51
|
Tang M, Su Y, Zhao W, Niu Z, Ruan B, Li Q, Zheng Y, Wang C, Zhang B, Zhou F, Wang X, Huang H, Shi H, Sun Q. AIM-CICs: an automatic identification method for cell-in-cell structures based on convolutional neural network. J Mol Cell Biol 2022; 14:6649212. [PMID: 35869978 PMCID: PMC9701057 DOI: 10.1093/jmcb/mjac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
Edited by Luonan Chen Whereas biochemical markers are available for most types of cell death, current studies on non-autonomous cell death by entosis rely strictly on the identification of cell-in-cell structures (CICs), a unique morphological readout that can only be quantified manually at present. Moreover, the manual CIC quantification is generally over-simplified as CIC counts, which represents a major hurdle against profound mechanistic investigations. In this study, we take advantage of artificial intelligence technology to develop an automatic identification method for CICs (AIM-CICs), which performs comprehensive CIC analysis in an automated and efficient way. The AIM-CICs, developed on the algorithm of convolutional neural network, can not only differentiate between CICs and non-CICs (the area under the receiver operating characteristic curve (AUC) > 0.99), but also accurately categorize CICs into five subclasses based on CIC stages and cell number involved (AUC > 0.97 for all subclasses). The application of AIM-CICs would systemically fuel research on CIC-mediated cell death, such as high-throughput screening.
Collapse
Affiliation(s)
| | | | | | | | - Banzhan Ruan
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Qinqin Li
- Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China
| | - You Zheng
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Chenxi Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Bo Zhang
- Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China,Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Xiaoning Wang
- National Clinic Center of Geriatric & State Key Laboratory of Kidney, Chinese PLA General Hospital, Beijing 100853, China
| | | | | | - Qiang Sun
- Correspondence to: Qiang Sun, E-mail:
| |
Collapse
|
52
|
Dave TV, Nair AG, Joseph J, Freitag SK. Immunopathology of COVID-19 and its implications in the development of rhino-orbital-cerebral mucormycosis: a major review. Orbit 2022; 41:670-679. [PMID: 35856238 DOI: 10.1080/01676830.2022.2099428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To present a literature review on various immunopathologic dysfunctions following COVID-19 infection and their potential implications in development of rhino-orbital-cerebral mucormycosis (ROCM). METHODS A literature search was performed via Google Scholar and PubMed with subsequent review of the accompanying references. Analogies were drawn between the immune and physiologic deviations caused by COVID-19 and the tendency of the same to predispose to ROCM. RESULTS Sixty-two articles were reviewed. SARS-CoV-2 virus infection leads to disruption of epithelial integrity in the respiratory passages, which may be a potential entry point for the ubiquitous Mucorales to become invasive. COVID-19 related GRP78 protein upregulation may aid in spore germination and hyphal invasion by Mucorales. COVID-19 causes interference in macrophage functioning by direct infection, a tendency for hyperglycemia, and creation of neutrophil extracellular traps. This affects innate immunity against Mucorales. Thrombocytopenia and reduction in the number of natural killer (NK) cells and infected dendritic cells is seen in COVID-19. This reduces the host immune response to pathogenic invasion by Mucorales. Cytokines released in COVID-19 cause mitochondrial dysfunction and accumulation of reactive oxygen species, which cause oxidative damage to the leucocytes. Hyperferritinemia also occurs in COVID-19 resulting in suppression of the hematopoietic proliferation of B- and T-lymphocytes. CONCLUSIONS COVID-19 has a role in the occurrence of ROCM due to its effects at the entry point of the fungus in the respiratory mucosa, effects of the innate immune system, creation of an environment of iron overload, propagation of hyperglycemia, and effects on the adaptive immune system.
Collapse
Affiliation(s)
- Tarjani Vivek Dave
- Ophthalmic Plastic Surgery Service, LV Prasad Eye Institute, Hyderabad, India
| | - Akshay Gopinathan Nair
- Aditya Jyot Eye Hospital, Mumbai, India.,Advanced Eye hospital and Institute, Navi Mumbai, India
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Kallam Anji Reddy Campus, LV Prasad Eye Institute, Hyderabad, India
| | - Suzanne K Freitag
- Ophthalmic Plastic Surgery Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
53
|
Tsai TL, Zhou TA, Hsieh YT, Wang JC, Cheng HK, Huang CH, Tsai PY, Fan HH, Feng HK, Huang YC, Lin CC, Lin CH, Lin CY, Dzhagalov IL, Hsu CL. Multiomics reveal the central role of pentose phosphate pathway in resident thymic macrophages to cope with efferocytosis-associated stress. Cell Rep 2022; 40:111065. [PMID: 35830797 DOI: 10.1016/j.celrep.2022.111065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/07/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Tissue-resident macrophages (TRMs) are heterogeneous cell populations found throughout the body. Depending on their location, they perform diverse functions maintaining tissue homeostasis and providing immune surveillance. To survive and function within, TRMs adapt metabolically to the distinct microenvironments. However, little is known about the metabolic signatures of TRMs. The thymus provides a nurturing milieu for developing thymocytes yet efficiently removes those that fail the selection, relying on the resident thymic macrophages (TMφs). This study harnesses multiomics analyses to characterize TMφs and unveils their metabolic features. We find that the pentose phosphate pathway (PPP) is preferentially activated in TMφs, responding to the reduction-oxidation demands associated with the efferocytosis of dying thymocytes. The blockade of PPP in Mφs leads to decreased efferocytosis, which can be rescued by reactive oxygen species (ROS) scavengers. Our study reveals the key role of the PPP in TMφs and underscores the importance of metabolic adaptation in supporting Mφ efferocytosis.
Collapse
Affiliation(s)
- Tsung-Lin Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Tyng-An Zhou
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Ting Hsieh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ju-Chu Wang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hui-Kuei Cheng
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chen-Hua Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Pei-Yuan Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsiu-Han Fan
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Hsing-Kai Feng
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Chia Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 112, Taiwan
| | - Ivan L Dzhagalov
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chia-Lin Hsu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
54
|
Salina ACG, dos-Santos D, Rodrigues TS, Fortes-Rocha M, Freitas-Filho EG, Alzamora-Terrel DL, Castro IMS, Fraga da Silva TFC, de Lima MHF, Nascimento DC, Silva CM, Toller-Kawahisa JE, Becerra A, Oliveira S, Caetité DB, Almeida L, Ishimoto AY, Lima TM, Martins RB, Veras F, do Amaral NB, Giannini MC, Bonjorno LP, Lopes MIF, Benatti MN, Batah SS, Santana RC, Vilar FC, Martins MA, Assad RL, de Almeida SCL, de Oliveira FR, Arruda Neto E, Cunha TM, Alves-Filho JC, Bonato VLD, Cunha FQ, Fabro AT, Nakaya HI, Zamboni DS, Louzada-Junior P, Oliveira RDR, Cunha LD. Efferocytosis of SARS-CoV-2-infected dying cells impairs macrophage anti-inflammatory functions and clearance of apoptotic cells. eLife 2022; 11:e74443. [PMID: 35666101 PMCID: PMC9262386 DOI: 10.7554/elife.74443] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV-2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppresses macrophage anti-inflammation and efficient tissue repair programs and provides mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Ana CG Salina
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Douglas dos-Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Tamara S Rodrigues
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Marlon Fortes-Rocha
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Edismauro G Freitas-Filho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Daniel L Alzamora-Terrel
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | | | - Thais FC Fraga da Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão PretoRibeirão PretoBrazil
| | - Mikhael HF de Lima
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Daniele C Nascimento
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
- Center of Research in Inflammatory Diseases (CRID), Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Camila M Silva
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
- Center of Research in Inflammatory Diseases (CRID), Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Juliana E Toller-Kawahisa
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
- Center of Research in Inflammatory Diseases (CRID), Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Amanda Becerra
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Samuel Oliveira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Diego B Caetité
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
- Center of Research in Inflammatory Diseases (CRID), Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Leticia Almeida
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
- Center of Research in Inflammatory Diseases (CRID), Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Adriene Y Ishimoto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Thais M Lima
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Ronaldo B Martins
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Flavio Veras
- Center of Research in Inflammatory Diseases (CRID), Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Natália B do Amaral
- Divisão de Imunologia Clinica, Emergência, Doenças Infecciosas e Unidade de Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Marcela C Giannini
- Divisão de Imunologia Clinica, Emergência, Doenças Infecciosas e Unidade de Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Letícia P Bonjorno
- Divisão de Imunologia Clinica, Emergência, Doenças Infecciosas e Unidade de Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Maria IF Lopes
- Divisão de Imunologia Clinica, Emergência, Doenças Infecciosas e Unidade de Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Maira N Benatti
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirao PretoBrazil
| | - Sabrina S Batah
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirao PretoBrazil
| | - Rodrigo C Santana
- Divisão de Imunologia Clinica, Emergência, Doenças Infecciosas e Unidade de Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Fernando C Vilar
- Divisão de Imunologia Clinica, Emergência, Doenças Infecciosas e Unidade de Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Maria A Martins
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Rodrigo L Assad
- Divisão de Imunologia Clinica, Emergência, Doenças Infecciosas e Unidade de Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Sergio CL de Almeida
- Divisão de Imunologia Clinica, Emergência, Doenças Infecciosas e Unidade de Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Fabiola R de Oliveira
- Divisão de Imunologia Clinica, Emergência, Doenças Infecciosas e Unidade de Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Eurico Arruda Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Thiago M Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
- Center of Research in Inflammatory Diseases (CRID), Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - José C Alves-Filho
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
- Center of Research in Inflammatory Diseases (CRID), Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Vania LD Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão PretoRibeirão PretoBrazil
| | - Fernando Q Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
- Center of Research in Inflammatory Diseases (CRID), Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Alexandre T Fabro
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirao PretoBrazil
| | - Helder I Nakaya
- Hospital Israelita Albert EinsteinSao PauloBrazil
- Center of Research in Inflammatory Diseases (CRID), Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
- Center of Research in Inflammatory Diseases (CRID), Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Paulo Louzada-Junior
- Center of Research in Inflammatory Diseases (CRID), Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
- Divisão de Imunologia Clinica, Emergência, Doenças Infecciosas e Unidade de Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Rene DR Oliveira
- Divisão de Imunologia Clinica, Emergência, Doenças Infecciosas e Unidade de Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| | - Larissa D Cunha
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São PauloRibeirão PretoBrazil
| |
Collapse
|
55
|
Jarr KU, Kojima Y, Weissman IL, Leeper NJ. 2021 Jeffrey M. Hoeg Award Lecture: Defining the Role of Efferocytosis in Cardiovascular Disease: A Focus on the CD47 (Cluster of Differentiation 47) Axis. Arterioscler Thromb Vasc Biol 2022; 42:e145-e154. [PMID: 35387480 PMCID: PMC9183217 DOI: 10.1161/atvbaha.122.317049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/21/2022] [Indexed: 01/09/2023]
Abstract
A key feature of atherogenesis is the accumulation of diseased and dying cells within the lesional necrotic core. While the burden of intraplaque apoptotic cells may be driven in part by an increase in programmed cell death, mounting evidence suggests that their presence may primarily be dictated by a defect in programmed cell removal, or efferocytosis. In this brief review, we will summarize the evidence suggesting that inflammation-dependent changes within the plaque render target cells inedible and reduce the appetite of lesional phagocytes. We will present the genetic causation studies, which indicate these phenomena promote lesion expansion and plaque vulnerability, and the interventional data which suggest that these processes can be reversed. Particular emphasis is provided related to the antiphagocytic CD47 (cluster of differentiation 47) do not eat me axis, which has emerged as a novel antiatherosclerotic translational target that is predicted to provide benefit independent of traditional cardiovascular risk factors.
