51
|
Comparison between short-term stress and long-term adaptive responses reveal common paths to molecular adaptation. iScience 2022; 25:103899. [PMID: 35243257 PMCID: PMC8873613 DOI: 10.1016/j.isci.2022.103899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 02/07/2022] [Indexed: 11/20/2022] Open
Abstract
The phenotypic plasticity in responses to short-term stress can provide clues for understanding the adaptive fixation mechanism of genetic variation during long-term exposure to extreme environments. However, few studies have compared short-term stress responses with long-term evolutionary patterns; in particular, no interactions between the two processes have been evaluated in high-altitude environment. We performed RNA sequencing in embryo fibroblasts derived from great tits and mice to explore transcriptional responses after exposure to simulated high-altitude environmental stresses. Transcriptional changes of genes associated with metabolic pathways were identified in both bird and mice cells after short-term stress responses. Genomic comparisons among long-term highland tits and mammals and their lowland relatives revealed similar pathways (e.g., metabolic pathways) with that initiated under short-term stress transcriptional responses in vitro. These findings highlight the indicative roles of short-term stress in the long-term adaptation, and adopt common paths to molecular adaptation in mouse and bird cells. Short-term stress and long-term adaptations share the common metabolic pathways Phenotypic plasticity can promote adaptive evolution Adopt common paths to molecular adaptation in mouse and bird cells
Collapse
|
52
|
Beckman EJ, Martins F, Suzuki TA, Bi K, Keeble S, Good JM, Chavez AS, Ballinger MA, Agwamba K, Nachman MW. The genomic basis of high-elevation adaptation in wild house mice (Mus musculus domesticus) from South America. Genetics 2022; 220:iyab226. [PMID: 34897431 PMCID: PMC9097263 DOI: 10.1093/genetics/iyab226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/04/2021] [Indexed: 11/14/2022] Open
Abstract
Understanding the genetic basis of environmental adaptation in natural populations is a central goal in evolutionary biology. The conditions at high elevation, particularly the low oxygen available in the ambient air, impose a significant and chronic environmental challenge to metabolically active animals with lowland ancestry. To understand the process of adaptation to these novel conditions and to assess the repeatability of evolution over short timescales, we examined the signature of selection from complete exome sequences of house mice (Mus musculus domesticus) sampled across two elevational transects in the Andes of South America. Using phylogenetic analysis, we show that house mice colonized high elevations independently in Ecuador and Bolivia. Overall, we found distinct responses to selection in each transect and largely nonoverlapping sets of candidate genes, consistent with the complex nature of traits that underlie adaptation to low oxygen availability (hypoxia) in other species. Nonetheless, we also identified a small subset of the genome that appears to be under parallel selection at the gene and SNP levels. In particular, three genes (Col22a1, Fgf14, and srGAP1) bore strong signatures of selection in both transects. Finally, we observed several patterns that were common to both transects, including an excess of derived alleles at high elevation, and a number of hypoxia-associated genes exhibiting a threshold effect, with a large allele frequency change only at the highest elevations. This threshold effect suggests that selection pressures may increase disproportionately at high elevations in mammals, consistent with observations of some high-elevation diseases in humans.
Collapse
Affiliation(s)
- Elizabeth J Beckman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Felipe Martins
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Taichi A Suzuki
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - Andreas S Chavez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Evolution, Ecology, and Organismal Biology and the Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mallory A Ballinger
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kennedy Agwamba
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
53
|
Zhu H, Zhong L, Li J, Wang S, Qu J. Differential Expression of Metabolism-Related Genes in Plateau Pika ( Ochotona curzoniae) at Different Altitudes on the Qinghai-Tibet Plateau. Front Genet 2022; 12:784811. [PMID: 35126457 PMCID: PMC8811202 DOI: 10.3389/fgene.2021.784811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
According to life history theory, animals living in extreme environments have evolved specific behavioral and physiological strategies for survival. However, the genetic mechanisms underpinning these strategies are unclear. As the highest geographical unit on Earth, the Qinghai-Tibet Plateau is characterized by an extreme environment and climate. During long-term evolutionary processes, animals that inhabit the plateau have evolved specialized morphological and physiological traits. The plateau pika (Ochotona curzoniae), one of the native small mammals that evolved on the Qinghai-Tibet Plateau, has adapted well to this cold and hypoxic environment. To explore the genetic mechanisms underlying the physiological adaptations of plateau pika to extremely cold ambient temperatures, we measured the differences in resting metabolic rate (RMR) and metabolism-related gene expression in individuals inhabiting three distinct altitudes (i.e., 3,321, 3,663, and 4,194 m). Results showed that the body mass and RMR of plateau pika at high- and medium-altitudes were significantly higher than those at the low-altitude. The expression levels of peroxisome proliferator-activated receptor α (pparα), peroxisome proliferator-activated receptor-γ coactivator-1α (pgc-1α), and the PR domain-containing 16 (PRDM16) in white (WAT) and brown (BAT) adipose tissues of plateau pika from high- and medium-altitudes were significantly higher than in pika from the low-altitude region. The enhanced expression levels of pgc-1α and pparα genes in the WAT of pika at high-altitude showed that WAT underwent "browning" and increased thermogenic properties. An increase in the expression of uncoupling protein 1 (UCP1) in the BAT of pika at high altitude indicated that BAT increased their thermogenic properties. The gene expression levels of pparα and pgc-1α in skeletal muscles were significantly higher in high-altitude pika. Simultaneously, the expression of the sarcolipin (SLN) gene in skeletal muscles significantly increased in high-altitude pika. Our results suggest that plateau pika adapted to an extremely cold environment via browning WAT, thereby activating BAT and enhancing SLN expression to increase non-shivering thermogenesis. This study demonstrates that plateau pika can increase thermogenic gene expression and energy metabolism to adapt to the extreme environments on the plateau.
Collapse
Affiliation(s)
- Hongjuan Zhu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Jing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Suqin Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
54
|
Wu X, Wei Q, Wang X, Shang Y, Zhang H. Evolutionary and dietary relationships of wild mammals based on the gut microbiome. Gene 2022; 808:145999. [PMID: 34627942 DOI: 10.1016/j.gene.2021.145999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
Gut microbiome influence the health and evolution of mammals and multiple factors modulate the structure and function of gut microbiome. However, the specific changes of the diets and phylogeny on the gut microbiome were unclear. Here, we compared the gut microbiome of 16 rare wild mammals. All data (>200G 16S rRNA gene sequences) were generated using a high-throughput sequencing platform. Firmicutes and Bacteroidetes were the most predominant phyla in all mammals. However, Proteobacteria was an additionally dominant phylum specifically detected in the microbiome of carnivores and omnivores. Moreover, the dominant phyla in canids were Firmicutes, Bacteroidetes, Proteobacteria, and Fusobacteria. Phylogenetic reconstructions based on the gut microbiome and mitochondrial genome of these mammals were similar. The impact of the host on the microbiome community composition was most evident when considering conspecific and congeneric relationships. Similarity clustering showed that the gut microbiome of herbivores was clustered together, and the other clade comprised both omnivores and carnivores. Collectively, these results revealed that phylogenetic relationships and diet have an important impact on the gut microbiome, and thus the gut microbiome community composition may reflect both the phylogenetic relationships and diets. This study provides valuable basic data to facilitate future efforts related to animal conservation and health.
Collapse
Affiliation(s)
- Xiaoyang Wu
- School of Life Science, Qufu Normal University, Qufu, Shandong, PR China
| | - Qinguo Wei
- School of Life Science, Qufu Normal University, Qufu, Shandong, PR China
| | - Xibao Wang
- School of Life Science, Qufu Normal University, Qufu, Shandong, PR China
| | - Yongquan Shang
- School of Life Science, Qufu Normal University, Qufu, Shandong, PR China
| | - Honghai Zhang
- School of Life Science, Qufu Normal University, Qufu, Shandong, PR China.
| |
Collapse
|
55
|
Di Genova A, Nardocci G, Maldonado-Agurto R, Hodar C, Valdivieso C, Morales P, Gajardo F, Marina R, Gutiérrez RA, Orellana A, Cambiazo V, González M, Glavic A, Mendez MA, Maass A, Allende ML, Montecino MA. Genome sequencing and transcriptomic analysis of the Andean killifish Orestias ascotanensis reveals adaptation to high-altitude aquatic life. Genomics 2021; 114:305-315. [PMID: 34954349 DOI: 10.1016/j.ygeno.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Orestias ascotanensis (Cyprinodontidae) is a teleost pupfish endemic to springs feeding into the Ascotan saltpan in the Chilean Altiplano (3,700 m.a.s.l.) and represents an opportunity to study adaptations to high-altitude aquatic environments. We have de novo assembled the genome of O. ascotanensis at high coverage. Comparative analysis of the O. ascotanensis genome showed an overall process of contraction, including loss of genes related to G-protein signaling, chemotaxis and signal transduction, while there was expansion of gene families associated with microtubule-based movement and protein ubiquitination. We identified 818 genes under positive selection, many of which are involved in DNA repair. Additionally, we identified novel and conserved microRNAs expressed in O. ascotanensis and its closely-related species, Orestias gloriae. Our analysis suggests that positive selection and expansion of genes that preserve genome stability are a potential adaptive mechanism to cope with the increased solar UV radiation to which high-altitude animals are exposed to.
Collapse
Affiliation(s)
- Alex Di Genova
- FONDAP Center for Genome Regulation, Santiago, Chile; Center for Mathematical Modeling, Department of Mathematical Engineering, Faculty of Physical and Mathematical Sciences, Universidad de Chile and IRL CNRS, 2807 Santiago, Chile
| | - Gino Nardocci
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo Maldonado-Agurto
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Christian Hodar
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Camilo Valdivieso
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Pamela Morales
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Gajardo
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Raquel Marina
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Santiago, Chile; Department of Molecular Genetics and Microbiology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ariel Orellana
- FONDAP Center for Genome Regulation, Santiago, Chile; Center of Plant Biotechnology, Universidad Andres Bello, Santiago, Chile
| | - Veronica Cambiazo
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Mauricio González
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Alvaro Glavic
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Marco A Mendez
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Institute of Ecology and Biodiversity, Chile
| | - Alejandro Maass
- FONDAP Center for Genome Regulation, Santiago, Chile; Center for Mathematical Modeling, Department of Mathematical Engineering, Faculty of Physical and Mathematical Sciences, Universidad de Chile and IRL CNRS, 2807 Santiago, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| | - Martin A Montecino
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
56
|
Li M, Pan D, Sun H, Zhang L, Cheng H, Shao T, Wang Z. The hypoxia adaptation of small mammals to plateau and underground burrow conditions. Animal Model Exp Med 2021; 4:319-328. [PMID: 34977483 PMCID: PMC8690988 DOI: 10.1002/ame2.12183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Oxygen is one of the important substances for the survival of most life systems on the earth, and plateau and underground burrow systems are two typical hypoxic environments. Small mammals living in hypoxic environments have evolved different adaptation strategies, which include increased oxygen delivery, metabolic regulation of physiological responses and other physiological responses that change tissue oxygen utilization. Multi-omics predictions have also shown that these animals have evolved different adaptations to extreme environments. In particular, vascular endothelial growth factor (VEGF) and erythropoietin (EPO), which have specific functions in the control of O2 delivery, have evolved adaptively in small mammals in hypoxic environments. Naked mole-rats and blind mole-rats are typical hypoxic model animals as they have some resistance to cancer. This review primarily summarizes the main living environment of hypoxia tolerant small mammals, as well as the changes of phenotype, physiochemical characteristics and gene expression mode of their long-term living in hypoxia environment.
