51
|
Gruppuso M, Turco G, Marsich E, Porrelli D. Antibacterial and bioactive multilayer electrospun wound dressings based on hyaluronic acid and lactose-modified chitosan. BIOMATERIALS ADVANCES 2023; 154:213613. [PMID: 37666062 DOI: 10.1016/j.bioadv.2023.213613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
Antibacterial multilayer electrospun matrices based on hyaluronic acid (HA) and a lactose-modified chitosan (CTL) were synthetized (i) by combining electrospun polycaprolactone (PCL) and polysaccharidic matrices in a bilayer device and (ii) by sequentially coating the PCL mat with CTL and HA. In both cases, the antibacterial activity was provided by loading rifampicin within the PCL support. All matrices disclosed suitable morphology and physicochemical properties to be employed as wound dressings. Indeed, both the bilayer and coated fibers showed an optimal swelling capacity (3426 ± 492 % and 1435 ± 251 % after 7 days, respectively) and water vapor permeability (160 ± 0.78 g/m2h and 170 ± 12 g/m2h at 7 days, respectively). On the other hand, the polysaccharidic dressings were completely wettable in the presence of various types of fluids. Depending on the preparation method, a different release of both polysaccharides and rifampicin was detected, and the immediate polysaccharide dissolution from the bilayer structure impacted the antibiotic release (42 ± 4 % from the bilayer structure against 25 ± 2 % from the coated fibers in 4 h). All the multilayer matrices, regardless of their production strategy and composition, revealed optimal biocompatibility and bioactivity with human dermal fibroblasts, as the released bioactive polysaccharides induced a faster wound closure in the cell monolayer (100 % in 24 h) compared to the controls (78 ± 8 % for untreated cells and 89 ± 5 % for cells treated with PCL alone, after 24 h). The inhibitory and bactericidal effects of the rifampicin loaded matrices were assessed on S. aureus, S. epidermidis, E. coli, and P. aeruginosa. The antibacterial matrices were found to be highly effective except for E. coli, which was more resistant even at higher amounts of rifampicin, with a bacterial concentration of 6.4 ± 0.4 log CFU/mL and 6.8 ± 0.3 log CFU/mL after 4 h in the presence of the rifampicin-loaded bilayer and coated matrices, respectively.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| |
Collapse
|
52
|
Kumar Dewangan V, Sampath Kumar TS, Doble M, Daniel Varghese V. Fabrication of injectable antibiotic-loaded apatitic bone cements with prolonged drug delivery for treating post-surgery infections. J Biomed Mater Res A 2023; 111:1750-1767. [PMID: 37353879 DOI: 10.1002/jbm.a.37584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Antibiotic-loaded bioactive bone substitutes are widely used for treating various orthopedic diseases and prophylactically to avoid post implantation infection. Calcium deficient hydroxyapatite (also known as apatitic bone cement) is a potential bioactive bone substitute in orthopedics due to its chemical composition similar to that of natural bone minerals. In this study, fabrication of mannitol (a solid porogen) incorporated injectable synthetic (Syn) and eggshell derived (ESD) apatitic bone cements loaded with antibiotics (gentamicin/meropenem/ rifampicin/vancomycin) was investigated. The release kinetics of the antibiotics were studied by fitting them with different kinetic models. All the antibiotics-loaded apatitic bone cements set within clinically accepted setting time (20 ± 2 min) and with good injectability (>70%). The antibiotics released from these bone cements were found to be controlled and sustained throughout the study time. Weibull and Gompertz (applies in least initial burst and sustain drug release rate models) were the best models to predict the release behavior. They cements had acceptable compressive strength (6-10 MPa; in the range of trabecular bone) and were biodegradable (21%-27% within 12 weeks of incubation) in vitro in simulated body fluids at physiological conditions. These bone cements showed excellent antibacterial activity from day 1 onwards and no bacterial colony was found from day 3 onwards. The viability of MG63 cells in vitro after 72 h was significantly higher after 24 h (i.e., ~110%). The cells were well attached and spread over the surface of the cements with extended morphology. The ESD antibiotic-loaded apatitic bone cements showed better injectability, degradation and cytocompatibility compared when compared to Syn antibiotic-loaded apatitic bone cements. Thus, we believe that the ESD antibiotic-loaded apatitic bone cements are suitable as potential injectable bone substitutes to avoid post-operative implant associated and other acute or chronic bone infections.
Collapse
Affiliation(s)
- Vimal Kumar Dewangan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
- Department of Cariology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | |
Collapse
|
53
|
Feng J, Zheng Y, Ma W, Ihsan A, Hao H, Cheng G, Wang X. Multitarget antibacterial drugs: An effective strategy to combat bacterial resistance. Pharmacol Ther 2023; 252:108550. [PMID: 39492518 DOI: 10.1016/j.pharmthera.2023.108550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The rise of antibiotic resistance and the decrease in the discovery of new antibiotics have caused a global health crisis. Of particular concern is the fact that despite efforts to develop new antibiotics, drug discovery is unable to keep up with the rapid development of resistance. This ongoing crisis highlights the fact that single-target drugs may not always exhibit satisfactory therapeutic effects and are prone to target mutations and resistance due to the complexity of bacterial mechanisms. Retrospective studies have shown that most successful antibiotics have multiple targets. Compared with single-target drugs, successfully designed multitarget drugs can simultaneously regulate multiple targets to reduce resistance caused by single-target mutations or expression changes. In addition to a lower risk of drug-drug interactions, multitarget drugs show superior pharmacokinetics and higher patient compliance compared with combination therapies. Therefore, to reduce resistance, many efforts have been made to discover and design multitarget drugs with different chemical structures and functions. Although there have been numerous studies on how to develop drugs and slow down the development of drug resistance, the reduction of bacterial resistance by multitarget antibacterial drugs has not received widespread attention and is rarely mentioned in the peer-reviewed literature. This review summarises the development of antibiotic resistance and the mechanisms proposed for its emergence, examines the potential of multitarget drugs as an effective strategy to slow the development of resistance, and discusses the rationale for multitarget drug therapy. We also describe multitarget antibacterial compounds with the potential to reduce drug resistance and the available strategies to develop multitarget drugs.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wanqing Ma
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad 45550, Pakistan
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
54
|
Silva APB, Roque-Borda CA, Carnero Canales CS, Duran Gleriani Primo LM, Silva IC, Ribeiro CM, Chorilli M, da Silva PB, Silva JL, Pavan FR. Activity of Bacteriophage D29 Loaded on Nanoliposomes against Macrophages Infected with Mycobacterium tuberculosis. Diseases 2023; 11:150. [PMID: 37987261 PMCID: PMC10660732 DOI: 10.3390/diseases11040150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
The search for new antimicrobial agents is a continuous struggle, mainly because more and more cases of resistant strains are being reported. Mycobacterium tuberculosis (MTB) is the main microorganism responsible for millions of deaths worldwide. The development of new antimicrobial agents is generally aimed at finding strong interactions with one or more bacterial receptors. It has been proven that bacteriophages have the ability to adhere to specific and selective regions. However, their transport and administration must be carefully evaluated as an excess could prevent a positive response and the bacteriophages may be eliminated during their journey. With this in mind, the mycobacteriophage D29 was encapsulated in nanoliposomes, which made it possible to determine its antimicrobial activity during transport and its stability in the treatment of active and latent Mycobacterium tuberculosis. The antimicrobial activity, the cytotoxicity in macrophages and fibroblasts, as well as their infection and time-kill were evaluated. Phage nanoencapsulation showed efficient cell internalization to induce MTB clearance with values greater than 90%. Therefore, it was shown that nanotechnology is capable of assisting in the activity of degradation-sensitive compounds to achieve better therapy and evade the immune response against phages during treatment.
Collapse
Affiliation(s)
- Ana P. B. Silva
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Cesar Augusto Roque-Borda
- Facultad de Ciencias Farmaceuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Christian S. Carnero Canales
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Laura Maria Duran Gleriani Primo
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Isabel C. Silva
- Department of Genetics and Morphology of the Institute of Biological Sciences, University of Brasilia (UNB), Brasília 70910-900, Brazil
| | - Camila M. Ribeiro
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Marlus Chorilli
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| | - Patrícia Bento da Silva
- Department of Genetics and Morphology of the Institute of Biological Sciences, University of Brasilia (UNB), Brasília 70910-900, Brazil
| | - Joás L. Silva
- National Heart, Lung, and Blood Institute, National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil
| |
Collapse
|
55
|
Elitas M, Kalayci Demir G, Vural Kaymaz S. Mathematical Model for Growth and Rifampicin-Dependent Killing Kinetics of Escherichia coli Cells. ACS OMEGA 2023; 8:38452-38458. [PMID: 37867679 PMCID: PMC10586251 DOI: 10.1021/acsomega.3c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Antibiotic resistance is a global health threat. We urgently need better strategies to improve antibiotic use to combat antibiotic resistance. Currently, there are a limited number of antibiotics in the treatment repertoire of existing bacterial infections. Among them, rifampicin is a broad-spectrum antibiotic against various bacterial pathogens. However, during rifampicin exposure, the appearance of persisters or resisters decreases its efficacy. Hence, to benefit more from rifampicin, its current standard dosage might be reconsidered and explored using both computational tools and experimental or clinical studies. In this study, we present the mathematical relationship between the concentration of rifampicin and the growth and killing kinetics of Escherichia coli cells. We generated time-killing curves of E. coli cells in the presence of 4, 16, and 32 μg/mL rifampicin exposures. We specifically focused on the oscillations with decreasing amplitude over time in the growth and killing kinetics of rifampicin-exposed E. coli cells. We propose the solution form of a second-order linear differential equation for a damped oscillator to represent the mathematical relationship. We applied a nonlinear curve fitting solver to time-killing curve data to obtain the model parameters. The results show a high fitting accuracy.
Collapse
Affiliation(s)
- Meltem Elitas
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Istanbul 34956, Turkiye
| | - Guleser Kalayci Demir
- Faculty
of Engineering, Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir 35397, Turkey
| | - Sumeyra Vural Kaymaz
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Istanbul 34956, Turkiye
| |
Collapse
|
56
|
Hipólito A, García-Pastor L, Vergara E, Jové T, Escudero JA. Profile and resistance levels of 136 integron resistance genes. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:13. [PMID: 39843947 PMCID: PMC11721406 DOI: 10.1038/s44259-023-00014-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 01/24/2025]
Abstract
Integrons have played a major role in the rise and spread of multidrug resistance in Gram-negative pathogens and are nowadays commonplace among clinical isolates. These platforms capture, stockpile, and modulate the expression of more than 170 antimicrobial resistance cassettes (ARCs) against most clinically-relevant antibiotics. Despite their importance, our knowledge on their profile and resistance levels is patchy, because data is scattered in the literature, often reported in different genetic backgrounds and sometimes extrapolated from sequence similarity alone. Here we have generated a collection of 136 ARCs against 8 antibiotic families and disinfectants. Cassettes are cloned in a vector designed to mimic the genetic environment of a class 1 integron, and transformed in Escherichia coli. We have measured the minimal inhibitory concentration (MIC) to the most relevant molecules from each antibiotic family. With more than 500 MIC values, we provide an exhaustive and comparable quantitation of resistance conferred by ARCs. Our data confirm known resistance trends and profiles while revealing important differences among closely related genes. We have also detected genes that do not confer the expected resistance, to the point of challenging the role of the whole family of qac genes in resistance against disinfectants. Our work provides a detailed characterization of integron resistance genes at-a-glance.
