51
|
Chain FJJ, Meyer BS, Heckwolf MJ, Franzenburg S, Eizaguirre C, Reusch TBH. Epigenetic diversity of genes with copy number variations among natural populations of the three-spined stickleback. Evol Appl 2024; 17:e13753. [PMID: 39006007 PMCID: PMC11246597 DOI: 10.1111/eva.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Duplicated genes provide the opportunity for evolutionary novelty and adaptive divergence. In many cases, having more gene copies increases gene expression, which might facilitate adaptation to stressful or novel environments. Conversely, overexpression or misexpression of duplicated genes can be detrimental and subject to negative selection. In this scenario, newly duplicate genes may evade purifying selection if they are epigenetically silenced, at least temporarily, leading them to persist in populations as copy number variations (CNVs). In animals and plants, younger gene duplicates tend to have higher levels of DNA methylation and lower levels of gene expression, suggesting epigenetic regulation could promote the retention of gene duplications via expression repression or silencing. Here, we test the hypothesis that DNA methylation variation coincides with young duplicate genes that are segregating as CNVs in six populations of the three-spined stickleback that span a salinity gradient from 4 to 30 PSU. Using reduced-representation bisulfite sequencing, we found DNA methylation and CNV differentiation outliers rarely overlapped. Whereas lineage-specific genes and young duplicates were found to be highly methylated, just two gene CNVs showed a significant association between promoter methylation level and copy number, suggesting that DNA methylation might not interact with CNVs in our dataset. If most new duplications are regulated for dosage by epigenetic mechanisms, our results do not support a strong contribution from DNA methylation soon after duplication. Instead, our results are consistent with a preference to duplicate genes that are already highly methylated.
Collapse
Affiliation(s)
- Frédéric J J Chain
- Department of Biological Sciences University of Massachusetts Lowell Lowell Massachusetts USA
| | - Britta S Meyer
- Marine Evolutionary Ecology GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
- Present address: Research Unit for Evolutionary Immunogenomics, Department of Biology University of Hamburg Hamburg Germany
| | - Melanie J Heckwolf
- Marine Evolutionary Ecology GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
- Present address: Fish Ecology and Evolution, Leibniz Centre for Tropical Marine Research Bremen Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University Kiel Germany
| | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology GEOMAR Helmholtz Centre for Ocean Research Kiel Kiel Germany
| |
Collapse
|
52
|
Chaudhari UK, Hansen BC. Amylase and lipase levels in the metabolic syndrome and type 2 diabetes: A longitudinal study in rhesus monkeys. Physiol Rep 2024; 12:e16097. [PMID: 38955666 PMCID: PMC11219193 DOI: 10.14814/phy2.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
Latent associations between low serum amylase and reduced plasma insulin levels and increased adiposity have been described previously in a small study of asymptomatic middle-aged humans. In the present study, we sought to determine the nature of such changes during the longitudinal progression from metabolically normal to overt type 2 diabetes mellitus (T2DM) in nonhuman primates (NHPs), a disease that appears to be the same in both pathophysiology and underlying mechanisms as that which most commonly develops in middle-aged adult humans. Amylase and lipase levels were characterized in 157 unrelated adult rhesus monkeys (Macaca mulatta); 38% developed T2DM while under study. In all monkeys, multivariable linear regression analysis revealed that amylase could be negatively predicted by % body fat (β -0.29; p = 0.002), age (β -0.27; p = 0.005), and HbA1c (β -0.18; p = 0.037). Amylase levels were positively predicted by lipase levels (β = 0.19; p = -0.024) in all NHPs included in the study. Amylase was significantly lower in NHPs with metabolic syndrome (p < 0.001), prediabetes (PreDM) (p < 0.001), and T2DM (p < 0.001) compared to metabolically normal adult NHPs. Lipase increased in NHPs with PreDM (p = 0.005) and T2DM (p = 0.04) compared to normal NHPs. This is the first longitudinal study of any species, including humans, to show the dynamics of amylase and lipase during the metabolic progression from normal to metabolic syndrome, to PreDM and then to overt T2DM. The extraordinary similarity between humans and monkeys in T2DM, in pancreatic pathophysiology and in metabolic functions give these findings high translational value.