Collapse
Affiliation(s)
- Mengke Li
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Dan Pan
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Hong Sun
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
- Centre for Nutritional EcologyZhengzhou UniversityZhengzhouP.R. China
| | - Lei Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Han Cheng
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Tian Shao
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Zhenlong Wang
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| |
Collapse
|
57
|
Xia W, Zhao M, Wang D, Wang F, Chen H, Liu G, Zhu L, Li D. Invasion and defense of the basic social unit in a nonhuman primate society leads to sexual differences in the gut microbiome. Integr Zool 2021; 17:168-180. [PMID: 34751507 PMCID: PMC9299848 DOI: 10.1111/1749-4877.12608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multilevel society is one of the most complex social systems in natural ecosystems and is a typical feature among some primates. Given the potential connection between social behavior and gut microbiome composition, the multilevel social system could affect the primate gut microbiome. Here, based on long‐term observation (e.g. social unit dynamics, transfer, and behavior), we investigated this potential integrating 16S rRNA gene amplicon sequencing and behavior data in Yunnan snub‐nosed monkeys (Rhinopithecus bieti), which possess a multilevel social group based on one male units (OMUs, each unit with several breeding females and their offspring) and all‐male unit (AMU, several bachelor males residing together). We found that the mean unweighted Unifrac distance between adult males from different OMUs was significantly lower than that between adult females from different OMUs (paired Wilcoxon test, P = 0.007). There was no significant difference in the mean unweighted Unifrac distance between females within the same OMU or between females from different OMUs. These findings indicated the potential connection between the defense and invasion of social units and the gut microbiome community in wild Yunnan snub‐nosed monkeys. We speculated that the resident males of OMUs displaying a significantly higher similarity in the gut microbial community than that of adult females in separate OMUs might be associated with the sexual differences in their interactions and from previously having cohabitated together in the AMU. Therefore, this study suggested that multilevel societies might have an effect on the gut microbial community in this wild nonhuman primate species.
Collapse
Affiliation(s)
- Wancai Xia
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China.,Institute of Rare Animals and Plants, China West Normal University, Nanchong, Sichuan, China
| | - Mei Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China.,Institute of Rare Animals and Plants, China West Normal University, Nanchong, Sichuan, China
| | - Dali Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China.,Institute of Rare Animals and Plants, China West Normal University, Nanchong, Sichuan, China
| | - Fan Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China.,Institute of Rare Animals and Plants, China West Normal University, Nanchong, Sichuan, China
| | - Hua Chen
- Mingkef Biotechnology, Hangzhou, China
| | - Guoqi Liu
- Mingkef Biotechnology, Hangzhou, China
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Dayong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China.,Institute of Rare Animals and Plants, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
58
|
Evolutionary Analysis of OAT Gene Family in River and Swamp Buffalo: Potential Role of SLCO3A1 Gene in Milk Performance. Genes (Basel) 2021; 12:genes12091394. [PMID: 34573376 PMCID: PMC8472334 DOI: 10.3390/genes12091394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022] Open
Abstract
The organic anion transporter (OAT) family is the subfamily of the solute carrier (SLC) superfamily, which plays a vital role in regulating essential nutrients in milk. However, little is known about the members’ identification, evolutionary basis, and function characteristics of OAT genes associated with milk performance in buffalo. Comparative genomic analyses were performed to identify the potential role of buffalo OAT genes in milk performance in this study. The results showed that a total of 10 and 7 OAT genes were identified in river buffalo and swamp buffalo, respectively. These sequences clustered into three groups based on their phylogenetic relationship and had similar motif patterns and gene structures in the same groups. Moreover, the river-specific expansions and homologous loss of OAT genes occurred in the two buffalo subspecies during the evolutionary process. Notably, the duplicated SLCO3A1 gene specific to river buffalo showed higher expression level in mammary gland tissue than that of swamp buffalo. These findings highlight some promising candidate genes that could be potentially utilized to accelerate the genetic progress in buffalo breeding programs. However, the identified candidate genes require further validation in a larger cohort for use in the genomic selection of buffalo for milk production.
Collapse
|
59
|
Identification and expression analysis of lncRNA in seven organs of Rhinopithecus roxellana. Funct Integr Genomics 2021; 21:543-555. [PMID: 34291340 DOI: 10.1007/s10142-021-00797-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/05/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Long non-coding RNA (lncRNA) represents a new direction to identify expression profiles and regulatory mechanisms in various organisms. Here, we report the first dataset of lncRNAs of the golden snub-nosed monkey (GSM), including 12,557 putative lncRNAs identified from seven organs. Compared with mRNA, GSM lncRNA had fewer exons and isoforms, and longer length. LncRNA showed more obvious tissue-specific expression than mRNA. However, for the top ten most abundant genes in each organ, mRNAs expression was more tissue-specific than lncRNAs. By identification of specifically expressed lncRNAs and mRNAs in each organ, it indicates that the expression of SEG-lncRNA (specifically expressed lncRNA) and SEG-mRNA (specifically expressed mRNA) had high correlation. In particular, combined our lncRNA and mRNA data, we identified 92 heart SEG-lncRNAs targeted ten mRNA genes in the oxidative phosphorylation pathway and upregulated the expression of these target genes such as ND4, ATP6, and ATP8. These may contribute to GSM adaption to its high-elevation environment. We also identified 171 liver SEG-lncRNAs, which targeted 27 genes associated with the metabolism of xenobiotics and leaded to high expression of these target genes in liver. These lncRNAs may play important roles in GSM adaptation to a folivory diet.
Collapse
|
60
|
Mi X, Feng G, Hu Y, Zhang J, Chen L, Corlett RT, Hughes AC, Pimm S, Schmid B, Shi S, Svenning JC, Ma K. The global significance of biodiversity science in China: an overview. Natl Sci Rev 2021; 8:nwab032. [PMID: 34694304 PMCID: PMC8310773 DOI: 10.1093/nsr/nwab032] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/03/2021] [Accepted: 02/14/2021] [Indexed: 01/13/2023] Open
Abstract
Biodiversity science in China has seen rapid growth over recent decades, ranging from baseline biodiversity studies to understanding the processes behind evolution across dynamic regions such as the Qinghai-Tibetan Plateau. We review research, including species catalogues; biodiversity monitoring; the origins, distributions, maintenance and threats to biodiversity; biodiversity-related ecosystem function and services; and species and ecosystems' responses to global change. Next, we identify priority topics and offer suggestions and priorities for future biodiversity research in China. These priorities include (i) the ecology and biogeography of the Qinghai-Tibetan Plateau and surrounding mountains, and that of subtropical and tropical forests across China; (ii) marine and inland aquatic biodiversity; and (iii) effective conservation and management to identify and maintain synergies between biodiversity and socio-economic development to fulfil China's vision for becoming an ecological civilization. In addition, we propose three future strategies: (i) translate advanced biodiversity science into practice for biodiversity conservation; (ii) strengthen capacity building and application of advanced technologies, including high-throughput sequencing, genomics and remote sensing; and (iii) strengthen and expand international collaborations. Based on the recent rapid progress of biodiversity research, China is well positioned to become a global leader in biodiversity research in the near future.
Collapse
Affiliation(s)
- Xiangcheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Gang Feng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau and Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yibo Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, China
| | - Alice C Hughes
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, China
| | - Stuart Pimm
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zurich, Zurich 8057, Switzerland
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) and Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Universityof Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
61
|
Kumar H, Panigrahi M, Saravanan KA, Rajawat D, Parida S, Bhushan B, Gaur GK, Dutt T, Mishra BP, Singh RK. Genome-wide detection of copy number variations in Tharparkar cattle. Anim Biotechnol 2021; 34:448-455. [PMID: 34191685 DOI: 10.1080/10495398.2021.1942027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Copy number variations (CNVs) are major forms of genetic variation with an increasing importance in animal genomics. This study used the Illumina BovineSNP 50 K BeadChip to detect the genome-wide CNVs in the Tharparkar cattle. With the aid of PennCNV software, we noticed a total of 447 copy number variation regions (CNVRs) across the autosomal genome, occupying nearly 2.17% of the bovine genome. The average size of detected CNVRs was found to be 122.2 kb, the smallest CNVR being 50.02 kb in size, to the largest being 1,232.87 Kb. Enrichment analyses of the genes in these CNVRs gave significant associations with molecular adaptation-related Gene Ontology (GO) terms. Most CNVR genes were significantly enriched for specific biological functions; signaling pathways, sensory responses to stimuli, and various cellular processes. In addition, QTL analysis of CNVRs described them to be linked with economically essential traits in cattle. The findings here provide crucial information for constructing a more comprehensive CNVR map for the indigenous cattle genome.
Collapse
Affiliation(s)
- Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - G K Gaur
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - B P Mishra
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - R K Singh
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
62
|
Wang X, Liang D, Jin W, Tang M, Liu S, Zhang P. Out of Tibet: Genomic Perspectives on the Evolutionary History of Extant Pikas. Mol Biol Evol 2021; 37:1577-1592. [PMID: 32027372 DOI: 10.1093/molbev/msaa026] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pikas are widely distributed in the Northern Hemisphere and are highly adapted to cold and alpine environments. They are one of the most complex and problematic groups in mammalian systematics, and the origin and evolutionary history of extant pikas remain controversial. In this study, we sequenced the whole coding sequences of 105 pika samples (29 named species and 1 putative new species) and obtained DNA data for more than 10,000 genes. Our phylogenomic analyses recognized four subgenera of extant pikas: Alienauroa, Conothoa, Ochotona, and Pika. The interrelationships between the four subgenera were strongly resolved as (Conothoa, (Alienauroa, (Ochotona, Pika))), with the mountain group Conothoa being the sister group of all other pikas. Our divergence time and phylogeographic analyses indicated that the last common ancestor of extant pikas first occurred on in the middle Miocene, ∼14 Ma. The emergence of opportunities related to the climate, food supply, and spreading paths in concert promoted the dispersal of pikas from the Qinghai-Tibetan Plateau (QTP) to other parts of Eurasia and North America. We found that the genes that were positively selected in the early evolution of pikas were most concentrated in functional categories related to cold tolerance. These results suggest that the QTP may have served as a training ground for cold tolerance in early pikas, which gives pikas a great advantage when the climate continued to cool after the middle Miocene. Our study highlights the importance of the QTP as a center of origin for many cold-adapted animals.
