51
|
Bittner NKJ, Mack KL, Nachman MW. Shared Patterns of Gene Expression and Protein Evolution Associated with Adaptation to Desert Environments in Rodents. Genome Biol Evol 2022; 14:evac155. [PMID: 36268582 PMCID: PMC9648513 DOI: 10.1093/gbe/evac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 01/18/2023] Open
Abstract
Desert specialization has arisen multiple times across rodents and is often associated with a suite of convergent phenotypes, including modification of the kidneys to mitigate water loss. However, the extent to which phenotypic convergence in desert rodents is mirrored at the molecular level is unknown. Here, we sequenced kidney mRNA and assembled transcriptomes for three pairs of rodent species to search for shared differences in gene expression and amino acid sequence associated with adaptation to deserts. We conducted phylogenetically independent comparisons between a desert specialist and a non-desert relative in three families representing ∼70 million years of evolution. Overall, patterns of gene expression faithfully recapitulated the phylogeny of these six taxa providing a strong evolutionary signal in levels of mRNA abundance. We also found that 8.6% of all genes showed shared patterns of expression divergence between desert and non-desert taxa, much of which likely reflects convergent evolution, and representing more than expected by chance under a model of independent gene evolution. In addition to these shared changes, we observed many species-pair-specific changes in gene expression indicating that instances of adaptation to deserts include a combination of unique and shared changes. Patterns of protein evolution revealed a small number of genes showing evidence of positive selection, the majority of which did not show shared changes in gene expression. Overall, our results suggest that convergent changes in gene regulation play an important role in the complex trait of desert adaptation in rodents.
Collapse
Affiliation(s)
- Noëlle K J Bittner
- Department of Integrative Biology and Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California Berkeley, California 94720
| | - Katya L Mack
- Department of Integrative Biology and Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California Berkeley, California 94720
| | - Michael W Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California Berkeley, California 94720
| |
Collapse
|
52
|
Wang G, Wang F, Pei H, Li M, Bai F, Lei C, Dang R. Genome-wide analysis reveals selection signatures for body size and drought adaptation in Liangzhou donkey. Genomics 2022; 114:110476. [PMID: 36057425 DOI: 10.1016/j.ygeno.2022.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023]
Abstract
Liangzhou donkey is a domestic animal breed distributed on the edge of the Tengger Desert in Gansu Province of China. It has small body size and strong adaptability to dry environments. Here, we sequenced 10 Liangzhou donkey genomes and compared them to the 55 genomes of 8 representative donkey breeds worldwide. The population structure analysis revealed that Liangzhou donkey harboured the ancestry with the Asian domestic donkeys (0.863) and European domestic donkeys (0.137). Three methods (nucleotide diversity, linkage disequilibrium decay and runs of homozygosity) implied the genetic diversity in Liangzhou donkey. In addition, we analyzed the genetic basis of the small body size and drought adaptation of Liangzhou donkey by using Fst, θπ-ratio, XP-EHH, CLR and θπ methods. We found that the NCAPG-LCORL on chromosome 3 may be a candidate region for small body size trait of Liangzhou donkey. The CYP4A11 gene located on chromosome 5 showed strong sign of selection sweep. CYP4A11 can convert arachidonic acid into 19(S)-HETE, which can promote water reabsorption in renal tubule and enhance the ability of Liangzhou donkey to adapt to dry environment. These results contribute to a better understanding of the underlying population structure of Liangzhou donkeys and provides a valuable resource for future research on donkey breeding in response to climate change.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| | - Haoyu Pei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| | - Mei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China
| | - Fuxia Bai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, China.
| |
Collapse
|
53
|
Zhao X, Zhang J, Wang H, Li H, Qu C, Wen J, Zhang X, Zhu T, Nie C, Li X, Muhatai G, Wang L, Lv X, Yang W, Zhao C, Bao H, Li J, Zhu B, Cao G, Xiong W, Ning Z, Qu L. Genomic and transcriptomic analyses reveal genetic adaptation to cold conditions in the chickens. Genomics 2022; 114:110485. [PMID: 36126832 DOI: 10.1016/j.ygeno.2022.110485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/27/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
Under the pressure of natural and artificial selection, domestic animals, including chickens, have evolved unique mechanisms of genetic adaptations such as high-altitude adaptation, hot and arid climate adaptation, and desert adaptation. Here, we investigated the genetic basis of cold tolerance in chicken by integrating whole-genome and transcriptome sequencing technologies. Genome-wide comparative analyses of 118 chickens living in different latitudes showed 46 genes and several pathways that may be involved in cold adaptation. The results of the functional enrichment analysis of differentially expressed genes proved the important role of metabolic pathways and immune-related pathways in cold tolerance in chickens. The subsequent integration of whole genome and transcriptome sequencing technology further identified six genes - dnah5 (dynein axonemal heavy chain 5), ptgs2 (prostaglandin-endoperoxide synthase 2), inhba (inhibin beta A subunit), irx2 (iroquois homeobox 2), ensgalg00000054917, and ensgalg00000046652 - requiring more detailed studies. In addition, we also discovered different allele frequency distributions of five SNPs (single nucleotide polymorphisms) within ptgs2 and nine SNPs within dnah5 in chickens in different latitudes, suggesting strong selective pressure of these two genes in chickens. We provide a novel insight into the genetic adaptation in chickens to cold environments, and provide a reference for evaluating and developing adaptive chicken breeds in cold environments.
Collapse
Affiliation(s)
- Xiurong Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jinxin Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Huie Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang 843300, China.
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China.
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, China.
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xinye Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Tao Zhu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Changsheng Nie
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xinghua Li
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Gemingguli Muhatai
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang 843300, China.
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China.
| | - XueZe Lv
- Beijing Municipal General Station of Animal Science, Beijing 100107, China.
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China.
| | - Chunjiang Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Haigang Bao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Junying Li
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Bo Zhu
- Animal Health Supervision Institute of Zhuozhou, Hebei Province 072750, China.
| | - Guomin Cao
- Animal husbandry station of Fangchenggang, Guangxi Province 538001, China.
| | - Wenjie Xiong
- Animal Disease Prevention and Control Center of Fangchenggang, Guangxi Province 538001, China.
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
54
|
Knoll A, Wijacki J, Plasil M, Burger PA, Horin P. Microsatellite markers of the major histocompatibility complex genomic region of domestic camels. Front Genet 2022; 13:1015288. [PMID: 36353100 PMCID: PMC9638106 DOI: 10.3389/fgene.2022.1015288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
We identified and characterized 11 polymorphic microsatellite markers suitable for routine testing (three in the MHC class I sub-region, four in MHC class II and four in the MHC class III sub-region) of dromedaries and Bactrian camels. In total, 38 dromedaries and 33 Bactrian camels were genotyped, and interspecific differences were observed in the numbers of alleles and in allelic frequencies, as well as in the observed heterozygosity. These loci may be used as markers to study the adaptive genetic diversity of the MHC region in Old World camels.
Collapse
Affiliation(s)
- Ales Knoll
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Brno, Czechia
| | - Jan Wijacki
- Department of Animal Morphology, Physiology and Genetics, Faculty of Agronomy, Mendel University in Brno, Brno, Czechia
| | - Martin Plasil
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia
- CEITEC-VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Petr Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czechia
- CEITEC-VETUNI, University of Veterinary Sciences Brno, Brno, Czechia
| |
Collapse
|
55
|
Extracellular Vesicles in Veterinary Medicine. Animals (Basel) 2022; 12:ani12192716. [PMID: 36230457 PMCID: PMC9559303 DOI: 10.3390/ani12192716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-bound vesicles involved in many physiological and pathological processes not only in humans but also in all the organisms of the eukaryotic and prokaryotic kingdoms. EV shedding constitutes a fundamental universal mechanism of intra-kingdom and inter-kingdom intercellular communication. A tremendous increase of interest in EVs has therefore grown in the last decades, mainly in humans, but progressively also in animals, parasites, and bacteria. With the present review, we aim to summarize the current status of the EV research on domestic and wild animals, analyzing the content of scientific literature, including approximately 220 papers published between 1984 and 2021. Critical aspects evidenced through the veterinarian EV literature are discussed. Then, specific subsections describe details regarding EVs in physiology and pathophysiology, as biomarkers, and in therapy and vaccines. Further, the wide area of research related to animal milk-derived EVs is also presented in brief. The numerous studies on EVs related to parasites and parasitic diseases are excluded, deserving further specific attention. The literature shows that EVs are becoming increasingly addressed in veterinary studies and standardization in protocols and procedures is mandatory, as in human research, to maximize the knowledge and the possibility to exploit these naturally produced nanoparticles.
Collapse
|
56
|
Chafik A, Essamadi A, Çelik SY, Mavi A. Purification and biochemical characterization of catalase that confers protection against hydrogen peroxide induced by stressful desert environment: the Camelus Dromedarius kidney catalase. Prep Biochem Biotechnol 2022:1-12. [PMID: 36074915 DOI: 10.1080/10826068.2022.2119576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Camel is continually exposed to stressful desert environment that enhances generation of reactive oxygen species, including hydrogen peroxide (H2O2). Catalase plays an important role in detoxification of H2O2. A highly active catalase from camel kidney was purified to homogeneity, with a specific activity of 1,774,392 U/mg protein, using ion exchange and metal chelate affinity chromatography. The molecular weight of the enzyme was 268 kDa consisting of four identical subunits of 63 kDa. The enzyme showed higher optimum temperature (45 °C) and higher activation energy (4.37 kJ mol-1). The thermodynamic parameters, ΔH, ΔG and ΔS, were determined. The effect of various metal ions and chemicals on enzyme activity was investigated. Km, Vmax, kcat and kcat/Km values for H2O2 were found to be 46 mM, 10,715,045 U/mg, 48,265,968 s-1 and 2,966,562 s-1 mM-1, respectively. Camel kidney catalase displayed higher affinity efficiency for H2O2 and can protect reduced glutathione (GSH) from oxidation by H2O2. Sodium azide was found to be a noncompetitive inhibitor of enzyme with Ki and IC50 of 17.88 µM and 20.94 µM, respectively. Camel catalase showed unique biochemical properties. Interestingly, camel catalase can protect molecules (GSH) and organ functions (kidney) from the toxic effects of H2O2 induced by stressful desert environment.
Collapse
Affiliation(s)
- Abdelbasset Chafik
- Ecole Supérieure de Technologie d'El Kelâa des Sraghna, Université Cadi Ayyad, El Kelâa des Sraghna, Morocco.,Faculté des Sciences et Techniques, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Université Cadi Ayyad, Marrakech, Morocco
| | - Abdelkhalid Essamadi
- Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Hassan First University, Settat, Morocco
| | - Safinur Yildirim Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, Erzurum, Turkey
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Institute of Science, Atatürk University, Erzurum, Turkey.,Department of Mathematics and Science Education, Education Faculty of Kazim Karabekir, Atatürk University, Erzurum, Turkey
| |
Collapse
|
57
|
Camels' biological fluids contained nanobodies: promising avenue in cancer therapy. Cancer Cell Int 2022; 22:279. [PMID: 36071488 PMCID: PMC9449263 DOI: 10.1186/s12935-022-02696-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a major health concern and accounts for one of the main causes of death worldwide. Innovative strategies are needed to aid in the diagnosis and treatment of different types of cancers. Recently, there has been an evolving interest in utilizing nanobodies of camel origin as therapeutic tools against cancer. Nanotechnology uses nanobodies an emerging attractive field that provides promises to researchers in advancing different scientific sectors including medicine and oncology. Nanobodies are characteristically small-sized biologics featured with the ability for deep tissue penetration and dissemination and harbour high stability at high pH and temperatures. The current review highlights the potential use of nanobodies that are naturally secreted in camels’ biological fluids, both milk and urine, in the development of nanotechnology-based therapy for treating different typesQuery of cancers and other diseases. Moreover, the role of nano proteomics in the invention of novel therapeutic agents specifically used for cancer intervention is also illustrated.
