; 482:515-523. [PMID: 27871856 DOI: 10.1016/j.bbrc.2016.11.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
Abstract
Optogenetics is a technique exploded in the last 10 years, which revolutionized several areas of biological research. The brightest side of this technology is the use of light to modulate non-invasively, with high spatial resolution and millisecond time scale, excitable cells genetically modified to express light-sensitive microbial ion channels (opsins). Neuroscience has first benefited from such fascinating strategy, in intact organisms. By shining light to specific neuronal subpopulations, optogenetics allowed unearth the mechanisms involved in cell-to-cell communication within the context of intact organs, such as the brain, formed by complex neuronal circuits. More recently, scientists looked at optogenetics as a tool to answer some of the questions, remained in the dark, of cardiovascular physiology. In this review, we focus on the application of optogenetics in the study of the heart, a complex multicellular organ, homing different populations of excitable cells, spatially and functionally interconnected. Moving from the first proof-of-principle works, published in 2010, to the present time, we discuss the in vitro and in vivo applications of optogenetics for the study of electrophysiology of the different cardiac cell types, and for the dissection of cellular mechanisms underlying arrhythmias. We also present how molecular biology and technology foster the evolution of cardiac optogenetics, with the aim to further our understanding of fundamental questions in cardiac physiology and pathology. Finally, we confer about the therapeutic potential of such biotechnological strategy for the treatment of heart rhythm disturbances (e.g. cardiac pacing, cardioversion).
Collapse
|
98
|
Castaldi E, Cicchini GM, Cinelli L, Biagi L, Rizzo S, Morrone MC. Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis. PLoS Biol 2016; 14:e1002569. [PMID: 27780207 PMCID: PMC5079588 DOI: 10.1371/journal.pbio.1002569] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022] Open
Abstract
Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI). After surgery, six out of seven retinitis pigmentosa (RP) blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD) activity in V1 and the lateral geniculate nucleus (LGN) was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation.
Collapse
Affiliation(s)
- E. Castaldi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - L. Cinelli
- Azienda Ospedaliero-Universitaria Careggi, SOD Oculistica, Florence, Italy
| | - L. Biagi
- Stella Maris Scientific Institute, Pisa, Italy
| | - S. Rizzo
- Azienda Ospedaliero-Universitaria Careggi, SOD Oculistica, Florence, Italy
| | - M. C. Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Stella Maris Scientific Institute, Pisa, Italy
- * E-mail:
| |
Collapse
|
99
|
Optochemokine Tandem for Light-Control of Intracellular Ca2. PLoS One 2016; 11:e0165344. [PMID: 27768773 PMCID: PMC5074463 DOI: 10.1371/journal.pone.0165344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/10/2016] [Indexed: 01/13/2023] Open
Abstract
An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca2+-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca2+ by tandem endosomes into the cytosol via CatCh was visualized using the Ca2+-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca2+ in response to light.
Collapse
|
100
|
Wu T, Ramamoorthy S, Wilson T, Chen F, Porsov E, Subhash H, Foster S, Zhang Y, Omelchenko I, Bateschell M, Wang L, Brigande JV, Jiang ZG, Mao T, Nuttall AL. Optogenetic Control of Mouse Outer Hair Cells. Biophys J 2016; 110:493-502. [PMID: 26789771 DOI: 10.1016/j.bpj.2015.11.3521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/15/2015] [Accepted: 11/13/2015] [Indexed: 01/28/2023] Open
Abstract
Normal hearing in mammals depends on sound amplification by outer hair cells (OHCs) presumably by their somatic motility and force production. However, the role of OHC force production in cochlear amplification and frequency tuning are not yet fully understood. Currently, available OHC manipulation techniques for physiological or clinical studies are limited by their invasive nature, lack of precision, and poor temporal-spatial resolution. To overcome these limitations, we explored an optogenetic approach based on channelrhodopsin 2 (ChR-2), a direct light-activated nonselective cation channel originally discovered in Chlamydomonas reinhardtii. Three approaches were compared: 1) adeno-associated virus-mediated in utero transfer of the ChR-2 gene into the developing murine otocyst, 2) expression of ChR-2(H134R) in an auditory cell line (HEI-OC1), and 3) expression of ChR-2 in the OHCs of a mouse line carrying a ChR-2 conditional allele. Whole cell recording showed that blue light (470 nm) elicited the typical nonselective cation current of ChR-2 with reversal potential around zero in both mouse OHCs and HEI-OC1 cells and generated depolarization in both cell types. In addition, pulsed light stimulation (10 Hz) elicited a 1:1 repetitive depolarization and ChR-2 currents in mouse OHCs and HEI-OC1 cells, respectively. The time constant of depolarization in OHCs, 1.45 ms, is 10 times faster than HEI-OC1 cells, which allowed light stimulation up to rates of 10/s to elicit corresponding membrane potential changes. Our study demonstrates that ChR-2 can successfully be expressed in mouse OHCs and HEI-OC1 cells and that these present a typical light-sensitive current and depolarization. However, the amount of ChR-2 current induced in our in vivo experiments was insufficient to result in measurable cochlear effects.
Collapse
Affiliation(s)
- Tao Wu
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Sripriya Ramamoorthy
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Teresa Wilson
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Fangyi Chen
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Edward Porsov
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Hrebesh Subhash
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Sarah Foster
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Yuan Zhang
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Irina Omelchenko
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Michael Bateschell
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Lingyan Wang
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - John V Brigande
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Zhi-Gen Jiang
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon
| | - Tianyi Mao
- The Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Alfred L Nuttall
- Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon; Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|