Collapse
Affiliation(s)
- XiaoYun Wang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Jin
- Sichuan Academy of Forestry, Chengdu, China
| | | | | | - Peng Zhang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
63
|
Qu Y, Chen C, Chen X, Hao Y, She H, Wang M, Ericson PGP, Lin H, Cai T, Song G, Jia C, Chen C, Zhang H, Li J, Liang L, Wu T, Zhao J, Gao Q, Zhang G, Zhai W, Zhang C, Zhang YE, Lei F. The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai-Tibet Plateau. Proc Natl Acad Sci U S A 2021; 118:e2012398118. [PMID: 33753478 PMCID: PMC8020664 DOI: 10.1073/pnas.2012398118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species in a shared environment tend to evolve similar adaptations under the influence of their phylogenetic context. Using snowfinches, a monophyletic group of passerine birds (Passeridae), we study the relative roles of ancestral and species-specific adaptations to an extreme high-elevation environment, the Qinghai-Tibet Plateau. Our ancestral trait reconstruction shows that the ancestral snowfinch occupied high elevations and had a larger body mass than most nonsnowfinches in Passeridae. Subsequently, this phenotypic adaptation diversified in the descendant species. By comparing high-quality genomes from representatives of the three phylogenetic lineages, we find that about 95% of genes under positive selection in the descendant species are different from those in the ancestor. Consistently, the biological functions enriched for these species differ from those of their ancestor to various degrees (semantic similarity values ranging from 0.27 to 0.5), suggesting that the three descendant species have evolved divergently from the initial adaptation in their common ancestor. Using a functional assay to a highly selective gene, DTL, we demonstrate that the nonsynonymous substitutions in the ancestor and descendant species have improved the repair capacity of ultraviolet-induced DNA damage. The repair kinetics of the DTL gene shows a twofold to fourfold variation across the ancestor and the descendants. Collectively, this study reveals an exceptional case of adaptive evolution to high-elevation environments, an evolutionary process with an initial adaptation in the common ancestor followed by adaptive diversification of the descendant species.
Collapse
Affiliation(s)
- Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China;
| | - Chunhai Chen
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Xiumin Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Huishang She
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Mengxia Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Per G P Ericson
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | - Haiyan Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Tianlong Cai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Chunyan Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hailin Zhang
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Jiang Li
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Liping Liang
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Tianyu Wu
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Jinyang Zhao
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Guojie Zhang
- BGI-Shenzhen, 518083 Shenzhen, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China
| | - Chi Zhang
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China;
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China;
- College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China
- Chinese Institute for Brain Research, 102206 Beijing, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China;
- College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China
| |
Collapse
|
64
|
Wang YP, Waheed A, Liu ST, Li WY, Nkurikiyimfura O, Lurwanu Y, Wang Z, Grenville-Briggs LJ, Yang L, Zheng L, Zhan J. Altitudinal Heterogeneity of UV Adaptation in Phytophthorainfestans Is Associated with the Spatial Distribution of a DNA Repair Gene. J Fungi (Basel) 2021; 7:245. [PMID: 33805198 PMCID: PMC8064308 DOI: 10.3390/jof7040245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Climate change is considered a major threat to society and nature. UV irradiation is the most important environmental genotoxic agent. Thus, how elevated UV irradiation may influence human health and ecosystems has generated wide concern in the scientific community, as well as with policy makers and the public in general. In this study, we investigated patterns and mechanisms of UV adaptation in natural ecosystems by studying a gene-specific variation in the potato late blight pathogen, Phytophthora infestans. We compared the sequence characteristics of radiation sensitive 23 (RAD23), a gene involved in the nucleotide excision repair (NER) pathway and UV tolerance, in P. infestans isolates sampled from various altitudes. We found that lower genetic variation in the RAD23 gene was caused by natural selection. The hypothesis that UV irradiation drives this selection was supported by strong correlations between the genomic characteristics and altitudinal origin (historic UV irradiation) of the RAD23 sequences with UV tolerance of the P. infestans isolates. These results indicate that the RAD23 gene plays an important role in the adaptation of P. infestans to UV stress. We also found that different climatic factors could work synergistically to determine the evolutionary adaptation of species, making the influence of climate change on ecological functions and resilience more difficult to predict. Future attention should aim at understanding the collective impact generated by simultaneous change in several climate factors on species adaptation and ecological sustainability, using state of the art technologies such as experimental evolution, genome-wide scanning, and proteomics.
Collapse
Affiliation(s)
- Yan-Ping Wang
- Key Lab for Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (Y.-P.W.); (A.W.); (S.-T.L.); (W.-Y.L.); (O.N.)
| | - Abdul Waheed
- Key Lab for Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (Y.-P.W.); (A.W.); (S.-T.L.); (W.-Y.L.); (O.N.)
| | - Shi-Ting Liu
- Key Lab for Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (Y.-P.W.); (A.W.); (S.-T.L.); (W.-Y.L.); (O.N.)
| | - Wen-Yang Li
- Key Lab for Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (Y.-P.W.); (A.W.); (S.-T.L.); (W.-Y.L.); (O.N.)
| | - Oswald Nkurikiyimfura
- Key Lab for Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (Y.-P.W.); (A.W.); (S.-T.L.); (W.-Y.L.); (O.N.)
| | - Yahuza Lurwanu
- Department of Crop Protection, Bayero University Kano, Kano 70001, Nigeria;
| | - Zonghua Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China;
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Laura J. Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden;
| | - Lina Yang
- Key Lab for Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (Y.-P.W.); (A.W.); (S.-T.L.); (W.-Y.L.); (O.N.)
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Luping Zheng
- Key Lab for Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; (Y.-P.W.); (A.W.); (S.-T.L.); (W.-Y.L.); (O.N.)
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| |
Collapse
|
65
|
Liu Z, Zhang L, Yan Z, Ren Z, Han F, Tan X, Xiang Z, Dong F, Yang Z, Liu G, Wang Z, Zhang J, Que T, Tang C, Li Y, Wang S, Wu J, Li L, Huang C, Roos C, Li M. Genomic Mechanisms of Physiological and Morphological Adaptations of Limestone Langurs to Karst Habitats. Mol Biol Evol 2021; 37:952-968. [PMID: 31846031 DOI: 10.1093/molbev/msz301] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Knowledge of the physiological and morphological evolution and adaptation of nonhuman primates is critical to understand hominin origins, physiological ecology, morphological evolution, and applications in biomedicine. Particularly, limestone langurs represent a direct example of adaptations to the challenges of exploiting a high calcium and harsh environment. Here, we report a de novo genome assembly (Tfra_2.0) of a male François's langur (Trachypithecus francoisi) with contig N50 of 16.3 Mb and resequencing data of 23 individuals representing five limestone and four forest langur species. Comparative genomics reveals evidence for functional evolution in genes and gene families related to calcium signaling in the limestone langur genome, probably as an adaptation to naturally occurring high calcium levels present in water and plant resources in karst habitats. The genomic and functional analyses suggest that a single point mutation (Lys1905Arg) in the α1c subunit of the L-type voltage-gated calcium channel Cav1.2 (CACNA1C) attenuates the inward calcium current into the cells in vitro. Population genomic analyses and RNA-sequencing indicate that EDNRB is less expressed in white tail hair follicles of the white-headed langur (T. leucocephalus) compared with the black-colored François's langur and hence might be responsible for species-specific differences in body coloration. Our findings contribute to a new understanding of gene-environment interactions and physiomorphological adaptative mechanisms in ecologically specialized primate taxa.
Collapse
Affiliation(s)
- Zhijin Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Liye Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongze Yan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhijie Ren
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fengming Han
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Xinxin Tan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyuan Xiang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Dong
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuomin Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China.,School of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
| | - Guangjian Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Ziming Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Tengcheng Que
- Guangxi Zhuang Autonomous Region Terrestrial Wildlife Medical-Aid Monitoring Epidemic Diseases Research Center, Nanning 530001, Guangxi Province, China
| | - Chaohui Tang
- Wuzhou Langur Breeding and Research Center, Wuzhou 543002, Guangxi Province, China
| | - Yifeng Li
- Wuzhou Langur Breeding and Research Center, Wuzhou 543002, Guangxi Province, China
| | - Song Wang
- Nanning Zoo, Nanning 530000, Guangxi Province, China
| | - Junyi Wu
- Nanning Zoo, Nanning 530000, Guangxi Province, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Chengming Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
66
|
Youlatos D, Granatosky MC, Al Belbeisi R, He G, Guo S, Li B. Sex differences in habitat use, positional behavior, and gaits of Golden Snub-Nosed Monkeys (Rhinopithecus roxellana) in the Qinling Mountains, Shaanxi, China. Primates 2021; 62:507-519. [PMID: 33694095 DOI: 10.1007/s10329-021-00900-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/25/2021] [Indexed: 11/26/2022]
Abstract
Studies of positional behavior, gait, and habitat use are important for understanding how animals adapt to the challenges of their environment. In turn, this information is useful for advancing research on primate morphology, life history, and ecology. Data on eco-mechanical variables can be used to develop concrete conservation and management plans for understudied and threatened primate groups. The present study explores the positional behavior, gaits, and habitat use of male and female adult golden snub-nosed monkeys (Rhinopithecus roxellana), an endemic, endangered, and highly dimorphic species of central China. Using focal animal sampling and opportunistic videorecording in the Guanyinshan National Nature Reserve on the southern slopes of the Qinling Mountains, it was determined that gait parameters were largely the same between sexes. By contrast, habitat use and, to a lesser extent, positional behavior varied significantly between males and females. In general, males were more terrestrial than females. When they moved arboreally, males also used a greater proportion of horizontal and large substrates compared to females. Furthermore, males used more standing postures, forelimb suspensory positional behaviors, and quadrupedal walking. These data suggest that, when faced with the mechanical challenges of large body size, primates such as R. roxellana are more likely to respond by altering habitat use rather than positional behaviors or intrinsic kinematics and timing.
Collapse
Affiliation(s)
- Dionisios Youlatos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | | | - Roula Al Belbeisi
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Gang He
- Shaanxi Key Laboratory for Animal Conservation and College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Songtao Guo
- Shaanxi Key Laboratory for Animal Conservation and College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation and College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
- Institute of Zoology, Shaanxi Academy of Sciences, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
67
|
Ma D, Guo Z, Ding Q, Zhao Z, Shen Z, Wei M, Gao C, Zhang L, Li H, Zhang S, Li J, Zhu X, Zheng HL. Chromosome-level assembly of the mangrove plant Aegiceras corniculatum genome generated through Illumina, PacBio and Hi-C sequencing technologies. Mol Ecol Resour 2021; 21:1593-1607. [PMID: 33550674 DOI: 10.1111/1755-0998.13347] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022]
Abstract
Aegiceras corniculatum is a major mangrove plant species adapted to waterlogging and saline conditions, grows in the coastal intertidal zone of tropical and subtropical regions. Here, we present a chromosome-level genome assembly of A. corniculatum by incorporating PacBio long-read sequencing and Hi-C technology. The results showed that the PacBio draft genome size is 906.63 Mb. Hi-C scaffolding anchored 885.06 Mb contigs (97.62% of draft assembly) onto 24 pseudochromosomes. The contig N50 and scaffold N50 were 7.1 Mb and 37.74 Mb, respectively. Out of 40,727 protein-coding genes predicted in the study, 89% have functional annotations in public databases. We also showed that of the 603.93 Mb repetitive sequences predicted in the assembled genome, long terminal repeat retrotransposons constitute 41.52%. The genome evolution analysis showed that the A. corniculatum genome experienced two whole-genome duplication events and shared the ancient γ whole-genome triplication event. A comparative genomic analysis revealed an incidence of expansion in 1,488 gene families associated with essential metabolism and biosynthetic pathways, including photosynthesis, oxidative phosphorylation, phenylalanine, glyoxylate, dicarboxylate metabolism, and DNA replication, which probably constitute adaptation traits that allow the A. corniculatum to survive in the intertidal zone. Also, the systematic characterization of genes associated with flavonoid biosynthesis pathway and the AcNHX gene family conducted in this study will provide insight into the adaptation mechanism of A. corniculatum to intertidal environments. The high-quality genome reported here can provide historical insights into genomic transformations that support the survival of A. corniculatum under harsh intertidal habitats.