Collapse
Affiliation(s)
- Uddhav K. Chaudhari
- Department of Internal Medicine, Obesity Diabetes and Aging Research Center, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
- ICMR‐National Institute for Research in Reproductive and Child Health (NIRRCH)MumbaiIndia
| | - Barbara C. Hansen
- Department of Internal Medicine, Obesity Diabetes and Aging Research Center, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
53
|
Bolognini D, Halgren A, Lou RN, Raveane A, Rocha JL, Guarracino A, Soranzo N, Chin J, Garrison E, Sudmant PH. Global diversity, recurrent evolution, and recent selection on amylase structural haplotypes in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579378. [PMID: 38370750 PMCID: PMC10871346 DOI: 10.1101/2024.02.07.579378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The adoption of agriculture, first documented ~12,000 years ago in the Fertile Crescent, triggered a rapid shift toward starch-rich diets in human populations. Amylase genes facilitate starch digestion and increased salivary amylase copy number has been observed in some modern human populations with high starch intake, though evidence of recent selection is lacking. Here, using 52 long-read diploid assemblies and short read data from ~5,600 contemporary and ancient humans, we resolve the diversity, evolutionary history, and selective impact of structural variation at the amylase locus. We find that amylase genes have higher copy numbers in populations with agricultural subsistence compared to fishing, hunting, and pastoral groups. We identify 28 distinct amylase structural architectures and demonstrate that nearly identical structures have arisen recurrently on different haplotype backgrounds throughout recent human history. AMY1 and AMY2A genes each exhibit multiple duplications/deletions with mutation rates >10,000-fold the SNP mutation rate, whereas AMY2B gene duplications share a single origin. Using a pangenome graph-based approach to infer structural haplotypes across thousands of humans, we identify extensively duplicated haplotypes present at higher frequencies in modern day populations with traditionally agricultural diets. Leveraging 533 ancient human genomes we find that duplication-containing haplotypes (i.e. haplotypes with more amylase gene copies than the ancestral haplotype) have increased in frequency more than seven-fold over the last 12,000 years providing evidence for recent selection in West Eurasians. Together, our study highlights the potential impacts of the agricultural revolution on human genomes and the importance of long-read sequencing in identifying signatures of selection at structurally complex loci.
Collapse
Affiliation(s)
| | - Alma Halgren
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | - Runyang Nicolas Lou
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | | | - Joana L Rocha
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, USA
| | | | - Jason Chin
- Foundation for Biological Data Science, Belmont, USA
| | - Erik Garrison
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, USA
| |
Collapse
|
54
|
Jeong H, Dishuck PC, Yoo D, Harvey WT, Munson KM, Lewis AP, Kordosky J, Garcia GH, Human Genome Structural Variation Consortium (HGSVC), Yilmaz F, Hallast P, Lee C, Pastinen T, Eichler EE. Structural polymorphism and diversity of human segmental duplications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597452. [PMID: 38895457 PMCID: PMC11185583 DOI: 10.1101/2024.06.04.597452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Segmental duplications (SDs) contribute significantly to human disease, evolution, and diversity yet have been difficult to resolve at the sequence level. We present a population genetics survey of SDs by analyzing 170 human genome assemblies where the majority of SDs are fully resolved using long-read sequence assembly. Excluding the acrocentric short arms, we identify 173.2 Mbp of duplicated sequence (47.4 Mbp not present in the telomere-to-telomere reference) distinguishing fixed from structurally polymorphic events. We find that intrachromosomal SDs are among the most variable with rare events mapping near their progenitor sequences. African genomes harbor significantly more intrachromosomal SDs and are more likely to have recently duplicated gene families with higher copy number when compared to non-African samples. A comparison to a resource of 563 million full-length Iso-Seq reads identifies 201 novel, potentially protein-coding genes corresponding to these copy number polymorphic SDs.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Altos Labs, San Diego, CA, USA