Collapse
Affiliation(s)
- Kai-Uwe Jarr
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yoko Kojima
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Irving L. Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, United States of America
| | - Nicholas J. Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
56
|
Li J, Ye Y, Liu Z, Zhang G, Dai H, Li J, Zhou B, Li Y, Zhao Q, Huang J, Feng J, Liu S, Ruan P, Wang J, Liu J, Huang M, Liu X, Yu S, Liang Z, Ma L, Gou X, Zhang G, Chen N, Lu Y, Di C, Xia Q, Pan J, Feng R, Cai Q, Su S. Macrophage mitochondrial fission improves cancer cell phagocytosis induced by therapeutic antibodies and is impaired by glutamine competition. NATURE CANCER 2022; 3:453-470. [PMID: 35484420 DOI: 10.1038/s43018-022-00354-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Phagocytosis is required for the optimal efficacy of many approved and promising therapeutic antibodies for various malignancies. However, the factors that determine the response to therapies that rely on phagocytosis remain largely elusive. Here, we demonstrate that mitochondrial fission in macrophages induced by multiple antibodies is essential for phagocytosis of live tumor cells. Tumor cells resistant to phagocytosis inhibit mitochondrial fission of macrophages by overexpressing glutamine-fructose-6-phosphate transaminase 2 (GFPT2), which can be targeted to improve antibody efficacy. Mechanistically, increased cytosolic calcium by mitochondrial fission abrogates the phase transition of the Wiskott-Aldrich syndrome protein (WASP)-Wiskott-Aldrich syndrome interacting protein (WIP) complex and enables protein kinase C-θ (PKC-θ) to phosphorylate WIP during phagocytosis. GFPT2-mediated excessive use of glutamine by tumor cells impairs mitochondrial fission and prevents access of PKC-θ to compartmentalized WIP in macrophages. Our data suggest that mitochondrial dynamics dictate the phase transition of the phagocytic machinery and identify GFPT2 as a potential target to improve antibody therapy.
Collapse
Affiliation(s)
- Jiang Li
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yingying Ye
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhihan Liu
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guoyang Zhang
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huiqi Dai
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Boxuan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yihong Li
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingying Huang
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingwei Feng
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shu Liu
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Peigang Ruan
- Department of Head and Neck Oncology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinjing Wang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinwei Liu
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shubin Yu
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziyang Liang
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liping Ma
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxia Gou
- Department of Head and Neck Oncology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guoliang Zhang
- Department of Head and Neck Oncology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nian Chen
- Department of Head and Neck Oncology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yiwen Lu
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Can Di
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qidong Xia
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiayao Pan
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qingqing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
57
|
|
58
|
Raymond MH, Davidson AJ, Shen Y, Tudor DR, Lucas CD, Morioka S, Perry JS, Krapivkina J, Perrais D, Schumacher LJ, Campbell RE, Wood W, Ravichandran KS. Live cell tracking of macrophage efferocytosis during Drosophila embryo development in vivo. Science 2022; 375:1182-1187. [PMID: 35271315 PMCID: PMC7612538 DOI: 10.1126/science.abl4430] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis of cells and their subsequent removal through efferocytosis occurs in nearly all tissues during development, homeostasis, and disease. However, it has been difficult to track cell death and subsequent corpse removal in vivo. We developed a genetically encoded fluorescent reporter, CharON (Caspase and pH Activated Reporter, Fluorescence ON), that could track emerging apoptotic cells and their efferocytic clearance by phagocytes. Using Drosophila expressing CharON, we uncovered multiple qualitative and quantitative features of coordinated clearance of apoptotic corpses during embryonic development. When confronted with high rates of emerging apoptotic corpses, the macrophages displayed heterogeneity in engulfment behaviors, leading to some efferocytic macrophages carrying high corpse burden. Overburdened macrophages were compromised in clearing wound debris. These findings reveal known and unexpected features of apoptosis and macrophage efferocytosis in vivo.
Collapse
Affiliation(s)
- Michael H. Raymond
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesvill, VA, USA
| | - Andrew J. Davidson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Daniel R. Tudor
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Christopher D. Lucas
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Sho Morioka
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, Division of Nephrology and CIIR, University of Virginia, Charlottesville, VA, USA
| | - Justin S.A. Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Julia Krapivkina
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - David Perrais
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Linus J. Schumacher
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | | | - Will Wood
- Centre for Inflammation Research, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Kodi S. Ravichandran
- Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- VIB/UGent Inflammation Research Centre, and Biomedical Molecular Biology, Ghent University, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
59
|
Wculek SK, Dunphy G, Heras-Murillo I, Mastrangelo A, Sancho D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol 2022; 19:384-408. [PMID: 34876704 PMCID: PMC8891297 DOI: 10.1038/s41423-021-00791-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
Cellular metabolism orchestrates the intricate use of tissue fuels for catabolism and anabolism to generate cellular energy and structural components. The emerging field of immunometabolism highlights the importance of cellular metabolism for the maintenance and activities of immune cells. Macrophages are embryo- or adult bone marrow-derived leukocytes that are key for healthy tissue homeostasis but can also contribute to pathologies such as metabolic syndrome, atherosclerosis, fibrosis or cancer. Macrophage metabolism has largely been studied in vitro. However, different organs contain diverse macrophage populations that specialize in distinct and often tissue-specific functions. This context specificity creates diverging metabolic challenges for tissue macrophage populations to fulfill their homeostatic roles in their particular microenvironment and conditions their response in pathological conditions. Here, we outline current knowledge on the metabolic requirements and adaptations of macrophages located in tissues during homeostasis and selected diseases.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| | - Gillian Dunphy
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Annalaura Mastrangelo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| |
Collapse
|
60
|
Liu KE, Raymond MH, Ravichandran KS, Kucenas S. Clearing Your Mind: Mechanisms of Debris Clearance After Cell Death During Neural Development. Annu Rev Neurosci 2022; 45:177-198. [PMID: 35226828 PMCID: PMC10157384 DOI: 10.1146/annurev-neuro-110920-022431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger of neurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kendra E Liu
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA
| | - Michael H Raymond
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA
| | - Kodi S Ravichandran
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Center for Clearance, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.,VIB-UGent Center for Inflammation Research and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA; .,Program in Fundamental Neuroscience, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
61
|
Liu J, Zhu Z, Leung GKK. Erythrophagocytosis by Microglia/Macrophage in Intracerebral Hemorrhage: From Mechanisms to Translation. Front Cell Neurosci 2022; 16:818602. [PMID: 35237132 PMCID: PMC8882619 DOI: 10.3389/fncel.2022.818602] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating condition characterized by hematoma related mass effect. Microglia/macrophage (M φ) are rapidly recruited in order to remove the red blood cells through erythrophagocytosis. Efficient erythrophagocytosis can detoxify hemolytic products and facilitate neurological recovery after ICH. The underlying mechanisms include modulation of inflammatory response and oxidative stress, among others. It is a dynamic process mediated by a cascade of signal transduction, including “find-me” signals, “eat-me” signals and a set of phagocytotic receptors-ligand pairs that may be exploited as therapeutic targets. This review summarizes mechanistic signaling pathways of erythrophagocytosis and highlights the potential of harnessing M φ-mediated phagocytosis for ICH treatment.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Zhiyuan Zhu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- Department of Functional Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- *Correspondence: Gilberto Ka-Kit Leung,
| |
Collapse
|
62
|
McCubbrey AL, McManus SA, McClendon JD, Thomas SM, Chatwin HB, Reisz JA, D'Alessandro A, Mould KJ, Bratton DL, Henson PM, Janssen WJ. Polyamine import and accumulation causes immunomodulation in macrophages engulfing apoptotic cells. Cell Rep 2022; 38:110222. [PMID: 35021097 PMCID: PMC8859864 DOI: 10.1016/j.celrep.2021.110222] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/26/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Phagocytosis of apoptotic cells, termed efferocytosis, is critical for tissue homeostasis and drives anti-inflammatory programming in engulfing macrophages. Here, we assess metabolites in naive and inflammatory macrophages following engulfment of multiple cellular and non-cellular targets. Efferocytosis leads to increases in the arginine-derived polyamines, spermidine and spermine, in vitro and in vivo. Surprisingly, polyamine accumulation after efferocytosis does not arise from retention of apoptotic cell metabolites or de novo synthesis but from enhanced polyamine import that is dependent on Rac1, actin, and PI3 kinase. Blocking polyamine import prevents efferocytosis from suppressing macrophage interleukin (IL)-1β or IL-6. This identifies efferocytosis as a trigger for polyamine import and accumulation, and imported polyamines as mediators of efferocytosis-induced immune reprogramming.