Collapse
Affiliation(s)
- Dongna Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zejun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qiansu Ding
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhizhu Zhao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhijun Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Mingyue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Changhao Gao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ludan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Huan Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xueyi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
68
|
Lim MCW, Bi K, Witt CC, Graham CH, Dávalos LM. Pervasive Genomic Signatures of Local Adaptation to Altitude Across Highland Specialist Andean Hummingbird Populations. J Hered 2021; 112:229-240. [PMID: 33631009 DOI: 10.1093/jhered/esab008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/23/2021] [Indexed: 01/28/2023] Open
Abstract
Populations along steep environmental gradients are subject to differentiating selection that can result in local adaptation, despite countervailing gene flow, and genetic drift. In montane systems, where species are often restricted to narrow ranges of elevation, it is unclear whether the selection is strong enough to influence functional differentiation of subpopulations differing by a few hundred meters in elevation. We used targeted capture of 12 501 exons from across the genome, including 271 genes previously implicated in altitude adaptation, to test for adaptation to local elevations for 2 highland hummingbird species, Coeligena violifer (n = 62) and Colibri coruscans (n = 101). For each species, we described population genetic structure across the complex geography of the Peruvian Andes and, while accounting for this structure, we tested whether elevational allele frequency clines in single nucleotide polymorphisms (SNPs) showed evidence for local adaptation to elevation. Although the 2 species exhibited contrasting population genetic structures, we found signatures of clinal genetic variation with shifts in elevation in both. The genes with SNP-elevation associations included candidate genes previously discovered for high-elevation adaptation as well as others not previously identified, with cellular functions related to hypoxia response, energy metabolism, and immune function, among others. Despite the homogenizing effects of gene flow and genetic drift, natural selection on parts of the genome evidently optimizes elevation-specific cellular function even within elevation range-restricted montane populations. Consequently, our results suggest local adaptation occurring in narrow elevation bands in tropical mountains, such as the Andes, may effectively make them "taller" biogeographic barriers.
Collapse
Affiliation(s)
- Marisa C W Lim
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, CA.,California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA (Bi)
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM
| | - Catherine H Graham
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY.,Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY
| |
Collapse
|
69
|
Li Y, Huang K, Tang S, Feng L, Yang J, Li Z, Li B. Genetic Structure and Evolutionary History of Rhinopithecus roxellana in Qinling Mountains, Central China. Front Genet 2021; 11:611914. [PMID: 33552131 PMCID: PMC7855588 DOI: 10.3389/fgene.2020.611914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
The Qinling mountainous region is one of the world's biodiversity hotspots and provides refuges for many endangered endemic animals. The golden snub-nosed monkeys (Rhinopithecus roxellana) are considered as a flagship species in this area. Here, we depicted the genetic structure and evolutionary history via microsatellite markers and combination with the ecological niche models (ENMs) to elucidate the intraspecific divergent and the impacts of the population demography on our focal species. Our results revealed three distinct subpopulations of R. roxellana and also uncovered asymmetric historical and symmetric contemporary gene flow that existed. Our evolutionary dynamics analyses based on diyabc suggested that the intraspecific divergence accompanied with effective population sizes changes. The ENM result implied that the distribution range of this species experienced expansion during the last glacial maximum (LGM). Our results highlighted that geological factors could contribute to the high genetic differentiation within the R. roxellana in the Qinling Mountains. We also provided a new insight into conservation management plans with endangered species in this region.
Collapse
Affiliation(s)
- Yuli Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kang Huang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Shiyi Tang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, China
| | - Jia Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhonghu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Baoguo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
70
|
Kuang W, Hu J, Wu H, Fen X, Dai Q, Fu Q, Xiao W, Frantz L, Roos C, Nadler T, Irwin DM, Zhou L, Yang X, Yu L. Genetic Diversity, Inbreeding Level, and Genetic Load in Endangered Snub-Nosed Monkeys ( Rhinopithecus). Front Genet 2020; 11:615926. [PMID: 33384722 PMCID: PMC7770136 DOI: 10.3389/fgene.2020.615926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
The snub-nosed monkey genus (Rhinopithecus) comprises five closely related species (R. avunculus, R. bieti, R. brelichi, R. roxellana, and R. strykeri). All are among the world's rarest and most endangered primates. However, the genomic impact associated with their population decline remains unknown. We analyzed population genomic data of all five snub-nosed monkey species to assess their genetic diversity, inbreeding level, and genetic load. For R. roxellana, R. bieti, and R. strykeri, population size is positively correlated with genetic diversity and negatively correlated with levels of inbreeding. Other species, however, which possess small population sizes, such as R. brelichi and R. avunculus, show high levels of genetic diversity and low levels of genomic inbreeding. Similarly, in the three populations of R. roxellana, the Shennongjia population, which possesses the lowest population size, displays a higher level of genetic diversity and lower level of genomic inbreeding. These findings suggest that although R. brelichi and R. avunculus and the Shennongjia population might be at risk, it possess significant genetic diversity and could thus help strengthen their long-term survival potential. Intriguingly, R. roxellana with large population size possess high genetic diversity and low level of genetic load, but they show the highest recent inbreeding level compared with the other snub-nosed monkeys. This suggests that, despite its large population size, R. roxellana has likely been experiencing recent inbreeding, which has not yet affected its mutational load and fitness. Analyses of homozygous-derived deleterious mutations identified in all snub-nosed monkey species indicate that these mutations are affecting immune, especially in smaller population sizes, indicating that the long-term consequences of inbreeding may be resulting in an overall reduction of immune capability in the snub-nosed monkeys, which could provide a dramatic effect on their long-term survival prospects. Altogether, our study provides valuable information concerning the genomic impact of population decline of the snub-nosed monkeys. We revealed multiple counterintuitive and unexpected patterns of genetic diversity in small and large population, which will be essential for conservation management of these endangered species.
Collapse
Affiliation(s)
- Weimin Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiaotian Fen
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- Beijing College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- Beijing College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- Beijing College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, China
| | - Laurent Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- The Palaeogenomics and Bio-Archaeology Research Network, Department of Archaeology, University of Oxford, Oxford, United Kingdom
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | | | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Linchun Zhou
- Lushui Management and Conservation Branch of Gaoligong Mountain National Nature Reserve, Nujiang, China
| | - Xu Yang
- Lushui Forestry and Grassland Council, Nujiang, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
71
|
Yuan D, Chen X, Gu H, Zou M, Zou Y, Fang J, Tao W, Dai X, Xiao S, Wang Z. Chromosomal genome of Triplophysa bleekeri provides insights into its evolution and environmental adaptation. Gigascience 2020; 9:giaa132. [PMID: 33231676 PMCID: PMC7684707 DOI: 10.1093/gigascience/giaa132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/18/2020] [Accepted: 10/30/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Intense stresses caused by high-altitude environments may result in noticeable genetic adaptions in native species. Studies of genetic adaptations to high elevations have been largely limited to terrestrial animals. How fish adapt to high-elevation environments is largely unknown. Triplophysa bleekeri, an endemic fish inhabiting high-altitude regions, is an excellent model to investigate the genetic mechanisms of adaptation to the local environment. Here, we assembled a chromosomal genome sequence of T. bleekeri, with a size of ∼628 Mb (contig and scaffold N50 of 3.1 and 22.9 Mb, respectively). We investigated the origin and environmental adaptation of T. bleekeri based on 21,198 protein-coding genes in the genome. RESULTS Compared with fish species living at low altitudes, gene families associated with lipid metabolism and immune response were significantly expanded in the T. bleekeri genome. Genes involved in DNA repair exhibit positive selection for T. bleekeri, Triplophysa siluroides, and Triplophysa tibetana, indicating that adaptive convergence in Triplophysa species occurred at the positively selected genes. We also analyzed whole-genome variants among samples from 3 populations. The results showed that populations separated by geological and artificial barriers exhibited obvious differences in genetic structures, indicating that gene flow is restricted between populations. CONCLUSIONS These results will help us expand our understanding of environmental adaptation and genetic diversity of T. bleekeri and provide valuable genetic resources for future studies on the evolution and conservation of high-altitude fish species such as T. bleekeri.
Collapse
Affiliation(s)
- Dengyue Yuan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuehui Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haoran Gu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ming Zou
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, Hubei 430000, China
| | - Yu Zou
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, Hubei 430000, China
| | - Jian Fang
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, Hubei 430000, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiangyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shijun Xiao
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, Hubei 430000, China
- College of Plant Protection, Jilin Agriculture University, Changchun, Jilin 130118, China
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
72
|
Orkin JD, Kuderna LFK, Marques-Bonet T. The Diversity of Primates: From Biomedicine to Conservation Genomics. Annu Rev Anim Biosci 2020; 9:103-124. [PMID: 33197208 DOI: 10.1146/annurev-animal-061220-023138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Until now, the field of primate genomics has focused on two major themes: understanding human evolution and advancing biomedical research. We propose that it is now time for a third theme to receive attention: conservation genomics. As a result of anthropogenic effects, the majority of primate species have become threatened with extinction. A more robust primate conservation genomics will allow for genetically informed population management. Thanks to a steady decline in the cost of sequencing, it has now become feasible to sequence whole primate genomes at the population level. Furthermore, technological advances in noninvasive genomic methods have made it possible to acquire genome-scale data from noninvasive biomaterials. Here, we review recent advances in the analysis of primate diversity, with a focus on genomic data sets across the radiation.
Collapse
Affiliation(s)
- Joseph D Orkin
- Institut de Biologia Evolutiva, Pompeu Fabra University and Spanish National Research Council, 08003 Barcelona, Spain; , ,
| | - Lukas F K Kuderna
- Institut de Biologia Evolutiva, Pompeu Fabra University and Spanish National Research Council, 08003 Barcelona, Spain; , ,
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva, Pompeu Fabra University and Spanish National Research Council, 08003 Barcelona, Spain; , , .,Sequencing Unit, National Genomic Analysis Center, Centre for Genomic Regulation, Barcelona Institute of Science, 08036 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autónoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
73
|
Small-scale population divergence is driven by local larval environment in a temperate amphibian. Heredity (Edinb) 2020; 126:279-292. [PMID: 32958927 DOI: 10.1038/s41437-020-00371-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Genomic variation within and among populations is shaped by the interplay between natural selection and the effects of genetic drift and gene flow. Adaptive divergence can be found in small-scale natural systems even when population sizes are small, and the potential for gene flow is high, suggesting that local environments exert selection pressures strong enough to counteract the opposing effects of drift and gene flow. Here, we investigated genomic differentiation in nine moor frog (Rana arvalis) populations in a small-scale network of local wetlands using 16,707 ddRAD-seq SNPs, relating levels of differentiation with local environments, as well as with properties of the surrounding landscape. We characterized population structure and differentiation, and partitioned the effects of geographic distance, local larval environment, and landscape features on total genomic variation. We also conducted gene-environment association studies using univariate and multivariate approaches. We found small-scale population structure corresponding to 6-8 clusters. Local larval environment was the most influential component explaining 2.3% of the total genetic variation followed by landscape features (1.8%) and geographic distance (0.8%), indicative of isolation-by-environment, -by-landscape, and -by-distance, respectively. We identified 1000 potential candidate SNPs putatively under divergent selection mediated by the local larval environment. The candidate SNPs were involved in, among other biological functions, immune system function and development. Our results suggest that small-scale environmental differences can exert selection pressures strong enough to counteract homogenizing effects of gene flow and drift in this small-scale system, leading to observable population differentiation.