| | - Philip C. Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - William T. Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P. Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer Kordosky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Gage H. Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Feyza Yilmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Tomi Pastinen
- Children’s Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
55
|
Yilmaz F, Karageorgiou C, Kim K, Pajic P, Scheer K, Beck CR, Torregrossa AM, Lee C, Gokcumen O. Paleolithic Gene Duplications Primed Adaptive Evolution of Human Amylase Locus Upon Agriculture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.27.568916. [PMID: 38077078 PMCID: PMC10705236 DOI: 10.1101/2023.11.27.568916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Starch digestion is a cornerstone of human nutrition. The amylase genes code for the starch-digesting amylase enzyme. Previous studies suggested that the salivary amylase (AMY1) gene copy number increased in response to agricultural diets. However, the lack of nucleotide resolution of the amylase locus hindered detailed evolutionary analyses. Here, we have resolved this locus at nucleotide resolution in 98 present-day humans and identified 30 distinct haplotypes, revealing that the coding sequences of all amylase gene copies are evolving under negative selection. The phylogenetic reconstruction suggested that haplotypes with three AMY1 gene copies, prevalent across all continents and constituting about 70% of observed haplotypes, originated before the out-of-Africa migrations of ancestral modern humans. Using thousands of unique 25 base pair sequences across the amylase locus, we showed that additional AMY1 gene copies existed in the genomes of four archaic hominin genomes, indicating that the initial duplication of this locus may have occurred as far back 800,000 years ago. We similarly analyzed 73 ancient human genomes dating from 300 - 45,000 years ago and found that the AMY1 copy number variation observed today existed long before the advent of agriculture (~10,000 years ago), predisposing this locus to adaptive increase in the frequency of higher amylase copy number with the spread of agriculture. Mechanistically, the common three-copy haplotypes seeded non-allelic homologous recombination events that appear to be occurring at one of the fastest rates seen for tandem repeats in the human genome. Our study provides a comprehensive population-level understanding of the genomic structure of the amylase locus, identifying the mechanisms and evolutionary history underlying its duplication and copy number variability in relation to the onset of agriculture.
Collapse
|
56
|
Gajda Ł, Daszkowska-Golec A, Świątek P. Discovery and characterization of the α-amylases cDNAs from Enchytraeus albidus shed light on the evolution of "Enchytraeus-Eisenia type" Amy homologs in Annelida. Biochimie 2024; 221:38-59. [PMID: 38242278 DOI: 10.1016/j.biochi.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/02/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Although enchytraeids have gained popularity in scientific research, fundamental questions regarding their feeding ecology and biology remain largely unexplored. This study investigates α-amylases, major digestive enzymes responsible for hydrolyzing starch and similar polysaccharides into sugars, in Enchytraeus albidus. Genetic data related to α-amylases is currently lacking for the family Enchytraeidae but also for the entire Annelida. To detect and identify coding sequences of the expressed α-amylase genes in COI-monohaplotype culture (PL-A strain) of E. albidus, we used classical "gene fishing" and transcriptomic approaches. We also compared coding sequence variants of α-amylase retrieved from transcriptomic data related to freeze-tolerant strains. Our results reveal that E. albidus possesses two distinct α-amylase genes (Amy I and Amy II) that are homologs to earthworm Eisenia fetida Ef-Amy genes. Different strains of E. albidus possess distinctive alleles of α-amylases with unique SNP patterns specific to a particular strain. Unlike Amy II, Amy I seems to be a highly polymorphic and multicopy gene. The domain architecture of the putative Amy proteins was found the same as for classical animal α-amylases with ABC-domains. A characteristic feature of Amy II is the lack of GHGA motif in the flexible loop region, similarly to many insect amylases. We identified "Enchytraeus-Eisenia type" α-amylase homologs in other clitellates and polychaetes, indicating the ancestral origin of Amy I/II proteins in Annelida. This study provides the first insight into the endogenous non-proteolytic digestive enzyme genes in potworms, discusses the evolution of Amy α-amylases in Annelida, and explores phylogenetic implications.