Collapse
|
58
|
Inaba Y, Iwamoto S, Nakayama K. Genome-wide DNA methylation status of Mongolians exhibits signs of cellular stress response related to their nomadic lifestyle. J Physiol Anthropol 2022; 41:30. [PMID: 35986394 PMCID: PMC9388360 DOI: 10.1186/s40101-022-00305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Epigenetics is crucial for connecting environmental stresses with physiological responses in humans. Mongolia, where nomadic livestock pastoralism has been the primal livelihood, has a higher prevalence of various chronic diseases than the surrounding East Asian regions, which are more suitable for crop farming. The genes related to dietary stress and pathogenesis of related disorders may have varying epigenetic statuses among the human populations with diverse dietary cultures. Hence, to understand such epigenetic differences, we conducted a comparative analysis of genome-wide DNA methylation of Mongolians and crop-farming East Asians. Methods Genome-wide DNA methylation status of peripheral blood cells (PBCs) from 23 Mongolian adults and 24 Thai adults was determined using the Infinium Human Methylation 450K arrays and analyzed in combination with previously published 450K data of 20 Japanese and 8 Chinese adults. CpG sites/regions differentially methylated between Mongolians and crop-farming East Asians were detected using a linear model adjusted for sex, age, ethnicity, and immune cell heterogeneity on RnBeads software. Results Of the quality-controlled 389,454 autosomal CpG sites, 223 CpG sites were significantly differentially methylated among Mongolians and the four crop farming East Asian populations (false discovery rate < 0.05). Analyses focused on gene promoter regions revealed that PM20D1 (peptidase M20 domain containing 1), which is involved in mitochondrial uncoupling and various processes, including cellular protection from reactive oxygen species (ROS) and thermogenesis, was the top differentially methylated gene. Moreover, gene ontology enrichment analysis revealed that biological processes related to ROS metabolism were overrepresented among the top 1% differentially methylated genes. The promoter regions of these genes were generally hypermethylated in Mongolians, suggesting that the metabolic pathway detoxifying ROS might be globally suppressed in Mongolians, resulting in the high susceptibility of this population to various chronic diseases. Conclusions This study showed a significantly diverse DNA methylation status among Mongolians and crop-farming East Asians. Further, we found an association between the differentially methylated genes and various metabolic and neurodegenerative diseases. Knowledge of the epigenetic regulators might help in proper understanding, treatment, and control of such disorders, and physiological adaptation in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s40101-022-00305-0.
Collapse
|
59
|
Bruno S, Landi V, Senczuk G, Brooks SA, Almathen F, Faye B, Gaouar SSB, Piro M, Kim KS, David X, Eggen A, Burger P, Ciani E. Refining the Camelus dromedarius Myostatin Gene Polymorphism through Worldwide Whole-Genome Sequencing. Animals (Basel) 2022; 12:2068. [PMID: 36009658 PMCID: PMC9404819 DOI: 10.3390/ani12162068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Myostatin (MSTN) is a highly conserved negative regulator of skeletal muscle in mammals. Inactivating mutations results in a hyper-muscularity phenotype known as "double muscling" in several livestock and model species. In Camelus dromedarius, the gene structure organization and the sequence polymorphisms have been previously investigated, using Sanger and Next-Generation Sequencing technologies on a limited number of animals. Here, we carried out a follow-up study with the aim to further expand our knowledge about the sequence polymorphisms at the myostatin locus, through the whole-genome sequencing data of 183 samples representative of the geographical distribution range for this species. We focused our polymorphism analysis on the ±5 kb upstream and downstream region of the MSTN gene. A total of 99 variants (77 Single Nucleotide Polymorphisms and 22 indels) were observed. These were mainly located in intergenic and intronic regions, with only six synonymous Single Nucleotide Polymorphisms in exons. A sequence comparative analysis among the three species within the Camelus genus confirmed the expected higher genetic distance of C. dromedarius from the wild and domestic two-humped camels compared to the genetic distance between C. bactrianus and C. ferus. In silico functional prediction highlighted: (i) 213 differential putative transcription factor-binding sites, out of which 41 relative to transcription factors, with known literature evidence supporting their involvement in muscle metabolism and/or muscle development; and (ii) a number of variants potentially disrupting the canonical MSTN splicing elements, out of which two are discussed here for their potential ability to generate a prematurely truncated (inactive) form of the protein. The distribution of the considered variants in the studied cohort is discussed in light of the peculiar evolutionary history of this species and the hypothesis that extremely high muscularity, associated with a homozygous condition for mutated (inactivating) alleles at the myostatin locus, may represent, in arid desert conditions, a clear metabolic disadvantage, emphasizing the thermoregulatory and water availability challenges typical of these habitats.
Collapse
Affiliation(s)
- Silvia Bruno
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Vincenzo Landi
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Valenzano, 70010 Bari, Italy
| | - Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Samantha Ann Brooks
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Faisal Almathen
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Camel Research Center, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | | | | - Mohammed Piro
- Department of Medicine, Surgery and Reproduction, Institut Agronomique et Vétérinaire Hassan II, Rabat BP 6202, Morocco
| | - Kwan Suk Kim
- Department of Animal Sciences, Chungbuk National University, Chungbuk 28644, Korea
| | | | | | - Pamela Burger
- Research Institute of Wildlife Ecology, Vetmeduni, 1160 Vienna, Austria
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70126 Bari, Italy
| |
Collapse
|
60
|
Ming L, Siren D, Hasi S, Jambl T, Ji R. Review of genetic diversity in Bactrian camel ( Camelus bactrianus). Anim Front 2022; 12:20-29. [PMID: 35974787 PMCID: PMC9374477 DOI: 10.1093/af/vfac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Liang Ming
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Dalai Siren
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Surong Hasi
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, 010018, Hohhot, China
| | - Tuyatsetseg Jambl
- China-Mongolia Joint Laboratory for Biomacromolecule Research, Ulaanbaatar, Mongolia
| | - Rimutu Ji
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, 010018, Hohhot, China
| |
Collapse
|
61
|
Letaief N, Bedhiaf-Romdhani S, Ben Salem W, Mohammed AAS, Gaspa G, Pauciullo A. Tunisian camel casein gene characterization reveals similarities and differences with Sudanese and Nigerian populations. J Dairy Sci 2022; 105:6783-6794. [PMID: 35840403 DOI: 10.3168/jds.2022-22081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022]
Abstract
Milk is a primary protein source that has always played a role in mammalian health. Despite the intensification of research projects on dromedary and the knowledge of the genetic diversity at the casein loci, the genetic structure of the Tunisian camel population still needs exploration. This study sought to determine the genetic diversity of 3 casein gene variants in 5 Tunisian camel ecotypes: c.150G>T at CSN1S1 (αS1-casein), g.2126A>G at CSN2 (β-casein), and g.1029T>C at CSN3 (κ-casein). The obtained results were compared with data published on Sudanese and Nigerian camels to establish the level of differentiation within and between populations. A total of 159 blood samples were collected from 5 Tunisian camel ecotypes and the extracted DNA was genotyped by PCR-RFLP. A streamlined genotyping protocol was also developed for CSN3. Results indicated that allele T was quite rare (0.06) at CSN1S1 for all ecotypes. Minor allele frequency was found for G (0.462) in CSN2 except for Ardhaoui Medenine ecotype who deviated from the average CSN2 allele frequency of the total population. Allele C showed minor allele frequency of 0.384 in CSN3. Among the Tunisian population, GAT (0.343) was the most represented haplotype in all ecotypes except for Ardhaoui Medenine, where GGC (0.322) was the most frequent one. Significant differences in heterozygosity and local inbreeding were observed across the Tunisian, Sudanese, and Nigerian populations, although the global fixation index indicated that only 2.2% of the genetic variance is related to ecotype differences. Instead, phylogenetic analysis revealed a closer link between the Tunisian and Sudanese populations through a clade subdivision with 3 main branches among the ecotypes. This study represents the first attempt to understand casein gene variability in Tunisian camels; with further study, milk traits and genetic differentiation among populations can be associated with the history of camel domestication.
Collapse
Affiliation(s)
- N Letaief
- National Agronomic Institute of Tunisia 1082, Tunis, Tunisia; Laboratory of Animal and Forage Production, National Agricultural Research Institute of Tunisia, University of Carthage, Ariana 1004, Tunisia
| | - S Bedhiaf-Romdhani
- Laboratory of Animal and Forage Production, National Agricultural Research Institute of Tunisia, University of Carthage, Ariana 1004, Tunisia
| | - W Ben Salem
- Animal and Pasture Agency, Tunis 1002, Tunisia
| | - A A S Mohammed
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy
| | - G Gaspa
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy
| | - A Pauciullo
- Department of Agriculture, Forest and Food Sciences, University of Torino, 10095 Grugliasco (TO), Italy.
| |
Collapse
|
62
|
Burger PA, Ciani E. Structural and functional genomics in Old World camels-where do we stand and where to go. Anim Front 2022; 12:30-34. [PMID: 35974786 PMCID: PMC9374506 DOI: 10.1093/af/vfac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pamela A Burger
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, 1160 Vienna, Austria
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
63
|
Kandeel M, Al-Taher A, Venugopala KN, Marzok M, Morsy M, Nagaraja S. Camel Proteins and Enzymes: A Growing Resource for Functional Evolution and Environmental Adaptation. Front Vet Sci 2022; 9:911511. [PMID: 35903143 PMCID: PMC9315206 DOI: 10.3389/fvets.2022.911511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
In less agroecological parts of the Asian, Arabian, and African deserts, Camelus dromedarius play an important role in human survival. For many years, camels have been employed as a source of food, a tool of transportation, and a means of defense. They are becoming increasingly important as viable livestock animals in many desert climates. With the help of camel genetics, genomics and proteomics known so far, this review article will summarize camel enzymes and proteins, which allow them to thrive under varied harsh environmental situations. An in-depth study of the dromedary genome revealed the existence of protein-coding and fast-developing genes that govern a variety of metabolic responses including lipid and protein metabolism, glucoamylase, flavin-containing monooxygenase and guanidinoacetate methyltransferase are other metabolic enzymes found in the small intestine, liver, pancreas, and spleen. In addition, we will discuss the handling of common medications by camel liver cytochrome p 450, which are different from human enzymes. Moreover, camels developed several paths to get optimum levels of trace elements like copper, zinc, selenium, etc., which have key importance in their body for normal regulation of metabolic events. Insulin tolerance, carbohydrate and energy metabolism, xenobiotics metabolizing enzymes, vimentin functions, behavior during the rutting season, resistance to starvation and changes in blood composition and resistance to water loss were among the attractive aspects of camel enzymes and proteins peculiarities in the camels. Resolving the enigma of the method of adaptation and the molecular processes linked with camel life is still a developing repository full of mysteries that need additional exploration.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | - Abdulla Al-Taher
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Mohamed Marzok
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Surgery, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt
| | - Mohamed Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Sreeharsha Nagaraja
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bengaluru, India
| |
Collapse
|
64
|
Tijjani A, Salim B, da Silva MVB, Eltahir HA, Musa TH, Marshall K, Hanotte O, Musa HH. Genomic signatures for drylands adaptation at gene-rich regions in African zebu cattle. Genomics 2022; 114:110423. [PMID: 35803449 PMCID: PMC9388378 DOI: 10.1016/j.ygeno.2022.110423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
Background Indigenous Sudanese cattle are mainly indicine/zebu (humped) type. They thrive in the harshest dryland environments characterised by high temperatures, long seasonal dry periods, nutritional shortages, and vector disease challenges. Here, we sequenced 60 indigenous Sudanese cattle from six indigenous breeds and analysed the data using three genomic scan approaches to unravel cattle adaptation to the African dryland region. Results We identified a set of gene-rich selective sweep regions, detected mostly on chromosomes 5, 7 and 19, shared across African and Gir zebu. These include genes involved in immune response, body size and conformation, and heat stress response. We also identified selective sweep regions unique to Sudanese zebu. Of these, a 250 kb selective sweep on chromosome 16 spans seven genes, including PLCH2, PEX10, PRKCZ, and SKI, which are involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism. Conclusions Our results suggest that environmental adaptation may involve recent and ancient selection at gene-rich regions, which might be under a common regulatory genetic control, in zebu cattle. Sudanese cattle thrive in the harshest environments of the African drylands. Bos indicus shared selected genes are involved in immune response, conformation, and heat stress response. Sudanese zebu-specific sweep includes genes involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism. Environmental adaptation in zebu cattle may involve recent and ancient selection at gene-rich regions, which might be under a common regulatory genetic control.