Collapse
Affiliation(s)
- Alexandra L McCubbrey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Denver, CO 80206, USA; Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, Aurora, CO 80045, USA.
| | - Shannon A McManus
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Denver, CO 80206, USA
| | - Jazalle D McClendon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Denver, CO 80206, USA
| | | | - Hope B Chatwin
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Denver, CO 80206, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kara J Mould
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Denver, CO 80206, USA; Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, Aurora, CO 80045, USA
| | - Donna L Bratton
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, Denver, CO 80206, USA; Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Peter M Henson
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - William J Janssen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Denver, CO 80206, USA; Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
63
|
He D, Mao Q, Jia J, Wang Z, Liu Y, Liu T, Luo B, Zhang Z. Pentose Phosphate Pathway Regulates Tolerogenic Apoptotic Cell Clearance and Immune Tolerance. Front Immunol 2022; 12:797091. [PMID: 35082786 PMCID: PMC8784392 DOI: 10.3389/fimmu.2021.797091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
The efficient removal of apoptotic cells (ACs), a process termed as efferocytosis, is essential for immune homeostasis. While recent work has established an important interplay between efferocytosis and cellular metabolic changing, underlying mechanisms remain poorly known. Here, we discovered that pentose phosphate pathway (PPP) regulates tolerogenic ACs clearance and immune tolerance. ACs decreased levels of PPP-related genes and metabolites in macrophages. AG1, the agonist of PPP, increased the activity of PPP but greatly reduced macrophage phagocytosis of ACs and enhanced the inflammatory response during efferocytosis. miR-323-5p regulated the expression of PPP-related genes and its levels increased during efferocytosis. miR-323-5p inhibitor greatly promoted levels of PPP-related genes, reduced the macrophage phagocytosis of ACs, and increased inflammatory response during efferocytosis, suggesting that miR-323-5p was essential in regulating PPP activity and ACs clearance in macrophages. Correspondingly, the PPP agonist AG1 exacerbated the lupus-like symptoms in the AC-induced systemic lupus erythematosus (SLE) model. Our study reveals that regulating PPP-dependent metabolic reprogramming is critical for tolerogenic ACs phagocytosis and immune tolerance.
Collapse
Affiliation(s)
- Dan He
- Medical College of Chongqing University, Chongqing, China
| | - Qiangdongzi Mao
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jialin Jia
- Medical College of Chongqing University, Chongqing, China
| | - Zhiyu Wang
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Yu Liu
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Tingting Liu
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Bangwei Luo
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Zhiren Zhang
- Institute of Immunology, Army Medical University, Chongqing, China
| |
Collapse
|
64
|
Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metab 2021; 33:2445-2463.e8. [PMID: 34784501 PMCID: PMC8665147 DOI: 10.1016/j.cmet.2021.10.015] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
Apoptotic cell clearance by macrophages (efferocytosis) promotes resolution signaling pathways, which can be triggered by molecules derived from the phagolysosomal degradation of apoptotic cells. We show here that nucleotides derived from the hydrolysis of apoptotic cell DNA by phagolysosomal DNase2a activate a DNA-PKcs-mTORC2/Rictor pathway that increases Myc to promote non-inflammatory macrophage proliferation. Efferocytosis-induced proliferation expands the pool of resolving macrophages in vitro and in mice, including zymosan-induced peritonitis, dexamethasone-induced thymocyte apoptosis, and atherosclerosis regression. In the dexamethasone-thymus model, hematopoietic Rictor deletion blocked efferocytosing macrophage proliferation, apoptotic cell clearance, and tissue resolution. In atherosclerosis regression, silencing macrophage Rictor or DNase2a blocked efferocyte proliferation, apoptotic cell clearance, and plaque stabilization. In view of previous work showing that other types of apoptotic cell cargo can promote resolution in individual efferocytosing macrophages, the findings here suggest that signaling-triggered apoptotic cell-derived nucleotides can amplify this benefit by increasing the number of these macrophages.
Collapse
|
65
|
do Amaral MA, Paredes LC, Padovani BN, Mendonça-Gomes JM, Montes LF, Câmara NOS, Morales Fénero C. Mitochondrial connections with immune system in Zebrafish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100019. [PMID: 36420514 PMCID: PMC9680083 DOI: 10.1016/j.fsirep.2021.100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles commonly associated with adenosine triphosphate (ATP) formation through the oxidative phosphorylation (OXPHOS) process. However, mitochondria are also responsible for functions such as calcium homeostasis, apoptosis, autophagy, and production of reactive oxygen species (ROS) that, in conjunction, can lead to different cell fate decisions. Mitochondrial morphology changes rely on nutrients' availability and the bioenergetics demands of the cells, in a process known as mitochondrial dynamics, which includes both fusion and fission. This organelle senses the microenvironment and can modify the cells to either a pro or anti-inflammatory profile. The zebrafish has been increasingly used to research mitochondrial dynamics and its connection with the immune system since the pathways and molecules involved in these processes are conserved on this fish. Several genetic tools and technologies are currently available to analyze the behavior of mitochondria in zebrafish. However, even though zebrafish presents several similar processes known in mammals, the effect of the mitochondria in the immune system has not been so broadly studied in this model. In this review, we summarize the current knowledge in zebrafish studies regarding mitochondrial function and immuno metabolism.
Collapse
Affiliation(s)
- Mariana Abrantes do Amaral
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Lais Cavalieri Paredes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Barbara Nunes Padovani
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Juliana Moreira Mendonça-Gomes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Luan Fávero Montes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Camila Morales Fénero
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
66
|
Juban G, Chazaud B. Efferocytosis during Skeletal Muscle Regeneration. Cells 2021; 10:cells10123267. [PMID: 34943775 PMCID: PMC8699096 DOI: 10.3390/cells10123267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Efferocytosis, i.e., engulfment of dead cells by macrophages, is a crucial step during tissue repair after an injury. Efferocytosis delineates the transition from the pro-inflammatory phase of the inflammatory response to the recovery phase that ensures tissue reconstruction. We present here the role of efferocytosis during skeletal muscle regeneration, which is a paradigm of sterile tissue injury followed by a complete regeneration. We present the molecular mechanisms that have been described to control this process, and particularly the metabolic control of efferocytosis during skeletal muscle regeneration.
Collapse
|
67
|
Lee SA, Kim D, Min C, Moon B, Lee J, Moon H, Yang S, Lee CS, Lee G, Park D. Phagocyte Chemoattraction Is Induced through the Mcp-1-Ccr2 Axis during Efferocytosis. Cells 2021; 10:3115. [PMID: 34831339 PMCID: PMC8620886 DOI: 10.3390/cells10113115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptotic cells generated during development and for tissue homeostasis are swiftly and continuously removed by phagocytes via a process called efferocytosis. Efficient efferocytosis can be achieved via transcriptional modulation in phagocytes that have engulfed apoptotic cells. However, such modulation and its effect on efferocytosis are not completely understood. Here, we report that phagocytes are recruited to apoptotic cells being cleared through the Mcp-1-Ccr2 axis, which facilitates clearance of apoptotic cells. We identified Mcp-1 as a modulated transcript using a microarray and found that Mcp-1 secretion was augmented in phagocytes engulfing apoptotic cells. This augmented Mcp-1 secretion was impaired by blocking phagolysosomal degradation of apoptotic cells. Conditioned medium from wild type (WT) phagocytes promoted cell migration, but that from Mcp-1-/- phagocytes did not. In addition, blockade of Ccr2, the receptor for Mcp-1, abrogated cell migration to conditioned medium from phagocytes incubated with apoptotic cells. The intrinsic efferocytosis activity of Mcp-1-/- and Ccr2-/- phagocytes was unaltered, but clearance of apoptotic cells was less efficient in the peritoneum of Mcp-1-/- and Ccr2-/- mice than in that of WT mice because fewer Ccr2-positive phagocytes were recruited. Taken together, our findings demonstrate a mechanism by which not only apoptotic cells but also phagocytes induce chemoattraction to recruit phagocytes to sites where apoptotic cells are cleared for efficient efferocytosis.
Collapse
Affiliation(s)
- Sang-Ah Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.-A.L.); (D.K.); (C.M.); (B.M.); (J.L.); (H.M.); (S.Y.); (G.L.)
- Laboratory of Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Deokhwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.-A.L.); (D.K.); (C.M.); (B.M.); (J.L.); (H.M.); (S.Y.); (G.L.)
- Laboratory of Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Chanhyuk Min
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.-A.L.); (D.K.); (C.M.); (B.M.); (J.L.); (H.M.); (S.Y.); (G.L.)
- Laboratory of Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Byeongjin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.-A.L.); (D.K.); (C.M.); (B.M.); (J.L.); (H.M.); (S.Y.); (G.L.)
- Laboratory of Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Juyeon Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.-A.L.); (D.K.); (C.M.); (B.M.); (J.L.); (H.M.); (S.Y.); (G.L.)
- Laboratory of Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Hyunji Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.-A.L.); (D.K.); (C.M.); (B.M.); (J.L.); (H.M.); (S.Y.); (G.L.)
- Laboratory of Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Susumin Yang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.-A.L.); (D.K.); (C.M.); (B.M.); (J.L.); (H.M.); (S.Y.); (G.L.)
- Laboratory of Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Gwangrog Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.-A.L.); (D.K.); (C.M.); (B.M.); (J.L.); (H.M.); (S.Y.); (G.L.)
- Laboratory of Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea; (S.-A.L.); (D.K.); (C.M.); (B.M.); (J.L.); (H.M.); (S.Y.); (G.L.)
- Laboratory of Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
68
|
Faas M, Ipseiz N, Ackermann J, Culemann S, Grüneboom A, Schröder F, Rothe T, Scholtysek C, Eberhardt M, Böttcher M, Kirchner P, Stoll C, Ekici A, Fuchs M, Kunz M, Weigmann B, Wirtz S, Lang R, Hofmann J, Vera J, Voehringer D, Michelucci A, Mougiakakos D, Uderhardt S, Schett G, Krönke G. IL-33-induced metabolic reprogramming controls the differentiation of alternatively activated macrophages and the resolution of inflammation. Immunity 2021; 54:2531-2546.e5. [PMID: 34644537 PMCID: PMC7617137 DOI: 10.1016/j.immuni.2021.09.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/02/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
Alternatively activated macrophages (AAMs) contribute to the resolution of inflammation and tissue repair. However, molecular pathways that govern their differentiation have remained incompletely understood. Here, we show that uncoupling protein-2-mediated mitochondrial reprogramming and the transcription factor GATA3 specifically controlled the differentiation of pro-resolving AAMs in response to the alarmin IL-33. In macrophages, IL-33 sequentially triggered early expression of pro-inflammatory genes and subsequent differentiation into AAMs. Global analysis of underlying signaling events revealed that IL-33 induced a rapid metabolic rewiring of macrophages that involved uncoupling of the respiratory chain and increased production of the metabolite itaconate, which subsequently triggered a GATA3-mediated AAM polarization. Conditional deletion of GATA3 in mononuclear phagocytes accordingly abrogated IL-33-induced differentiation of AAMs and tissue repair upon muscle injury. Our data thus identify an IL-4-independent and GATA3-dependent pathway in mononuclear phagocytes that results from mitochondrial rewiring and controls macrophage plasticity and the resolution of inflammation.