Collapse
Affiliation(s)
- Alberto Hipólito
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía García-Pastor
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Ester Vergara
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Thomas Jové
- INSERM, CHU Limoges, RESINFIT, University of Limoges, Limoges, France
| | - José Antonio Escudero
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain.
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
57
|
Yang KB, Cameranesi M, Gowder M, Martinez C, Shamovsky Y, Epshtein V, Hao Z, Nguyen T, Nirenstein E, Shamovsky I, Rasouly A, Nudler E. High-resolution landscape of an antibiotic binding site. Nature 2023; 622:180-187. [PMID: 37648864 PMCID: PMC10550828 DOI: 10.1038/s41586-023-06495-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Antibiotic binding sites are located in important domains of essential enzymes and have been extensively studied in the context of resistance mutations; however, their study is limited by positive selection. Using multiplex genome engineering1 to overcome this constraint, we generate and characterize a collection of 760 single-residue mutants encompassing the entire rifampicin binding site of Escherichia coli RNA polymerase (RNAP). By genetically mapping drug-enzyme interactions, we identify an alpha helix where mutations considerably enhance or disrupt rifampicin binding. We find mutations in this region that prolong antibiotic binding, converting rifampicin from a bacteriostatic to bactericidal drug by inducing lethal DNA breaks. The latter are replication dependent, indicating that rifampicin kills by causing detrimental transcription-replication conflicts at promoters. We also identify additional binding site mutations that greatly increase the speed of RNAP.Fast RNAP depletes the cell of nucleotides, alters cell sensitivity to different antibiotics and provides a cold growth advantage. Finally, by mapping natural rpoB sequence diversity, we discover that functional rifampicin binding site mutations that alter RNAP properties or confer drug resistance occur frequently in nature.
Collapse
Affiliation(s)
- Kevin B Yang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Maria Cameranesi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Manjunath Gowder
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Criseyda Martinez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yosef Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Vitaliy Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Zhitai Hao
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Thao Nguyen
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eric Nirenstein
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Aviram Rasouly
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
58
|
Fox V, Santoro F, Apicella C, Diaz-Diaz S, Rodriguez-Martínez JM, Iannelli F, Pozzi G. The mef(A)/ msr(D)-carrying streptococcal prophage Φ1207.3 encodes an SOS-like system, induced by UV-C light, responsible for increased survival and increased mutation rate. J Bacteriol 2023; 205:e0019123. [PMID: 37695857 PMCID: PMC10521357 DOI: 10.1128/jb.00191-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/04/2023] [Indexed: 09/13/2023] Open
Abstract
Bacterial SOS response is an inducible system of DNA repair and mutagenesis. Streptococci lack a canonical SOS response, but an SOS-like response was reported in some species. The mef(A)-msr(D)-carrying prophage Ф1207.3 of Streptococcus pyogenes contains a region, spanning orf6 to orf11, showing homology to characterized streptococcal SOS-like cassettes. Genome-wide homology search showed the presence of the whole Φ1207.3 SOS-like cassette in three S. pyogenes prophages, while parts of it were found in other bacterial species. To investigate whether this cassette confers an SOS-mutagenesis phenotype, we constructed Streptococcus pneumoniae R6 isogenic derivative strains: (i) FR172, streptomycin resistant, (ii) FR173, carrying Φ1207.3, and (iii) FR174, carrying a recombinant Φ1207.3, where the SOS-like cassette was deleted. These strains were used in survival and mutation rate assays using a UV-C LED instrument, for which we designed and 3D-printed a customized equipment, constituted of an instrument support and swappable-autoclavable mini-plates and lids. Upon exposure to UV fluences ranging from 0 to 6,400 J/m2 at four different wavelengths, 255, 265, 275, and 285 nm, we found that the presence of Φ1207.3 SOS-like cassette increases bacterial survival up to 34-fold. Mutation rate was determined by measuring rifampicin resistance acquisition upon exposure to UV fluence of 50 J/m2 at the four wavelengths by fluctuation test. The presence of Φ1207.3 SOS-like cassette resulted in a significant increase in the mutation rate (up to 18-fold) at every wavelength. In conclusion, we demonstrated that Φ1207.3 carries a functional SOS-like cassette responsible for an increased survival and increased mutation rate in S. pneumoniae. IMPORTANCE Bacterial mutation rate is generally low, but stress conditions and DNA damage can induce stress response systems, which allow for improved survival and continuous replication. The SOS response is a DNA repair mechanism activated by some bacteria in response to stressful conditions, which leads to a temporary hypermutable phenotype and is usually absent in streptococcal genomes. Here, using a reproducible and controlled UV irradiation system, we demonstrated that the SOS-like gene cassette of prophage Φ1207.3 is functional, responsible for a temporary hypermutable phenotype, and enhances bacterial survival to UV irradiation. Prophage Φ1207.3 also carries erythromycin resistance genes and can lysogenize different pathogenic bacteria, constituting an example of a mobile genetic element which can confer multiple phenotypes to its host.
Collapse
Affiliation(s)
- Valeria Fox
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Carmen Apicella
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sara Diaz-Diaz
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | | | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
59
|
Viswanathan VK. Latent TB infection in children and adolescents: Scientific rationale and programmatic management. Indian J Tuberc 2023; 70 Suppl 1:S35-S38. [PMID: 38110258 DOI: 10.1016/j.ijtb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 12/20/2023]
Abstract
As we march towards the goals of TB elimination, one area of focus is on TB preventive therapy which deals with treatment of latent TB infection, the pool from which future TB cases are generated. Children are particularly vulnerable to disseminated TB and seriously ill TB like TB meningitis, which highlights the need for addressing latent TB infection in the age group of 0-18 years. The national TB elimination program has extended it's strategy to include TB preventive therapy from treating children <5 years and PLHIV to treating children ≥5 years, adolescents and adult household contacts of TB cases and at risk immunosuppressed groups. Newer regimens including weekly INH and Rifapentine for three months (3HP) has been recommended in the program. Concerns and opportunities for operational research in this area include surveillance and monitoring for drug toxicity and resistance, strategies to ensure adherence and improve treatment completion and outcomes.
Collapse
|
60
|
Cai W, Lu M, Dai W. Novel antibiotic susceptibility of an RNA polymerase α-subunit mutant in Pseudomonas aeruginosa. J Antimicrob Chemother 2023; 78:2162-2169. [PMID: 37428003 DOI: 10.1093/jac/dkad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND RNA polymerase (RNAP) is highly conserved and essential for prokaryotic housekeeping activities, making it an important target for the development of new antibiotics. The rpoB gene, encoding a β-subunit of bacterial RNAP, has a well-known association with rifampicin resistance. However, the roles of other RNAP component genes such as rpoA, encoding an α-subunit of RNAP, in antibiotic resistance remain unexplored. OBJECTIVES To characterize the antibiotic resistance-related role of RpoA. METHODS We measured the expression of the MexEF-OprN efflux pump in an RpoA mutant using a transcriptional reporter. The MICs of various antibiotics for this RpoA mutant were determined. RESULTS We uncover a novel role of antibiotic susceptibility for an RpoA mutant in Pseudomonas aeruginosa. We found that a single amino acid substitution in RpoA resulted in reduced activity of the MexEF-OprN efflux pump, which is responsible for the exportation of various antibiotics, including ciprofloxacin, chloramphenicol, ofloxacin and norfloxacin. This attenuated efflux pump activity, caused by the RpoA mutation, conferred the bacteria further susceptibility to antibiotics regulated by MexEF-OprN. Our work further revealed that certain clinical P. aeruginosa isolates also contained the same RpoA mutation, providing clinical relevance to our findings. Our results elucidate why this new antibiotic-susceptible function of RpoA mutants would have remained undetected in conventional screens for mutants involving antibiotic resistance. CONCLUSIONS The discovery of antibiotic susceptibility in an RpoA mutant implicates a new therapeutic approach for treating clinical isolates of P. aeruginosa with RpoA mutations, using specific antibiotics regulated by MexEF-OprN. More generally, our work suggests that RpoA could serve as a promising candidate target for anti-pathogen therapeutic purposes.
Collapse
Affiliation(s)
- Wenjie Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Mingqi Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Weijun Dai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
61
|
Bobba S, Khader SA. Rifampicin drug resistance and host immunity in tuberculosis: more than meets the eye. Trends Immunol 2023; 44:712-723. [PMID: 37543504 PMCID: PMC11170062 DOI: 10.1016/j.it.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
Tuberculosis (TB) is the leading cause of death due to an infectious agent, with more than 1.5 million deaths attributed to TB annually worldwide. The global dissemination of drug resistance across Mycobacterium tuberculosis (Mtb) strains, causative of TB, resulted in an estimated 450 000 cases of drug-resistant (DR) TB in 2021. Dysregulated immune responses have been observed in patients with multidrug resistant (MDR) TB, but the effects of drug resistance acquisition and impact on host immunity remain obscure. In this review, we compile studies that span aspects of altered host-pathogen interactions and highlight research that explores how drug resistance and immunity might intersect. Understanding the immune processes differentially induced during DR TB would aid the development of rational therapeutics and vaccines for patients with MDR TB.