Collapse
Affiliation(s)
- Abdulfatai Tijjani
- International Livestock Research Institute (ILRI), PO 5689, Addis Ababa, Ethiopia; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, PO Box 5689, Addis Ababa, Ethiopia; Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, United Kingdom.
| | - Bashir Salim
- Faculty of Veterinary Medicine, University of Khartoum, Sudan
| | | | | | - Taha H Musa
- Biomedical Research Institute, Darfur College, Sudan
| | - Karen Marshall
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi 00100, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), PO 5689, Addis Ababa, Ethiopia; Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, PO Box 5689, Addis Ababa, Ethiopia; Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, United Kingdom.
| | - Hassan H Musa
- Institute of Molecular Biology, University of Nyala, Sudan; Faculty of Medical Laboratory Sciences, University of Khartoum, Sudan.
| |
Collapse
|
65
|
What's in a name? Common name misuse potentially confounds the conservation of the wild camel Camelus ferus. ORYX 2022. [DOI: 10.1017/s0030605322000114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Common names allow species diversity to be acknowledged by experts and non-specialists alike; they are descriptors with both scientific and cultural implications. However, a lack of clarity when using a common name could risk altering perceptions of threatened species. This is the case for the Critically Endangered wild camel Camelus ferus, which, despite extensive evidence of its species status, is frequently referred to in English as wild Bactrian camel. However, the wild camel (Mongolian: хавтгай, khavtgai; Chinese: 野骆驼, ye luo tuo) is not a wild version of the domestic Bactrian camel Camelus bactrianus but a separate species near extinction, with an estimated population of c. 950. Failure to clearly separate Bactrian and wild camels in name risks masking the plight of the few remaining wild camels with the visible abundance of the domesticated species. Here we advocate the use of the accurate English common name wild camel for C. ferus ideally alongside its Indigenous names to correctly represent its cultural and conservation importance.
Collapse
|
66
|
Luo S, Li Y, Li S, Jiang R, Deng F, Liu G, Zhang J. Expression Regulation of Water Reabsorption Genes and Transcription Factors in the Kidneys of Lepus yarkandensis. Front Physiol 2022; 13:856427. [PMID: 35721542 PMCID: PMC9204326 DOI: 10.3389/fphys.2022.856427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Lepus yarkandensis is a desert-dwelling animal that has various adaptations to cope with drought. The kidney maintains water and acid-base balance mainly through the vasopressin-regulated water reabsorption pathway and proximal tubular bicarbonate reabsorption pathway. In this study, we compared the differentially expressed genes (DEGs) and transcription factors in the kidneys of L. yarkandensis and Oryctolagus cuniculus to explore the relationship between the DEGs in kidneys and the animals’ adaptations. Transcriptome sequencing data were used to predict the differentially-expressed water reabsorption genes and their transcription factors. Quantitative real-time PCR, immunohistochemistry, and western blotting were used to detect and verify the expression of DEGs in the kidney at mRNA and protein levels. Transcriptome analysis of the kidney of L. yarkandensis and O. cuniculus showed that 6,610 genes were up-regulated and 5,727 genes down-regulated in data shared by both species. According to the data, 232 transcription factors and their corresponding target genes were predicted, from which genes and transcription factors related to renal water reabsorption were screened. Quantitative RT-PCR results showed AQP1, AQP2, ADCY3, HIF1A, CREB3, and NFATc1 had higher expression in the L. yarkandensis kidney; in comparison, FXYD2 mRNA expression levels were lower. In western blotting, transcription factors HIF1A, NFATc1, NF-κB1, and critical genes ADCY3, ATPA1, and SLC4A4, were highly expressed in the kidneys of L. yarkandensis. Immunohistochemical results showed that the ADCY3 protein was in the basolateral membrane of the collecting duct, the ATP1A1 protein was in the basolateral membrane and medulla of proximal tubules, and the SLC4A4 protein was in the basolateral membrane of proximal tubules. According to these results can be inferred that HIF1A, NFATc1, and NF-κB1 play a certain role in regulating the expression of genes related to water reabsorption in the kidney of L. yarkandensis, thus improving the water reclamation efficiency of L. yarkandensis, so as to adapt to the arid desert environment.
Collapse
Affiliation(s)
- Shengjie Luo
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Yongle Li
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Shuwei Li
- College of Life Sciences and Technology, Tarim University, Alar, China.,Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, China
| | - Renjun Jiang
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Fang Deng
- College of Life Sciences and Technology, Tarim University, Alar, China
| | - Guoquan Liu
- Anhui Province Key Laboratory of Translational Cancer Research and Department of Biochemistry, College of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianping Zhang
- College of Life Sciences and Technology, Tarim University, Alar, China.,Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources, Tarim University, Alar, China
| |
Collapse
|
67
|
Sai Satyanarayana D, Ahlawat S, Sharma R, Arora R, Sharma A, Tantia MS, Vijh RK. Mitochondrial DNA diversity divulges high levels of haplotype diversity and lack of genetic structure in the Indian camels. Gene X 2022; 820:146279. [PMID: 35143947 DOI: 10.1016/j.gene.2022.146279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/08/2022] [Accepted: 02/03/2022] [Indexed: 11/04/2022] Open
Abstract
Camels represent an important genetic resource of the desert ecosystems of India, with the dromedary and Bactrian camels inhabiting the hot and cold deserts, respectively. This study is the first attempt to investigate mitochondrial DNA based genetic diversity in the Indian camel populations and explores their relationship in the context of global genetic diversity of all the three large camel species (Camelus ferus, Camelus bactrianus and Camelus dromedaries). A mitochondrial DNA fragment encompassing part of cytochrome b gene, tRNAThr, tRNAPro and the beginning of the control region was amplified and analyzed in 72 dromedary and 8 Bactrian camels of India. Sequence analysis revealed that the haplotype and nucleotide diversity (Hd: 0.937 and π: 0.00431) in the Indian dromedaries was higher than the indices reported so far for the dromedary or Bactrian camels across the globe. The corresponding values in the Indian Bactrian camels were 1.000 and 0.00393, respectively. Signals of population expansion were evident in the dromedaries of India on the basis of mismatch analysis and Fu's Fs values. The analysis of molecular variance attributed most of the genetic variance (92.15%) between the dromedary, wild Bactrian and domestic Bactrian camels indicating separate maternal origins. The existence of three mitochondrial lineages in the old world camels (C. bactrianus: Lineage A; C. ferus: Lineage B and C. dromedarius: Lineage C) was also substantiated by the topology of the Median-Joining network.
Collapse
Affiliation(s)
- D Sai Satyanarayana
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India; ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India.
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Annu Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - M S Tantia
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - R K Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
68
|
Malik A, Khan JM, Alhomida AS, Ola MS. Modulation of the Structure and Stability of Novel Camel Lens Alpha-Crystallin by pH and Thermal Stress. Gels 2022; 8:273. [PMID: 35621572 PMCID: PMC9140948 DOI: 10.3390/gels8050273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Alpha-crystallin protein performs structural and chaperone functions in the lens and comprises alphaA and alphaB subunits at a molar ratio of 3:1. The highly complex alpha-crystallin structure challenges structural biologists because of its large dynamic quaternary structure (300−1000 kDa). Camel lens alpha-crystallin is a poorly characterized molecular chaperone, and the alphaB subunit possesses a novel extension at the N-terminal domain. We purified camel lens alpha-crystallin using size exclusion chromatography, and the purity was analyzed by gradient (4−12%) sodium dodecyl sulfate−polyacrylamide gel electrophoresis. Alpha-crystallin was equilibrated in the pH range of 1.0 to 7.5. Subsequently, thermal stress (20−94 °C) was applied to the alpha-crystallin samples, and changes in the conformation and stability were recorded by dynamic multimode spectroscopy and intrinsic and extrinsic fluorescence spectroscopic methods. Camel lens alpha-crystallin formed a random coil-like structure without losing its native-like beta-sheeted structure under two conditions: >50 °C at pH 7.5 and all temperatures at pH 2.0. The calculated enthalpy of denaturation, as determined by dynamic multimode spectroscopy at pH 7.5, 4.0, 2.0, and 1.0 revealed that alpha-crystallin never completely denatures under acidic conditions or thermal denaturation. Alpha-crystallin undergoes a single, reversible thermal transition at pH 7.5. The thermodynamic data (unfolding enthalpy and heat capacity change) and chaperone activities indicated that alpha-crystallin does not completely unfold above the thermal transition. Camels adapted to live in hot desert climates naturally exhibit the abovementioned unique features.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (M.S.O.)
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdullah S. Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (M.S.O.)
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (M.S.O.)
| |
Collapse
|
69
|
Zhang D, Pan J, Liu C, Meng F, Zhang Y, Cao J, Cao Y, Zhou H. Identification of sodium homeostasis genes in Camelus bactrianus by whole transcriptome sequencing. FEBS Open Bio 2022; 12:864-876. [PMID: 35147292 PMCID: PMC8972041 DOI: 10.1002/2211-5463.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 11/20/2022] Open
Abstract
Salt dietary intake is tightly coupled to human health, and excessive sodium can cause strokes and cardiovascular diseases. Research into the renal medulla of camels exhibiting high salt resistance may aid identification of the mechanisms governing resistance to high salinity. In this study, we used RNA sequencing (RNA‐seq) to show that in the renal medulla of camels under salt stress, 22 mRNAs, 2 long noncoding RNAs (lncRNAs), and 31 microRNAs (miRNAs) exhibited differential expression compared with the free salt‐intake diet group. Using fluorescence in situ hybridization and dual‐luciferase reporter assays, we demonstrated that the lncRNA LNC003834 can bind miRNA‐34a and thereby relieve suppression of the salt‐absorption‐inhibiting SLC14A1 mRNA from miRNA‐34a, suggesting that the above lncRNA‐miRNA‐mRNA act as competing endogenous RNAs (ceRNAs). We subsequently performed short hairpin RNA and small RNA interference and reactive oxygen species (ROS) detection assays to show that SLC6A1, PCBP2, and PEX5L can improve the antioxidation capacity of renal medulla cells of camel by decreasing ROS levels. Our data suggest that camels achieve sodium homeostasis through regulating the expression of salt‐reabsorption‐related genes in the renal medulla, and this involves ceRNAs (SLC14A1 mRNA, LNC003834, and miRNA‐34a) and antioxidant genes (SLC6A1, PCBP2, and PEX5L). These data may assist in the development of treatments for diseases induced by high salt diets.
Collapse
Affiliation(s)
- Dong Zhang
- Inner Mongolia Key Laboratory of Bio-manufacture, Inner Mongolia Agricultural University, Hohhot, China.,College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Pan
- Inner Mongolia Key Laboratory of Bio-manufacture, Inner Mongolia Agricultural University, Hohhot, China.,College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China.,Department of Reproductive Medicine, Inner Mongolia Maternal and Child Health Care Hospital, Hohhot, China
| | - Chunxia Liu
- Inner Mongolia Key Laboratory of Bio-manufacture, Inner Mongolia Agricultural University, Hohhot, China.,College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Fanhua Meng
- Inner Mongolia Key Laboratory of Bio-manufacture, Inner Mongolia Agricultural University, Hohhot, China.,College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanru Zhang
- Inner Mongolia Key Laboratory of Bio-manufacture, Inner Mongolia Agricultural University, Hohhot, China.,College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Junwei Cao
- Inner Mongolia Key Laboratory of Bio-manufacture, Inner Mongolia Agricultural University, Hohhot, China.,College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu Cao
- Inner Mongolia Key Laboratory of Bio-manufacture, Inner Mongolia Agricultural University, Hohhot, China.,College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huanmin Zhou
- Inner Mongolia Key Laboratory of Bio-manufacture, Inner Mongolia Agricultural University, Hohhot, China.,College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
70
|
Enke N, Runa R, Brinkmann L, Südekum KH, Tholen E, Gerken M. Preference and discrimination behaviour of llamas to saline drinking water. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
71
|
Myrzakhmetova B, Kashikova K, Tolegen G, Zholdybaeva A, Gauһar T, Nazimgul B, Altayeva A, Gulzira B. Clinical and laboratory indicators of patients with type 2 diabetes mellitus on the background of freeze-dried camel milk «shubat extra» medication. CARDIOMETRY 2021. [DOI: 10.18137/cardiometry.2021.20.175179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Camel milk is a natural product that has dietic and medicinalproperties. Camel milk is widely used in the field of non-conventionalmedicine. It is scientifically proven that camel milk hasthe ability to help in the medical treatment of cancer and leukemia,due to the presence of substances that eliminate outof the body the compounds that provoke the development ofcancer. In addition, such milk is used during the treatment oftuberculosis, ulcers and some other problems with the gastrointestinaltract. This product is recommended to use for problemswith the pancreas, liver and intestines, as well as diabetesmellitus.The goal of research was to study the clinical parameters ofpatients with type 2 diabetes mellitus. The study group consistedof 15 patients with medium severity. The patients tookfreeze-dried shubat (camel milk) for 60 days. As a result of thetreatment, an improvement in clinical symptomatology andlaboratory parameters was achieved in all patients with diabetesmellitus. The results of the study showed the therapeuticand dietary potential of camel milk, due to its unique qualitycomposition.