Collapse
Affiliation(s)
- Maria Faas
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Natacha Ipseiz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Systems Immunity Research Institute, Heath Park, Cardiff University, Cardiff CF14 4XN, UK
| | - Jochen Ackermann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Stephan Culemann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Anika Grüneboom
- Department of Biopsectroscopy, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany; Medical Faculty, University Hospital, University Duisburg-Essen, Essen 45147, Germany
| | - Fenja Schröder
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Tobias Rothe
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Carina Scholtysek
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Martin Eberhardt
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Martin Böttcher
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Department of Internal Medicine 5, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Cornelia Stoll
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Arif Ekici
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Maximilian Fuchs
- Department of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Meik Kunz
- Department of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Benno Weigmann
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Department of Internal Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Stefan Wirtz
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Department of Internal Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Joerg Hofmann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Julio Vera
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - David Voehringer
- Division of Infection Biology, Institute of Clinical Microbiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg 1526, Luxembourg
| | - Dimitrios Mougiakakos
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Department of Internal Medicine 5, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Stefan Uderhardt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen 91054, Germany.
| |
Collapse
|
69
|
Trzeciak A, Wang YT, Perry JSA. First we eat, then we do everything else: The dynamic metabolic regulation of efferocytosis. Cell Metab 2021; 33:2126-2141. [PMID: 34433074 PMCID: PMC8568659 DOI: 10.1016/j.cmet.2021.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Clearance of apoptotic cells, or "efferocytosis," is essential for diverse processes including embryonic development, tissue turnover, organ regeneration, and immune cell development. The human body is estimated to remove approximately 1% of its body mass via apoptotic cell clearance daily. This poses several intriguing cell metabolism problems. For instance, phagocytes such as macrophages must induce or suppress metabolic pathways to find, engulf, and digest apoptotic cells. Then, phagocytes must manage the potentially burdensome biomass of the engulfed apoptotic cell. Finally, phagocytes reside in complex tissue architectures that vary in nutrient availability, the types of dying cells or debris that require clearance, and the neighboring cells they interact with. Here, we review advances in our understanding of these three key areas of phagocyte metabolism. We end by proposing a model of efferocytosis that integrates recent findings and establishes a new paradigm for testing how efferocytosis prevents chronic inflammatory disease and autoimmunity.
Collapse
Affiliation(s)
- Alissa Trzeciak
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ya-Ting Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Justin Shaun Arnold Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 417 E 68th Street, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, 417 E 68th Street, New York, NY 10065, USA.
| |
Collapse
|
70
|
Physiological Roles of Apoptotic Cell Clearance: Beyond Immune Functions. Life (Basel) 2021; 11:life11111141. [PMID: 34833017 PMCID: PMC8621940 DOI: 10.3390/life11111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
The clearance of apoptotic cells is known to be a critical step in maintaining tissue and organism homeostasis. This process is rapidly/promptly mediated by recruited or resident phagocytes. Phagocytes that engulf apoptotic cells have been closely linked to the release of anti-inflammatory cytokines to eliminate inflammatory responses. Defective clearance of apoptotic cells can cause severe inflammation and autoimmune responses due to secondary necrosis of apoptotic cells. Recently accumulated evidence indicates that apoptotic cells and their clearance have important physiological roles in addition to immune-related functions. Herein, we review the current understanding of the mechanisms and fundamental roles of apoptotic cell clearance and the beneficial roles of apoptotic cells in physiological processes such as differentiation and development.
Collapse
|
71
|
Jaccard A, Li X, Ho PC. Glutamine gluttony of efferocytes. Nat Metab 2021; 3:1280-1281. [PMID: 34650274 DOI: 10.1038/s42255-021-00462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alison Jaccard
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Xiaoyun Li
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
72
|
Golovynska I, Stepanov YV, Golovynskyi S, Zhou T, Stepanova LI, Garmanchuk LV, Ohulchanskyy TY, Qu J. Macrophages Modulated by Red/NIR Light: Phagocytosis, Cytokines, Mitochondrial Activity, Ca 2+ Influx, Membrane Depolarization and Viability. Photochem Photobiol 2021; 98:484-497. [PMID: 34569637 DOI: 10.1111/php.13526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/20/2021] [Indexed: 12/19/2022]
Abstract
Low-level light therapy (LLLT) is emerging as a promising therapeutic approach to modulate the biochemical and molecular processes within living cells. LLLT is known to produce local and systemic effects; therefore, immune cells in local tissues or in the circulation are affected by light. However, this specific effect remains weakly explored. In this study, the effect of red (650 nm) and NIR (808 nm) light on phagocytosis (respiratory burst), cytokine expression, mitochondrial activity, ROS generation, Ca2+ influx and membrane depolarization in macrophages in vitro is investigated. Both the phagocytic capacity and adhesion of macrophages strongly (˜2.5 times) increased in the first hours after exposure to light in a dose-dependent manner. The light-evoked upregulation of phagocytosis is found to be less efficient than the maximal pharmacologically induced enhancement of ˜3.2 times. Also, red/NIR light reduces the production of pro-inflammatory cytokines and activates the secretion of anti-inflammatory cytokines by several times in activated macrophages. At the same time, the viability shows a biphasic dose response: it increases after irradiation with lower doses (0.3-1 J cm-2 ) and decreases after treatment with higher doses (18-30 J cm-2 ), which is apparently associated with the upregulation of ROS generation, followed by an increase in the mitochondrial activity.
Collapse
Affiliation(s)
- Iuliia Golovynska
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yurii V Stepanov
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Sergii Golovynskyi
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ting Zhou
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Liudmyla I Stepanova
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Liudmyla V Garmanchuk
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Tymish Y Ohulchanskyy
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
73
|
Shehata WA, Hammam MA, Enany RS, El-Hefnawy SM, Abdelsattar S. Uncoupling protein 2 and dynamin-related protein 1 mRNA expressions as genetic markers for plaque psoriasis. Int J Dermatol 2021; 61:710-717. [PMID: 34287826 DOI: 10.1111/ijd.15788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Psoriasis is a long-lasting, inflammatory disease of the skin with not fully understood pathogenesis. Uncoupling protein 2 (UCP2) and dynamin-related protein 1 (Drp1) are the main mitochondrial regulatory proteins implicated in various inflammatory conditions. This work aimed to evaluate the role of UCP2 and Drp1 messenger RNA (mRNA) expressions in diagnosing plaque psoriasis and to correlate their expression levels with the available clinical data. METHODS Total number of 210 subjects (105 plaque psoriasis patients and 105 healthy volunteers) was enrolled in the current study. Plasma UCP2 and Drp1 mRNA relative expressions were studied by real-time polymerase chain reaction technique. RESULTS A significant statistical decrease in the expression levels of the mitochondrial regulatory proteins UCP2 and Drp1 mRNA in plasma of patient group in comparison to control subjects (P < 0.001). UCP2 mRNA expression was significantly correlated with the onset of disease and scalp affection (P < 0.05). The receiver operating characteristic (ROC) curve was the test used for verification of the accuracy of UCP2 and Drp1 mRNA expressions in identifying cases from healthy control subjects; UCP2 mRNA expression had a greater percent of accuracy (94%), sensitivity (97%), and specificity (87%) than Drp1 mRNA expression. CONCLUSIONS Although UCP2 and Drp1 mRNA are downregulated in plasma of psoriatic patients, UCP2 could serve better as a promising marker for plaque psoriasis. Despite developments in the treatment of psoriasis, these results provide new insights in disease pathogenesis suggesting UCP2 may be a good target for treatment.
Collapse
Affiliation(s)
- Wafaa A Shehata
- Dermatology Department, Andrology & STDs, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Mostafa A Hammam
- Dermatology Department, Andrology & STDs, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Rasha S Enany
- Ministry of Health & Population, Health Sector, Shebin El Kom, Egypt
| | - Sally M El-Hefnawy
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Shimaa Abdelsattar
- Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
74
|
Van Broeckhoven J, Sommer D, Dooley D, Hendrix S, Franssen AJPM. Macrophage phagocytosis after spinal cord injury: when friends become foes. Brain 2021; 144:2933-2945. [PMID: 34244729 DOI: 10.1093/brain/awab250] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/12/2021] [Accepted: 06/20/2021] [Indexed: 11/14/2022] Open
Abstract
After spinal cord injury (SCI), macrophages can exert either beneficial or detrimental effects depending on their phenotype. Aside from their critical role in inflammatory responses, macrophages are also specialized in the recognition, engulfment, and degradation of pathogens, apoptotic cells, and tissue debris. They promote remyelination and axonal regeneration by removing inhibitory myelin components and cellular debris. However, excessive intracellular presence of lipids and dysregulated intracellular lipid homeostasis result in the formation of foamy macrophages. These develop a pro-inflammatory phenotype that may contribute to further neurological decline. Additionally, myelin-activated macrophages play a crucial role in axonal dieback and retraction. Here, we review the opposing functional consequences of phagocytosis by macrophages in SCI, including remyelination and regeneration versus demyelination, degeneration, and axonal dieback. Furthermore, we discuss how targeting the phagocytic ability of macrophages may have therapeutic potential for the treatment of SCI.