Collapse
|
74
|
De Novo Transcriptomic and Metabolomic Analyses Reveal the Ecological Adaptation of High-Altitude Bombus pyrosoma. INSECTS 2020; 11:insects11090631. [PMID: 32937786 PMCID: PMC7563474 DOI: 10.3390/insects11090631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022]
Abstract
Bombus pyrosoma is one of the most abundant bumblebee species in China, with a distribution range of very varied geomorphology and vegetation, which makes it an ideal pollinator species for research into high-altitude adaptation. Here, we sequenced and assembled transcriptomes of B. pyrosoma from the low-altitude North China Plain and the high-altitude Tibet Plateau. Subsequent comparative analysis of de novo transcriptomes from the high- and low-altitude groups identified 675 common upregulated genes (DEGs) in the high-altitude B. pyrosoma. These genes were enriched in metabolic pathways and corresponded to enzyme activities involved in energy metabolism. Furthermore, according to joint analysis with comparative metabolomics, we suggest that the metabolism of coenzyme A (CoA) and the metabolism and transport of energy resources contribute to the adaptation of high-altitude B. pyrosoma. Meanwhile, we found many common upregulated genes enriched in the Toll and immune deficiency (Imd)signaling pathways that act as important immune defenses in insects, and hypoxia and cold temperatures could induce the upregulation of immune genes in insects. Therefore, we suppose that the Toll and Imd signaling pathways also participated in the high-altitude adaptation of B. pyrosoma. Like other organisms, we suggest that the high-altitude adaptation of B. pyrosoma is controlled by diverse mechanisms.
Collapse
|
75
|
Yang Q, Yu J, Jiang L, Liu X, Liu F, Cai Y, Niu L, Price M, Li J. Identification and expression profile of microRNA in seven tissues of the Golden snub-nosed monkey (Rhinopithecus roxellanae). Mol Genet Genomics 2020; 295:1547-1558. [PMID: 32915308 DOI: 10.1007/s00438-020-01720-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are key in the post-transcriptional regulation of gene expression and thus characterization of miRNAs and investigation of the relative abundance and specificity of tissue expression are essential for understanding gene expression in the golden snub-nosed monkey (GSM, Rhinopithecus roxellanae). Here, we report the first dataset of GSM miRNAs where we identified 460 miRNAs in seven tissues, with 246 conserved known mature miRNAs and 214 novel mature miRNAs. We determined miRNA abundance and expression in the seven tissues using a Tissue Specificity Index score and found that most novel GSM miRNAs showed a highly tissue-specific expression pattern. In particular, 67 novel miRNAs and the miR-34 family were expressed in abundance only in the lung. Five known miRNAs were highly abundant in digestive organs such as the pancreas and liver, and four novel miRNAs were highly expressed in the heart and muscle. Annotation of target genes of GSM miRNAs indicated that target genes were enriched in many important pathways, such as the HIF-1 signaling pathway and xenobiotic biodegradation-related pathways. Collectively, these results emphasize that miRNAs play important roles in GSM diet and high-elevation adaptation regulation. In summary, this study provides essential information on GSM miRNAs and will benefit further investigations of the function and mechanism of miRNAs in controlling gene expression in the GSM.
Collapse
Affiliation(s)
- Qiao Yang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jianqiu Yu
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, China
| | - Lan Jiang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xuanzhen Liu
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, China
| | - Fangyuan Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yansen Cai
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Lili Niu
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, China
| | - Megan Price
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
76
|
Jiang M, Shi L, Li X, Dong Q, Sun H, Du Y, Zhang Y, Shao T, Cheng H, Chen W, Wang Z. Genome-wide adaptive evolution to underground stresses in subterranean mammals: Hypoxia adaption, immunity promotion, and sensory specialization. Ecol Evol 2020; 10:7377-7388. [PMID: 32760535 PMCID: PMC7391338 DOI: 10.1002/ece3.6462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Life underground has provided remarkable examples of adaptive evolution in subterranean mammals; however, genome-wide adaptive evolution to underground stresses still needs further research. There are approximately 250 species of subterranean mammals across three suborders and six families. These species not only inhabit hypoxic and dark burrows but also exhibit evolved adaptation to hypoxia, cancer resistance, and specialized sensory systems, making them an excellent model of evolution. The adaptive evolution of subterranean mammals has attracted great attention and needs further study. In the present study, phylogenetic analysis of 5,853 single-copy orthologous gene families of five subterranean mammals (Nannospalax galili, Heterocephalus glaber, Fukomys damarensis, Condylura cristata, and Chrysochloris asiatica) showed that they formed fou distinct clusters. This result is consistent with the traditional systematics of these species. Furthermore, comparison of the high-quality genomes of these five subterranean mammalian species led to the identification of the genomic signatures of adaptive evolution. Our results show that the five subterranean mammalian did not share positively selected genes but had similar functional enrichment categories, including hypoxia tolerance, immunity promotion, and sensory specialization, which adapted to the environment of underground stresses. Moreover, variations in soil hardness, climate, and lifestyles have resulted in different molecular mechanisms of adaptation to the hypoxic environment and different degrees of visual degradation. These results provide insights into the genome-wide adaptive evolution to underground stresses in subterranean mammals, with special focus on the characteristics of hypoxia adaption, immunity promotion, and sensory specialization response to the life underground.
Collapse
Affiliation(s)
- Mengwan Jiang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Luye Shi
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Xiujuan Li
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Qianqian Dong
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Hong Sun
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Yimeng Du
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Yifeng Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Tian Shao
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Han Cheng
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Weihua Chen
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Zhenlong Wang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
77
|
Genomic Identification, Evolution, and Expression Analysis of Collagen Genes Family in Water Buffalo during Lactation. Genes (Basel) 2020; 11:genes11050515. [PMID: 32384775 PMCID: PMC7288458 DOI: 10.3390/genes11050515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 11/17/2022] Open
Abstract
Collagens, as extracellular matrix proteins, support cells for structural integrity and contribute to support mammary basic structure and development. This study aims to perform the genomic identification, evolution, and expression analyses of the collagen gene family in water buffalo (Bubalus bubalis) during lactation. A total of 128 buffalo collagen protein sequences were deduced from the 45 collagen genes identified in silico from buffalo genome, which classified into six groups based on their phylogenetic relationships, conserved motifs, and gene structure analyses. The identified collagen sequences were unequally distributed on 16 chromosomes. The tandem duplicated genes were found within three chromosomes, while only one segmental event occurred between Chr3 and Chr8. Collinearity analysis revealed that a total of 36 collagen gene pairs were orthologous between buffalo and cattle genomes despite having different chromosome numbers. Comparative transcription analyses revealed that a total of 23 orthologous collagen genes were detected in the milk samples at different lactation periods between the two species. Notably, the duplicated gene pair of COL4A1-COL4A2 during lactation had a higher mRNA expression level than that of cattle, while a higher expression level of COL6A1-COL6A2 pair was found in cattle compared with that of buffalo. The present study provides useful information for investigating the potential functions of the collagen family in buffalo during lactation and helps in the functional characterization of collagen genes in additional research.
Collapse
|
78
|
Friedrich J, Wiener P. Selection signatures for high-altitude adaptation in ruminants. Anim Genet 2020; 51:157-165. [PMID: 31943284 DOI: 10.1111/age.12900] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
High-altitude areas are important socio-economical habitats with ruminants serving as a major source of food and commodities for humans. Living at high altitude, however, is extremely challenging, predominantly due to the exposure to hypoxic conditions, but also because of cold temperatures and limited feed for livestock. To survive in high-altitude environments over the long term, ruminants have evolved adaptation strategies, e.g. physiological and morphological modifications, which allow them to cope with these harsh conditions. Identification of such selection signatures in ruminants may contribute to more informed breeding decisions, and thus improved productivity. Moreover, studying the genetic background of altitude adaptation in ruminants provides insights into a common molecular basis across species and thus a better understanding of the physiological basis of this adaptation. In this paper, we review the major effects of high altitude on the mammalian body and highlight some of the most important short-term (coping) and genetically evolved (adaptation) physiological modifications. We then discuss the genetic architecture of altitude adaptation and target genes that show evidence of being under selection based on recent studies in various species, with a focus on ruminants. The yak is presented as an interesting native species that has adapted to the high-altitude regions of Tibet. Finally, we conclude with implications and challenges of selection signature studies on altitude adaptation in general. We found that the number of studies on genetic mechanisms that enable altitude adaptation in ruminants is growing, with a strong focus on identifying selection signatures, and hypothesise that the investigation of genetic data from multiple species and regions will contribute greatly to the understanding of the genetic basis of altitude adaptation.
Collapse
Affiliation(s)
- J Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - P Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
79
|
Shi Y, Fan S, Wu M, Zuo Z, Li X, Jiang L, Shen Q, Xu P, Zeng L, Zhou Y, Huang Y, Yang Z, Zhou J, Gao J, Zhou H, Xu S, Ji H, Shi P, Wu DD, Yang C, Chen Y. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun 2019; 10:4892. [PMID: 31653849 PMCID: PMC6814821 DOI: 10.1038/s41467-019-12801-6] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Hypoxia occurs naturally at high-altitudes and pathologically in hypoxic solid tumors. Here, we report that genes involved in various human cancers evolved rapidly in Tibetans and six Tibetan domestic mammals compared to reciprocal lowlanders. Furthermore, m6A modified mRNA binding protein YTHDF1, one of evolutionary positively selected genes for high-altitude adaptation is amplified in various cancers, including non-small cell lung cancer (NSCLC). We show that YTHDF1 deficiency inhibits NSCLC cell proliferation and xenograft tumor formation through regulating the translational efficiency of CDK2, CDK4, and cyclin D1, and that YTHDF1 depletion restrains de novo lung adenocarcinomas (ADC) progression. However, we observe that YTHDF1 high expression correlates with better clinical outcome, with its depletion rendering cancerous cells resistant to cisplatin (DDP) treatment. Mechanistic studies identified the Keap1-Nrf2-AKR1C1 axis as the downstream mediator of YTHDF1. Together, these findings highlight the critical role of YTHDF1 in both hypoxia adaptation and pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Yulin Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Mengge Wu
- Kunming Medical University, Kunming, 650223, China
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xingyang Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Liping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Qiushuo Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Peifang Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Lin Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | | | | | | | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Shuhua Xu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Hongbin Ji
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Peng Shi
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dong-Dong Wu
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Cuiping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
80
|
Small non-coding RNA transcriptome of four high-altitude vertebrates and their low-altitude relatives. Sci Data 2019; 6:192. [PMID: 31586122 PMCID: PMC6778140 DOI: 10.1038/s41597-019-0204-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022] Open
Abstract
Animals that lived at high altitudes have evolved distinctive physiological traits that allow them to tolerate extreme high-altitude environment, including higher hemoglobin concentration, increased oxygen saturation of blood and a high energy metabolism. Although previous investigations performed plenty of comparison between high- and low-altitude mammals at the level of morphology, physiology and genomics, mechanism underlying high-altitude adaptation remains largely unknown. Few studies provided comparative analyses in high-altitude adaptation, such as parallel analysis in multiple species. In this study, we generated high-quality small RNA sequencing data for six tissues (heart, liver, spleen, lung, kidney and muscle) from low- and high-altitude populations of four typical livestock animals, and identified comparable numbers of miRNAs in each species. This dataset will provide valuable information for understanding the molecular mechanism of high-altitude adaptation in vertebrates.