Collapse
|
72
|
Piro M. Aspects of Molecular Genetics in Dromedary Camel. Front Genet 2021; 12:723181. [PMID: 34764978 PMCID: PMC8577052 DOI: 10.3389/fgene.2021.723181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Dromedary camels are unique in their morphological and physiological characteristics and are capable of providing milk and meat even under extreme environmental conditions. Like other species, the dromedary camel has also benefitted from the development of the molecular genetics to increase the knowledge about different aspect in camel genetics (genetic variation, molecular marker, parentage control, gene of interest, whole genome, dating…etc.). In this paper we review the different molecular genetic technics used in this particular species and future prospects. Dromedary genetic studies started in the end of the 1980s with phenotypic evaluation and the attempts to highlight the protein and biochemical diversity. In the 2000s, with the development of molecular markers such as microsatellites, genetic diversity of different types in several countries were estimated and microsatellites were also used for parentage control. In terms of genetic characterization, microsatellites revealed a defined global structure, differentiating East African and South Arabian dromedaries from North African, North Arabian, and South Asian individuals, respectively. Also, mitochondrialDNA sequence analysis of ancient DNA proved to be crucial in resolving domestication processes in dromedaries. Ancient and modern DNA revealed dynamics of domestication and cross-continental dispersion of the dromedary. Nuclear SNPs, single nucleotide polymorphisms changes that occur approximately each 1000 bps in the mammalian genome were also applied in some studies in dromedary. These markers are a very useful alternative to microsatellites and have been employed in some studies on genetic diversity and relevant phenotypic traits in livestock. Finally, thanks to the use of Next Generation Sequencing (NGS) the whole-genome assemblies of the dromedary (Camelus dromedarius) and a work to establish the organization of the dromedary genome at chromosome level were recently published.
Collapse
Affiliation(s)
- Mohammed Piro
- Veterinary Genetics Laboratory (LAGEV), Hassan II Agronomic and Veterinary Institute, Rabat, Morocco
| |
Collapse
|
73
|
Wollenberg Valero KC, Garcia-Porta J, Irisarri I, Feugere L, Bates A, Kirchhof S, Jovanović Glavaš O, Pafilis P, Samuel SF, Müller J, Vences M, Turner AP, Beltran-Alvarez P, Storey KB. Functional genomics of abiotic environmental adaptation in lacertid lizards and other vertebrates. J Anim Ecol 2021; 91:1163-1179. [PMID: 34695234 DOI: 10.1111/1365-2656.13617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
Understanding the genomic basis of adaptation to different abiotic environments is important in the context of climate change and resulting short-term environmental fluctuations. Using functional and comparative genomics approaches, we here investigated whether signatures of genomic adaptation to a set of environmental parameters are concentrated in specific subsets of genes and functions in lacertid lizards and other vertebrates. We first identify 200 genes with signatures of positive diversifying selection from transcriptomes of 24 species of lacertid lizards and demonstrate their involvement in physiological and morphological adaptations to climate. To understand how functionally similar these genes are to previously predicted candidate functions for climate adaptation and to compare them with other vertebrate species, we then performed a meta-analysis of 1,100 genes under selection obtained from -omics studies in vertebrate species adapted to different abiotic factors. We found that the vertebrate gene set formed a tightly connected interactome, which was to 23% enriched in previously predicted functions of adaptation to climate, and to a large part (18%) involved in organismal stress response. We found a much higher degree of identical genes being repeatedly selected among different animal groups (43.6%), and of functional similarity and post-translational modifications than expected by chance, and no clear functional division between genes used for ectotherm and endotherm physiological strategies. In total, 171 out of 200 genes of Lacertidae were part of this network. These results highlight an important role of a comparatively small set of genes and their functions in environmental adaptation and narrow the set of candidate pathways and markers to be used in future research on adaptation and stress response related to climate change.
Collapse
Affiliation(s)
| | - Joan Garcia-Porta
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany.,Campus Institut Data Science (CIDAS), Göttingen, Germany
| | - Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Kingston-Upon-Hull, UK
| | - Adam Bates
- Department of Biological and Marine Sciences, University of Hull, Kingston-Upon-Hull, UK
| | - Sebastian Kirchhof
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sabrina F Samuel
- Department of Biomedical Sciences, University of Hull, Kingston-Upon-Hull, UK
| | - Johannes Müller
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
74
|
Satyanarayana DS, Ahlawat S, Sharma R, Arora R, Sharma A, Tantia MS, Vijh RK. Genetic differentiation of Indian dromedary and Bactrian camel populations based on mitochondrial ATP8 and ATP6 genes. Anim Biotechnol 2021:1-5. [PMID: 34678134 DOI: 10.1080/10495398.2021.1990079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Camelids are acknowledged worldwide to endure hostile conditions prevalent in the hot as well cold deserts across the globe. Adaptations to climatic extremes have been associated with mitochondrial protein variants such as ATP8 and ATP6 in different species. The camel genetic resources of India are represented by 9 breeds of dromedary camels which inhabit hot arid and semi-arid zones of the country and a small population of Bactrian camels found in the cold desert of Ladakh. In this study, within and between breed genetic diversity in Indian dromedaries and their divergence from Bactrian camels was investigated based on ATP8/6 genes. Sequence analysis of a mitochondrial DNA fragment encompassing ATP8 and ATP6 genes identified 15 haplotypes in the dromedaries of India and 3 haplotypes in Bactrian camels. The values of haplotype diversity and nucleotide diversity were 0.647 and 0.00187 in the former and 0.679 and 0.00098, respectively in the latter. AMOVA analysis revealed 97.81% variance between the two species. Median-Joining network delineated three distinct mitochondrial haplogroups for Camelus dromedarius, Camelus ferus and Camelus bactrianus. Clear demarcation of the old world (Dromedary and Bactrian camels) and new world camelids (Alpaca, llama, guanaco and vicugna) was evident through the phylogenetic analysis.
Collapse
Affiliation(s)
- D Sai Satyanarayana
- National Bureau of Animal Genetic Resources, Indian Council of Agricultural Research, Karnal, India.,National Dairy Research Institute, Indian Council of Agricultural Research, Karnal, India
| | - Sonika Ahlawat
- National Bureau of Animal Genetic Resources, Indian Council of Agricultural Research, Karnal, India
| | - Rekha Sharma
- National Bureau of Animal Genetic Resources, Indian Council of Agricultural Research, Karnal, India
| | - Reena Arora
- National Bureau of Animal Genetic Resources, Indian Council of Agricultural Research, Karnal, India
| | - Annu Sharma
- National Bureau of Animal Genetic Resources, Indian Council of Agricultural Research, Karnal, India
| | - M S Tantia
- National Bureau of Animal Genetic Resources, Indian Council of Agricultural Research, Karnal, India
| | - R K Vijh
- National Bureau of Animal Genetic Resources, Indian Council of Agricultural Research, Karnal, India
| |
Collapse
|
75
|
Molecular Characterization of Blastocystis sp. in Camelus bactrianus in Northwestern China. Animals (Basel) 2021; 11:ani11113016. [PMID: 34827749 PMCID: PMC8614482 DOI: 10.3390/ani11113016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Knowledge for the distribution and genetic diversity of Blastocystis sp. can provide novel insights for the prevention and control of this parasite. The present study first reported the occurrence of Blastocystis infection in Camelus bactrianus, an important economic animal in northwestern China. We found the existence of eight Blastocystis subtypes in C. bactrianus, indicating potential risks and transmission of Blastocystis sp. for C. bactrianus. Abstract Blastocystis sp. is an important zoonotic protist in humans and various animals with worldwide distribution. However, there have been no data on the occurrence of Blastocystis sp. in C. bactrianus, an important economic animal in northwestern China. In the present study, a PCR-sequencing tool based on the SSU rRNA gene was applied to investigate the prevalence and genetic diversity of Blastocystis sp. in 638 faecal samples from C. bactrianus in 21 sampling sites within three main breeding areas (Gansu, Inner Mongolia and Xinjiang) in northwestern China. The total prevalence of Blastocystis sp. was 21.8% (139/638) in C. bactrianus, with the infection rates of 29.5% (18/61), 50.0% (14/28) and 19.5% (107/549) for animals aged <2 years, 2–6 years and >6 years, respectively. Significant differences in prevalence were detected among C. bactrianus from three geographic areas (χ2 = 19.972, df = 2, p < 0.001) and all sampling sites (χ2 = 104.154, df = 20, p < 0.001). A total of 16 of 21 sampling sites were positive for Blastocystis sp., with the prevalence ranging from 7.7% to 70.6%. Sequence analysis of the SSU rRNA gene identified eight subtypes in C. bactrianus in the present study, including seven animal adapted subtypes (ST10, ST14, ST21, ST24, ST25, ST26 and ST30) and one potentially novel subtype, with ST10 being the dominant one. To the best of our knowledge, this study provides the first insight for the occurrence and genetic make-up of Blastocystis sp. in C. bactrianus and contributes to the understanding of the transmission of Blastocystis infection in C. bactrianus in China.
Collapse
|
76
|
Gettings SM, Maxeiner S, Tzika M, Cobain MRD, Ruf I, Benseler F, Brose N, Krasteva-Christ G, Vande Velde G, Schönberger M, Althaus M. Two functional epithelial sodium channel isoforms are present in rodents despite pronounced evolutionary pseudogenisation and exon fusion. Mol Biol Evol 2021; 38:5704-5725. [PMID: 34491346 PMCID: PMC8662647 DOI: 10.1093/molbev/msab271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The epithelial sodium channel (ENaC) plays a key role in salt and water homeostasis in
tetrapod vertebrates. There are four ENaC subunits (α, β, γ, δ), forming heterotrimeric
αβγ- or δβγ-ENaCs. Although the physiology of αβγ-ENaC is well understood, for decades the
field has stalled with respect to δβγ-ENaC due to the lack of mammalian model organisms.
The SCNN1D gene coding for δ-ENaC was previously believed to be absent in
rodents, hindering studies using standard laboratory animals. We analyzed all currently
available rodent genomes and discovered that SCNN1D is present in rodents
but was independently lost in five rodent lineages, including the Muridae (mice and rats).
The independent loss of SCNN1D in rodent lineages may be constrained by
phylogeny and taxon-specific adaptation to dry habitats, however habitat aridity does not
provide a selection pressure for maintenance of SCNN1D across Rodentia. A
fusion of two exons coding for a structurally flexible region in the extracellular domain
of δ-ENaC appeared in the Hystricognathi (a group that includes guinea pigs). This
conserved pattern evolved at least 41 Ma and represents a new autapomorphic feature for
this clade. Exon fusion does not impair functionality of guinea pig (Cavia
porcellus) δβγ-ENaC expressed in Xenopus oocytes.
Electrophysiological characterization at the whole-cell and single-channel level revealed
conserved biophysical features and mechanisms controlling guinea pig αβγ- and δβγ-ENaC
function as compared with human orthologs. Guinea pigs therefore represent commercially
available mammalian model animals that will help shed light on the physiological function
of δ-ENaC.