Collapse
Affiliation(s)
- Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Daniela Sommer
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- School of Medicine, Health Sciences Centre, University College Dublin, Belfield Dublin 4, Ireland.,UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,Medical School Hamburg, Hamburg, Germany
| | - Aimée J P M Franssen
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
75
|
Gautier EL, Askia H, Murcy F, Yvan-Charvet L. Macrophage ontogeny and functional diversity in cardiometabolic diseases. Semin Cell Dev Biol 2021; 119:119-129. [PMID: 34229949 DOI: 10.1016/j.semcdb.2021.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
Macrophages are the dominant immune cell types in the adipose tissue, the liver or the aortic wall and they were originally believed to mainly derived from monocytes to fuel tissue inflammation in cardiometabolic diseases. However, over the last decade the identification of tissue resident macrophages (trMacs) from embryonic origin in these metabolic tissues has provided a breakthrough in the field forcing to better comprehend macrophage diversity during pathological states. Infiltrated monocyte-derived macrophages (moMacs), similar to trMacs, adapt to the local metabolic environment that eventually shapes their functions. In this review, we will summarize the emerging versatility of macrophages in cardiometabolic diseases with a focus in the control of adipose tissue, liver and large vessels homeostasis.
Collapse
Affiliation(s)
- Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR-S 1166, Sorbonne Université, 75013 Paris, France.
| | - Haoussa Askia
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR-S 1166, Sorbonne Université, 75013 Paris, France
| | - Florent Murcy
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| |
Collapse
|
76
|
Yasumoto Y, Stoiljkovic M, Kim JD, Sestan-Pesa M, Gao XB, Diano S, Horvath TL. Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior. Mol Psychiatry 2021; 26:2740-2752. [PMID: 33879866 PMCID: PMC8056795 DOI: 10.1038/s41380-021-01105-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 11/08/2022]
Abstract
Microglia have been implicated in synapse remodeling by phagocytosis of synaptic elements in the adult brain, but the mechanisms involved in the regulation of this process are ill-defined. By examining microglia-neuronal interaction in the ventral hippocampus, we found a significant reduction in spine synapse number during the light phase of the light/dark cycle accompanied by increased microglia-synapse contacts and an elevated amount of microglial phagocytic inclusions. This was followed by a transient rise in microglial production of reactive oxygen species (ROS) and a concurrent increase in expression of uncoupling protein 2 (Ucp2), a regulator of mitochondrial ROS generation. Conditional ablation of Ucp2 from microglia hindered phasic elimination of spine synapses with consequent accumulations of ROS and lysosome-lipid droplet complexes, which resulted in hippocampal neuronal circuit dysfunctions assessed by electrophysiology, and altered anxiety-like behavior. These observations unmasked a novel and chronotypical interaction between microglia and neurons involved in the control of brain functions.
Collapse
Affiliation(s)
- Yuki Yasumoto
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Milan Stoiljkovic
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jung Dae Kim
- Institute of Human Nutrition and Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Matija Sestan-Pesa
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiao-Bing Gao
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sabrina Diano
- Institute of Human Nutrition and Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
77
|
Ren L, Zhang Y, Xin Y, Chen G, Sun X, Chen Y, He B. Dysfunction in Sertoli cells participates in glucocorticoid-induced impairment of spermatogenesis. Mol Reprod Dev 2021; 88:405-415. [PMID: 34032349 DOI: 10.1002/mrd.23515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/16/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022]
Abstract
The effect of stress on male fertility is a widespread public health issue, but less is known about the related signaling pathway. To investigate this, we established a hypercortisolism mouse model by supplementing the drinking water with corticosterone for four weeks. In the hypercortisolism mice, the serum corticosterone was much higher than in the control, and serum testosterone was significantly decreased. Moreover, corticosterone treatment induced decrease of sperm counts and increase of teratozoospermia. Increased numbers of multinucleated giant cells and apoptotic germ cells as well as downregulated meiotic markers suggested that corticosterone induced impaired spermatogenesis. Further, upregulation of macrophage-specific marker antigen F4/80 as well as inflammation-related genes suggested that corticosterone induced inflammation in the testis. Lactate content was found to be decreased in the testis and Sertoli cells after corticosterone treatment, and lactate metabolism-related genes were downregulated. In vitro phagocytosis assays showed that the phagocytic activity in corticosterone-treated Sertoli cells was downregulated and accompanied by decreased mitochondrial membrane potential, while pyruvate dehydrogenase kinase-4 inhibitor supplementation restored this process. Taken together, our results demonstrated that dysfunctional phagocytosis capacity and lactate metabolism in Sertoli cells participates in corticosterone-induced impairment of spermatogenesis.
Collapse
Affiliation(s)
- Li Ren
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanwen Zhang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yining Xin
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guo Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxiao Sun
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yingqi Chen
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
78
|
Lee SA, Lee J, Kim K, Moon H, Min C, Moon B, Kim D, Yang S, Park H, Lee G, Park R, Park D. The Peroxisomal Localization of Hsd17b4 Is Regulated by Its Interaction with Phosphatidylserine. Mol Cells 2021; 44:214-222. [PMID: 33935042 PMCID: PMC8112170 DOI: 10.14348/molcells.2021.2217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/20/2021] [Accepted: 04/05/2021] [Indexed: 12/28/2022] Open
Abstract
Phosphatidylserine (PS), a negatively charged phospholipid exclusively located in the inner leaflet of the plasma membrane, is involved in various cellular processes such as blood coagulation, myoblast fusion, mammalian fertilization, and clearance of apoptotic cells. Proteins that specifically interact with PS must be identified to comprehensively understand the cellular processes involving PS. However, only a limited number of proteins are known to associate with PS. To identify PS-associating proteins, we performed a pulldown assay using streptavidin-coated magnetic beads on which biotin-linked PS was immobilized. Using this approach, we identified Hsd17b4, a peroxisomal protein, as a PS-associating protein. Hsd17b4 strongly associated with PS, but not with phosphatidylcholine or sphingomyelin, and the Scp-2-like domain of Hsd17b4 was responsible for this association. The association was disrupted by PS in liposomes, but not by free PS or the components of PS. In addition, translocation of PS to the outer leaflet of the plasma membrane enriched Hsd17b4 in peroxisomes. Collectively, this study suggests an unexpected role of PS as a regulator of the subcellular localization of Hsd17b4.
Collapse
Affiliation(s)
- Sang-Ah Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Juyeon Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Kwanhyeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyunji Moon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Chanhyuk Min
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Byeongjin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Deokhwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Susumin Yang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Hyunjin Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Gwangrog Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, GIST, Gwangju 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Center for Cell Mechanobiology, GIST, Gwangju 61005, Korea
| |
Collapse
|
79
|
Mike JK, Ferriero DM. Efferocytosis Mediated Modulation of Injury after Neonatal Brain Hypoxia-Ischemia. Cells 2021; 10:1025. [PMID: 33925299 PMCID: PMC8146813 DOI: 10.3390/cells10051025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Neonatal brain hypoxia-ischemia (HI) is a leading cause of morbidity and long-term disabilities in children. While we have made significant progress in describing HI mechanisms, the limited therapies currently offered for HI treatment in the clinical setting stress the importance of discovering new targetable pathways. Efferocytosis is an immunoregulatory and homeostatic process of clearance of apoptotic cells (AC) and cellular debris, best described in the brain during neurodevelopment. The therapeutic potential of stimulating defective efferocytosis has been recognized in neurodegenerative diseases. In this review, we will explore the involvement of efferocytosis after a stroke and HI as a promising target for new HI therapies.
Collapse
Affiliation(s)
- Jana Krystofova Mike
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Donna Marie Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA;
- Department of Neurology Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
80
|
Yin C, Heit B. Cellular Responses to the Efferocytosis of Apoptotic Cells. Front Immunol 2021; 12:631714. [PMID: 33959122 PMCID: PMC8093429 DOI: 10.3389/fimmu.2021.631714] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
The rapid and efficient phagocytic clearance of apoptotic cells, termed efferocytosis, is a critical mechanism in the maintenance of tissue homeostasis. Removal of apoptotic cells through efferocytosis prevents secondary necrosis and the resultant inflammation caused by the release of intracellular contents. The importance of efferocytosis in homeostasis is underscored by the large number of inflammatory and autoimmune disorders, including atherosclerosis and systemic lupus erythematosus, that are characterized by defective apoptotic cell clearance. Although mechanistically similar to the phagocytic clearance of pathogens, efferocytosis differs from phagocytosis in that it is immunologically silent and induces a tissue repair response. Efferocytes face unique challenges resulting from the internalization of apoptotic cells, including degradation of the apoptotic cell, dealing with the extra metabolic load imposed by the processing of apoptotic cell contents, and the coordination of an anti-inflammatory, pro-tissue repair response. This review will discuss recent advances in our understanding of the cellular response to apoptotic cell uptake, including trafficking of apoptotic cell cargo and antigen presentation, signaling and transcriptional events initiated by efferocytosis, the coordination of an anti-inflammatory response and tissue repair, unique cellular metabolic responses and the role of efferocytosis in host defense. A better understanding of how efferocytic cells respond to apoptotic cell uptake will be critical in unraveling the complex connections between apoptotic cell removal and inflammation resolution and maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- Charles Yin
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Center for Human Immunology, Western University, London, ON, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Center for Human Immunology, Western University, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
| |
Collapse
|
81
|
Almeida L, Everts B. Fa(c)t checking: How fatty acids shape metabolism and function of macrophages and dendritic cells. Eur J Immunol 2021; 51:1628-1640. [PMID: 33788250 PMCID: PMC8359938 DOI: 10.1002/eji.202048944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
In recent years there have been major advances in our understanding of the role of free fatty acids (FAs) and their metabolism in shaping the functional properties of macrophages and DCs. This review presents the most recent insights into how cell intrinsic FA metabolism controls DC and macrophage function, as well as the current evidence of the importance of various exogenous FAs (such as polyunsaturated FAs and their oxidation products—prostaglandins, leukotrienes, and proresolving lipid mediators) in affecting DC and macrophage biology, by modulating their metabolic properties. Finally, we explore whether targeted modulation of FA metabolism of myeloid cells to steer their function could hold promise in therapeutic settings.