Collapse
|
81
|
Zhou C, James JG, Xu Y, Tu H, He X, Wen Q, Price M, Yang N, Wu Y, Ran J, Meng Y, Yue B. Genome-wide analysis sheds light on the high-altitude adaptation of the buff-throated partridge (Tetraophasis szechenyii). Mol Genet Genomics 2019; 295:31-46. [PMID: 31414227 DOI: 10.1007/s00438-019-01601-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022]
Abstract
The buff-throated partridge (Tetraophasis szechenyii) is a hypoxia-tolerant bird living in an extremely inhospitable high-altitude environment, which has high ultraviolet (UV) radiation as well as a low oxygen supply when compared with low-altitude areas. To further understand the molecular genetic mechanisms of the high-altitude adaptation of the buff-throated partridges, we de novo assembled the complete genome of the buff-throated partridge. Comparative genomics revealed that positively selected hypoxia-related genes in the buff-throated partridge were distributed in the HIF-1 signaling pathway (map04066), response to hypoxia (GO:0001666), response to oxygen-containing compound (GO:1901700), ATP binding (GO:0005524), and angiogenesis (GO:0001525). Of these positively selected hypoxia-related genes, one positively selected gene (LONP1) had one buff-throated partridge-specific missense mutation which was classified as deleterious by PolyPhen-2. Moreover, positively selected genes in the buff-throated partridge were enriched in cellular response to DNA damage stimulus (corrected P value: 0.028006) and DNA repair (corrected P value: 0.044549), which was related to the increased exposure of the buff-throated partridge to UV radiation. Compared with other avian genomes, the buff-throated partridge showed expansion in genes associated with steroid hormone receptor activity and contractions in genes related to immune and olfactory perception. Furthermore, comparisons between the buff-throated partridge genome and red junglefowl genome revealed a conserved genome structure and provided strong evidence of the sibling relationship between Tetraophasis and Lophophorus. Our data and analysis contributed to the study of Phasianidae evolutionary history and provided new insights into the potential adaptation mechanisms to the high altitude employed by the buff-throated partridge.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Jake George James
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yu Xu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - Hongmei Tu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Xingcheng He
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Qinchao Wen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Megan Price
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Nan Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, People's Republic of China
| | - Yongjie Wu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Jianghong Ran
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yang Meng
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Bisong Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
82
|
Kuang WM, Ming C, Li HP, Wu H, Frantz L, Roos C, Zhang YP, Zhang CL, Jia T, Yang JY, Yu L. The Origin and Population History of the Endangered Golden Snub-Nosed Monkey (Rhinopithecus roxellana). Mol Biol Evol 2019; 36:487-499. [PMID: 30481341 DOI: 10.1093/molbev/msy220] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The origin and population history of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) remain largely unavailable and/or controversial. We here integrate analyses of multiple genomic markers, including mitochondrial (mt) genomes, Y-chromosomes, and autosomes of 54 golden monkey individuals from all three geographic populations (SG, QL, and SNJ). Our results reveal contrasting population structures. Mt analyses suggest a division of golden monkeys into five lineages: one in SNJ, two in SG, and two in QL. One of the SG lineages (a mixed SG/QL lineage) is basal to all other lineages. In contrast, autosomal analyses place SNJ as the most basal lineage and identify one QL and three SG lineages. Notably, Y-chromosome analyses bear features similar to mt analyses in placing the SG/QL-mixed lineage as the first diverging lineage and dividing SG into two lineages, while resembling autosomal analyses in identifying one QL lineage. We further find bidirectional gene flow among all three populations at autosomal loci, while asymmetric gene flow is suggested at mt genomes and Y-chromosomes. We propose that different population structures and gene flow scenarios are the result of sex-linked differences in the dispersal pattern of R. roxellana. Moreover, our demographic simulation analyses support an origin hypothesis suggesting that the ancestral R. roxellana population was once widespread and then divided into SNJ and non-SNJ (SG and QL) populations. This differs from previous mt-based "mono-origin (SG is the source population)" and "multiorigin (SG is a fusion of QL and SNJ)" hypotheses. We provide a detailed and refined scenario for the origin and population history of this endangered primate species, which has a broader significance for Chinese biogeography. In addition, this study highlights the importance to investigate multiple genomic markers with different modes of inheritance to trace the complete evolutionary history of a species, especially for those exhibiting differential or mixed patterns of sex dispersal.
Collapse
Affiliation(s)
- Wei-Min Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Chen Ming
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hai-Peng Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Laurent Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kindom.,The Palaeogenomics and Bio-Archaeology Research Network, Department of Archaeology, University of Oxford, Oxford, United Kingdom
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Cheng-Lin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
83
|
Rödin‐Mörch P, Luquet E, Meyer‐Lucht Y, Richter‐Boix A, Höglund J, Laurila A. Latitudinal divergence in a widespread amphibian: Contrasting patterns of neutral and adaptive genomic variation. Mol Ecol 2019; 28:2996-3011. [DOI: 10.1111/mec.15132] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Patrik Rödin‐Mörch
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Emilien Luquet
- CNRS, ENTPE, UMR5023 LEHNA Univ Lyon, Université Claude Bernard Lyon 1 Villeurbanne France
| | - Yvonne Meyer‐Lucht
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Alex Richter‐Boix
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Jacob Höglund
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| | - Anssi Laurila
- Animal Ecology/Department of Ecology and Genetics Uppsala University Uppsala Sweden
| |
Collapse
|
84
|
Comparative analysis of peripheral blood reveals transcriptomic adaptations to extreme environments on the Qinghai-Tibetan Plateau in the gray wolf (Canis lupus chanco). ORG DIVERS EVOL 2019. [DOI: 10.1007/s13127-019-00405-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
85
|
Comparative transcriptomics of 3 high-altitude passerine birds and their low-altitude relatives. Proc Natl Acad Sci U S A 2019; 116:11851-11856. [PMID: 31127049 DOI: 10.1073/pnas.1819657116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
High-altitude environments present strong stresses for living organisms, which have driven striking phenotypic and genetic adaptations. While previous studies have revealed multiple genetic adaptations in high-altitude species, how evolutionary history (i.e., phylogenetic background) contributes to similarity in genetic adaptations to high-altitude environments is largely unknown, in particular in a group of birds. We explored this in 3 high-altitude passerine birds from the Qinghai-Tibet Plateau and their low-altitude relatives in lowland eastern China. We generated transcriptomic data for 5 tissues across these species and compared sequence changes and expression shifts between high- and low-altitude pairs. Sequence comparison revealed that similarity in all 3 high-altitude species was high for genes under positive selection (218 genes) but low in amino acid substitutions (only 4 genes sharing identical amino acid substitutions). Expression profiles for all genes identified a tissue-specific expression pattern (i.e., all species clustered by tissue). By contrast, an altitude-related pattern was observed in genes differentially expressed between all 3 species pairs and genes associated with altitude, suggesting that the high-altitude environment may drive similar expression shifts in the 3 high-altitude species. Gene expression level, gene connectivity, and the interactions of these 2 factors with altitude were correlated with evolutionary rates. Our results provide evidence for how gene sequence changes and expression shifts work in a concerted way in a group of high-altitude birds, leading to similar evolution routes in response to high-altitude environmental stresses.
Collapse
|
86
|
Jia C, Wang H, Li C, Wu X, Zan L, Ding X, Guo X, Bao P, Pei J, Chu M, Liang C, Yan P. Genome-wide detection of copy number variations in polled yak using the Illumina BovineHD BeadChip. BMC Genomics 2019; 20:376. [PMID: 31088363 PMCID: PMC6518677 DOI: 10.1186/s12864-019-5759-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 01/29/2023] Open
Abstract
Background Copy number variations (CNVs), which are genetic variations present throughout mammalian genomes, are a vital source of phenotypic variation that can lead to the development of unique traits. In this study we used the Illunima BovineHD BeadChip to conduct genome-wide detection of CNVs in 215 polled yaks. Results A total of 1066 CNV regions (CNVRs) were detected with a total length of 181.6 Mb, comprising ~ 7.2% of the bovine autosomal genome. The size of these CNVRs ranged from 5.53 kb to 1148.45 kb, with an average size of 170.31 kb. Eight out of nine randomly chosen CNVRs were successfully validated by qPCR. A functional enrichment analysis of the CNVR-associated genes indicated their relationship to a number of molecular adaptations that enable yaks to thrive at high altitudes. One third of the detected CNVRs were mapped to QTLs associated with six classes of economically important traits, indicating that these CNVRs may play an important role in variations of these traits. Conclusions Our genome-wide yak CNV map may thus provide valuable insights into both the molecular mechanisms of high altitude adaptation and the potential genomic basis of economically important traits in yak. Electronic supplementary material The online version of this article (10.1186/s12864-019-5759-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Congjun Jia
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hongbo Wang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chen Li
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
87
|
Fu R, Li L, Yu Z, Afonso E, Giraudoux P. Spatial and temporal distribution of Yunnan snub-nosed monkey, Rhinopithecus bieti, indices. MAMMALIA 2019. [DOI: 10.1515/mammalia-2017-0168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Studying elusive species of conservation concern might be difficult for technical and ethical reasons. However, censuses can be based on the observation of activity indices. When coupled to non-invasive genetic methods this approach can provide extremely precise information about population size, individual movements and diseases. However, the design of optimal sampling is dependent on a knowledge on group distribution and possible variations of detectability of index targets. The aim of this study was to document the distribution of Yunnan snub-nosed monkey indices in space and time in that perspective. Based on transects carried out across the range of a fed population and on counts along the trail across the range of a wild group, we show that 2–3 day stays of a group in a place of some hectares were sufficient to get an homogeneous distribution of indices. Furthermore, the number of indices found were dependent on both pig presence and season. On the other hand, on a large scale of 100 km2 indices were spatially distributed as nested clusters. Indices distribution indicated a strong preference towards southern slopes and altitudes ranging between 2900 and 3400 m. Those observations pinpoint the importance of considering spatial scale to organise sampling designed to estimate population distribution.