Collapse
Affiliation(s)
- Sean M Gettings
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Belgium
| | - Stephan Maxeiner
- Institute for Anatomy and Cell Biology, Saarland University School of Medicine, Homburg, Germany
| | - Maria Tzika
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matthew R D Cobain
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Irina Ruf
- Division of Messel Research and Mammalogy, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Gabriela Krasteva-Christ
- Institute for Anatomy and Cell Biology, Saarland University School of Medicine, Homburg, Germany
| | - Greetje Vande Velde
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Belgium
| | - Matthias Schönberger
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Belgium
| | - Mike Althaus
- Institute for Functional Gene Analytics, Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| |
Collapse
|
77
|
Xu J, Xu K, Jung S, Conte A, Lieberman J, Muecksch F, Lorenzi JCC, Park S, Schmidt F, Wang Z, Huang Y, Luo Y, Nair MS, Wang P, Schulz JE, Tessarollo L, Bylund T, Chuang GY, Olia AS, Stephens T, Teng IT, Tsybovsky Y, Zhou T, Munster V, Ho DD, Hatziioannou T, Bieniasz PD, Nussenzweig MC, Kwong PD, Casellas R. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature 2021; 595:278-282. [PMID: 34098567 PMCID: PMC8260353 DOI: 10.1038/s41586-021-03676-z] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/27/2021] [Indexed: 11/08/2022]
Abstract
Since the start of the COVID-19 pandemic, SARS-CoV-2 has caused millions of deaths worldwide. Although a number of vaccines have been deployed, the continual evolution of the receptor-binding domain (RBD) of the virus has challenged their efficacy. In particular, the emerging variants B.1.1.7, B.1.351 and P.1 (first detected in the UK, South Africa and Brazil, respectively) have compromised the efficacy of sera from patients who have recovered from COVID-19 and immunotherapies that have received emergency use authorization1-3. One potential alternative to avert viral escape is the use of camelid VHHs (variable heavy chain domains of heavy chain antibody (also known as nanobodies)), which can recognize epitopes that are often inaccessible to conventional antibodies4. Here, we isolate anti-RBD nanobodies from llamas and from mice that we engineered to produce VHHs cloned from alpacas, dromedaries and Bactrian camels. We identified two groups of highly neutralizing nanobodies. Group 1 circumvents antigenic drift by recognizing an RBD region that is highly conserved in coronaviruses but rarely targeted by human antibodies. Group 2 is almost exclusively focused to the RBD-ACE2 interface and does not neutralize SARS-CoV-2 variants that carry E484K or N501Y substitutions. However, nanobodies in group 2 retain full neutralization activity against these variants when expressed as homotrimers, and-to our knowledge-rival the most potent antibodies against SARS-CoV-2 that have been produced to date. These findings suggest that multivalent nanobodies overcome SARS-CoV-2 mutations through two separate mechanisms: enhanced avidity for the ACE2-binding domain and recognition of conserved epitopes that are largely inaccessible to human antibodies. Therefore, although new SARS-CoV-2 mutants will continue to emerge, nanobodies represent promising tools to prevent COVID-19 mortality when vaccines are compromised.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- CRISPR-Cas Systems
- Camelids, New World/genetics
- Camelids, New World/immunology
- Female
- Gene Editing
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- Mutation
- Neutralization Tests
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Single-Domain Antibodies/chemistry
- Single-Domain Antibodies/genetics
- Single-Domain Antibodies/immunology
- Single-Domain Antibodies/isolation & purification
- Somatic Hypermutation, Immunoglobulin/genetics
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
Collapse
Affiliation(s)
- Jianliang Xu
- Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, USA.
| | - Kai Xu
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Andrea Conte
- Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, USA
| | | | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | - Solji Park
- Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yang Luo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jonathan E Schulz
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, CCR, NCI, NIH, Frederick, MD, USA
| | | | - Gwo-Yu Chuang
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Adam S Olia
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - I-Ting Teng
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, NIAID, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Peter D Kwong
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA.
| | - Rafael Casellas
- Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD, USA.
- The NIH Regulome Project, NIH, Bethesda, MD, USA.
- Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
78
|
Rocha JL, Godinho R, Brito JC, Nielsen R. Life in Deserts: The Genetic Basis of Mammalian Desert Adaptation. Trends Ecol Evol 2021; 36:637-650. [PMID: 33863602 PMCID: PMC12090818 DOI: 10.1016/j.tree.2021.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Deserts are among the harshest environments on Earth. The multiple ages of different deserts and their global distribution provide a unique opportunity to study repeated adaptation at different timescales. Here, we summarize recent genomic research on the genetic mechanisms underlying desert adaptations in mammals. Several studies on different desert mammals show large overlap in functional classes of genes and pathways, consistent with the complexity and variety of phenotypes associated with desert adaptation to water and food scarcity and extreme temperatures. However, studies of desert adaptation are also challenged by a lack of accurate genotype-phenotype-environment maps. We encourage development of systems that facilitate functional analyses, but also acknowledge the need for more studies on a wider variety of desert mammals.
Collapse
Affiliation(s)
- Joana L Rocha
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
| | - Raquel Godinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; Department of Zoology, University of Johannesburg, PO Box 534, Auckland Park 2006, South Africa
| | - José C Brito
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Rasmus Nielsen
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA 94820, USA; Globe Institute, University of Copenhagen, DK-1165 Copenhagen, Denmark.
| |
Collapse
|
79
|
Alvira-Iraizoz F, Gillard BT, Lin P, Paterson A, Pauža AG, Ali MA, Alabsi AH, Burger PA, Hamadi N, Adem A, Murphy D, Greenwood MP. Multiomic analysis of the Arabian camel (Camelus dromedarius) kidney reveals a role for cholesterol in water conservation. Commun Biol 2021; 4:779. [PMID: 34163009 PMCID: PMC8222267 DOI: 10.1038/s42003-021-02327-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/06/2021] [Indexed: 02/05/2023] Open
Abstract
The Arabian camel (Camelus dromedarius) is the most important livestock animal in arid and semi-arid regions and provides basic necessities to millions of people. In the current context of climate change, there is renewed interest in the mechanisms that enable camelids to survive in arid conditions. Recent investigations described genomic signatures revealing evolutionary adaptations to desert environments. We now present a comprehensive catalogue of the transcriptomes and proteomes of the dromedary kidney and describe how gene expression is modulated as a consequence of chronic dehydration and acute rehydration. Our analyses suggested an enrichment of the cholesterol biosynthetic process and an overrepresentation of categories related to ion transport. Thus, we further validated differentially expressed genes with known roles in water conservation which are affected by changes in cholesterol levels. Our datasets suggest that suppression of cholesterol biosynthesis may facilitate water retention in the kidney by indirectly facilitating the AQP2-mediated water reabsorption.
Collapse
Affiliation(s)
- Fernando Alvira-Iraizoz
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK.
| | - Benjamin T Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Panjiao Lin
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Alex Paterson
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Audrys G Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Mahmoud A Ali
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, AL Ain, United Arab Emirates
| | - Ammar H Alabsi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Pamela A Burger
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Naserddine Hamadi
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, AL Ain, United Arab Emirates.
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
80
|
Chebii VJ, Mpolya EA, Muchadeyi FC, Domelevo Entfellner JB. Genomics of Adaptations in Ungulates. Animals (Basel) 2021; 11:1617. [PMID: 34072591 PMCID: PMC8230064 DOI: 10.3390/ani11061617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Ungulates are a group of hoofed animals that have long interacted with humans as essential sources of food, labor, clothing, and transportation. These consist of domesticated, feral, and wild species raised in a wide range of habitats and biomes. Given the diverse and extreme environments inhabited by ungulates, unique adaptive traits are fundamental for fitness. The documentation of genes that underlie their genomic signatures of selection is crucial in this regard. The increasing availability of advanced sequencing technologies has seen the rapid growth of ungulate genomic resources, which offers an exceptional opportunity to understand their adaptive evolution. Here, we summarize the current knowledge on evolutionary genetic signatures underlying the adaptations of ungulates to different habitats.
Collapse
Affiliation(s)
- Vivien J. Chebii
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| | - Emmanuel A. Mpolya
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania;
| | - Farai C. Muchadeyi
- Agricultural Research Council Biotechnology Platform (ARC-BTP), Private Bag X5, Onderstepoort 0110, South Africa;
| | - Jean-Baka Domelevo Entfellner
- Biosciences Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709, Nairobi 00100, Kenya;
| |
Collapse
|
81
|
Araya-Donoso R, San Juan E, Tamburrino Í, Lamborot M, Veloso C, Véliz D. Integrating genetics, physiology and morphology to study desert adaptation in a lizard species. J Anim Ecol 2021; 91:1148-1162. [PMID: 34048024 DOI: 10.1111/1365-2656.13546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Integration of multiple approaches is key to understand the evolutionary processes of local adaptation and speciation. Reptiles have successfully colonized desert environments, that is, extreme and arid conditions that constitute a strong selective pressure on organisms. Here, we studied genomic, physiological and morphological variations of the lizard Liolaemus fuscus to detect adaptations to the Atacama Desert. By comparing populations of L. fuscus inhabiting the Atacama Desert with populations from the Mediterranean forests from central Chile, we aimed at characterizing features related to desert adaptation. We combined ddRAD sequencing with physiological (evaporative water loss, metabolic rate and selected temperature) and morphological (linear and geometric morphometrics) measurements. We integrated the genomic and phenotypic data using redundancy analyses. Results showed strong genetic divergence, along with a high number of fixed loci between desert and forest populations. Analyses detected 110 fixed and 30 outlier loci located within genes, from which 43 were in coding regions, and 12 presented non-synonymous mutations. The candidate genes were associated with cellular membrane and development. Desert lizards presented lower evaporative water loss than those from the forest. Morphological data showed that desert lizards had smaller body size, different allometry, larger eyeballs and more dorsoventrally compressed heads. Our results suggest incipient speciation between desert and forest populations. The adaptive signal must be cautiously interpreted since genetic drift could also contribute to the divergence pattern. Nonetheless, we propose water and resource availability, and changes in habitat structure, as the most relevant challenges for desert reptiles. This study provides insights of the mechanisms that allow speciation as well as desert adaptation in reptiles at multiple levels, and highlights the benefit of integrating independent evidence.
Collapse
Affiliation(s)
- Raúl Araya-Donoso
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Esteban San Juan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ítalo Tamburrino
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Madeleine Lamborot
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Claudio Veloso
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - David Véliz
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
82
|
Sawyer L. β-Lactoglobulin and Glycodelin: Two Sides of the Same Coin? Front Physiol 2021; 12:678080. [PMID: 34093238 PMCID: PMC8173191 DOI: 10.3389/fphys.2021.678080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
The two lipocalins, β-lactoglobulin (βLg) and glycodelin (Gd), are possibly the most closely related members of the large and widely distributed lipocalin family, yet their functions appear to be substantially different. Indeed, the function of β-lactoglobulin, a major component of ruminant milk, is still unclear although neonatal nutrition is clearly important. On the other hand, glycodelin has several specific functions in reproduction conferred through distinct, tissue specific glycosylation of the polypeptide backbone. It is also associated with some cancer outcomes. The glycodelin gene, PAEP, reflecting one of its names, progestagen-associated endometrial protein, is expressed in many though not all primates, but the name has now also been adopted for the β-lactoglobulin gene (HGNC, www.genenames.org). After a general overview of the two proteins in the context of the lipocalin family, this review considers the properties of each in the light of their physiological functional significance, supplementing earlier reviews to include studies from the past decade. While the biological function of glycodelin is reasonably well defined, that of β-lactoglobulin remains elusive.
Collapse
Affiliation(s)
- Lindsay Sawyer
- School of Biological Sciences, IQB3, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
83
|
Hinsu AT, Tulsani NJ, Panchal KJ, Pandit RJ, Jyotsana B, Dafale NA, Patil NV, Purohit HJ, Joshi CG, Jakhesara SJ. Characterizing rumen microbiota and CAZyme profile of Indian dromedary camel (Camelus dromedarius) in response to different roughages. Sci Rep 2021; 11:9400. [PMID: 33931716 PMCID: PMC8087840 DOI: 10.1038/s41598-021-88943-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
In dromedary camels, which are pseudo-ruminants, rumen or C1 section of stomach is the main compartment involved in fiber degradation, as in true ruminants. However, as camels are adapted to the harsh and scarce grazing conditions of desert, their ruminal microbiota makes an interesting target of study. The present study was undertaken to generate the rumen microbial profile of Indian camel using 16S rRNA amplicon and shotgun metagenomics. The camels were fed three diets differing in the source of roughage. The comparative metagenomic analysis revealed greater proportions of significant differences between two fractions of rumen content followed by diet associated differences. Significant differences were also observed in the rumen microbiota collected at different time-points of the feeding trial. However, fraction related differences were more highlighted as compared to diet dependent changes in microbial profile from shotgun metagenomics data. Further, 16 genera were identified as part of the core rumen microbiome of Indian camels. Moreover, glycoside hydrolases were observed to be the most abundant among all Carbohydrate-Active enzymes and were dominated by GH2, GH3, GH13 and GH43. In all, this study describes the camel rumen microbiota under different dietary conditions with focus on taxonomic, functional, and Carbohydrate-Active enzymes profiles.