Collapse
Affiliation(s)
- Łukasz Gajda
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
57
|
Delledonne A, Punturiero C, Ferrari C, Bernini F, Milanesi R, Bagnato A, Strillacci MG. Copy number variant scan in more than four thousand Holstein cows bred in Lombardy, Italy. PLoS One 2024; 19:e0303044. [PMID: 38771855 PMCID: PMC11108207 DOI: 10.1371/journal.pone.0303044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/18/2024] [Indexed: 05/23/2024] Open
Abstract
Copy Number Variants (CNV) are modifications affecting the genome sequence of DNA, for instance, they can be duplications or deletions of a considerable number of base pairs (i.e., greater than 1000 bp and up to millions of bp). Their impact on the variation of the phenotypic traits has been widely demonstrated. In addition, CNVs are a class of markers useful to identify the genetic biodiversity among populations related to adaptation to the environment. The aim of this study was to detect CNVs in more than four thousand Holstein cows, using information derived by a genotyping done with the GGP (GeneSeek Genomic Profiler) bovine 100K SNP chip. To detect CNV the SVS 8.9 software was used, then CNV regions (CNVRs) were detected. A total of 123,814 CNVs (4,150 non redundant) were called and aggregated into 1,397 CNVRs. The PCA results obtained using the CNVs information, showed that there is some variability among animals. For many genes annotated within the CNVRs, the role in immune response is well known, as well as their association with important and economic traits object of selection in Holstein, such as milk production and quality, udder conformation and body morphology. Comparison with reference revealed unique CNVRs of the Holstein breed, and others in common with Jersey and Brown. The information regarding CNVs represents a valuable resource to understand how this class of markers may improve the accuracy in prediction of genomic value, nowadays solely based on SNPs markers.
Collapse
Affiliation(s)
- Andrea Delledonne
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Chiara Punturiero
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Carlotta Ferrari
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Francesca Bernini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Raffaella Milanesi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| | - Maria G. Strillacci
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
58
|
Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME. The role of animal hosts in shaping gut microbiome variation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230071. [PMID: 38497257 PMCID: PMC10945410 DOI: 10.1098/rstb.2023.0071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
Millions of years of co-evolution between animals and their associated microbial communities have shaped and diversified the nature of their relationship. Studies continue to reveal new layers of complexity in host-microbe interactions, the fate of which depends on a variety of different factors, ranging from neutral processes and environmental factors to local dynamics. Research is increasingly integrating ecosystem-based approaches, metagenomics and mathematical modelling to disentangle the individual contribution of ecological factors to microbiome evolution. Within this framework, host factors are known to be among the dominant drivers of microbiome composition in different animal species. However, the extent to which they shape microbiome assembly and evolution remains unclear. In this review, we summarize our understanding of how host factors drive microbial communities and how these dynamics are conserved and vary across taxa. We conclude by outlining key avenues for research and highlight the need for implementation of and key modifications to existing theory to fully capture the dynamics of host-associated microbiomes. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Enric Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, 34398 Montpellier, France
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| |
Collapse
|
59
|
Feng P, Wang H, Liang X, Dong X, Liang Q, Shu F, Zhou Q. Relationships between Bitter Taste Receptor Gene Evolution, Diet, and Gene Repertoire in Primates. Genome Biol Evol 2024; 16:evae104. [PMID: 38748818 PMCID: PMC11135642 DOI: 10.1093/gbe/evae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Bitter taste perception plays a critical role in deterring animals from consuming harmful and toxic substances. To characterize the evolution of primate Tas2r, test the generality of Tas2r duplication in Cercopithecidae species, and examine whether dietary preferences have shaped the Tas2r repertoire of primate species, we identified Tas2r in the genomes of 35 primate species, including 16 Cercopithecidae, 6 Hominidae, 4 Cebidae, 3 Lemuridae, and 6 other species. The results showed that the total number of primate Tas2r ranged from 27 to 51, concentrating on 2 to 4 scaffolds of each species. Closely related genes were tandemly duplicated in the same scaffold. Phylogenetic construction revealed that Tas2r can be divided into 21 clades, including anthropoid-, Strepsirrhini-, and Cercopithecidae-specific Tas2r duplications. Phylogenetically independent contrast analysis revealed that the number of intact Tas2r significantly correlated with feeding preferences. Altogether, our data support diet as a driver of primate Tas2r evolution, and Cercopithecidae species have developed some specific Tas2r duplication during evolution. These results are probably because most Cercopithecidae species feed on plants containing many toxins, and it is necessary to develop specialized Tas2r to protect them from poisoning.