Collapse
Affiliation(s)
- Suhas Bobba
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Shabaana A Khader
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
62
|
Cebrián-Sastre E, Chiner-Oms A, Torres-Pérez R, Comas I, Oliveros JC, Blázquez J, Castañeda-García A. Selective Pressure by Rifampicin Modulates Mutation Rates and Evolutionary Trajectories of Mycobacterial Genomes. Microbiol Spectr 2023; 11:e0101723. [PMID: 37436169 PMCID: PMC10433840 DOI: 10.1128/spectrum.01017-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/16/2023] [Indexed: 07/13/2023] Open
Abstract
Resistance to the frontline antibiotic rifampicin constitutes a challenge to the treatment and control of tuberculosis. Here, we analyzed the mutational landscape of Mycobacterium smegmatis during long-term evolution with increasing concentrations of rifampicin, using a mutation accumulation assay combined with whole-genome sequencing. Antibiotic treatment enhanced the acquisition of mutations, doubling the genome-wide mutation rate of the wild-type cells. While antibiotic exposure led to extinction of almost all wild-type lines, the hypermutable phenotype of the ΔnucS mutant strain (noncanonical mismatch repair deficient) provided an efficient response to the antibiotic, leading to high rates of survival. This adaptative advantage resulted in the emergence of higher levels of rifampicin resistance, an accelerated acquisition of drug resistance mutations in rpoB (β RNA polymerase), and a wider diversity of evolutionary pathways that led to drug resistance. Finally, this approach revealed a subset of adaptive genes under positive selection with rifampicin that could be associated with the development of antibiotic resistance. IMPORTANCE Rifampicin is the most important first-line antibiotic against mycobacterial infections, including tuberculosis, one of the top causes of death worldwide. Acquisition of rifampicin resistance constitutes a major global public health problem that makes the control of the disease challenging. Here, we performed an experimental evolution assay under antibiotic selection to analyze the response and adaptation of mycobacteria, leading to the acquisition of rifampicin resistance. This approach explored the total number of mutations that arose in the mycobacterial genomes under long-term rifampicin exposure, using whole-genome sequencing. Our results revealed the effect of rifampicin at a genomic level, identifying different mechanisms and multiple pathways leading to rifampicin resistance in mycobacteria. Moreover, this study detected that an increase in the rate of mutations led to enhanced levels of drug resistance and survival. In summary, all of these results could be useful to understand and prevent the emergence of drug-resistant isolates in mycobacterial infections.
Collapse
Affiliation(s)
- E. Cebrián-Sastre
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - A. Chiner-Oms
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
| | - R. Torres-Pérez
- Servicio de Bioinformática para Genómica y Proteómica. Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - I. Comas
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
| | - J. C. Oliveros
- Servicio de Bioinformática para Genómica y Proteómica. Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - J. Blázquez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - A. Castañeda-García
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (CNM-ISCIII), Majadahonda (Madrid), Spain
| |
Collapse
|
63
|
Postiglione U, Batisti Biffignandi G, Corbella M, Merla C, Olivieri E, Petazzoni G, Feil EJ, Bandi C, Cambieri P, Gaiarsa S, Brilli M, Sassera D. Combining Genome Surveillance and Metadata To Characterize the Diversity of Staphylococcus aureus Circulating in an Italian Hospital over a 9-Year Period. Microbiol Spectr 2023; 11:e0101023. [PMID: 37458594 PMCID: PMC10433831 DOI: 10.1128/spectrum.01010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/18/2023] [Indexed: 08/19/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and a leading cause of morbidity and mortality worldwide. Genomic-based surveillance has greatly improved our ability to track the emergence and spread of high-risk clones, but the full potential of genomic data is only reached when used in conjunction with detailed metadata. Here, we demonstrate the utility of an integrated approach by leveraging a curated collection of clinical and epidemiological metadata of S. aureus in the San Matteo Hospital (Italy) through a semisupervised clustering strategy. We sequenced 226 sepsis S. aureus samples, recovered over a period of 9 years. By using existing antibiotic profiling data, we selected strains that capture the full diversity of the population. Genome analysis revealed 49 sequence types, 16 of which are novel. Comparative genomic analyses of hospital- and community-acquired infection ruled out the existence of genomic features differentiating them, while evolutionary analyses of genes and traits of interest highlighted different dynamics of acquisition and loss between antibiotic resistance and virulence genes. Finally, highly resistant clones belonging to clonal complexes (CC) 8 and 22 were found to be responsible for abundant infections and deaths, while the highly virulent CC30 was responsible for rare but deadly episodes of infections. IMPORTANCE Genome sequencing is an important tool in clinical microbiology, as it allows in-depth characterization of isolates of interest and can propel genome-based surveillance studies. Such studies can benefit from ad hoc methods of sample selection to capture the genomic diversity present in a data set. Here, we present an approach based on clustering of antibiotic resistance profiles that allows optimal sample selection for bacterial genomic surveillance. We apply the method to a 9-year collection of Staphylococcus aureus from a large hospital in northern Italy. Our method allows us to sequence the genomes of a large variety of strains of this important pathogen, which we then leverage to characterize the epidemiology in the hospital and to perform evolutionary analyses on genes and traits of interest. These analyses highlight different dynamics of acquisition and loss between antibiotic resistance and virulence genes.
Collapse
Affiliation(s)
- U. Postiglione
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - M. Corbella
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - C. Merla
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - E. Olivieri
- Istituto Zooproflattico Sperimentale della Lombardia e dell’Emilia Romagna, Pavia, Italy
| | - G. Petazzoni
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - E. J. Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - C. Bandi
- Department of Bioscience, University of Milan, Milan, Italy
| | - P. Cambieri
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - S. Gaiarsa
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - M. Brilli
- Department of Bioscience, University of Milan, Milan, Italy
| | - D. Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
64
|
Uniacke-Lowe S, Collins FWJ, Hill C, Ross RP. Bioactivity Screening and Genomic Analysis Reveals Deep-Sea Fish Microbiome Isolates as Sources of Novel Antimicrobials. Mar Drugs 2023; 21:444. [PMID: 37623725 PMCID: PMC10456417 DOI: 10.3390/md21080444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
With the increase in antimicrobial resistance and the subsequent demand for novel therapeutics, the deep-sea fish microbiome can be a relatively untapped source of antimicrobials, including bacteriocins. Previously, bacterial isolates were recovered from the gut of deep-sea fish sampled from the Atlantic Ocean.In this study, we used in vitro methods to screen a subset of these isolates for antimicrobial activity, and subsequently mined genomic DNA from isolates of interest for bacteriocin and other antimicrobial metabolite genes. We observed antimicrobial activity against foodborne pathogens, including Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis and Micrococcus luteus. In total, 147 candidate biosynthetic gene clusters were identified in the genomic sequences, including 35 bacteriocin/RiPP-like clusters. Other bioactive metabolite genes detected included non-ribosomal peptide synthases (NRPS), polyketide synthases (PKS; Types 1 and 3), beta-lactones and terpenes. Moreover, four unique bacteriocin gene clusters were annotated and shown to encode novel peptides: a class IIc bacteriocin, two class IId bacteriocins and a class I lanthipeptide (LanM subgroup). Our dual in vitro and in silico approach allowed for a more comprehensive understanding of the bacteriocinogenic potential of these deep-sea isolates and an insight into the antimicrobial molecules that they may produce.
Collapse
Affiliation(s)
- Shona Uniacke-Lowe
- Department of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
| | | | - Colin Hill
- Department of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, T12 K8AF Cork, Ireland
| | - R Paul Ross
- Department of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- APC Microbiome Ireland, T12 K8AF Cork, Ireland
| |
Collapse
|
65
|
Maharjan RP, Sullivan GJ, Adams F, Shah B, Hawkey J, Delgado N, Semenec L, Dinh H, Li L, Short F, Parkhill J, Paulsen I, Barquist L, Eijkelkamp B, Cain A. DksA is a conserved master regulator of stress response in Acinetobacter baumannii. Nucleic Acids Res 2023; 51:6101-6119. [PMID: 37158230 PMCID: PMC10325922 DOI: 10.1093/nar/gkad341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Coordination of bacterial stress response mechanisms is critical for long-term survival in harsh environments for successful host infection. The general and specific stress responses of well-studied Gram-negative pathogens like Escherichia coli are controlled by alternative sigma factors, archetypically RpoS. The deadly hospital pathogen Acinetobacter baumannii is notoriously resistant to environmental stresses, yet it lacks RpoS, and the molecular mechanisms driving this incredible stress tolerance remain poorly defined. Here, using functional genomics, we identified the transcriptional regulator DksA as a master regulator for broad stress protection and virulence in A. baumannii. Transcriptomics, phenomics and in vivo animal studies revealed that DksA controls ribosomal protein expression, metabolism, mutation rates, desiccation, antibiotic resistance, and host colonization in a niche-specific manner. Phylogenetically, DksA was highly conserved and well-distributed across Gammaproteobacteria, with 96.6% containing DksA, spanning 88 families. This study lays the groundwork for understanding DksA as a major regulator of general stress response and virulence in this important pathogen.
Collapse
Affiliation(s)
- Ram P Maharjan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Geraldine J Sullivan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Felise G Adams
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Bhumika S Shah
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Victoria, Australia
| | - Natasha Delgado
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Liping Li
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Francesca L Short
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080Würzburg, Germany
- Faculty of Medicine, University of Würzburg, 97080Würzburg, Germany
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| |
Collapse
|
66
|
Lin ML, Yang MY, Dong ML. Evaluation of Antituberculosis Activity and in Silico Properties of Oxymethylene-cyclo-1,3-diones. Chem Biodivers 2023; 20:e202300779. [PMID: 37306664 DOI: 10.1002/cbdv.202300779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
Tuberculosis is a leading infectious disease that has infected one-third of the world's population and is more prevalent among people belonging to developing countries such as India and China. In the present study, a series of substituted oxymethylene-cyclo-1,3-diones was synthesized and screened for anti-tuberculosis activity against Mycobacterium tuberculosis H37Rv (M. tuberculosis). The compounds were synthesized by condensation of 1,3-cyclicdione, substituted phenols/ alcohols and triethyl orthoformate. The synthesized compounds were screened for anti-tuberculosis activity against M.tuberculosis H37Rv using Middlebrook 7H9 broth assay. Results demonstrated that among the synthesized library of molecules, two compounds 2-(2-hydroxyphenoxymethylene)-5,5-dimethylcyclohexane-1,3-dione and 5,5-dimethyl-2-(2-trifluoromethylphenoxymethylene)cyclohexane-1,3-dione were found to be most active against M. tuberculosis (MICs of 1.25 μg/mL-1 ). The MICs of 2-(2,4-difluoro-phenoxymethylene)-5,5-dimethylcyclohexane-1,3-dione and 2-(2-bromophenoxymethylene)-5,5-dimethylcyclohexane-1,3-dione were found to be 5 and 10 μg mL-1 , respectively. Data from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that all the four most active compounds did not exhibit cytotoxicity against human cell lines. Molecular docking studies revealed that the most active compound targets mycobacterial InhA enzyme. In summary, the present study demonstrates the methodology for the synthesis of oxymethylene-cyclo-1,3-diones and identified two potential anti-tuberculosis compounds.