Collapse
Affiliation(s)
- Ankit T Hinsu
- Department of Animal Biotechnology, College of Veterinary Science & A.H., Anand Agricultural University, Anand, 388001, India
| | - Nilam J Tulsani
- Department of Animal Biotechnology, College of Veterinary Science & A.H., Anand Agricultural University, Anand, 388001, India
| | - Ketankumar J Panchal
- Department of Animal Biotechnology, College of Veterinary Science & A.H., Anand Agricultural University, Anand, 388001, India
| | - Ramesh J Pandit
- Department of Animal Biotechnology, College of Veterinary Science & A.H., Anand Agricultural University, Anand, 388001, India
| | | | - Nishant A Dafale
- ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| | - Niteen V Patil
- ICAR-National Research Centre On Camel, Bikaner, 334001, India.,ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Science & A.H., Anand Agricultural University, Anand, 388001, India.,Gujarat Biotechnology Research Centre, Gandhinagar, 382010, India
| | - Subhash J Jakhesara
- Department of Animal Biotechnology, College of Veterinary Science & A.H., Anand Agricultural University, Anand, 388001, India.
| |
Collapse
|
84
|
Hussen J. Changes in Cell Vitality, Phenotype, and Function of Dromedary Camel Leukocytes After Whole Blood Exposure to Heat Stress in vitro. Front Vet Sci 2021; 8:647609. [PMID: 33898545 PMCID: PMC8062783 DOI: 10.3389/fvets.2021.647609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
The dromedary camel (Camelus dromedarius) is well-adapted to the desert environment with the ability to tolerate increased internal body temperatures rising daily to 41–42°C during extreme hot. This study was undertaken to assess whether in vitro incubation of camel blood at 41°C, simulating conditions of heat stress, differently alters cell vitality, phenotype, and function of leukocytes, compared to incubation at 37°C (normothermia). Using flow cytometry, the cell vitality (necrosis and apoptosis), the expression of several cell markers and adhesion molecules, and the antimicrobial functions of camel leukocytes were analyzed in vitro. The fraction of apoptotic cells within the granulocytes, lymphocytes, and monocytes increased significantly after incubation of camel whole blood at 41°C for 4 h. The higher increase in apoptotic granulocytes and monocytes compared to lymphocytes suggests higher resistance of camel lymphocytes to heat stress. Functionally, incubation of camel blood at 41°C for 4 h enhanced the phagocytosis and ROS production activities of camel neutrophils and monocytes toward S. aureus. Monocytes from camel blood incubated at 41°C for 4 h significantly decreased their expression level of MHC class II molecules with no change in the abundance of CD163, resulting in a CD163high MHC-IIlow M2-like macrophage phenotype. In addition, heat stress treatment showed an inhibitory effect on the LPS-induced changes in camel monocytes phenotype. Furthermore, in vitro incubation of camel blood at 41°C reduced the expression of the cell adhesion molecules CD18 and CD11a on neutrophils and monocytes. Collectively, the present study identified some heat-stress-induced phenotypic and functional alterations in camel blood leukocytes, providing a paradigm for comparative immunology in the large animals. The clinical relevance of the observed changes in camel leukocytes for the adaptation of the camel immune response to heat stress conditions needs further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
85
|
Rocha JL, Brito JC, Nielsen R, Godinho R. Convergent evolution of increased urine‐concentrating ability in desert mammals. Mamm Rev 2021. [DOI: 10.1111/mam.12244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Joana L. Rocha
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Campus de Vairão Vairão4485‐661Portugal
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto4169‐007Portugal
| | - José C. Brito
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Campus de Vairão Vairão4485‐661Portugal
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto4169‐007Portugal
| | - Rasmus Nielsen
- Department of Integrative Biology and Department of Statistics University of California Berkeley Berkeley CA USA
- Globe Institute University of Copenhagen CopenhagenDK‐1165Denmark
| | - Raquel Godinho
- CIBIO/InBIO Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Campus de Vairão Vairão4485‐661Portugal
- Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto4169‐007Portugal
- Department of Zoology University of Johannesburg PO Box 534 Auckland Park2006South Africa
| |
Collapse
|
86
|
An 8.22 Mb Assembly and Annotation of the Alpaca ( Vicugna pacos) Y Chromosome. Genes (Basel) 2021; 12:genes12010105. [PMID: 33467186 PMCID: PMC7830431 DOI: 10.3390/genes12010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
The unique evolutionary dynamics and complex structure make the Y chromosome the most diverse and least understood region in the mammalian genome, despite its undisputable role in sex determination, development, and male fertility. Here we present the first contig-level annotated draft assembly for the alpaca (Vicugna pacos) Y chromosome based on hybrid assembly of short- and long-read sequence data of flow-sorted Y. The latter was also used for cDNA selection providing Y-enriched testis transcriptome for annotation. The final assembly of 8.22 Mb comprised 4.5 Mb of male specific Y (MSY) and 3.7 Mb of the pseudoautosomal region. In MSY, we annotated 15 X-degenerate genes and two novel transcripts, but no transposed sequences. Two MSY genes, HSFY and RBMY, are multicopy. The pseudoautosomal boundary is located between SHROOM2 and HSFY. Comparative analysis shows that the small and cytogenetically distinct alpaca Y shares most of MSY sequences with the larger dromedary and Bactrian camel Y chromosomes. Most of alpaca X-degenerate genes are also shared with other mammalian MSYs, though WWC3Y is Y-specific only in alpaca/camels and the horse. The partial alpaca Y assembly is a starting point for further expansion and will have applications in the study of camelid populations and male biology.
Collapse
|
87
|
Lutz JC, Johnson SL, Duprey KJ, Taylor PJ, Vivanco-Mackie HW, Ponce-Salazar D, Miguel-Gonzales M, Youngs CR. Birth of a Live Cria After Transfer of a Vitrified-Warmed Alpaca ( Vicugna pacos) Preimplantation Embryo. Front Vet Sci 2020; 7:581877. [PMID: 33344527 PMCID: PMC7744456 DOI: 10.3389/fvets.2020.581877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
The alpaca (Vicugna pacos) is an important species for the production of fiber and food. Genetic improvement programs for alpacas have been hindered, however, by the lack of field-practical techniques for artificial insemination and embryo transfer. In particular, successful techniques for the cryopreservation of alpaca preimplantation embryos have not been reported previously. The objective of this study was to develop a field-practical and efficacious technique for cryopreservation of alpaca preimplantation embryos using a modification of a vitrification protocol originally devised for horses and adapted for dromedary camels. Four naturally cycling non-superovulated Huacaya females serving as embryo donors were mated to males of proven fertility. Donors received 30 μg of gonadorelin at the time of breeding, and embryos were non-surgically recovered 7 days after mating. Recovered embryos (n = 4) were placed individually through a series of three vitrification solutions at 20°C (VS1: 1.4 M glycerol; VS2: 1.4 M glycerol + 3.6 M ethylene glycol; VS3: 3.4 M glycerol + 4.6 M ethylene glycol) before loading into an open-pulled straw (OPS) and plunging directly into liquid nitrogen for storage. At warming, each individual embryo was sequentially placed through warming solutions (WS1: 0.5 M galactose at 37°C; WS2: 0.25 M galactose at 20°C), and warmed embryos were incubated at 37°C in 5% CO2 in humidified air for 20-22 h in 1 ml Syngro® holding medium supplemented with 10% (v/v) alpaca serum to perform an initial in vitro assessment of post-warming viability. Embryos whose diameter increased during culture (n = 2) were transferred individually into synchronous recipients, whereas embryos that did not grow (n = 2) were transferred together into a single recipient to perform an in vivo assessment of post-warming viability. Initial pregnancy detection was performed ultrasonographically 29 days post-transfer when fetal heartbeat could be detected, and one of three recipients was pregnant (25% embryo survival rate). On November 13, 2019, the one pregnant recipient delivered what is believed to be the world's first cria produced from a vitrified-warmed alpaca embryo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Curtis R Youngs
- Animal Science Department, Iowa State University, Ames, IA, United States
| |
Collapse
|
88
|
Malik A, Almaharfi HA, Khan JM, Hisamuddin M, Alamery SF, Haq SH, Ahmed MZ. Protection of ζ-crystallin by α-crystallin under thermal stress. Int J Biol Macromol 2020; 167:289-298. [PMID: 33278428 DOI: 10.1016/j.ijbiomac.2020.11.183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Cataract is one of the major causes of blindness worldwide. Several factors including post-translational modification, thermal and solar radiations promote cataractogenesis. The camel lens proteins survive very harsh desert conditions and resist cataractogenesis. The folding and aggregation mechanism of camel lens proteins are poorly characterized. The camel lens contains three ubiquitous crystallins (α-, β-, and γ-crystallin) and a novel protein (ζ-crystallin) in large amounts. In this study, a sequence similarity search of camel α-crystallin with that of other organisms showed that the camel αB-crystallin consists of an extended N-terminal domain. Our results indicate that camel α-crystallin efficiently prevented aggregation of ζ-crystallin, with or without an obligate cofactor up to 89 °C. It performed a quick and efficient holdase function irrespective of the unfolding stage or aggregation. Camel α-crystallin exhibits approximately 20% chaperone activity between 30 and 40 °C and is completely activated above 40 °C. Camel α-crystallin underwent a single reversible thermal transition without loss of β-sheet secondary structure. Intrinsic tryptophan fluorescence and ANS binding experiments revealed two transitions which corresponded to activation of its chaperone function. In contrast to earlier studies, camel α-crystallin completely protected lens proteins during thermal stress.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hajar Ahmed Almaharfi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Malik Hisamuddin
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Salman Freeh Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samina Hyder Haq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Saudi Arabia
| |
Collapse
|
89
|
Genome-Wide Analysis of Nubian Ibex Reveals Candidate Positively Selected Genes That Contribute to Its Adaptation to the Desert Environment. Animals (Basel) 2020; 10:ani10112181. [PMID: 33266380 PMCID: PMC7700370 DOI: 10.3390/ani10112181] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The Nubian ibex is a wild relative of the domestic goat found in hot deserts of Northern Africa and Arabia. The domestic goat is an important livestock species that is mainly found in arid and semi-arid regions of Africa and Asia. The Nubian ibex is well adapted to challenging environments in hot deserts characterized by high diurnal temperatures, intense solar radiation, and scarce water resources. It is therefore important to understand the genetic basis of its adaptation for scientific and economic importance. To identify genes with adaptive traits, the Nubian ibex genome was sequenced and compared with that of related mammals. We identified twenty-five genes under selection in the Nubian ibex that play diverse biological roles such as immune response, visual development, signal transduction, and reproduction. Three other genes under adaptive evolution involved in protective functions of the skin against damaging solar radiation in the desert were identified in Nubian ibex genome. Our finding provides valuable genomic insights into the adaptation of Nubian ibex to desert environments. The genomic information generated in this study can be used in developing appropriate breeding programs aimed at enhancing adaptation of local goats to less favorable habitats in response to changing climates. Abstract The domestic goat (Capra hircus) is an important livestock species with a geographic range spanning all continents, including arid and semi-arid regions of Africa and Asia. The Nubian ibex (Capra nubiana), a wild relative of the domestic goat inhabiting the hot deserts of Northern Africa and the Arabian Peninsula, is well-adapted to challenging environments in hot deserts characterized by intense solar radiation, thermal extremes, and scarce water resources. The economic importance of C. hircus breeds, as well as the current trends of global warming, highlights the need to understand the genetic basis of adaptation of C. nubiana to the desert environments. In this study, the genome of a C. nubiana individual was sequenced at an average of 37x coverage. Positively selected genes were identified by comparing protein-coding DNA sequences of C. nubiana and related species using dN/dS statistics. A total of twenty-two positively selected genes involved in diverse biological functions such as immune response, protein ubiquitination, olfactory transduction, and visual development were identified. In total, three of the twenty-two positively selected genes are involved in skin barrier development and function (ATP binding cassette subfamily A member 12, Achaete-scute family bHLH transcription factor 4, and UV stimulated scaffold protein A), suggesting that C. nubiana has evolved skin protection strategies against the damaging solar radiations that prevail in deserts. The positive selection signatures identified here provide new insights into the potential adaptive mechanisms to hot deserts in C. nubiana.