Collapse
|
88
|
Zhou C, Jin J, Peng C, Wen Q, Wang G, Wei W, Jiang X, Price M, Cui K, Meng Y, Song Z, Li J, Zhang X, Fan Z, Yue B. Comparative genomics sheds light on the predatory lifestyle of accipitrids and owls. Sci Rep 2019; 9:2249. [PMID: 30783131 PMCID: PMC6381159 DOI: 10.1038/s41598-019-38680-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023] Open
Abstract
Raptors are carnivorous birds including accipitrids (Accipitridae, Accipitriformes) and owls (Strigiformes), which are diurnal and nocturnal, respectively. To examine the evolutionary basis of adaptations to different light cycles and hunting behavior between accipitrids and owls, we de novo assembled besra (Accipiter virgatus, Accipitridae, Accipitriformes) and oriental scops owl (Otus sunia, Strigidae, Strigiformes) draft genomes. Comparative genomics demonstrated four PSGs (positively selected genes) (XRCC5, PRIMPOL, MDM2, and SIRT1) related to the response to ultraviolet (UV) radiation in accipitrids, and one PSG (ALCAM) associated with retina development in owls, which was consistent with their respective diurnal/nocturnal predatory lifestyles. We identified five accipitrid-specific and two owl-specific missense mutations and most of which were predicted to affect the protein function by PolyPhen-2. Genome comparison showed the diversification of raptor olfactory receptor repertoires, which may reflect an important role of olfaction in their predatory lifestyle. Comparison of TAS2R gene (i.e. linked to tasting bitterness) number in birds with different dietary lifestyles suggested that dietary toxins were a major selective force shaping the diversity of TAS2R repertoires. Fewer TAS2R genes in raptors reflected their carnivorous diet, since animal tissues are less likely to contain toxins than plant material. Our data and findings provide valuable genomic resources for studying the genetic mechanisms of raptors' environmental adaptation, particularly olfaction, nocturnality and response to UV radiation.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiazheng Jin
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Changjun Peng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Qinchao Wen
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Guannan Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Weideng Wei
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Xue Jiang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Megan Price
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Kai Cui
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Yang Meng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhaobin Song
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Jing Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhenxin Fan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China.
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
89
|
An NA, Ding W, Yang XZ, Peng J, He BZ, Shen QS, Lu F, He A, Zhang YE, Tan BCM, Chen JY, Li CY. Evolutionarily significant A-to-I RNA editing events originated through G-to-A mutations in primates. Genome Biol 2019; 20:24. [PMID: 30712515 PMCID: PMC6360793 DOI: 10.1186/s13059-019-1638-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recent studies have revealed thousands of A-to-I RNA editing events in primates, but the origination and general functions of these events are not well addressed. RESULTS Here, we perform a comparative editome study in human and rhesus macaque and uncover a substantial proportion of macaque A-to-I editing sites that are genomically polymorphic in some animals or encoded as non-editable nucleotides in human. The occurrence of these recent gain and loss of RNA editing through DNA point mutation is significantly more prevalent than that expected for the nearby regions. Ancestral state analyses further demonstrate that an increase in recent gain of editing events contribute to the over-representation, with G-to-A mutation site as a favorable location for the origination of robust A-to-I editing events. Population genetics analyses of the focal editing sites further reveal that a portion of these young editing events are evolutionarily significant, indicating general functional relevance for at least a fraction of these sites. CONCLUSIONS Overall, we report a list of A-to-I editing events that recently originated through G-to-A mutations in primates, representing a valuable resource to investigate the features and evolutionary significance of A-to-I editing events at the population and species levels. The unique subset of primate editome also illuminates the general functions of RNA editing by connecting it to particular gene regulatory processes, based on the characterized outcome of a gene regulatory level in different individuals or primate species with or without these editing events.
Collapse
Affiliation(s)
- Ni A An
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Wanqiu Ding
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xin-Zhuang Yang
- Department of Central Research Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiguang Peng
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Bin Z He
- Biology Department, University of Iowa, Iowa City, IA, USA
| | - Qing Sunny Shen
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Fujian Lu
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Aibin He
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yong E Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Jia-Yu Chen
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093-0651, USA.
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
90
|
Hao Y, Qu Y, Song G, Lei F. Genomic Insights into the Adaptive Convergent Evolution. Curr Genomics 2019; 20:81-89. [PMID: 31555059 PMCID: PMC6728901 DOI: 10.2174/1389202920666190313162702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/10/2019] [Accepted: 03/07/2019] [Indexed: 11/22/2022] Open
Abstract
Adaptive convergent evolution, which refers to the same or similar phenotypes produced by species from independent lineages under similar selective pressures, has been widely examined for a long time. Accumulating studies on the adaptive convergent evolution have been reported from many different perspectives (cellular, anatomical, morphological, physiological, biochemical, and behavioral). Recent advances in the genomic technologies have demonstrated that adaptive convergence can arise from specific genetic mechanisms in different hierarchies, ranging from the same nucleotide or amino acid substitutions to the biological functions or pathways. Among these genetic mechanisms, the same amino acid changes in protein-coding genes play an important role in adaptive phenotypic convergence. Methods for detecting adaptive convergence at the protein sequence level have been constantly debated and developed. Here, we review recent progress on using genomic approaches to evaluate the genetic mechanisms of adaptive convergent evolution, summarize the research methods for identifying adaptive amino acid convergence, and discuss the future perspectives for researching adaptive convergent evolu-tion.
Collapse
Affiliation(s)
| | | | | | - Fumin Lei
- Address correspondence to this author at the Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, P.O. Box: 100101, Beijing, China; Fax: +86-10-64807159; E-mail:
| |
Collapse
|
91
|
Lee CY, Hsieh PH, Chiang LM, Chattopadhyay A, Li KY, Lee YF, Lu TP, Lai LC, Lin EC, Lee H, Ding ST, Tsai MH, Chen CY, Chuang EY. Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant. Gigascience 2018; 7:4990948. [PMID: 29722814 PMCID: PMC5941149 DOI: 10.1093/gigascience/giy044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/13/2018] [Indexed: 01/10/2023] Open
Abstract
Background The Mikado pheasant (Syrmaticus mikado) is a nearly endangered species indigenous to high-altitude regions of Taiwan. This pheasant provides an opportunity to investigate evolutionary processes following geographic isolation. Currently, the genetic background and adaptive evolution of the Mikado pheasant remain unclear. Results We present the draft genome of the Mikado pheasant, which consists of 1.04 Gb of DNA and 15,972 annotated protein-coding genes. The Mikado pheasant displays expansion and positive selection of genes related to features that contribute to its adaptive evolution, such as energy metabolism, oxygen transport, hemoglobin binding, radiation response, immune response, and DNA repair. To investigate the molecular evolution of the major histocompatibility complex (MHC) across several avian species, 39 putative genes spanning 227 kb on a contiguous region were annotated and manually curated. The MHC loci of the pheasant revealed a high level of synteny, several rapidly evolving genes, and inverse regions compared to the same loci in the chicken. The complete mitochondrial genome was also sequenced, assembled, and compared against four long-tailed pheasants. The results from molecular clock analysis suggest that ancestors of the Mikado pheasant migrated from the north to Taiwan about 3.47 million years ago. Conclusions This study provides a valuable genomic resource for the Mikado pheasant, insights into its adaptation to high altitude, and the evolutionary history of the genus Syrmaticus, which could potentially be useful for future studies that investigate molecular evolution, genomics, ecology, and immunogenetics.
Collapse
Affiliation(s)
- Chien-Yueh Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Ping-Han Hsieh
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Mei Chiang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Amrita Chattopadhyay
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Kuan-Yi Li
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.,Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Fang Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei 10051, Taiwan
| | - En-Chung Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsinyu Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan
| | - Mong-Hsun Tsai
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan University, Taipei, Taiwan
| | - Chien-Yu Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei 10672, Taiwan
| | - Eric Y Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
92
|
Fan H, Hu Y, Wu Q, Nie Y, Yan L, Wei F. Conservation genetics and genomics of threatened vertebrates in China. J Genet Genomics 2018; 45:593-601. [PMID: 30455039 DOI: 10.1016/j.jgg.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 10/27/2022]
Abstract
Conservation genetics and genomics are two independent disciplines that focus on using new techniques in genetics and genomics to solve problems in conservation biology. During the past two decades, conservation genetics and genomics have experienced rapid progress. Here, we summarize the research advances in the conservation genetics and genomics of threatened vertebrates (e.g., carnivorans, primates, ungulates, cetaceans, avians, amphibians and reptiles) in China. First, we introduce the concepts of conservation genetics and genomics and their development. Second, we review the recent advances in conservation genetics research, including noninvasive genetics and landscape genetics. Third, we summarize the progress in conservation genomics research, which mainly focuses on resolving genetic problems relevant to conservation such as genetic diversity, genetic structure, demographic history, and genomic evolution and adaptation. Finally, we discuss the future directions of conservation genetics and genomics.
Collapse
Affiliation(s)
- Huizhong Fan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Qi Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonggang Nie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Li Yan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
93
|
Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proc Natl Acad Sci U S A 2018; 115:E10634-E10641. [PMID: 30348757 DOI: 10.1073/pnas.1813593115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although many cases of genetic adaptations to high elevations have been reported, the processes driving these modifications and the pace of their evolution remain unclear. Many high-elevation adaptations (HEAs) are thought to have arisen in situ as populations rose with growing mountains. In contrast, most high-elevation lineages of the Qinghai-Tibetan Plateau appear to have colonized from low-elevation areas. These lineages provide an opportunity for studying recent HEAs and comparing them with ancestral low-elevation alternatives. Herein, we compare four frogs (three species of Nanorana and a close lowland relative) and four lizards (Phrynocephalus) that inhabit a range of elevations on or along the slopes of the Qinghai-Tibetan Plateau. The sequential cladogenesis of these species across an elevational gradient allows us to examine the gradual accumulation of HEA at increasing elevations. Many adaptations to high elevations appear to arise gradually and evolve continuously with increasing elevational distributions. Numerous related functions, especially DNA repair and energy metabolism pathways, exhibit rapid change and continuous positive selection with increasing elevations. Although the two studied genera are distantly related, they exhibit numerous convergent evolutionary changes, especially at the functional level. This functional convergence appears to be more extensive than convergence at the individual gene level, although we found 32 homologous genes undergoing positive selection for change in both high-elevation groups. We argue that species groups distributed along a broad elevational gradient provide a more powerful system for testing adaptations to high-elevation environments compared with studies that compare only pairs of high-elevation versus low-elevation species.
Collapse
|
94
|
Feng B, Yang Z. Studies on diversity of higher fungi in Yunnan, southwestern China: A review. PLANT DIVERSITY 2018; 40:165-171. [PMID: 30740561 PMCID: PMC6137262 DOI: 10.1016/j.pld.2018.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 06/02/2023]
Abstract
Yunnan is exceedingly rich in higher fungi (Ascomycota and Basidiomycota). Given that the number of fungi (including lichens) occurring in a given area is, as Hawksworth suggested, roughly six times that of local vascular plants, a total of approximately 104,000 fungal species would be expected in Yunnan. However, to date only about 6000 fungal species, including roughly 3000 species of higher fungi, have been reported from the province. Although studies on Yunnan's fungi started in the late nineteenth century, significant progress has been made only in the last forty-five years. Over the first twenty-five years of this period, studies on fungal diversity in this area have largely been about taxonomy based on morphological characters and partially on geographical distribution. Over the past twenty years, the combination of both morphological and molecular phylogenetic approaches has become the preferred method to help understand the diversity and evolution of higher fungi. This review focuses on our current knowledge of how geological, geographical, and ecological factors may have contributed to the diversity patterns of higher fungi in Yunnan. Based on this knowledge, three aspects for future studies are suggested.