Collapse
Affiliation(s)
- Ping Feng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People’s Republic of China, Guangxi Normal University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China
| | - Hui Wang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People’s Republic of China, Guangxi Normal University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China
| | - Xinyue Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People’s Republic of China, Guangxi Normal University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China
| | - Xiaoyan Dong
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People’s Republic of China, Guangxi Normal University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China
| | - Qiufang Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People’s Republic of China, Guangxi Normal University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China
| | - Fanglan Shu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People’s Republic of China, Guangxi Normal University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China
| | - Qihai Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People’s Republic of China, Guangxi Normal University, Guilin, Guangxi, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
60
|
Hu J, Wang Z, Sun Z, Hu B, Ayoola AO, Liang F, Li J, Sandoval JR, Cooper DN, Ye K, Ruan J, Xiao CL, Wang D, Wu DD, Wang S. NextDenovo: an efficient error correction and accurate assembly tool for noisy long reads. Genome Biol 2024; 25:107. [PMID: 38671502 PMCID: PMC11046930 DOI: 10.1186/s13059-024-03252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Long-read sequencing data, particularly those derived from the Oxford Nanopore sequencing platform, tend to exhibit high error rates. Here, we present NextDenovo, an efficient error correction and assembly tool for noisy long reads, which achieves a high level of accuracy in genome assembly. We apply NextDenovo to assemble 35 diverse human genomes from around the world using Nanopore long-read data. These genomes allow us to identify the landscape of segmental duplication and gene copy number variation in modern human populations. The use of NextDenovo should pave the way for population-scale long-read assembly using Nanopore long-read data.
Collapse
Affiliation(s)
- Jiang Hu
- GrandOmics Biosciences, Beijing, 102206, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhuo Wang
- GrandOmics Biosciences, Beijing, 102206, China
| | - Zongyi Sun
- GrandOmics Biosciences, Beijing, 102206, China
| | - Benxia Hu
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Adeola Oluwakemi Ayoola
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Fan Liang
- GrandOmics Biosciences, Beijing, 102206, China
| | - Jingjing Li
- GrandOmics Biosciences, Beijing, 102206, China
| | - José R Sandoval
- Centro de Investigación de Genética y Biología Molecular (CIGBM), Instituto de Investigación, Facultad de Medicina, Universidad de San Martín de Porres, Lima, 15102, Peru
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jue Ruan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Chuan-Le Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, #7 Jinsui Road, Tianhe District, Guangzhou, China
| | - Depeng Wang
- GrandOmics Biosciences, Beijing, 102206, China.
| | - Dong-Dong Wu
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Kunming Primate Research Center, and National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Sheng Wang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
61
|
Sarmet M, Takehara S, de Campos PS, Kagiyama K, Borges LS, Kumei Y, Zeredo JLL. Salivary alpha-amylase stress reactivity in advanced-aged marmosets (Callithrix jacchus): Impacts of cognitive function and oral health status. Am J Primatol 2024; 86:e23596. [PMID: 38192065 DOI: 10.1002/ajp.23596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
Salivary alpha-amylase (sAA) is an enzyme found in saliva and is considered a noninvasive biomarker for sympathetic nervous system activity. While a wide range of sAA activity in response to stress has been reported in nonhuman primates, the effects of stress on sAA activity in common marmosets are still unknown. We tested the hypothesis that advanced age and cognitive function may have an impact on stress-related sAA reactivity in marmosets. Thirteen marmosets (nine males and five females) had saliva samples collected during a stressful condition (manual restraint stress) at two different time points, with a 60-min interval. On the next day, the animals underwent the object recognition test (ORT, a type of cognitive test), and then oral examinations. The animals were categorized into two age groups: old (10-13 years), and very old (15-22 years). Irrespective of age, sAA levels showed a significant difference between T1 (mean 2.07 ± 0.86 U/mL) and T2 samples (mean 1.03 ± 0.67 U/mL), with higher values observed at T1 (p < 0.001). The intra-assay coefficients of variation (CV) for low and high sAA concentrations were 10.79% and 8.17%, respectively, while the interassay CVs for low and high sAA concentrations were 6.39% and 4.38%, respectively. Oral health issues were common but did not significantly impact sAA levels. The ORT indicated that the animals could recognize an object placed in the cage 6 h after familiarization. In conclusion, all marmosets showed a higher sAA concentration in the first saliva sample as compared to the second saliva sample collected 1 h later, indicating adaptation to stress. No significant differences in sAA levels were observed between sexes, ORT performance, or oral health. Our results indicate that autonomic responsivity and cognitive (memory) functions were preserved even in very old marmosets.