Collapse
Affiliation(s)
- Luís Almeida
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
82
|
Kasikara C, Schilperoort M, Gerlach B, Xue C, Wang X, Zheng Z, Kuriakose G, Dorweiler B, Zhang H, Fredman G, Saleheen D, Reilly MP, Tabas I. Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis. J Clin Invest 2021; 131:145275. [PMID: 33630758 DOI: 10.1172/jci145275] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Efferocytosis, the process through which apoptotic cells (ACs) are cleared through actin-mediated engulfment by macrophages, prevents secondary necrosis, suppresses inflammation, and promotes resolution. Impaired efferocytosis drives the formation of clinically dangerous necrotic atherosclerotic plaques, the underlying etiology of coronary artery disease (CAD). An intron of the gene encoding PHACTR1 contains rs9349379 (A>G), a common variant associated with CAD. As PHACTR1 is an actin-binding protein, we reasoned that if the rs9349379 risk allele G causes lower PHACTR1 expression in macrophages, it might link the risk allele to CAD via impaired efferocytosis. We show here that rs9349379-G/G was associated with lower levels of PHACTR1 and impaired efferocytosis in human monocyte-derived macrophages and human atherosclerotic lesional macrophages compared with rs9349379-A/A. Silencing PHACTR1 in human and mouse macrophages compromised AC engulfment, and Western diet-fed Ldlr-/- mice in which hematopoietic Phactr1 was genetically targeted showed impaired lesional efferocytosis, increased plaque necrosis, and thinner fibrous caps - all signs of vulnerable plaques in humans. Mechanistically, PHACTR1 prevented dephosphorylation of myosin light chain (MLC), which was necessary for AC engulfment. In summary, rs9349379-G lowered PHACTR1, which, by lowering phospho-MLC, compromised efferocytosis. Thus, rs9349379-G may contribute to CAD risk, at least in part, by impairing atherosclerotic lesional macrophage efferocytosis.
Collapse
Affiliation(s)
- Canan Kasikara
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Maaike Schilperoort
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Brennan Gerlach
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Chenyi Xue
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ze Zheng
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - George Kuriakose
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Hanrui Zhang
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical Center, Albany, New York, USA
| | - Danish Saleheen
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Muredach P Reilly
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Department of Physiology and Cellular Biophysics and.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
83
|
Abstract
Billions of cells undergo apoptosis daily and are swiftly removed by macrophages through an evolutionarily conserved program termed "efferocytosis". Consequently, macromolecules within an apoptotic cell significantly burden a phagocyte with nutrients, such as lipids, oligonucleotides, and amino acids. In response to this nutrient overload, metabolic reprogramming must occur for the process of efferocytosis to remain non-phlogistic and to execute successive rounds of efferocytosis. The inability to undergo metabolic reprogramming after efferocytosis drives inflammation and impairs its resolution, often promoting many chronic inflammatory diseases. This is particularly evident for atherosclerosis, as metabolic reprogramming alters macrophage function in every stage of atherosclerosis, from the early formation of benign lesions to the progression of clinically relevant atheromas and during atherosclerosis regression upon aggressive lipid-lowering. This Review focuses on the metabolic pathways utilized upon apoptotic cell ingestion, the consequences of these metabolic pathways in macrophage function thereafter, and the role of metabolic reprogramming during atherosclerosis. Due to the growing interest in this new field, I introduce a new term, "efferotabolism", as a means to define the process by which macrophages break down, metabolize, and respond to AC-derived macromolecules. Understanding these aspects of efferotabolism will shed light on novel strategies to combat atherosclerosis and compromised inflammation resolution.
Collapse
|
84
|
Song CX, Chen JY, Li N, Guo Y. CTRP9 Enhances Efferocytosis in Macrophages via MAPK/Drp1-Mediated Mitochondrial Fission and AdipoR1-Induced Immunometabolism. J Inflamm Res 2021; 14:1007-1017. [PMID: 33790616 PMCID: PMC8001589 DOI: 10.2147/jir.s302944] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 01/20/2023] Open
Abstract
Background Clearance of apoptotic cells (ACs) by phagocytes (efferocytosis) suppresses post-apoptotic necrosis and alleviates inflammation. Defective efferocytosis induces diseases that include atherosclerosis and autoimmune diseases. C1q/TNF-related protein 9 (CTRP9), a novel adipokine, has been reported to protect against various cardiovascular disease; however, the effect of CTRP9 on efferocytosis has not been elucidated. Methods 1. The efferocytosis of macrophages incubated with ACs with or without CTRP9 treatment was detected by flow cytometry (FCM) and immunostaining. The unengulfed ACs of CTRP9-KO and wild-type (WT) mice after dexamethasone injection were detected by TUNEL assay. 2. As mitochondrial fission is important for promoting efferocytosis, the effect of CTRP9 on mitochondrial fission was measured by fission/fusion-related proteins (MFN2, DRP1, MFF, and OPA1) and visualized by staining with MitoTracker. 3. On account of metabolism insults in engulfed macrophages, we conducted a two-stage efferocytosis assay, and the protective effects of CTRP9 on metabolism were investigated by Western blot. Results CTRP9 significantly facilitated macrophage efferocytosis, and it promoted mitochondrial fission by increasing the expression of p-DRP1 (s616) and the translocation of DRP1 from the cytoplasm to the mitochondria. The p38/Jnk-MAPK pathway was activated after treatment with 1 μg/mL CTRP9. When we blocked the activation of MAPK signaling by SB203580 and SP600125, the mediated effect on p-DRP1 (s616) was reduced. Moreover, CTRP9 increased the levels of ABCA1, PPAR-y, HIF-1a and GLUT1, as well as the release of lactate in basal and engulfed macrophages, which revealed that the metabolism of macrophages was advanced. Apoptotic cell-conditioned media (ACCM) and ACs increased the expression of adiponectin receptor 1 (AdipoR1). Down-regulation of AdipoR1 by siRNA could abrogate the immunometabolism effects of CTRP9. Conclusion CTRP9 promoted efferocytosis in macrophages via MAPK/drp1-mediated mitochondrial fission and AdipoR1-induced immunometabolism.
Collapse
Affiliation(s)
- Cheng-Xiang Song
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Ji-Ying Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.,Department of General Practice, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Na Li
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yuan Guo
- Department of General Practice, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
85
|
Fige É, Szendrei J, Sós L, Kraszewska I, Potor L, Balla J, Szondy Z. Heme Oxygenase-1 Contributes to Both the Engulfment and the Anti-Inflammatory Program of Macrophages during Efferocytosis. Cells 2021; 10:652. [PMID: 33804125 PMCID: PMC8001822 DOI: 10.3390/cells10030652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
Heme oxygenase-1 (HO-1) plays a vital role in the catabolism of heme and yields equimolar amounts of biliverdin, carbon monoxide, and free iron. We report that macrophages engulfing either the low amount of heme-containing apoptotic thymocytes or the high amount of heme-containing eryptotic red blood cells (eRBCs) strongly upregulate HO-1. The induction by apoptotic thymocytes is dependent on soluble signals, which do not include adenylate cyclase activators but induce the p38 mitogen-activated protein (MAP) kinase pathway, while in the case of eRBCs, it is cell uptake-dependent. Both pathways might involve the regulation of BTB and CNC homology 1 (BACH1), which is the repressor transcription regulator factor of the HO-1 gene. Long-term continuous efferocytosis of apoptotic thymocytes is not affected by the loss of HO-1, but that of eRBCs is inhibited. This latter is related to an internal signaling pathway that prevents the efferocytosis-induced increase in Rac1 activity. While the uptake of apoptotic cells suppressed the basal pro-inflammatory cytokine production in wild-type macrophages, in the absence of HO-1, engulfing macrophages produced enhanced amounts of pro-inflammatory cytokines. Our data demonstrate that HO-1 is required for both the engulfment and the anti-inflammatory response parts of the efferocytosis program.
Collapse
Affiliation(s)
- Éva Fige
- Section of Dental Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, University of Debrecen, 4012 Debrecen, Hungary; (É.F.); (J.S.); (L.S.)
| | - Judit Szendrei
- Section of Dental Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, University of Debrecen, 4012 Debrecen, Hungary; (É.F.); (J.S.); (L.S.)
| | - László Sós
- Section of Dental Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, University of Debrecen, 4012 Debrecen, Hungary; (É.F.); (J.S.); (L.S.)
| | - Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland;
| | - László Potor
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4012 Debrecen, Hungary; (L.P.); (J.B.)
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, University of Debrecen, 4012 Debrecen, Hungary; (L.P.); (J.B.)
- Division of Nephrology, Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Zsuzsa Szondy
- Section of Dental Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Dentistry, University of Debrecen, 4012 Debrecen, Hungary; (É.F.); (J.S.); (L.S.)
| |
Collapse
|
86
|
Yurdagul A, Kong N, Gerlach BD, Wang X, Ampomah P, Kuriakose G, Tao W, Shi J, Tabas I. ODC (Ornithine Decarboxylase)-Dependent Putrescine Synthesis Maintains MerTK (MER Tyrosine-Protein Kinase) Expression to Drive Resolution. Arterioscler Thromb Vasc Biol 2021; 41:e144-e159. [PMID: 33406854 PMCID: PMC8034502 DOI: 10.1161/atvbaha.120.315622] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/22/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE ODC (ornithine decarboxylase)-dependent putrescine synthesis promotes the successive clearance of apoptotic cells (ACs) by macrophages, contributing to inflammation resolution. However, it remains unknown whether ODC is required for other arms of the resolution program. Approach and Results: RNA sequencing of ODC-deficient macrophages exposed to ACs showed increases in mRNAs associated with heightened inflammation and decreases in mRNAs related to resolution and repair compared with WT (wild type) macrophages. In zymosan peritonitis, myeloid ODC deletion led to delayed clearance of neutrophils and a decrease in the proresolving cytokine, IL (interleukin)-10. Nanoparticle-mediated silencing of macrophage ODC in a model of atherosclerosis regression lowered IL-10 expression, decreased efferocytosis, enhanced necrotic core area, and reduced fibrous cap thickness. Mechanistically, ODC deletion lowered basal expression of MerTK (MER tyrosine-protein kinase)-an AC receptor-via a histone methylation-dependent transcriptional mechanism. Owing to lower basal MerTK, subsequent exposure to ACs resulted in lower MerTK-Erk (extracellular signal-regulated kinase) 1/2-dependent IL-10 production. Putrescine treatment of ODC-deficient macrophages restored the expression of both MerTK and AC-induced IL-10. CONCLUSIONS These findings demonstrate that ODC-dependent putrescine synthesis in macrophages maintains a basal level of MerTK expression needed to optimally resolve inflammation upon subsequent AC exposure. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Brennan D. Gerlach
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaobo Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Patrick Ampomah
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - George Kuriakose
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
- Department of Physiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
87
|
Dumont A, Lee M, Barouillet T, Murphy A, Yvan-Charvet L. Mitochondria orchestrate macrophage effector functions in atherosclerosis. Mol Aspects Med 2020; 77:100922. [PMID: 33162108 DOI: 10.1016/j.mam.2020.100922] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Macrophages are pivotal in the initiation and development of atherosclerotic cardiovascular diseases. Recent studies have reinforced the importance of mitochondria in metabolic and signaling pathways to maintain macrophage effector functions. In this review, we discuss the past and emerging roles of macrophage mitochondria metabolic diversity in atherosclerosis and the potential avenue as biomarker. Beyond metabolic functions, mitochondria are also a signaling platform integrating epigenetic, redox, efferocytic and apoptotic regulations, which are exquisitely linked to their dynamics. Indeed, mitochondria functions depend on their density and shape perpetually controlled by mitochondria fusion/fission and biogenesis/mitophagy balances. Mitochondria can also communicate with other organelles such as the endoplasmic reticulum through mitochondria-associated membrane (MAM) or be secreted for paracrine actions. All these functions are perturbed in macrophages from mouse or human atherosclerotic plaques. A better understanding and integration of how these metabolic and signaling processes are integrated and dictate macrophage effector functions in atherosclerosis may ultimately help the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Adélie Dumont
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France
| | - ManKS Lee
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3165, Australia
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France
| | - Andrew Murphy
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3165, Australia
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France.