Collapse
Affiliation(s)
| | - Zhuliang Yang
- Corresponding author. Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road #132, Kunming 650201, Yunnan, China.
| |
Collapse
|
95
|
Zhang QL, Wang F, Guo J, Deng XY, Chen JY, Lin LB. Characterization of ladybird Henosepilachna vigintioctopunctata transcriptomes across various life stages. Sci Data 2018; 5:180093. [PMID: 29870033 PMCID: PMC5987669 DOI: 10.1038/sdata.2018.93] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
Henosepilachna vigintioctopunctata is a vegetable pest that has spread worldwide. It belongs to the Coccinellidae family, whose members exhibit remarkable diversity, both in terms of their diets and the colored spots that appear on the elytra in the adult stage. Transcriptomic data from H. vigintioctopunctata at different life stages would be useful for further investigating the genetic basis of this dietary diversity and the formation of the colored spots in ladybird beetles, as well as revealing the population dynamics of H. vigintioctopunctata, which could be useful in pest control. Here, we generated a comprehensive RNA-seq data set (a total of ~24 Gb of clean data) for H. vigintioctopunctata by sequencing samples collected at different life stages. We characterized the transcriptomes of each of the four life stages (egg, larva, pupa, adult) and generated a high-coverage pool by combining all the RNA-seq reads. Furthermore, we identified a catalog of simple sequence repeat (SSR) markers. This represents the first study to collect transcriptome data from all life stages of a ladybird beetle.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun-Yuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
- LPS, Nanjing Institute of Geology and Paleontology, CAS, Nanjing 210008, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
96
|
Verma P, Sharma A, Sodhi M, Thakur K, Kataria RS, Niranjan SK, Bharti VK, Kumar P, Giri A, Kalia S, Mukesh M. Transcriptome Analysis of Circulating PBMCs to Understand Mechanism of High Altitude Adaptation in Native Cattle of Ladakh Region. Sci Rep 2018; 8:7681. [PMID: 29769561 PMCID: PMC5955995 DOI: 10.1038/s41598-018-25736-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Ladakhi cattle is native population of Leh and Ladakh region and constantly exposed to hypobaric hypoxia over many generations. In present study, transcriptome signatures of cattle from Ladakh region (~5500 m) and Sahiwal cattle from tropical regions were evaluated using Agilent 44 K microarray chip. The top up-regulated genes in Ladakhi cows were INHBC, ITPRI, HECA, ABI3, GPR171, and HIF-1α involved in hypoxia and stress response. In Sahiwal cows, the top up-regulated genes eEF1A1, GRO1, CXCL2, DEFB3 and BOLA-DQA3 were associated with immune function and inflammatory response indicating their strong immune potential to combat the pathogens prevalent in the tropical conditions. The molecular pathways highly impacted were MAPK signaling, ETC, apoptosis, TLR signaling and NF- kB signaling pathway indicating signatures of adaptive evolution of these two cattle types in response to diverse environments. Further, qPCR analysis revealed increased expression of DEGs such as HIF-1, EPAS-1, VEGFA, NOS2, and GLUT-1/SLC2A1 in cattle types from high altitude suggesting their pivotal role in association with high altitude adaptation. Based on data generated, native cattle of Ladakh region was found to be genetically distinct from native cattle adapted to the tropical region of India.
Collapse
Affiliation(s)
- Preeti Verma
- Singhania University, Jhunjhunu, Rajasthan, India
| | - Ankita Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Monika Sodhi
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Kiran Thakur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Ranjit S Kataria
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Saket K Niranjan
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | | | - Prabhat Kumar
- Defence Institute of High Altitude Research, Leh, India
| | - Arup Giri
- Defence Institute of High Altitude Research, Leh, India
| | - Sahil Kalia
- Defence Institute of High Altitude Research, Leh, India
| | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India.
| |
Collapse
|
97
|
Yuan Z, Zhou T, Bao L, Liu S, Shi H, Yang Y, Gao D, Dunham R, Waldbieser G, Liu Z. The annotation of repetitive elements in the genome of channel catfish (Ictalurus punctatus). PLoS One 2018; 13:e0197371. [PMID: 29763462 PMCID: PMC5953449 DOI: 10.1371/journal.pone.0197371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
Channel catfish (Ictalurus punctatus) is a highly adaptive species and has been used as a research model for comparative immunology, physiology, and toxicology among ectothermic vertebrates. It is also economically important for aquaculture. As such, its reference genome was generated and annotated with protein coding genes. However, the repetitive elements in the catfish genome are less well understood. In this study, over 417.8 Megabase (MB) of repetitive elements were identified and characterized in the channel catfish genome. Among them, the DNA/TcMar-Tc1 transposons are the most abundant type, making up ~20% of the total repetitive elements, followed by the microsatellites (14%). The prevalence of repetitive elements, especially the mobile elements, may have provided a driving force for the evolution of the catfish genome. A number of catfish-specific repetitive elements were identified including the previously reported Xba elements whose divergence rate was relatively low, slower than that in untranslated regions of genes but faster than the protein coding sequences, suggesting its evolutionary restrictions.
Collapse
Affiliation(s)
- Zihao Yuan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Tao Zhou
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Lisui Bao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Shikai Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Huitong Shi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Yujia Yang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Dongya Gao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Geoff Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, Stoneville, Mississippi, United States of America
| | - Zhanjiang Liu
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
98
|
Fang J, Li Y, Zhang J, Yan M, Li J, Bao S, Jin T. Correlation between polymorphisms in microRNA-regulated genes and cervical cancer susceptibility in a Xinjiang Uygur population. Oncotarget 2018; 8:31758-31764. [PMID: 28423658 PMCID: PMC5458245 DOI: 10.18632/oncotarget.15970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
Abstract
We explored the correlation between single nucleotide polymorphisms (SNPs) and susceptibility to cervical cancer (CC) in a Xinjiang Uygur population. Ten SNPs in eight miRNA-regulated genes were selected for analysis. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using unconditional logistic regression analysis. Multivariate logistic regression analysis was used to detect correlations between SNPs and CC. We found that minor allele "C" of rs512715 in NEAT1 was associated with an increased risk of CC in the allele, codominant, dominant, overdominant and log-additive models. Minor allele "C" of rs4777498 in CELF6 was associated with an increased risk of CC in the recessive model. Minor allele "C" of rs3094 in RNASE4 was associated with increased risk of CC in the allele, dominant and log-additive models. In clinical stage III/IV CC patients, minor allele "C" of rs3094 in RNASE4 and minor allele "C" of rs8004334 in JDP2 were associated with increased risk. In subtype squamous carcinoma CC patients, minor allele "C" of rs512715 in NEAT1 and minor allele "C" of rs3094 in RNASE4 were associated with increased risk. In subtype adenocarcinoma CC patients, minor allele "C" of rs3094 in RNASE was associated with increased risk.
Collapse
Affiliation(s)
- Jing Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ying Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Jiayi Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi, 710075, China
| | - Mengdan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi, 710075, China
| | - Jingjie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi, 710075, China
| | - Shan Bao
- Clinic of Gynecology and Obstetrics, Hainan Provincial People's Hospital, Haikou 570102, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi, 710075, China
| |
Collapse
|
99
|
Tian R, Yin D, Liu Y, Seim I, Xu S, Yang G. Adaptive Evolution of Energy Metabolism-Related Genes in Hypoxia-Tolerant Mammals. Front Genet 2017; 8:205. [PMID: 29270192 PMCID: PMC5725996 DOI: 10.3389/fgene.2017.00205] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/24/2017] [Indexed: 01/26/2023] Open
Abstract
Animals that are able to sustain life under hypoxic conditions have long captured the imagination of biologists and medical practitioners alike. Although the associated morphological modifications have been extensively described, the mechanisms underlying the evolution of hypoxia tolerance are not well understood. To provide such insights, we investigated genes in four major energy metabolism pathways, and provide evidence of distinct evolutionary paths to mammalian hypoxia-tolerance. Positive selection of genes in the oxidative phosphorylation pathway mainly occurred in terrestrial hypoxia-tolerant species; possible adaptations to chronically hypoxic environments. The strongest candidate for positive selection along cetacean lineages was the citrate cycle signaling pathway, suggestive of enhanced aerobic metabolism during and after a dive. Six genes with cetacean-specific amino acid changes are rate-limiting enzymes involved in the gluconeogenesis pathway, which would be expected to enhance the lactate removal after diving. Intriguingly, 38 parallel amino acid substitutions in 29 genes were observed between hypoxia-tolerant mammals. Of these, 76.3% were radical amino acid changes, suggesting that convergent molecular evolution drives the adaptation to hypoxic stress and similar phenotypic changes. This study provides further insights into life under low oxygen conditions and the evolutionary trajectories of hypoxia-tolerant species.
Collapse
Affiliation(s)
- Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Daiqing Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanzhi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Inge Seim
- Comparative and Endocrine Biology Laboratory, Translational Research Institute–Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
100
|
Kang J, Ma X, He S. Evidence of high-altitude adaptation in the glyptosternoid fish, Creteuchiloglanis macropterus from the Nujiang River obtained through transcriptome analysis. BMC Evol Biol 2017; 17:229. [PMID: 29169322 PMCID: PMC5701497 DOI: 10.1186/s12862-017-1074-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Organisms living at high altitudes face low oxygen and temperature conditions; thus, the genetic mechanisms underlying the adaptations in these organisms merit investigation. The glyptosternoid fish, Creteuchiloglanis macropterus mainly inhabits regions with gradual increases in altitudes along the Nujiang River and might serve as an appropriate evolutionary model for detecting adaptation processes in environments with altitude changes. RESULTS We constructed eleven RNA-sequencing (RNA-seq) libraries of C. macropterus collected from five locations at different altitudes to identify the genetic signatures of high-altitude adaptation. The comparative genomic analysis indicated that C. macropterus has an accelerated evolutionary rate compared with that of fishes in the lowland, and fishes at higher altitudes might evolve faster. Functional enrichment analysis of the fast-evolving and positively selected genes, differentially expressed genes and highly expressed genes, showed that these genes were involved in many functions related to energy metabolism and hypoxia. CONCLUSIONS Our study provides evidence of high-altitude adaptation in C. macropterus, and the detected adaptive genes might be a resource for future investigations of adaptations to high-altitude environments in other fishes.
Collapse
Affiliation(s)
- Jingliang Kang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Science, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 China
- University of the Chinese Academy of Science, Beijing, China
| | - Xiuhui Ma
- College of Animal Science, Guizhou University, Guiyang, Guizhou 550025 China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Science, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072 China
| |
Collapse
|