Collapse
Affiliation(s)
- Mmed Lianjun Lin
- School of Health, Shaanxi Fashion Engineering University, Xi'an, 712046, China
| | - Mmed Yanping Yang
- School of Health, Shaanxi Fashion Engineering University, Xi'an, 712046, China
| | - Mmed Linjuan Dong
- School of Health, Shaanxi Fashion Engineering University, Xi'an, 712046, China
| |
Collapse
|
67
|
Sundar S. In-silico transcriptome analysis of antibiotic-treated Mycobacterium tuberculosis identifies novel antibiotic resistance factors. Indian J Tuberc 2023; 71 Suppl 1:S29-S36. [PMID: 39067951 DOI: 10.1016/j.ijtb.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/20/2023] [Indexed: 07/30/2024]
Abstract
The emergence of drug resistant Mycobacterium tuberculosis strains increases the burden on the treatment of tuberculosis. In this study, through in-silico transcriptome analysis of drug-treated M. tuberculosis samples, novel drug targets for the treatment of drug resistance in tuberculosis were identified. Gene expression datasets of tuberculosis patients samples treated with different antibiotics (Isoniazid, Rifampicin, Pyrazinamide, Bedaquiline and Linezolid) were considered in this study. DESeq2 was used to identify the differentially regulated genes. Novel genes which were up-regulated during antibiotic treatment were identified which could be antibiotic resistance factors. Further, to understand the resistance mechanism of the novel genes, we performed gene ontology and gene network analysis for the differentially up-regulated genes. Thus, the in-silico transcriptome analysis paves way for a deeper understanding of the antibiotic resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Shobana Sundar
- Department of Biotechnology, PSG College of Technology, Coimbatore, India.
| |
Collapse
|
68
|
Gifford DR, Berríos-Caro E, Joerres C, Suñé M, Forsyth JH, Bhattacharyya A, Galla T, Knight CG. Mutators can drive the evolution of multi-resistance to antibiotics. PLoS Genet 2023; 19:e1010791. [PMID: 37311005 DOI: 10.1371/journal.pgen.1010791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
Antibiotic combination therapies are an approach used to counter the evolution of resistance; their purported benefit is they can stop the successive emergence of independent resistance mutations in the same genome. Here, we show that bacterial populations with 'mutators', organisms with defects in DNA repair, readily evolve resistance to combination antibiotic treatment when there is a delay in reaching inhibitory concentrations of antibiotic-under conditions where purely wild-type populations cannot. In populations of Escherichia coli subjected to combination treatment, we detected a diverse array of acquired mutations, including multiple alleles in the canonical targets of resistance for the two drugs, as well as mutations in multi-drug efflux pumps and genes involved in DNA replication and repair. Unexpectedly, mutators not only allowed multi-resistance to evolve under combination treatment where it was favoured, but also under single-drug treatments. Using simulations, we show that the increase in mutation rate of the two canonical resistance targets is sufficient to permit multi-resistance evolution in both single-drug and combination treatments. Under both conditions, the mutator allele swept to fixation through hitch-hiking with single-drug resistance, enabling subsequent resistance mutations to emerge. Ultimately, our results suggest that mutators may hinder the utility of combination therapy when mutators are present. Additionally, by raising the rates of genetic mutation, selection for multi-resistance may have the unwanted side-effect of increasing the potential to evolve resistance to future antibiotic treatments.
Collapse
Affiliation(s)
- Danna R Gifford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Ernesto Berríos-Caro
- Department of Physics and Astronomy, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christine Joerres
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Marc Suñé
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jessica H Forsyth
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Anish Bhattacharyya
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tobias Galla
- Department of Physics and Astronomy, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, Palma de Mallorca, Spain
| | - Christopher G Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
69
|
Koh AJJ, Thombare V, Hussein M, Rao GG, Li J, Velkov T. Bifunctional antibiotic hybrids: A review of clinical candidates. Front Pharmacol 2023; 14:1158152. [PMID: 37397488 PMCID: PMC10313405 DOI: 10.3389/fphar.2023.1158152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Antibiotic resistance is a top threat to human health and a priority across the globe. This problematic issue is accompanied by the decline of new antibiotics in the pipeline over the past 30 years. In this context, an urgent need to develop new strategies to combat antimicrobial resistance is in great demand. Lately, among the possible approaches used to deal with antimicrobial resistance is the covalent ligation of two antibiotic pharmacophores that target the bacterial cells through a dissimilar mode of action into a single hybrid molecule, namely hybrid antibiotics. This strategy exhibits several advantages, including better antibacterial activity, overcoming the existing resistance towards individual antibiotics, and may ultimately delay the onset of bacterial resistance. This review sheds light on the latest development of the dual antibiotic hybrids pipeline, their potential mechanisms of action, and challenges in their use.
Collapse
Affiliation(s)
- Augustine Jing Jie Koh
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIP, Australia
| | - Varsha Thombare
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Parkville, VIP, Australia
| | - Maytham Hussein
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Parkville, VIP, Australia
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Parkville, VIP, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIP, Australia
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Parkville, VIP, Australia
| |
Collapse
|
70
|
Ghenu AH, Amado A, Gordo I, Bank C. Epistasis decreases with increasing antibiotic pressure but not temperature. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220058. [PMID: 37004727 PMCID: PMC10067269 DOI: 10.1098/rstb.2022.0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Predicting mutational effects is essential for the control of antibiotic resistance (ABR). Predictions are difficult when there are strong genotype-by-environment (G × E), gene-by-gene (G × G or epistatic) or gene-by-gene-by-environment (G × G × E) interactions. We quantified G × G × E effects in Escherichia coli across environmental gradients. We created intergenic fitness landscapes using gene knock-outs and single-nucleotide ABR mutations previously identified to vary in the extent of G × E effects in our environments of interest. Then, we measured competitive fitness across a complete combinatorial set of temperature and antibiotic dosage gradients. In this way, we assessed the predictability of 15 fitness landscapes across 12 different but related environments. We found G × G interactions and rugged fitness landscapes in the absence of antibiotic, but as antibiotic concentration increased, the fitness effects of ABR genotypes quickly overshadowed those of gene knock-outs, and the landscapes became smoother. Our work reiterates that some single mutants, like those conferring resistance or susceptibility to antibiotics, have consistent effects across genetic backgrounds in stressful environments. Thus, although epistasis may reduce the predictability of evolution in benign environments, evolution may be more predictable in adverse environments. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Ana-Hermina Ghenu
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
- Division of Theoretical Ecology and Evolution, Institut für Ökologie und Evolution, Universität Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - André Amado
- Division of Theoretical Ecology and Evolution, Institut für Ökologie und Evolution, Universität Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras 2780-156, Portugal
- Division of Theoretical Ecology and Evolution, Institut für Ökologie und Evolution, Universität Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
71
|
Yang Y, Kessler MGC, Marchán-Rivadeneira MR, Han Y. Combating Antimicrobial Resistance in the Post-Genomic Era: Rapid Antibiotic Discovery. Molecules 2023; 28:molecules28104183. [PMID: 37241928 DOI: 10.3390/molecules28104183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Constantly evolving drug-resistant "superbugs" have caused an urgent demand for novel antimicrobial agents. Natural products and their analogs have been a prolific source of antimicrobial agents, even though a high rediscovery rate and less targeted research has made the field challenging in the pre-genomic era. With recent advancements in technology, natural product research is gaining new life. Genome mining has allowed for more targeted excavation of biosynthetic potential from natural sources that was previously overlooked. Researchers use bioinformatic algorithms to rapidly identify and predict antimicrobial candidates by studying the genome before even entering the lab. In addition, synthetic biology and advanced analytical instruments enable the accelerated identification of novel antibiotics with distinct structures. Here, we reviewed the literature for noteworthy examples of novel antimicrobial agents discovered through various methodologies, highlighting the candidates with potent effectiveness against antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Yuehan Yang
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Mara Grace C Kessler
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Honors Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Maria Raquel Marchán-Rivadeneira
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
- Center for Research on Health in Latinamerica (CISeAL)-Biological Science Department, Pontificia Universidad Católica del Ecuador (PUCE), Quito 170143, Ecuador
| | - Yong Han
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
72
|
Biswas B, Kumar Misra T, Ray D, Majumder T, Kanti Bandyopadhyay T, Kumar Bhowmick T. Current Therapeutic Delivery Approaches Using Nanocarriers for the Treatment of Tuberculosis Disease. Int J Pharm 2023; 640:123018. [PMID: 37149113 DOI: 10.1016/j.ijpharm.2023.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Tuberculosis is a major health issue globally and a leading cause of death due to the infective microorganism Mycobacterium tuberculosis. Treatment of drug resistance tuberculosis requires longer treatment with multiple daily doses of drugs. Unfortunately, these drugs are often associated with poor patient compliance. In this situation, a need has been felt for the less toxic, shorter, and more effective treatment of the infected tuberculosis patients. Current research to develop novel anti-tubercular drugs shows hope for better management of the disease. Research on drug targeting and precise delivery of the old anti-tubercular drugs with the help of nanotechnology is promising for effective treatment. This review has discussed the status currently available treatments for tuberculosis patients infected with Mycobacterium alone or in comorbid conditions like diabetes, HIV and cancer. This review also highlighted the challenges in the current treatment and research on the novel anti-tubercular drugs to prevent multi-drug-resistant tuberculosis. It presents the research highlights on the targeted delivery of anti-tubercular drugs using different nanocarriers for preventing multi-drug resistant tuberculosis. Report has shown the importance and development of the research on nanocarriers mediated anti-tubercular delivery of the drugs to overcome the current challenges in tuberculosis treatment.
Collapse
Affiliation(s)
- Bhabatush Biswas
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura - 799046, India
| | - Tarun Kumar Misra
- Department of Chemistry, National Institute of Technology Agartala, West Tripura - 799046, India
| | - Debasish Ray
- Agartala Govt. Medical College, Agartala, 799006, Tripura - 799006, India
| | - Tapan Majumder
- Agartala Govt. Medical College, Agartala, 799006, Tripura - 799006, India
| | - Tarun Kanti Bandyopadhyay
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura - 799046, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura - 799046, India.
| |
Collapse
|
73
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
74
|
Feng M, Namanja-Magliano H, Rajagopalan S, Mishra T, Ducati RG, Hirsch BM, Kelly L, Szymczak W, Fajardo JE, Sidoli S, Fiser A, Jacobs WR, Schramm VL. MAT Gain of Activity Mutation in Helicobacter pylori Is Associated with Resistance to MTAN Transition State Analogues. ACS Infect Dis 2023; 9:966-978. [PMID: 36920074 DOI: 10.1021/acsinfecdis.2c00644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Helicobacter pylori is found in the gut lining of more than half of the world's population, causes gastric ulcers, and contributes to stomach cancers. Menaquinone synthesis in H. pylori relies on the rare futalosine pathway, where H. pylori 5'-methylthioadenosine nucleosidase (MTAN) is proposed to play an essential role. Transition state analogues of MTAN, including BuT-DADMe-ImmA (BTDIA) and MeT-DADMe-ImmA (MTDIA), exhibit bacteriostatic action against numerous diverse clinical isolates of H. pylori with minimum inhibitory concentrations (MIC's) of <2 ng/mL. Three H. pylori BTDIA-resistant clones were selected under increasing BTDIA pressure. Whole genome sequencing showed no mutations in MTAN. Instead, resistant clones had mutations in metK, methionine adenosyltransferase (MAT), feoA, a regulator of the iron transport system, and flhF, a flagellar synthesis regulator. The mutation in metK causes expression of a MAT with increased catalytic activity, leading to elevated cellular S-adenosylmethionine. Metabolite analysis and the mutations associated with resistance suggest multiple inputs associated with BTDIA resistance. Human gut microbiome exposed to MTDIA revealed no growth inhibition under aerobic or anaerobic conditions. Transition state analogues of H. pylori MTAN have potential as agents for treating H. pylori infection without disruption of the human gut microbiome or inducing resistance in the MTAN target.