| |
Collapse
|
88
|
Crbn modulates calcium influx by regulating Orai1 during efferocytosis. Nat Commun 2020; 11:5489. [PMID: 33127885 PMCID: PMC7603501 DOI: 10.1038/s41467-020-19272-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium flux regulating intracellular calcium levels is essential and modulated for efficient efferocytosis. However, the molecular mechanism by which calcium flux is modulated during efferocytosis remains elusive. Here, we report that Orai1, a Crbn substrate, is upregulated via its attenuated interaction with Crbn during efferocytosis, which increases calcium influx into phagocytes and thereby promotes efferocytosis. We found that Crbn deficiency promoted phagocytosis of apoptotic cells, which resulted from facilitated phagocytic cup closure and was nullified by a CRAC channel inhibitor. In addition, Orai1 associated with Crbn, resulting in ubiquitination and proteasomal degradation of Orai1 and alteration of SOCE-mediated calcium influx. The association of Orai1 with Crbn was attenuated during efferocytosis, leading to reduced ubiquitination of Orai1 and consequently upregulation of Orai1 and calcium influx. Collectively, our study reveals a regulatory mechanism by which calcium influx is modulated by a Crbn-Orai1 axis to facilitate efferocytosis.
Collapse
|
89
|
Gadiyar V, Lahey KC, Calianese D, Devoe C, Mehta D, Bono K, Desind S, Davra V, Birge RB. Cell Death in the Tumor Microenvironment: Implications for Cancer Immunotherapy. Cells 2020; 9:cells9102207. [PMID: 33003477 PMCID: PMC7599747 DOI: 10.3390/cells9102207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
The physiological fate of cells that die by apoptosis is their prompt and efficient removal by efferocytosis. During these processes, apoptotic cells release intracellular constituents that include purine nucleotides, lysophosphatidylcholine (LPC), and Sphingosine-1-phosphate (S1P) that induce migration and chemo-attraction of phagocytes as well as mitogens and extracellular membrane-bound vesicles that contribute to apoptosis-induced compensatory proliferation and alteration of the extracellular matrix and the vascular network. Additionally, during efferocytosis, phagocytic cells produce a number of anti-inflammatory and resolving factors, and, together with apoptotic cells, efferocytic events have a homeostatic function that regulates tissue repair. These homeostatic functions are dysregulated in cancers, where, aforementioned events, if not properly controlled, can lead to cancer progression and immune escape. Here, we summarize evidence that apoptosis and efferocytosis are exploited in cancer, as well as discuss current translation and clinical efforts to harness signals from dying cells into therapeutic strategies.
Collapse
|
90
|
Filep JG, Ariel A. Neutrophil heterogeneity and fate in inflamed tissues: implications for the resolution of inflammation. Am J Physiol Cell Physiol 2020; 319:C510-C532. [PMID: 32667864 DOI: 10.1152/ajpcell.00181.2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neutrophils are polymorphonuclear leukocytes that play a central role in host defense against infection and tissue injury. They are rapidly recruited to the inflamed site and execute a variety of functions to clear invading pathogens and damaged cells. However, many of their defense mechanisms are capable of inflicting collateral tissue damage. Neutrophil-driven inflammation is a unifying mechanism underlying many common diseases. Efficient removal of neutrophils from inflammatory loci is critical for timely resolution of inflammation and return to homeostasis. Accumulating evidence challenges the classical view that neutrophils represent a homogeneous population and that halting neutrophil influx is sufficient to explain their rapid decline within inflamed loci during the resolution of protective inflammation. Hence, understanding the mechanisms that govern neutrophil functions and their removal from the inflammatory locus is critical for minimizing damage to the surrounding tissue and for return to homeostasis. In this review, we briefly address recent advances in characterizing neutrophil phenotypic and functional heterogeneity and the molecular mechanisms that determine the fate of neutrophils within inflammatory loci and the outcome of the inflammatory response. We also discuss how these mechanisms may be harnessed as potential therapeutic targets to facilitate resolution of inflammation.
Collapse
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Amiram Ariel
- Departmentof Biology and Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
91
|
Kim D, Lee SA, Moon H, Kim K, Park D. The Tim gene family in efferocytosis. Genes Genomics 2020; 42:979-986. [PMID: 32648232 DOI: 10.1007/s13258-020-00969-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
One of the key features of the plasma membrane is the asymmetrical distribution of phospholipids across it. Especially, phosphatidylserine (PS) exclusively locates on its inner leaflet. Thus, the exposure of PS on the surface of cells could function as a signal initiating various cellular processes such as phagocytosis of apoptotic cells called efferocytosis, blood clotting, muscle formation, and viral entry. Indeed, PS on apoptotic cells stimulates phagocytes to engulf them and functions as an essential ligand for efferocytosis. Due to the importance of PS in efferocytosis, the existence of the PS receptor had been conceived. However, the PS receptor had not been revealed for a long time. Thus, the first identification of the PS receptor was significant excitement. Tim-4, a member of the T cell immunoglobulin and mucin domain containing family of genes, was one of PS receptors which first identified and received the greatest attention due to its expression in macrophages and relevance to autoimmune and allergic diseases. This review will serve to provide a comprehensive overview of Tim proteins as PS receptors.
Collapse
Affiliation(s)
- Deokhwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Sang-Ah Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Hyunji Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Kwanhyeong Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Daeho Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea. .,Center for Cell Mechanobiology, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
92
|
Macrophage Immunometabolism and Inflammaging: Roles of Mitochondrial Dysfunction, Cellular Senescence, CD38, and NAD. ACTA ACUST UNITED AC 2020; 2:e200026. [PMID: 32774895 PMCID: PMC7409778 DOI: 10.20900/immunometab20200026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aging is a complex process that involves dysfunction on multiple levels, all of which seem to converge on inflammation. Macrophages are intimately involved in initiating and resolving inflammation, and their dysregulation with age is a primary contributor to inflammaging—a state of chronic, low-grade inflammation that develops during aging. Among the age-related changes that occur to macrophages are a heightened state of basal inflammation and diminished or hyperactive inflammatory responses, which seem to be driven by metabolic-dependent epigenetic changes. In this review article we provide a brief overview of mitochondrial functions and age-related changes that occur to macrophages, with an emphasis on how the inflammaging environment, senescence, and NAD decline can affect their metabolism, promote dysregulation, and contribute to inflammaging and age-related pathologies.
Collapse
|
93
|
Zhao M, Wang DDH, Liu X, Tian R. Metabolic Modulation of Macrophage Function Post Myocardial Infarction. Front Physiol 2020; 11:674. [PMID: 32695016 PMCID: PMC7338762 DOI: 10.3389/fphys.2020.00674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/26/2020] [Indexed: 02/05/2023] Open
Abstract
Macrophages are key components of innate immunity, and they play critical roles in heart health and diseases. Following acute myocardial infarction (MI), infiltrating macrophages undergo drastic phenotypic transition from pro-inflammatory in the early stage to pro-healing in the late stage. Transcriptome analyses of macrophage in the infarct zone show a time-dependent reprogramming of mitochondrial and metabolic functions, which parallels the changes of macrophage function. These observations suggest that mitochondrial and metabolic targets could be exploited for therapeutic opportunities. In this article, we reviewed the recent work on immunometabolic features of macrophage over the MI time continuum. In addition, we summarized currently proposed mitochondrial pathways involved in the functional polarization of macrophage and discussed their potential relevance to the outcome of MI. We expect that these findings will stimulate further investigations in metabolic modulation of innate immunity in the post-MI setting, which could ultimately lead to new strategies for therapy.