Collapse
|
90
|
Tian S, Zhou X, Phuntsok T, Zhao N, Zhang D, Ning C, Li D, Zhao H. Genomic Analyses Reveal Genetic Adaptations to Tropical Climates in Chickens. iScience 2020; 23:101644. [PMID: 33103083 PMCID: PMC7578744 DOI: 10.1016/j.isci.2020.101644] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/19/2020] [Accepted: 09/30/2020] [Indexed: 12/05/2022] Open
Abstract
The genetic footprints of adaptations to naturally occurring tropical stress along with domestication are poorly reported in chickens. Here, by conducting population genomic analyses of 67 chickens inhabiting distinct climates, we found signals of gene flow from Tibetan chickens to Sri Lankan and Saudi Arabian breeds and identified 12 positively selected genes that are likely involved in genetic adaptations to both tropical desert and tropical monsoon island climates. Notably, in tropical desert climate, advantageous alleles of TLR7 and ZC3HAV1, which could inhibit replication of viruses in cells, suggest immune adaptation to the defense against zoonotic diseases in chickens. Furthermore, comparative genomic analysis showed that four genes (OC90, PLA2G12B, GPR17 and TNFRSF11A) involved in arachidonic acid metabolism have undergone convergent adaptation to tropical desert climate between birds and mammals. Our study offers insights into the genetic mechanisms of adaptations to tropical climates in birds and other animals and provides practical value for breeding design and medical research on avian viruses.
Collapse
Affiliation(s)
- Shilin Tian
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Tashi Phuntsok
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
| | - Ning Zhao
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
| | - Dejing Zhang
- Novogene Bioinformatics Institute, Beijing 100015, China
| | - Chunyou Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Huabin Zhao
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, College of Science, Tibet University, Lhasa 850000, China
| |
Collapse
|
91
|
Entrainment of circadian rhythms of locomotor activity by ambient temperature cycles in the dromedary camel. Sci Rep 2020; 10:19515. [PMID: 33177571 PMCID: PMC7658228 DOI: 10.1038/s41598-020-76535-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
In the dromedary camel, a well-adapted desert mammal, daily ambient temperature (Ta)-cycles have been shown to synchronize the central circadian clock. Such entrainment has been demonstrated by examining two circadian outputs, body temperature and melatonin rhythms. Locomotor activity (LA), another circadian output not yet investigated in the camel, may provide further information on such specific entrainment. To verify if daily LA is an endogenous rhythm and whether the desert Ta-cycle can entrain it, six dromedaries were first kept under total darkness and constant-Ta. Results showed that the LA rhythm free runs with a period of 24.8–24.9 h. After having verified that the light–dark cycle synchronizes LA, camels were subjected to a Ta-cycle with warmer temperatures during subjective days and cooler temperatures during subjective nights. Results showed that the free-running LA rhythm was entrained by the Ta-cycle with a period of exactly 24.0 h, while a 12 h Ta-cycle phase advance induced an inversion of the LA rhythm and advanced the acrophase by 9 h. Similarly, activity onset and offset were significantly advanced. All together, these results demonstrate that the Ta-cycle is a strong zeitgeber, able to entrain the camel LA rhythm, hence corroborating previous results concerning the Ta non-photic synchronization of the circadian master clock.
Collapse
|
92
|
Devaux CA, Osman IO, Million M, Raoult D. Coxiella burnetii in Dromedary Camels ( Camelus dromedarius): A Possible Threat for Humans and Livestock in North Africa and the Near and Middle East? Front Vet Sci 2020; 7:558481. [PMID: 33251255 PMCID: PMC7674558 DOI: 10.3389/fvets.2020.558481] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
The "One Health" concept recognizes that human health is connected to animal health and to the ecosystems. Coxiella burnetii-induced human Q fever is one of the most widespread neglected zoonosis. The main animal reservoirs responsible for C. burnetii transmission to humans are domesticated ruminants, primarily goats, sheep, and cattle. Although studies are still too sparse to draw definitive conclusions, the most recent C. burnetii serosurvey studies conducted in herds and farms in Africa, North Africa, Arabian Peninsula, and Asia highlighted that seroprevalence was strikingly higher in dromedary camels (Camelus dromedarius) than in other ruminants. The C. burnetii seroprevalence in camel herds can reach more than 60% in Egypt, Saudi Arabia, and Sudan, and 70 to 80% in Algeria and Chad, respectively. The highest seroprevalence was in female camels with a previous history of abortion. Moreover, C. burnetii infection was reported in ticks of the Hyalomma dromedarii and Hyalomma impeltatum species collected on camels. Even if dromedary camels represent <3% of the domesticated ruminants in the countries of the Mediterranean basin Southern coast, these animals play a major socioeconomic role for millions of people who live in the arid zones of Africa, Middle East, and Asia. In Chad and Somalia, camels account for about 7 and 21% of domesticated ruminants, respectively. To meet the growing consumers demand of camel meat and milk (>5 million tons/year of both raw and pasteurized milk according to the Food and Agriculture Organization) sustained by a rapid increase of population (growth rate: 2.26-3.76 per year in North Africa), dromedary camel breeding tends to increase from the Maghreb to the Arabic countries. Because of possible long-term persistence of C. burnetii in camel hump adipocytes, this pathogen could represent a threat for herds and breeding farms and ultimately for public health. Because this review highlights a hyperendemia of C. burnetii in dromedary camels, a proper screening of herds and breeding farms for C. burnetii is urgently needed in countries where camel breeding is on the rise. Moreover, the risk of C. burnetii transmission from camel to human should be further evaluated.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Ikram Omar Osman
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- Faculty of Sciences Ben-Ben-M'Sik, University Hassan II, Casablanca, Morocco
| | - Matthieu Million
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
93
|
Abdelnour SA, Yang CY, Swelum AA, Abd El-Hack ME, Khafaga AF, Abdo M, Shang JH, Lu YQ. Molecular, functional, and cellular alterations of oocytes and cumulus cells induced by heat stress and shock in animals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38472-38490. [PMID: 32767010 DOI: 10.1007/s11356-020-10302-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Global warming is considered as the main environmental stress affecting ecosystems as well as physiological and biochemical characteristics, and survivability of living organisms. High temperature induces various stresses and causes reduction of fertility through reducing the oocyte developmental competence and alteration in surrounding cells' functions. This causes major economic loss to livestock creating a selective pressure on animals to the advantage of better adapted genotypes and to the detriment of others. In this review, a search in Science Direct, Google Scholar, PubMed, Web of Science, Scopus, and SID databases until 2020 was conducted. Keywords which include heat stress, shock, high temperature, oocyte, cumulus, and animals were investigated. Studies have exhibited that heat stress can disturb the development and function of oocyte and cumulus cells (CCs) concerning reproductive efficiency. Heat stress has deleterious consequences on oocyte maturation and development via reduced number of polar body extrusion, adenosine monophosphate, and guanosine monophosphate synthesis. Heat stress caused the alteration of cytoplasmic and nuclear features as well as trans-zonal projections and gap junctions. In addition, heat stress is accompanied with reduced mitochondrial activity (copy mDNA number, distribution, and membrane potential) in cumulus-oocyte complexes. This review targets the description of results in the most recent studies that aimed to call attention to the influences of heat stress on molecular, functional, and cellular changes in oocytes and CCs in animals to design evidence on the acting mechanisms as the core of this problem from a comparative review.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Chun-Yan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Mohamed Abdo
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897, Egypt
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, People's Republic of China.
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
94
|
Ababaikeri B, Abduriyim S, Tohetahong Y, Mamat T, Ahmat A, Halik M. Whole-genome sequencing of Tarim red deer ( Cervus elaphus yarkandensis) reveals demographic history and adaptations to an arid-desert environment. Front Zool 2020; 17:31. [PMID: 33072165 PMCID: PMC7565370 DOI: 10.1186/s12983-020-00379-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/02/2020] [Indexed: 01/08/2023] Open
Abstract
Background The initiation of desert conditions in the Tarim Basin in China since the late Miocene has led to the significant genetic structuring of local organisms. Tarim Red Deer (Cervus elaphus yarkandensis, TRD) have adapted to the harsh environmental conditions in this basin, including high solar radiation and temperature, aridity, and poor nutritional conditions. However, the underlying genetic basis of this adaptation is poorly understood. Results We sequenced the whole genomes of 13 TRD individuals, conducted comparative genomic analyses, and estimated demographic fluctuation. The ∂a∂i model estimated that the TRD and Tule elk (Cervus canadensis nannodes) populations diverged approximately 0.98 Mya. Analyses revealed a substantial influence of the Earth’s climate on the effective population size of TRD, associated with glacial advances and retreat, and human activities likely underlie a recent serious decline in population. A marked bottleneck may have profoundly affected the genetic diversity of TRD populations. We detected a set of candidate genes, pathways, and GO categories related to oxidative stress, water reabsorption, immune regulation, energy metabolism, eye protection, heat stress, respiratory system adaptation, prevention of high blood pressure, and DNA damage and repair that may directly or indirectly be involved in the adaptation of TRD to an arid-desert environment. Conclusions Our analyses highlight the role of historical global climates in the population dynamics of TRD. In light of ongoing global warming and the increasing incidence of droughts, our study offers insights into the genomic adaptations of animals, especially TRD, to extreme arid-desert environments and provides a valuable resource for future research on conservation design and biological adaptations to environmental change.
Collapse
Affiliation(s)
- Buweihailiqiemu Ababaikeri
- College of Life Sciences and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China.,College of Xinjiang Uyghur Medicine, Hoten, 848000 Xinjiang China
| | - Shamshidin Abduriyim
- College of Life Science, Shihezi University, Shihezi, 832003 Xinjiang China.,Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, 430072 Hubei China
| | - Yilamujiang Tohetahong
- College of Life Sciences and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China
| | - Tayerjan Mamat
- College of Life Sciences and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China
| | - Adil Ahmat
- College of Life Sciences and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China
| | - Mahmut Halik
- College of Life Sciences and Technology, Xinjiang University, Urumqi, 830046 Xinjiang China
| |
Collapse
|
95
|
Lado S, Elbers JP, Rogers MF, Melo-Ferreira J, Yadamsuren A, Corander J, Horin P, Burger PA. Nucleotide diversity of functionally different groups of immune response genes in Old World camels based on newly annotated and reference-guided assemblies. BMC Genomics 2020; 21:606. [PMID: 32883205 PMCID: PMC7468183 DOI: 10.1186/s12864-020-06990-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background Immune-response (IR) genes have an important role in the defense against highly variable pathogens, and therefore, diversity in these genomic regions is essential for species’ survival and adaptation. Although current genome assemblies from Old World camelids are very useful for investigating genome-wide diversity, demography and population structure, they have inconsistencies and gaps that limit analyses at local genomic scales. Improved and more accurate genome assemblies and annotations are needed to study complex genomic regions like adaptive and innate IR genes. Results In this work, we improved the genome assemblies of the three Old World camel species – domestic dromedary and Bactrian camel, and the two-humped wild camel – via different computational methods. The newly annotated dromedary genome assembly CamDro3 served as reference to scaffold the NCBI RefSeq genomes of domestic Bactrian and wild camels. These upgraded assemblies were then used to assess nucleotide diversity of IR genes within and between species, and to compare the diversity found in immune genes and the rest of the genes in the genome. We detected differences in the nucleotide diversity among the three Old World camelid species and between IR gene groups, i.e., innate versus adaptive. Among the three species, domestic Bactrian camels showed the highest mean nucleotide diversity. Among the functionally different IR gene groups, the highest mean nucleotide diversity was observed in the major histocompatibility complex. Conclusions The new camel genome assemblies were greatly improved in terms of contiguity and increased size with fewer scaffolds, which is of general value for the scientific community. This allowed us to perform in-depth studies on genetic diversity in immunity-related regions of the genome. Our results suggest that differences of diversity across classes of genes appear compatible with a combined role of population history and differential exposures to pathogens, and consequent different selective pressures.