Collapse
Affiliation(s)
- Mu Feng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Hilda Namanja-Magliano
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Saranathan Rajagopalan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Tanmay Mishra
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rodrigo G Ducati
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Brett M Hirsch
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Libusha Kelly
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States.,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Wendy Szymczak
- Department of Pathology, Montefiore-Einstein Medical Center, Bronx, New York 10467, United States
| | - Jorge Eduardo Fajardo
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
75
|
Wang S, Hao J, Yang J, Zhang Q, Li A. The Attenuation Mechanism and Live Vaccine Potential of a Low-Virulence Edwardsiella ictaluri Strain Obtained by Rifampicin Passaging Culture. J Microbiol Biotechnol 2023; 33:167-179. [PMID: 36734130 PMCID: PMC9998210 DOI: 10.4014/jmb.2210.10013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
The rifampicin-resistant strain E9-302 of Edwardsiella ictaluri strain 669 (WT) was generated by continuous passage on BHI agar plates containing increasing concentrations of rifampicin. E9-302 was attenuated significantly by 119 times to zebrafish Danio rerio compared to WT in terms of the 50% lethal dose (LD50). Zebrafish vaccinated with E9-302 via intraperitoneal (IP) injection at a dose of 1 × 103 CFU/fish had relative percentage survival (RPS) rates of 85.7% when challenged with wild-type E. ictaluri via IP 14 days post-vaccination (dpv). After 14 days of primary vaccination with E9-302 via immersion (IM) at a dose of 4 × 107 CFU/ml, a booster IM vaccination with E9-302 at a dose of 2 × 107 CFU/ml exhibited 65.2% RPS against challenge with wild-type E. ictaluri via IP 7 days later. These results indicated that the rifampicin-resistant attenuated strain E9-302 had potential as a live vaccine against E. ictaluri infection. A previously unreported amino acid site change at position 142 of the RNA polymerase (RNAP) β subunit encoded by the gene rpoB associated with rifampicin resistance was identified. Analysis of the whole-genome sequencing results revealed multiple missense mutations in the virulence-related genes esrB and sspH2 in E9-302 compared with WT, and a 189 bp mismatch in one gene, whose coding product was highly homologous to glycosyltransferase family 39 protein. This study preliminarily explored the molecular mechanism underlying the virulence attenuation of rifampicin-resistant strain E9-302 and provided a new target for the subsequent study of the pathogenic mechanism of E. ictaluri.
Collapse
Affiliation(s)
- Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jingwen Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jicheng Yang
- Dalian Ocean University, Dalian 116023, P.R. China
| | - Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
76
|
Yang HX, Xie ZS, Yi H, Jin J, Geng J, Cui AL, Li ZR. Design, Synthesis, and Bioactivity Investigation of Cyclic Lipopeptide Antibiotics Containing Eight to Nine Amino Acids. J Med Chem 2023; 66:2524-2541. [PMID: 36739537 DOI: 10.1021/acs.jmedchem.2c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The current global issue of antibiotic resistance is serious, and there is an urgent requirement of developing novel antibiotics. Octapeptins have recently regained interest because of their activities against resistant Gram-negative bacteria. We synthesized four natural octapeptins and 33 derivatives with diverse polarity, amphiphilicity, and acid-base properties by solid-phase synthesis and investigated their in vitro antibacterial activity and renal cytotoxicity. We also assessed the structure-activity relationship and structure-toxicity relationship of the cyclic lipopeptide compounds. Some compounds showed increased activity against Gram-negative and/or Gram-positive bacteria, with improved renal cytotoxicity. C-02 showed remarkable in vitro antibacterial activity and low renal cytotoxicity. We found that C-02 showed high antibacterial activity against Escherichia coli in vivo and manifested its effects preliminarily by increasing outer membrane permeability. Therefore, C-02 might be a new antibiotic lead compound with not only high efficacy but also low renal cytotoxicity.
Collapse
Affiliation(s)
- He-Xian Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhuo-Song Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hong Yi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jie Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing Geng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - A-Long Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
77
|
Zlotnikov ID, Ezhov AA, Vigovskiy MA, Grigorieva OA, Dyachkova UD, Belogurova NG, Kudryashova EV. Application Prospects of FTIR Spectroscopy and CLSM to Monitor the Drugs Interaction with Bacteria Cells Localized in Macrophages for Diagnosis and Treatment Control of Respiratory Diseases. Diagnostics (Basel) 2023; 13:diagnostics13040698. [PMID: 36832185 PMCID: PMC9954918 DOI: 10.3390/diagnostics13040698] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Visualization of the interaction of drugs with biological cells creates new approaches to improving the bioavailability, selectivity, and effectiveness of drugs. The use of CLSM and FTIR spectroscopy to study the interactions of antibacterial drugs with latent bacterial cells localized in macrophages create prospects to solve the problems of multidrug resistance (MDR) and severe cases. Here, the mechanism of rifampicin penetration into E. coli bacterial cells was studied by tracking the changes in the characteristic peaks of cell wall components and intracellular proteins. However, the effectiveness of the drug is determined not only by penetration, but also by efflux of the drugs molecules from the bacterial cells. Here, the efflux effect was studied and visualized using FTIR spectroscopy, as well as CLSM imaging. We have shown that because of efflux inhibition, eugenol acting as an adjuvant for rifampicin showed a significant (more than three times) increase in the antibiotic penetration and the maintenance of its intracellular concentration in E. coli (up to 72 h in a concentration of more than 2 μg/mL). In addition, optical methods have been applied to study the systems containing bacteria localized inside of macrophages (model of the latent form), where the availability of bacteria for antibiotics is reduced. Polyethylenimine grafted with cyclodextrin carrying trimannoside vector molecules was developed as a drug delivery system for macrophages. Such ligands were absorbed by CD206+ macrophages by 60-70% versus 10-15% for ligands with a non-specific galactose label. Owing to presence of ligands with trimannoside vectors, the increase in antibiotic concentration inside macrophages, and thus, its accumulation into dormant bacteria, is observed. In the future, the developed FTIR+CLSM techniques would be applicable for the diagnosis of bacterial infections and the adjustment of therapy strategies.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Alexander A. Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia
| | - Maksim A. Vigovskiy
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Olga A. Grigorieva
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Uliana D. Dyachkova
- Medical Research and Education Center, Institute for Regenerative Medicine, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Prosp., 119192 Moscow, Russia
| | - Natalia G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
78
|
Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants. Int J Mol Sci 2023; 24:ijms24043313. [PMID: 36834726 PMCID: PMC9965755 DOI: 10.3390/ijms24043313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Emerging Mycobacterium tuberculosis (Mtb) resistant strains have continued to limit the efficacies of existing antitubercular therapies. More specifically, mutations in the RNA replicative machinery of Mtb, RNA polymerase (RNAP), have been widely linked to rifampicin (RIF) resistance, which has led to therapeutic failures in many clinical cases. Moreover, elusive details on the underlying mechanisms of RIF-resistance caused by Mtb-RNAP mutations have hampered the development of new and efficient drugs that are able to overcome this challenge. Therefore, in this study we attempt to resolve the molecular and structural events associated with RIF-resistance in nine clinically reported missense Mtb RNAP mutations. Our study, for the first time, investigated the multi-subunit Mtb RNAP complex and findings revealed that the mutations commonly disrupted structural-dynamical attributes that may be essential for the protein's catalytic functions, particularly at the βfork loop 2, β'zinc-binding domain, the β' trigger loop and β'jaw, which in line with previous experimental reports, are essential for RNAP processivity. Complementarily, the mutations considerably perturbed the RIF-BP, which led to alterations in the active orientation of RIF needed to obstruct RNA extension. Consequentially, essential interactions with RIF were lost due to the mutation-induced repositioning with corresponding reductions in the binding affinity of the drug observed in majority of the mutants. We believe these findings will significantly aid future efforts in the discovery of new treatment options with the potential to overcome antitubercular resistance.
Collapse
|
79
|
Wang S, Ge S, Sobkowiak B, Wang L, Grandjean L, Colijn C, Elliott LT. Genome-Wide Association with Uncertainty in the Genetic Similarity Matrix. J Comput Biol 2023; 30:189-203. [PMID: 36374242 DOI: 10.1089/cmb.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Genome-wide association studies (GWASs) are often confounded by population stratification and structure. Linear mixed models (LMMs) are a powerful class of methods for uncovering genetic effects, while controlling for such confounding. LMMs include random effects for a genetic similarity matrix, and they assume that a true genetic similarity matrix is known. However, uncertainty about the phylogenetic structure of a study population may degrade the quality of LMM results. This may happen in bacterial studies in which the number of samples or loci is small, or in studies with low-quality genotyping. In this study, we develop methods for linear mixed models in which the genetic similarity matrix is unknown and is derived from Markov chain Monte Carlo estimates of the phylogeny. We apply our model to a GWAS of multidrug resistance in tuberculosis, and illustrate our methods on simulated data.
Collapse
Affiliation(s)
- Shijia Wang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Shufei Ge
- Institute of Mathematical Sciences, ShanghaiTech University, Shanghai, China
| | | | - Liangliang Wang
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada
| | - Louis Grandjean
- Department of Infectious Diseases, University College London, London, United Kingdom
| | - Caroline Colijn
- Department of Mathematics and Simon Fraser University, Burnaby, Canada
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
80
|
Bae S, Kim ES, Lee YW, Jung J, Kim MJ, Chong YP, Kim SH, Choi SH, Lee SO, Kim YS. Clinical and microbiological characteristics of rifampicin-resistant MRSA bacteraemia. J Antimicrob Chemother 2023; 78:531-539. [PMID: 36537200 DOI: 10.1093/jac/dkac428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The clinical significance of rifampicin resistance in Staphylococcus aureus infections has not been demonstrated. Here, we evaluated the clinical characteristics of rifampicin-resistant S. aureus infection. METHODS Data were collected from adult patients who were hospitalized with MRSA bacteraemia between March 2007 and May 2020 at a tertiary hospital in South Korea. The clinical characteristics and treatment outcomes of patients infected with rifampicin-resistant MRSA were compared with those of rifampicin-susceptible isolates. All-cause death and recurrence of MRSA infection were assessed for 90 days. RESULTS Of the 961 patients with MRSA bacteraemia, 61 (6.3%) were infected by rifampicin-resistant isolates. The type of infection focus and duration of bacteraemia did not significantly differ between the two groups. Rifampicin-resistant MRSA isolates were more likely to have multidrug resistance and a higher vancomycin MIC relative to the rifampicin-susceptible isolates. The 90-day recurrence rate was higher in the patients infected with rifampicin-resistant MRSA compared with those with rifampicin-susceptible MRSA (18.0% versus 6.2%, P < 0.001), whereas the 90-day mortality was comparable between the two groups (27.9% versus 29.2%, P = 0.94). After adjusting for potential confounding factors, rifampicin resistance was significantly associated with 90-day recurrence (subdistributional HR: 2.31; 95% CI: 1.05-5.10; P = 0.04). CONCLUSIONS Rifampicin-resistant MRSA isolates showed distinct microbiological features in terms of multidrug resistance and a high vancomycin MIC. Although the management of MRSA bacteraemia was not significantly different between the two groups, recurrence was significantly more common in the rifampicin-resistant group. Rifampicin resistance may play a significant role in infection recurrence.