Collapse
Affiliation(s)
- Mingyue Zhao
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dennis Ding-Hwa Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States.,Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
94
|
Yvan-Charvet L, Ng LG. Granulopoiesis and Neutrophil Homeostasis: A Metabolic, Daily Balancing Act. Trends Immunol 2020; 40:598-612. [PMID: 31256783 DOI: 10.1016/j.it.2019.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Granulopoiesis is part of the hematopoietic hierarchic architecture, where hematopoietic stem cells give rise to highly proliferative multipotent and lineage-committed granulocytic progenitor cells that differentiate into unipotent neutrophil progenitors. Given their short lifespan, neutrophils are rapidly cleared from circulation through specialized efferocytic macrophages. Together with an intrinsic clock, these processes contribute to circadian fluctuations, preserving self-tolerance and protection against invading pathogens. However, metabolic perturbation of granulopoiesis and neutrophil homeostasis can result in low-grade chronic inflammation, as observed with aging. During acute pathogenic infections, hematopoiesis can also be switched into emergency mode, which has been recently associated with significant neutrophil functional heterogeneity. This review focuses on a new reassessment of regulatory mechanisms governing neutrophil production, life-cycle, and diversity in health and disease.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore 138648, Singapore; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, 288 Nanjing Road, Tianjin 300020, China; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
95
|
Maraux M, Gaillardet A, Gally A, Saas P, Cherrier T. Human primary neutrophil mRNA does not contaminate human resolving macrophage mRNA after efferocytosis. J Immunol Methods 2020; 483:112810. [PMID: 32592772 DOI: 10.1016/j.jim.2020.112810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/20/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
The ingestion of apoptotic corpses by macrophages, a process called efferocytosis, is a crucial step in inflammation resolution, since it alters macrophage phenotype toward a pro-resolving profile to foil inflammation and to favor tissue repair. Up to now, the resolving macrophages remain poorly characterized, especially in humans. Global investigations, like RNA sequencing, would be very helpful to unravel some features of these elusive cells. Nonetheless, these inquiries may be challenging in a single-species model, since the fate of ingested mRNA remains unknown and may hinder any subsequent mRNA investigations in the phagocyte. A full human model consisting of primary human neutrophil and primary human monocyte-derived macrophage co-culture was set up several decades ago to mimic in vitro the efferocytosis process. However, to our knowledge, this model has not been characterized as a suitable model to perform global mRNA investigations. Indeed, the extent of ingested neutrophil mRNA contamination has not been assessed in resolving macrophages. This work answers to this crucial question. Indeed, based on the protocols presented in this article, we demonstrate that neutrophil mRNA is severely degraded and is not able to cross-contaminate resolving macrophage mRNA, contrary to apoptotic human peripheral blood derived mononuclear cell (PBMC) or apoptotic leukemic Jurkat cell mRNA. Moreover, this allogenic co-culture system does not favor neither neutrophil activation nor macrophage pro-inflammatory cytokine release. Collectively, we highlight that this model of primary human neutrophil and primary human monocyte-derived macrophage co-culture is the best model for mRNA investigations in human resolving macrophages to help improving our knowledge on these crucial cells.
Collapse
Affiliation(s)
- M Maraux
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, F-25000 Besançon, France
| | - A Gaillardet
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, F-25000 Besançon, France
| | - A Gally
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, F-25000 Besançon, France
| | - P Saas
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, F-25000 Besançon, France
| | - T Cherrier
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, F-25000 Besançon, France.
| |
Collapse
|
96
|
Chazaud B. Inflammation and Skeletal Muscle Regeneration: Leave It to the Macrophages! Trends Immunol 2020; 41:481-492. [PMID: 32362490 DOI: 10.1016/j.it.2020.04.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
Inflammation is usually considered as harmful; however, it is also necessary for tissue recovery after injury. Macrophages exert immune and nonimmune functions throughout this process. During skeletal muscle regeneration, they mount an inflammatory response while exerting trophic roles on muscle and mesenchymal stem cells. Proinflammatory macrophages shift to being anti-inflammatory, triggering the resolution of inflammation. Studies have highlighted that during this shift, a crosstalk ensues, integrating cues for resolution, efferocytosis, cellular metabolism, and signaling pathways. During the restorative phase, macrophages dampen inflammation while promoting stem cell differentiation, angiogenesis, and matrix remodeling. Since blunting the inflammatory phase can be detrimental for muscle regeneration, we suggest that rather than fighting inflammation, it should be allowed to operate and resolve, thus allowing for tissue recovery.
Collapse
Affiliation(s)
- Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Lyon, France.
| |
Collapse
|
97
|
Abstract
Macrophage immunometabolism, the changes in intracellular metabolic pathways that alter the function of these highly plastic cells, has been the subject of intense interest in the past few years, in part because macrophage immunometabolism plays important roles in atherosclerosis and other inflammatory diseases. In this review article, part of the Compendium on Atherosclerosis, we introduce the concepts of (1) intracellular immunometabolism-the canonical pathways of intrinsic cell activation leading to changes in intracellular metabolism, which in turn alter cellular function; and (2) intercellular immunometabolism-conditions in which intermediates of cellular metabolism are transferred from one cell to another, thereby altering the function of the recipient cell. The recent discovery that the metabolite cargo of dead and dying cells ingested through efferocytosis by macrophages can alter metabolic pathways and downstream function of the efferocyte is markedly changing the way we think about macrophage immunometabolism. Metabolic transitions of macrophages contribute to their functions in all stages of atherosclerosis, from lesion initiation to formation of advanced lesions characterized by necrotic cores, to lesion regression following aggressive lipid lowering. This review article discusses recent advances in our understanding of these different aspects of macrophage immunometabolism in atherosclerosis. With the increasing understanding of the roles of macrophage immunometabolism in atherosclerosis, new exciting concepts and potential targets for intervention are emerging.
Collapse
Affiliation(s)
- Ira Tabas
- From the Departments of Medicine, Anatomy and Cell Biology, and Physiology and Cellular Biophysics, Columbia University Irving Medical Center, NY (I.T.)
| | - Karin E Bornfeldt
- Department of Medicine, and Division of Metabolism, Endocrinology and Nutrition, Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (K.E.B.)
| |
Collapse
|
98
|
Butenko S, Satyanarayanan SK, Assi S, Schif-Zuck S, Sher N, Ariel A. Transcriptomic Analysis of Monocyte-Derived Non-Phagocytic Macrophages Favors a Role in Limiting Tissue Repair and Fibrosis. Front Immunol 2020; 11:405. [PMID: 32296415 PMCID: PMC7136412 DOI: 10.3389/fimmu.2020.00405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/20/2020] [Indexed: 01/08/2023] Open
Abstract
Monocyte-derived macrophages are readily differentiating cells that adapt their gene expression profile to environmental cues and functional needs. During the resolution of inflammation, monocytes initially differentiate to reparative phagocytic macrophages and later to pro-resolving non-phagocytic macrophages that produce high levels of IFNβ to boost resolutive events. Here, we performed in-depth analysis of phagocytic and non-phagocytic myeloid cells to reveal their distinct features. Unexpectedly, our analysis revealed that the non-phagocytic compartment of resolution phase myeloid cells is composed of Ly6CmedF4/80− and Ly6ChiF4/80lo monocytic cells in addition to the previously described Ly6C−F4/80+ satiated macrophages. In addition, we found that both Ly6C+ monocytic cells differentiate to Ly6C−F4/80+macrophages, and their migration to the peritoneum is CCR2 dependent. Notably, satiated macrophages expressed high levels of IFNβ, whereas non-phagocytic monocytes of either phenotype did not. A transcriptomic comparison of phagocytic and non-phagocytic resolution phase F4/80+ macrophages showed that both subtypes express similar gene signatures that make them distinct from other myeloid cells. Moreover, we confirmed that these macrophages express closer transcriptomes to monocytes than to resident peritoneal macrophages (RPM) and resemble resolutive Ly6Clo macrophages and monocyte-derived macrophages more than their precursors, inflammatory Ly6Chi monocytes, recovered following liver injury and healing, and thioglycolate-induced peritonitis, respectively. A direct comparison of these subsets indicated that the non-phagocytic transcriptome is dominated by satiated macrophages and downregulate gene clusters associated with excessive tissue repair and fibrosis, ROS and NO synthesis, glycolysis, and blood vessel morphogenesis. On the other hand, non-phagocytic macrophages enhance the expression of genes associated with migration, oxidative phosphorylation, and mitochondrial fission as well as anti-viral responses when compared to phagocytic macrophages. Notably, conversion from phagocytic to satiated macrophages is associated with a reduction in the expression of extracellular matrix constituents that were demonstrated to be associated with idiopathic pulmonary fibrosis (IPF). Thus, macrophage satiation during the resolution of inflammation seems to bring about a transcriptomic transition that resists tissue fibrosis and oxidative damage while promoting the restoration of tissue homeostasis to complete the resolution of inflammation.
Collapse
Affiliation(s)
- Sergei Butenko
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | - Simaan Assi
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | - Noa Sher
- Tauber Bioinformatics Center, University of Haifa, Haifa, Israel
| | - Amiram Ariel
- Department of Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
99
|
Kourtzelis I, Hajishengallis G, Chavakis T. Phagocytosis of Apoptotic Cells in Resolution of Inflammation. Front Immunol 2020; 11:553. [PMID: 32296442 PMCID: PMC7137555 DOI: 10.3389/fimmu.2020.00553] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/11/2020] [Indexed: 01/04/2023] Open
Abstract
Efficient inflammation resolution is important not only for the termination of the inflammatory response but also for the restoration of tissue integrity. An integral process to resolution of inflammation is the phagocytosis of dying cells by macrophages, known as efferocytosis. This function is mediated by a complex and well-orchestrated network of interactions amongst specialized phagocytic receptors, bridging molecules, as well as “find-me” and “eat-me” signals. Efferocytosis serves not only as a waste disposal mechanism (clearance of the apoptotic cells) but also promotes a pro-resolving phenotype in efferocytic macrophages and thereby termination of inflammation. Alterations in cellular metabolism are critical for shaping the phenotype and function of efferocytic macrophages, thus, representing an important determinant of macrophage plasticity. Impaired efferocytosis can result in inflammation-associated pathologies or autoimmunity. The present mini review summarizes current knowledge regarding the mechanisms regulating macrophage efferocytosis during clearance of inflammation.
Collapse
Affiliation(s)
- Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
100
|
Márquez-Ropero M, Benito E, Plaza-Zabala A, Sierra A. Microglial Corpse Clearance: Lessons From Macrophages. Front Immunol 2020; 11:506. [PMID: 32292406 PMCID: PMC7135884 DOI: 10.3389/fimmu.2020.00506] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
From development to aging and disease, the brain parenchyma is under the constant threat of debris accumulation, in the form of dead cells and protein aggregates. To prevent garbage buildup, the brain is equipped with efficient phagocytes: the microglia. Microglia are similar, but not identical to other tissue macrophages, and in this review, we will first summarize the differences in the origin, lineage and population maintenance of microglia and macrophages. Then, we will discuss several principles that govern macrophage phagocytosis of apoptotic cells (efferocytosis), including the existence of redundant recognition mechanisms ("find-me" and "eat-me") that lead to a tight coupling between apoptosis and phagocytosis. We will then describe that resulting from engulfment and degradation of apoptotic cargo, phagocytes undergo an epigenetic, transcriptional and metabolic rewiring that leads to trained immunity, and discuss its relevance for microglia and brain function. In summary, we will show that neuroimmunologists can learn many lessons from the well-developed field of macrophage phagocytosis biology.
Collapse
Affiliation(s)
- Mar Márquez-Ropero
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Eva Benito
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| | - Ainhoa Plaza-Zabala
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| |
Collapse
|