Collapse
Affiliation(s)
- Sara Lado
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Jean P Elbers
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria.
| | - Mark F Rogers
- Intelligent Systems Laboratory, University of Bristol, Bristol, UK
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Adiya Yadamsuren
- Wild Camel Protection Foundation Mongolia, Jukov avenue, Bayanzurh District, Ulaanbaatar, 13343, Mongolia
| | - Jukka Corander
- Wellcome Sanger Institute, Hinxton, UK.,Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, FIN-00014, Helsinki, Finland.,Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway
| | - Petr Horin
- Department of Animal Genetics, Veterinary and Pharmaceutical University, Brno, Czech Republic.,Ceitec VFU, RG Animal Immunogenomics, Brno, Czech Republic
| | - Pamela A Burger
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria.
| |
Collapse
|
96
|
Ming L, Siren D, Yi L, Hai L, He J, Ji R. Mitochondrial DNA variation and phylogeography of Old World camels. Anim Biosci 2020; 34:525-532. [PMID: 32898955 PMCID: PMC7961272 DOI: 10.5713/ajas.20.0319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Old World camels are a valuable genetic resource for many countries around the world due to their adaptation to the desert environment. At present, Old World camels have encountered the challenge of unprecedented loss of genetic resources. Through our research, we would reveal the population structure and genetic variation in Old World camel populations, which provides a theoretical basis for understanding the germplasm resources and origin and evolution of different Old World camel populations. Methods In the present study, we assessed mtDNA control region sequences of 182 individuals from Old World camels to unravel genetic diversity, phylogeography, and demographic dynamics. Results Thirty-two haplotypes confirmed by 54 polymorphic sites were identified in the 156 sequences, which included 129 domestic and 27 wild Bactrian camels. Meanwhile, 14 haplotypes were defined by 47 polymorphic sites from 26 sequences in the dromedaries. The wild Bactrian camel population showed the lowest haplotype and nucleotide diversity, while the dromedaries investigated had the highest. The phylogenetic analysis suggests that there are several shared haplotypes in different Bactrian camel populations, and that there has been genetic introgression between domestic Bactrian camels and dromedaries. In addition, positive values of Tajima’s D and Fu’s Fs test demonstrated a decrease in population size and/or balancing selection in the wild Bactrian camel population. In contrast, the negative values of Tajima’s D and Fu’s Fs test in East Asian Bactrian camel populations explained the demographic expansion and/or positive selection. Conclusion In summary, we report novel information regarding the genetic diversity, population structure and demographic dynamics of Old World camels. The findings obtained from the present study reveal that abundant genetic diversity occurs in domestic Bactrian camel populations and dromedaries, while there are low levels of haplotype and nucleotide diversity in the wild Bactrian camel population.
Collapse
Affiliation(s)
- Liang Ming
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.,Camel Research Institute of Inner Mongolia, Alashan 737300, China
| | - Dalai Siren
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.,Camel Research Institute of Inner Mongolia, Alashan 737300, China
| | - Li Yi
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.,Camel Research Institute of Inner Mongolia, Alashan 737300, China
| | - Le Hai
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jing He
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rimutu Ji
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.,Camel Research Institute of Inner Mongolia, Alashan 737300, China
| |
Collapse
|
97
|
Lamo D, Gahlawat G, Kumar S, Bharti VK, Ranjan P, Kumar D, Chaurasia OP. Morphometric, haematological and physio-biochemical characterization of Bactrian (Camelus bactrianus) camel at high altitude. BMC Vet Res 2020; 16:291. [PMID: 32795315 PMCID: PMC7427938 DOI: 10.1186/s12917-020-02481-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Biochemical and haematological parameters have not been determined in Bactrian camels kept at high altitude. Therefore, this study was undertaken to characterise different physiological, haematological, biochemical, and morphometric parameters of Bactrian camels of high altitude. For this, total fourteen high altitude healthy Bactrian camels were selected from Leh-Ladakh, India, a high altitude area, and thereafter divided into three age groups (N = 3 young; N = 6 adult; N = 5 old camels) to characterise for above parameters. All the results were compared with Lowlander Bactrian camels. RESULTS Morphometric measurement showed significant difference in body height, body length, front-hump height and girth, back-hump height and girth, abdomen girth, neck length, and circumference of the shank in the young age group camels as compared to other age groups of Bactrian camels (p < 0.05). Furthermore, all the physiological and haematological parameters were similar in all the age groups of camels (p < 0.05). However, the leukocyte, erythrocyte, Hb, platelets, monocyte, and ESR level were towards the higher side of the normal reference range of Lowlander Bactrian camels. Whereas, the biochemical analysis revealed a significant increase in triglycerides and decrease in protein levels in the younger age group as compared to other age groups (p < 0.05). Although, albumin, aspartate aminotransferase, iron, magnesium, urea, and creatinine levels were insignificant among the different groups, but observed towards the higher side of the low altitude reference range. Interestingly, the glucose levels in all the groups were observed towards the lower side of the range, which showed metabolic adaptation to high altitude. CONCLUSION These findings suggested there is morphometric and biochemical variation in Bactrian camel of high altitude. The results further helped in establishing novel reference ranges for these parameters in Highlander Bactrian camel. Hence, this study will be the basis of future research on a Bactrian camel from high-altitude cold desert and helpful for better camel husbandry and health management in high altitude.
Collapse
Affiliation(s)
- Dolker Lamo
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh, UT-194101, India
| | - Geeta Gahlawat
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh, UT-194101, India
| | - Sunil Kumar
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh, UT-194101, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh, UT-194101, India.
| | - Puneet Ranjan
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh, UT-194101, India
| | - Deepak Kumar
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh, UT-194101, India
| | - Om Prakash Chaurasia
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh, Ladakh, UT-194101, India
| |
Collapse
|
98
|
Genome-Wide Identification and Analysis of Variants in Domestic and Wild Bactrian Camels Using Whole-Genome Sequencing Data. Int J Genomics 2020; 2020:2430846. [PMID: 32724789 PMCID: PMC7381958 DOI: 10.1155/2020/2430846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
The population size of Bactrian camels is smaller than dromedary, and they are distributed in cold and mountain regions and are also at the risk of extinction in some countries such as Iran. To identify and investigate the genome-wide variations, whole-genome sequencing of two Iranian Bactrian camels were performed with 37.4- and 42.6-fold coverage for the first time. Along with Iranian Bactrian camels, sequencing data from two Mongolian domestic and two wild Bactrian camels deposited in the NCBI were reanalyzed. The analysis eventuated to the identification of 4,908,998, 4,485,725, and 4,706,654 SNPs for Iranian, Mongolian domestic, and wild Bactrian camels, respectively. Also, INDEL variations ranged from 358,311 to 533,188 in all six camels. Results of variants annotation in all samples revealed that more than 88 percent of SNPs and INDELs were located in the intergenic and intronic regions. We found that 800,530 SNPs were common among all studied camels, containing 4,046 missense variants that affected 2,428 genes. Investigation of common genes among all camels containing the missense SNPs showed that there are 98 zinc finger and 4 fertility-related genes (ZP1, ZP2, ZP4, and ZPBP) in this set.
Collapse
|
99
|
Fan R, Gu Z, Guang X, Marín JC, Varas V, González BA, Wheeler JC, Hu Y, Li E, Sun X, Yang X, Zhang C, Gao W, He J, Munch K, Corbett-Detig R, Barbato M, Pan S, Zhan X, Bruford MW, Dong C. Genomic analysis of the domestication and post-Spanish conquest evolution of the llama and alpaca. Genome Biol 2020; 21:159. [PMID: 32616020 PMCID: PMC7331169 DOI: 10.1186/s13059-020-02080-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 06/21/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite their regional economic importance and being increasingly reared globally, the origins and evolution of the llama and alpaca remain poorly understood. Here we report reference genomes for the llama, and for the guanaco and vicuña (their putative wild progenitors), compare these with the published alpaca genome, and resequence seven individuals of all four species to better understand domestication and introgression between the llama and alpaca. RESULTS Phylogenomic analysis confirms that the llama was domesticated from the guanaco and the alpaca from the vicuña. Introgression was much higher in the alpaca genome (36%) than the llama (5%) and could be dated close to the time of the Spanish conquest, approximately 500 years ago. Introgression patterns are at their most variable on the X-chromosome of the alpaca, featuring 53 genes known to have deleterious X-linked phenotypes in humans. Strong genome-wide introgression signatures include olfactory receptor complexes into both species, hypertension resistance into alpaca, and fleece/fiber traits into llama. Genomic signatures of domestication in the llama include male reproductive traits, while in alpaca feature fleece characteristics, olfaction-related and hypoxia adaptation traits. Expression analysis of the introgressed region that is syntenic to human HSA4q21, a gene cluster previously associated with hypertension in humans under hypoxic conditions, shows a previously undocumented role for PRDM8 downregulation as a potential transcriptional regulation mechanism, analogous to that previously reported at high altitude for hypoxia-inducible factor 1α. CONCLUSIONS The unprecedented introgression signatures within both domestic camelid genomes may reflect post-conquest changes in agriculture and the breakdown of traditional management practices.
Collapse
Affiliation(s)
- Ruiwen Fan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi China
| | - Zhongru Gu
- CAS Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Cardiff University – Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Juan Carlos Marín
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Chillán, Chile
| | - Valeria Varas
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Escuela de Graduados, Facultad de Ciencias., Universidad Austral de Chile, Valdivia, Chile
| | - Benito A. González
- Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| | - Jane C. Wheeler
- CONOPA-Instituto de Investigación y Desarrollo de Camélidos Sudamericanos, Pachacamac, Lima, Peru
| | - Yafei Hu
- BGI Genomics, BGI, Shenzhen, China
| | - Erli Li
- BGI Genomics, BGI, Shenzhen, China
| | | | | | | | - Wenjun Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi China
| | - Junping He
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi China
| | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Russel Corbett-Detig
- Department of Biomolecular Engineering and Genomics Institute, UC Santa Cruz, Santa Cruz, CA USA
| | - Mario Barbato
- Department of Animal Science, Food and Technology – DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Shengkai Pan
- CAS Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Cardiff University – Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
| | - Xiangjiang Zhan
- CAS Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Cardiff University – Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Michael W. Bruford
- Cardiff University – Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing, China
- School of Biosciences and Sustainable Places Institute, Cardiff University, Cardiff, Wales UK
| | - Changsheng Dong
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi China
| |
Collapse
|
100
|
Fitak RR, Mohandesan E, Corander J, Yadamsuren A, Chuluunbat B, Abdelhadi O, Raziq A, Nagy P, Walzer C, Faye B, Burger PA. Genomic signatures of domestication in Old World camels. Commun Biol 2020; 3:316. [PMID: 32561887 PMCID: PMC7305198 DOI: 10.1038/s42003-020-1039-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/28/2020] [Indexed: 12/30/2022] Open
Abstract
Domestication begins with the selection of animals showing less fear of humans. In most domesticates, selection signals for tameness have been superimposed by intensive breeding for economical or other desirable traits. Old World camels, conversely, have maintained high genetic variation and lack secondary bottlenecks associated with breed development. By re-sequencing multiple genomes from dromedaries, Bactrian camels, and their endangered wild relatives, here we show that positive selection for candidate genes underlying traits collectively referred to as 'domestication syndrome' is consistent with neural crest deficiencies and altered thyroid hormone-based signaling. Comparing our results with other domestic species, we postulate that the core set of domestication genes is considerably smaller than the pan-domestication set - and overlapping genes are likely a result of chance and redundancy. These results, along with the extensive genomic resources provided, are an important contribution to understanding the evolutionary history of camels and the genomic features of their domestication.
Collapse
Affiliation(s)
- Robert Rodgers Fitak
- Institute of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| | - Elmira Mohandesan
- Institute of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Department of Evolutionary Anthropology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Jukka Corander
- Wellcome Sanger Institute, Hinxton, UK
- Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, FIN-00014, Helsinki, Finland
- Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway
| | - Adiya Yadamsuren
- Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Jia No.20 North, DaTun road, ChaoYang District, Beijing, China
- Wild Camel Protection Foundation Mongolia. Jukov avenue, Bayanzurh District, Ulaanbaatar, 13343, Mongolia
| | - Battsetseg Chuluunbat
- Laboratory of Genetics, Institute of General and Experimental Biology, Mongolian Academy of Sciences, Peace avenue-54b, Bayarzurh District, Ulaanbaatar, 210351, Mongolia
| | - Omer Abdelhadi
- University of Khartoum, Department for Meat Sciences, Khartoum, Sudan
| | - Abdul Raziq
- Camelait, Alain Farms for Livestock Production, Alain Dubai Road, Alain, United Arab Emirates
| | - Peter Nagy
- Farm and Veterinary Department, Emirates Industry for Camel Milk and Products, PO Box 294236, Dubai, Umm Nahad, United Arab Emirates
| | - Chris Walzer
- Wildlife Conservation Society, Wildlife Health Program, Bronx, NY, USA
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria
| | - Bernard Faye
- CIRAD-ES, UMR 112, Campus International de Baillarguet, TA C/112A, 34398, Montpellier, France
| | - Pamela Anna Burger
- Institute of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Savoyenstraße 1, 1160, Vienna, Austria.
| |
Collapse
|