Collapse
Affiliation(s)
- Seongman Bae
- Division of Infectious Diseases, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Sil Kim
- Division of Infectious Diseases, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yun Woo Lee
- Division of Infectious Diseases, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwon Jung
- Division of Infectious Diseases, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Jae Kim
- Division of Infectious Diseases, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong Pil Chong
- Division of Infectious Diseases, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Han Kim
- Division of Infectious Diseases, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Ho Choi
- Division of Infectious Diseases, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Oh Lee
- Division of Infectious Diseases, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yang Soo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Center for Antimicrobial Resistance and Microbial Genetics, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
81
|
Rossini NDO, Dias MVB. Mutations and insights into the molecular mechanisms of resistance of Mycobacterium tuberculosis to first-line. Genet Mol Biol 2023; 46:e20220261. [PMID: 36718771 PMCID: PMC9887390 DOI: 10.1590/1678-4685-gmb-2022-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/18/2022] [Indexed: 01/28/2023] Open
Abstract
Genetically antimicrobial resistance in Mycobacterium tuberculosis is currently one of the most important aspects of tuberculosis, considering that there are emerging resistant strains for almost every known drug used for its treatment. There are multiple antimicrobials used for tuberculosis treatment, and the most effective ones are the first-line drugs, which include isoniazid, pyrazinamide, rifampicin, and ethambutol. In this context, understanding the mechanisms of action and resistance of these molecules is essential for proposing new therapies and strategies of treatment. Additionally, understanding how and where mutations arise conferring a resistance profile to the bacteria and their effect on bacterial metabolism is an important requisite to be taken in producing safer and less susceptible drugs to the emergence of resistance. In this review, we summarize the most recent literature regarding novel mutations reported between 2017 and 2022 and the advances in the molecular mechanisms of action and resistance against first-line drugs used in tuberculosis treatment, highlighting recent findings in pyrazinamide resistance involving PanD and, additionally, resistance-conferring mutations for novel drugs such as bedaquiline, pretomanid, delamanid and linezolid.
Collapse
Affiliation(s)
- Nicolas de Oliveira Rossini
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil. Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de MicrobiologiaSão PauloSPBrazil
| | - Marcio Vinicius Bertacine Dias
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil. Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de MicrobiologiaSão PauloSPBrazil
- University of Warwick, Department of Chemistry, Coventry, United Kingdom. University of WarwickDepartment of ChemistryCoventryUnited Kingdom
| |
Collapse
|
82
|
Ellinger E, Chauvier A, Romero RA, Liu Y, Ray S, Walter NG. Riboswitches as therapeutic targets: promise of a new era of antibiotics. Expert Opin Ther Targets 2023; 27:433-445. [PMID: 37364239 PMCID: PMC10527229 DOI: 10.1080/14728222.2023.2230363] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION The growth of antibiotic resistance among bacterial pathogens is an impending global threat that can only be averted through the development of novel antibacterial drugs. A promising answer could be the targeting of riboswitches, structured RNA elements found almost exclusively in bacteria. AREAS COVERED This review examines the potential of riboswitches as novel antibacterial drug targets. The limited mechanisms of action of currently available antibiotics are summarized, followed by a delineation of the functional mechanisms of riboswitches. We then discuss the potential for developing novel approaches that target paradigmatic riboswitches in the context of their bacterial gene expression machinery. EXPERT OPINION We highlight potential advantages of targeting riboswitches in their functional form, embedded within gene expression complexes critical for bacterial survival. We emphasize the benefits of this approach, including potentially higher species specificity and lower side effects.
Collapse
Affiliation(s)
- Emily Ellinger
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rosa A. Romero
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yichen Liu
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Sujay Ray
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nils G. Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
83
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
84
|
Li S, Chen W, Feng M, Liu Y, Wang F. Drug Resistance and Molecular Characteristics of Mycobacterium tuberculosis: A Single Center Experience. J Pers Med 2022; 12:jpm12122088. [PMID: 36556308 PMCID: PMC9783070 DOI: 10.3390/jpm12122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
In recent years, the incidence of tuberculosis (TB) and mortality caused by the disease have been decreasing. However, the number of drug-resistant tuberculosis patients is increasing rapidly year by year. Here, a total of 380 Mycobacterium tuberculosis (MTB)-positive formalin-fixed and paraffin-embedded tissue (FFPE) specimens diagnosed in the Department of Pathology of the Eighth Medical Center, Chinese PLA General Hospital were collected. Among 380 cases of MTB, 85 (22.37%) were susceptible to four anti-TB drugs and the remaining 295 (77.63%) were resistant to one or more drugs. The rate of MDR-TB was higher in previously treated cases (52.53%) than in new cases [(36.65%), p < 0.05]. Of previously treated cases, the rate of drug resistance was higher in females than in males (p < 0.05). Among specimens obtained from males, the rate of drug resistance was higher in new cases than in previously treated cases (p < 0.05). Of mutation in drug resistance-related genes, the majority (53/380, 13.95%) of rpoB gene carried the D516V mutation, and 13.42% (51/380) featured mutations in both the katG and inhA genes. Among the total specimens, 18.68% (71/380) carried the 88 M mutation in the rpsL gene, and the embB gene focused on the 306 M2 mutation with a mutation rate of 19.74%. Among the resistant INH, the mutation rate of −15 M was higher in resistance to more than one drug than in monodrug-resistant (p < 0.05). In conclusion, the drug resistance of MTB is still very severe and the timely detection of drug resistance is conducive to the precise treatment of TB.
Collapse
|
85
|
Statistical analysis of 914 Mycobacterium tuberculosis genomes reveals single nucleotide polymorphisms in the ponA1 gene associated with rifampicin resistance. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
86
|
Yang T, Liu B, Zhou J, Shen Y, Song X, Tang X, Benghezal M, Marshall BJ, Tang H, Li H. The Inappropriateness of Using Rifampicin E-Test to Predict Rifabutin Resistance in Helicobacter pylori. J Infect Dis 2022; 226:S479-S485. [PMID: 36478247 DOI: 10.1093/infdis/jiac417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate the rifamycin cross-resistance in Helicobacter pylori, and whether the use of rifampicin E-test strips to screen H. pylori rifabutin resistance is appropriate. METHODS A total of 89 H. pylori isolates were included. Rifampicin minimum inhibitory concentrations (MICs) were obtained by E-test, while the MICs for rifapentine, rifaximin, and rifabutin were determined by agar dilution method. The rifamycin resistance rates based on different breakpoints were compared. Isolates with high-level rifampicin resistance were subjected to whole-genome sequencing. RESULTS A wide distribution of MICs (mostly in the range 0.125-8 mg/L) was observed for rifampicin, rifapentine, and rifaximin. Using MIC >1, ≥ 4, and > 4 mg/L as the breakpoints, resistance rates to rifampicin/rifapentine/rifaximin were 60.4%/48.3%/38.2%, 28.1%/25.8%/23.6%, and 15.7%/16.9%/7.9%, respectively. However, the rifabutin MICs of all the tested H. pylori isolates were extremely low (≤0.016 mg/L). Applying MIC ≥ 0.125 mg/L as the breakpoint, rifabutin resistance was nil. No mutation was found in the rpoB gene sequences of the 2 isolates with high-level rifampicin resistance. CONCLUSIONS There is a lack of cross-resistance between rifabutin and other rifamycins in H. pylori. The use of rifampicin E-test to predict H. pylori rifabutin resistance is inappropriate.
Collapse
Affiliation(s)
- Tiankuo Yang
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Aviation Medical Appraisal Center, Civil Aviation Flight University of China, Guanghan, China
| | | | - Junpeng Zhou
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yalin Shen
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaona Song
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqiong Tang
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammed Benghezal
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Barry James Marshall
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Helicobacter pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Australia.,School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Hong Tang
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
87
|
Li MC, Wang XY, Xiao TY, Lin SQ, Liu HC, Qian C, Xu D, Li GL, Zhao XQ, Liu ZG, Zhao LL, Wan KL. rpoB Mutations are Associated with Variable Levels of Rifampin and Rifabutin Resistance in Mycobacterium tuberculosis. Infect Drug Resist 2022; 15:6853-6861. [PMID: 36465812 PMCID: PMC9717584 DOI: 10.2147/idr.s386863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 04/21/2025] Open
Abstract
OBJECTIVE To assess the relationship between the variant rpoB mutations and the degree of rifampin (RIF)/rifabutin (RFB) resistance in Mycobacterium tuberculosis (M. tuberculosis). METHODS We analyzed the whole rpoB gene in 177 M. tuberculosis clinical isolates and quantified their minimum inhibitory concentrations (MICs) using microplate-based assays. RESULTS The results revealed that of the 177 isolates, 116 were resistant to both RIF and RFB. There were 38 mutated patterns within the sequenced whole rpoB gene of the 120 isolates. Statistical analysis indicated that mutations, S450L, H445D, H445Y, and H445R, were associated with RIF and RFB resistance. Of these mutations, S450L, H445D, and H445Y were associated with high-level RIF and RFB MIC. H445R was associated with high-level RIF MIC, but not high-level RFB MIC. D435V and L452P were associated with only RIF, but not RFB resistance. Q432K and Q432L were associated with high-level RFB MIC. Several single mutations without statistical association with rifamycin resistance, such as V170F, occurred exclusively in low-level RIF but high-level RFB resistant isolates. Additionally, although cross-resistance to RIF and RFB is common, 21 RIF-resistant/RFB-susceptible isolates were identified. CONCLUSION This study highlighted the complexity of rifamycin resistance. Identification of the rpoB polymorphism will be helpful to diagnose the RIF-resistant tuberculosis that has the potential to benefit from a treatment regimen including RFB.
Collapse
Affiliation(s)
- Ma-Chao Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiao-Yue Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Tong-Yang Xiao
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People’s Republic of China
| | - Shi-Qiang Lin
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, People’s Republic of China
| | - Hai-Can Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Cheng Qian
- Beijing Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Da Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Gui-Lian Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiu-Qin Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zhi-Guang Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Li-Li Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Kang-Lin Wan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
88
|
Stephanie F, Tambunan USF, Siahaan TJ. M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts. Life (Basel) 2022; 12:1774. [PMID: 36362929 PMCID: PMC9695777 DOI: 10.3390/life12111774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 09/08/2023] Open
Abstract
Mycobacterium tuberculosis (MTB) is the main source of tuberculosis (TB), one of the oldest known diseases in the human population. Despite the drug discovery efforts of past decades, TB is still one of the leading causes of mortality and claimed more than 1.5 million lives worldwide in 2020. Due to the emergence of drug-resistant strains and patient non-compliance during treatments, there is a pressing need to find alternative therapeutic agents for TB. One of the important areas for developing new treatments is in the inhibition of the transcription step of gene expression; it is the first step to synthesize a copy of the genetic material in the form of mRNA. This further translates to functional protein synthesis, which is crucial for the bacteria living processes. MTB contains a bacterial DNA-dependent RNA polymerase (RNAP), which is the key enzyme for the transcription process. MTB RNAP has been targeted for designing and developing antitubercular agents because gene transcription is essential for the mycobacteria survival. Initiation, elongation, and termination are the three important sequential steps in the transcription process. Each step is complex and highly regulated, involving multiple transcription factors. This review is focused on the MTB transcription machinery, especially in the nature of MTB RNAP as the main enzyme that is regulated by transcription factors. The mechanism and conformational dynamics that occur during transcription are discussed and summarized. Finally, the current progress on MTB transcription inhibition and possible drug target in mycobacterial RNAP are also described to provide insight for future antitubercular drug design and development.
Collapse
Affiliation(s)
- Filia Stephanie
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Usman Sumo Friend Tambunan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
89
|
Caputo A, Sartini S, Levati E, Minato I, Elisi GM, Di Stasi A, Guillou C, Goekjian PG, Garcia P, Gueyrard D, Bach S, Comte A, Ottonello S, Rivara S, Montanini B. An Optimized Workflow for the Discovery of New Antimicrobial Compounds Targeting Bacterial RNA Polymerase Complex Formation. Antibiotics (Basel) 2022; 11:antibiotics11101449. [PMID: 36290107 PMCID: PMC9598883 DOI: 10.3390/antibiotics11101449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial resistance represents a major health problem worldwide and there is an urgent need to develop first-in-class compounds directed against new therapeutic targets. We previously developed a drug-discovery platform to identify new antimicrobials able to disrupt the protein–protein interaction between the β’ subunit and the σ70 initiation factor of bacterial RNA polymerase, which is essential for transcription. As a follow-up to such work, we have improved the discovery strategy to make it less time-consuming and more cost-effective. This involves three sequential assays, easily scalable to a high-throughput format, and a subsequent in-depth characterization only limited to hits that passed the three tests. This optimized workflow, applied to the screening of 5360 small molecules from three synthetic and natural compound libraries, led to the identification of six compounds interfering with the β’–σ70 interaction, and thus was capable of inhibiting promoter-specific RNA transcription and bacterial growth. Upon supplementation with a permeability adjuvant, the two most potent transcription-inhibiting compounds displayed a strong antibacterial activity against Escherichia coli with minimum inhibitory concentration (MIC) values among the lowest (0.87–1.56 μM) thus far reported for β’–σ PPI inhibitors. The newly identified hit compounds share structural feature similarities with those of a pharmacophore model previously developed from known inhibitors.
Collapse
Affiliation(s)
- Alessia Caputo
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124 Parma, Italy
| | - Sara Sartini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Elisabetta Levati
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Ilaria Minato
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124 Parma, Italy
| | - Gian Marco Elisi
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Catherine Guillou
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Peter G. Goekjian
- Laboratoire Chimie Organique 2 Glycochimie, ICBMS UMR 5246 CNRS-Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Pierre Garcia
- Laboratoire Chimie Organique 2 Glycochimie, ICBMS UMR 5246 CNRS-Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - David Gueyrard
- Laboratoire Chimie Organique 2 Glycochimie, ICBMS UMR 5246 CNRS-Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, Team Physiology and Cell Fate, Station Biologique de Roscoff, CS 90074, 29680 Roscoff, France
- Sorbonne Université, CNRS, FR 2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680 Roscoff, France
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Arnaud Comte
- Chimiothèque, ICBMS UMR 5246 CNRS-Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Simone Ottonello
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124 Parma, Italy
| | - Silvia Rivara
- Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124 Parma, Italy
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Barbara Montanini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
- Interdepartmental Research Centre Biopharmanet-Tec, University of Parma, 43124 Parma, Italy
- Correspondence: ; Tel.: +39-0521-905654
| |
Collapse
|
90
|
Drug–Membrane Interaction as Revealed by Spectroscopic Methods: The Role of Drug Structure in the Example of Rifampicin, Levofloxacin and Rapamycin. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have investigated the nature of the interaction of small organic drug molecules with lipid membranes of various compositions. Using infrared spectroscopy and differential scanning calorimetry methods, we studied the role of the structure of the active molecule in interaction with the membrane using the example of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylcholine:cardiolipin (DPPC:CL) liposomes. We discovered the key role of the heterocycle in interaction with the polar part of the bilayer and the network of unsaturated bonds in interaction with the hydrophobic part. For rifampicin and levofloxacin, the main binding sites were phosphate and carbonyl groups of lipids, and in the case of anionic liposomes we found a slight penetration of rifampicin into the hydrophobic part of the bilayer. For rapamycin, experimental confirmation of the localization of the molecule in the region of fatty acid chains was obtained, and perturbation in the region of phosphate groups was demonstrated for the first time. The process of phase transition of liposomal forms of rifampicin and levofloxacin was studied. DPPC liposomes accelerate the phase transition when loaded with a drug. DPPC:CL liposomes are less susceptible to changes in the phase transition rate.
Collapse
|
91
|
Jones RM, Adams KN, Eldesouky HE, Sherman DR. The evolving biology of Mycobacterium tuberculosis drug resistance. Front Cell Infect Microbiol 2022; 12:1027394. [PMID: 36275024 PMCID: PMC9579286 DOI: 10.3389/fcimb.2022.1027394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb) is an ancient disease that has remained a leading cause of infectious death. Mtb has evolved drug resistance to every antibiotic regimen ever introduced, greatly complicating treatment, lowering rates of cure and menacing TB control in parts of the world. As technology has advanced, our understanding of antimicrobial resistance has improved, and our models of the phenomenon have evolved. In this review, we focus on recent research progress that supports an updated model for the evolution of drug resistance in Mtb. We highlight the contribution of drug tolerance on the path to resistance, and the influence of heterogeneity on tolerance. Resistance is likely to remain an issue for as long as drugs are needed to treat TB. However, with technology driving new insights and careful management of newly developed resources, antimicrobial resistance need not continue to threaten global progress against TB, as it has done for decades.
Collapse
Affiliation(s)
| | | | | | - David R. Sherman
- Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
92
|
Rodríguez J, Vázquez L, Flórez AB, Mayo B. Phenotype testing, genome analysis, and metabolic interactions of three lactic acid bacteria strains existing as a consortium in a naturally fermented milk. Front Microbiol 2022; 13:1000683. [PMID: 36212860 PMCID: PMC9539746 DOI: 10.3389/fmicb.2022.1000683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
This work reports the characterization of three lactic acid bacteria (LAB) strains -Lactococcus lactis LA1, Lactococcus cremoris LA10, and Lactiplantibacillus plantarum LA30- existing as a stable consortium in a backslopping-inoculated, naturally fermented milk (NFM). This study aimed at uncovering the biochemical and genetic basis of the stability of the consortium and the cooperativity among the strains during milk fermentation. All three strains were subjected to phenotyping, covering the utilization of carbohydrates, enzyme activity, and antibiotic resistance. The strains were grown in milk individually, as well as in all possible combinations, and the resulting fermented product was analyzed for sugars, organic acids, and volatile compounds. Finally, the genomes of the three strains were sequenced and analyzed for genes associated with technological and safety properties. As expected, wide phenotypic diversity was seen between the strains. Lactococcus cremoris LA10 was the only strain to reach high cell densities and coagulate milk alone after incubation at 22°C for 24 h; congruently, it possessed a gene coding for a PrtP type II caseinolytic protease. Compared to any other fermentation, acetaldehyde concentrations were greater by a factor of six when all three strains grew together in milk, suggesting that its production might be the result of an interaction between them. Lactococcus lactis LA1, which carried a plasmid-encoded citQRP operon, was able to utilize milk citrate producing diacetyl and acetoin. No genes encoding virulence traits or pathogenicity factors were identified in any of the strains, and none produced biogenic amines from amino acid precursors, suggesting them to be safe. Lactiplantibacillus plantarum LA30 was susceptible to tetracycline, although it harbors a disrupted antibiotic resistance gene belonging to the tetM/tetW/tetO/tetS family. All three strains contained large numbers of pseudogenes, suggesting that they are well adapted ("domesticated") to the milk environment. The consortium as a whole or its individual strains might have a use as a starter or as starter components for dairy fermentations. The study of simple consortia, such as that existing in this NFM, can help reveal how microorganisms interact with one another, and what influence they may have on the sensorial properties of fermented products.
Collapse
Affiliation(s)
- Javier Rodríguez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
93
|
The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics (Basel) 2022; 11:antibiotics11091215. [PMID: 36139994 PMCID: PMC9495013 DOI: 10.3390/antibiotics11091215] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/26/2022] Open
Abstract
Bacterial drug resistance is rapidly developing as one of the greatest threats to human health. Bacteria will adopt corresponding strategies to crack the inhibitory effect of antibiotics according to the antibacterial mechanism of antibiotics, involving the mutation of drug target, secreting hydrolase, and discharging antibiotics out of cells through an efflux pump, etc. In recent years, bacteria are found to constantly evolve new resistance mechanisms to antibiotics, including target protective protein, changes in cell morphology, and so on, endowing them with multiple defense systems against antibiotics, leading to the emergence of multi-drug resistant (MDR) bacteria and the unavailability of drugs in clinics. Correspondingly, researchers attempt to uncover the mystery of bacterial resistance to develop more convenient and effective antibacterial strategies. Although traditional antibiotics still play a significant role in the treatment of diseases caused by sensitive pathogenic bacteria, they gradually lose efficacy in the MDR bacteria. Therefore, highly effective antibacterial compounds, such as phage therapy and CRISPER-Cas precision therapy, are gaining an increasing amount of attention, and are considered to be the treatments with the moist potential with regard to resistance against MDR in the future. In this review, nine identified drug resistance mechanisms are summarized, which enhance the retention rate of bacteria under the action of antibiotics and promote the distribution of drug-resistant bacteria (DRB) in the population. Afterwards, three kinds of potential antibacterial methods are introduced, in which new antibacterial compounds exhibit broad application prospects with different action mechanisms, the phage therapy has been successfully applied to infectious diseases caused by super bacteria, and the CRISPER-Cas precision therapy as a new technology can edit drug-resistant genes in pathogenic bacteria at the gene level, with high accuracy and flexibility. These antibacterial methods will provide more options for clinical treatment, and will greatly alleviate the current drug-resistant crisis.
Collapse
|
94
|
Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Food Sci Biotechnol 2022; 31:1481-1499. [PMID: 36065433 PMCID: PMC9435411 DOI: 10.1007/s10068-022-01157-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotics have been overused and misused for preventive and therapeutic purposes. Specifically, antibiotics are frequently used as growth promoters for improving productivity and performance of food-producing animals such as pigs, cattle, and poultry. The increasing use of antibiotics has been of great concern worldwide due to the emergence of antibiotic resistant bacteria. Food-producing animals are considered reservoirs for antibiotic resistance genes (ARGs) and residual antibiotics that transfer from the farm through the table. The accumulation of residual antibiotics can lead to additional antibiotic resistance in bacteria. Therefore, this review evaluates the risk of carriage and spread of antibiotic resistance through food chain and the potential impact of antibiotic use in food-producing animals on food safety. This review also includes in-depth discussion of promising antibiotic alternatives such as vaccines, immune modulators, phytochemicals, antimicrobial peptides, probiotics, and bacteriophages.
Collapse
|
95
|
Hurst-Hess KR, Saxena A, Rudra P, Yang Y, Ghosh P. Mycobacterium abscessus HelR interacts with RNA polymerase to confer intrinsic rifamycin resistance. Mol Cell 2022; 82:3166-3177.e5. [PMID: 35905736 PMCID: PMC9444957 DOI: 10.1016/j.molcel.2022.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/08/2022] [Accepted: 06/28/2022] [Indexed: 10/16/2022]
Abstract
Rifampicin (RIF), the frontline drug against M. tuberculosis, is completely ineffective against M. abscessus, partially due to the presence of an ADP-ribosyltransferase (Arr) that inactivates RIF. Using RNA-seq, we show that exposure of M. abscessus to sublethal doses of RIF and Rifabutin (RBT), a close analog of RIF, results in an ∼25-fold upregulation of Mab_helR in laboratory and clinical isolates. An isogenic deletion in Mab_helR results in RIF/RBT hypersensitivity, and overexpression of Mab_helR confers RIF tolerance in M. tuberculosis. We demonstrate an increased HelR-RNAP association in RIF-exposed bacteria and a MabHelR-mediated dissociation of RNAP from stalled initiation complexes in vitro. Finally, we show that the tip of the PCh-loop of Mab_helR, present in proximity to RIF, is critical for conferring RIF resistance but dispensable for dissociation of stalled RNAP complexes, suggesting that HelR-mediated RIF resistance requires a step in addition to displacement of RIF-stalled RNAP.
Collapse
Affiliation(s)
- Kelley R Hurst-Hess
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Aavrati Saxena
- School of Public Health, University at Albany, Albany, NY 12208, USA
| | - Paulami Rudra
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Yong Yang
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Pallavi Ghosh
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; School of Public Health, University at Albany, Albany, NY 12208, USA.
| |
Collapse
|
96
|
Yu M, Zhao Y. Spectinomycin resistance in Lysobacter enzymogenes is due to its rRNA target but also relies on cell-wall recycling and purine biosynthesis. Front Microbiol 2022; 13:988110. [PMID: 36118211 PMCID: PMC9471086 DOI: 10.3389/fmicb.2022.988110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Resistance to spectinomycin emerged after widely used for treatment of gonorrhea. Previous studies revealed that Lysobacter enzymogenes strain C3 (LeC3) exhibited elevated level of intrinsic resistance to spectinomycin. In this study, we screened a Tn5 transposon mutant library of LeC3 to elucidate the underlying molecular mechanisms of spectinomycin resistance. Insertion sites in 15 out of 19 mutants recovered with decreased spectinomycin resistance were located on two ribosomal RNA operons at different loci, indicating the pivotal role of ribosomal RNAs in conferring spectinomycin resistance in L. enzymogenes. The other mutants harbored mutations in the tuf, rpoD, mltB, and purB genes. Among them, the tuf and rpoD genes, respectively, encode a translation elongation factor Tu and an RNA polymerase primary sigma factor. They both contribute to protein biosynthesis, where ribosomal RNAs play essential roles. The mltB gene, whose product is involved in cell-wall recycling, was not only associated with resistance against spectinomycin, but also conferred resistance to osmotic stress and ampicillin. In addition, mutation of the purB gene, for which its product is involved in the biosynthesis of inosine and adenosine monophosphates, led to decreased spectinomycin resistance. Addition of exogenous adenine at lower concentration in medium restored the growth deficiency in the purB mutant and increased bacterial resistance to spectinomycin. These results suggest that while cell-wall recycling and purine biosynthesis might contribute to spectinomycin resistance, target rRNAs play critical role in spectinomycin resistance in L. enzymogenes.
Collapse
Affiliation(s)
- Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Pathology, WSU-IAREC, Prosser, WA, United States
- *Correspondence: Youfu Zhao,
| |
Collapse
|
97
|
Stephanie F, Saragih M, Tambunan USF, Siahaan TJ. Structural Design and Synthesis of Novel Cyclic Peptide Inhibitors Targeting Mycobacterium tuberculosis Transcription. Life (Basel) 2022; 12:life12091333. [PMID: 36143370 PMCID: PMC9506182 DOI: 10.3390/life12091333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases in the world. Although several established antitubercular drugs have been found, various factors obstruct efforts to combat this disease due to the existence of drug-resistance (DR) TB strains, the need for lengthy treatment, and the occurrence of side effects from drug–drug interactions. Rifampicin (RIF) is the first line of antitubercular drugs and targets RNA polymerase (RNAP) of Mycobacterium tuberculosis (MTB). Here, RIF blocks the synthesis of long RNA during transcription initiation. The efficacy of RIF is low in DR-TB strains, and the use of RIF leads to various side effects. In this study, novel cyclic peptides were computationally designed as inhibitors of MTB transcription initiation. The designed cyclic peptides were subjected to a virtual screening to generate compounds that can bind to the RIF binding site in MTB RNAP subunit β (RpoB) for obtaining a new potential TB drug with a safe clinical profile. The molecular simulations showed that the cyclic peptides were capable of binding with RpoB mutants, suggesting that they can be possibility utilized for treating DR-TB. Structural modifications were carried out by acetylation and amidation of the N- and C-terminus, respectively, to improve their plasma stability and bioavailability. The modified linear and cyclic peptides were successfully synthesized with a solid-phase peptide synthesis method using Fmoc chemistry, and they were characterized by analytical HPLC, LC-ESI-MS+, and 1H NMR.
Collapse
Affiliation(s)
- Filia Stephanie
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jawa Barat 16424, Indonesia
| | - Mutiara Saragih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jawa Barat 16424, Indonesia
| | - Usman Sumo Friend Tambunan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Jawa Barat 16424, Indonesia
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66045, USA
- Correspondence: ; Tel.: +1-(785)-864-7327
| |
Collapse
|
98
|
Hardie KR, Fenn SJ. JMM profile: rifampicin: a broad-spectrum antibiotic. J Med Microbiol 2022; 71. [PMID: 35930318 DOI: 10.1099/jmm.0.001566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rifampicin (also known as rifampin) inhibits RNA synthesis, and is used to treat tuberculosis, leprosy, staphylococcal infections and legionnaires’ disease. It can also protect at-risk populations from
Haemophilus influenzae
type b and
Neisseria meningitidis
. It is a polyketide antibiotic and is on the World Health Organization (WHO) list of essential medicines due to its critical importance to human medicine. The adverse effect of liver toxicity is controlled by testing during prolonged treatment regimes. Rifampicin’s red–orange colour can result in the colouration of sweat, tears and urine. Resistance to rifampicin arises from mutation of the target RNA polymerase or ADP ribosylation of the antibiotic or efflux. Mycobacteria may become singularly resistant to rifampicin or as part of multidrug or extensive drug resistance.
Collapse
Affiliation(s)
- Kim R Hardie
- School of Life Sciences, Biodiscovery Institute, University Park, Nottingham University, Nottingham, NG7 2RD, UK
| | - Samuel Jacob Fenn
- School of Life Sciences, Biodiscovery Institute, University Park, Nottingham University, Nottingham, NG7 2RD, UK
| |
Collapse
|
99
|
Jia Y, Lu H, Zhu L. Molecular mechanism of antibiotic resistance induced by mono- and twin-chained quaternary ammonium compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155090. [PMID: 35398118 PMCID: PMC8985400 DOI: 10.1016/j.scitotenv.2022.155090] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 05/08/2023]
Abstract
The usage of quaternary ammonium compounds (QACs) as disinfectants has increased dramatically since the outbreak of COVID-19 pandemic, leading to potentially accelerated emergence of antibiotic resistance. Long-term exposure to subinhibitory level QACs can lead to multidrug resistance, but the contribution of mutagenesis to resistance evolution is obscure. In this study, we subcultured E. coli K-12 under subinhibitory (0.25 × and 0.5 × Minimum Inhibitory Concentration, MIC) or inhibitory (1 × and 2 × MIC) concentrations of benzalkonium chloride (BAC, mono-chained) or didecyldimethylammonium chloride (DDAC, twin-chained) for 60 days. The sensitivity of QAC-adapted cells to five typical antibiotics decreased significantly, and in particular, the MIC of rifampicin increased by 85 times. E. coli adapted faster to BAC but developed 20-167% higher antibiotic resistance with 56% more mutations under DDAC exposure. The broader mutations induced by QACs, including negative regulators (acrR, marR, soxR, and crp), outer membrane proteins and transporters (mipA and sbmA), and RNA polymerase (rpoB and rpoC), potentially contributed to the high multi-drug resistance. After QACs stresses were removed, the phenotypic resistance induced by subinhibitory concentrations of QACs was reversible, whereas that induced by inhibitory concentrations of QACs was irreversible. The different patterns and molecular mechanism of antibiotic resistance induced by BAC and DDAC is informative to estimating the risks of broader QACs present at varied concentrations in the environment.
Collapse
Affiliation(s)
- Yin Jia
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
100
|
Activation of the SigE-SigB signaling pathway by inhibition of the respiratory electron transport chain and its effect on rifampicin resistance in Mycobacterium smegmatis. J Microbiol 2022; 60:935-947. [DOI: 10.1007/s12275-022-2202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 10/16/2022]
|