Collapse
Affiliation(s)
- Max Sarmet
- Graduate Program in Health Sciences and Technologies, University of Brasilia, Brasilia, Brazil
| | - Sachiko Takehara
- Division of Preventive Dentistry, Department of Oral Health Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Priscila S de Campos
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA
| | | | - Luana S Borges
- Graduate Program in Health Sciences and Technologies, University of Brasilia, Brasilia, Brazil
| | - Yasuhiro Kumei
- Department of Pathological Biochemistry, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jorge L L Zeredo
- Graduate Program in Health Sciences and Technologies, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
62
|
Tannock GW. Understanding the gut microbiota by considering human evolution: a story of fire, cereals, cooking, molecular ingenuity, and functional cooperation. Microbiol Mol Biol Rev 2024; 88:e0012722. [PMID: 38126754 PMCID: PMC10966955 DOI: 10.1128/mmbr.00127-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
SUMMARYThe microbial community inhabiting the human colon, referred to as the gut microbiota, is mostly composed of bacterial species that, through extensive metabolic networking, degrade and ferment components of food and human secretions. The taxonomic composition of the microbiota has been extensively investigated in metagenomic studies that have also revealed details of molecular processes by which common components of the human diet are metabolized by specific members of the microbiota. Most studies of the gut microbiota aim to detect deviations in microbiota composition in patients relative to controls in the hope of showing that some diseases and conditions are due to or exacerbated by alterations to the gut microbiota. The aim of this review is to consider the gut microbiota in relation to the evolution of Homo sapiens which was heavily influenced by the consumption of a nutrient-dense non-arboreal diet, limited gut storage capacity, and acquisition of skills relating to mastering fire, cooking, and cultivation of cereal crops. The review delves into the past to gain an appreciation of what is important in the present. A holistic view of "healthy" microbiota function is proposed based on the evolutionary pathway shared by humans and gut microbes.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
63
|
Al Akl NS, Khalifa O, Habibullah M, Arredouani A. Salivary α-amylase activity is associated with cardiometabolic and inflammatory biomarkers in overweight/obese, non-diabetic Qatari women. Front Endocrinol (Lausanne) 2024; 15:1348853. [PMID: 38562410 PMCID: PMC10982335 DOI: 10.3389/fendo.2024.1348853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Obesity, prevalent in approximately 80% of Qatar's adult population, increases the risk of complications like type 2 diabetes and cardiovascular diseases. Predictive biomarkers are crucial for preventive strategies. Salivary α-amylase activity (sAAa) inversely correlates with obesity and insulin resistance in adults and children. However, the connection between sAAa and cardiometabolic risk factors or chronic low-grade inflammation markers remains unclear. This study explores the association between serum sAAa and adiposity markers related to cardiovascular diseases, as well as markers indicative of chronic low-grade inflammation. METHODS Serum samples and clinical data of 1500 adult, non-diabetic, Overweight/Obese participants were obtained from Qatar Biobank (QBB). We quantified sAAa and C reactive protein (CRP) levels with an autoanalyzer. Cytokines, adipokines, and adiponectin of a subset of 228 samples were quantified using a bead-based multiplex assay. The associations between the sAAa and the adiposity indices and low-grade inflammatory protein CRP and multiple cytokines were assessed using Pearson's correlation and adjusted linear regression. RESULTS The mean age of the participants was 36 ± 10 years for both sexes of which 76.6% are women. Our analysis revealed a significant linear association between sAAa and adiposity-associated biomarkers, including body mass index β -0.032 [95% CI -0.049 to -0.05], waist circumference β -0.05 [95% CI -0.09 to -0.02], hip circumference β -0.052 [95% CI -0.087 to -0.017], and HDL β 0.002 [95% CI 0.001 to 0.004], albeit only in women. Additionally, sAAa demonstrated a significant positive association with adiponectin β 0.007 [95% CI 0.001 to 0.01]while concurrently displaying significant negative associations with CRP β -0.02 [95% CI -0.044 to -0.0001], TNF-α β -0.105 [95% CI -0.207 to -0.004], IL-6 β [95% CI -0.39 -0.75 to -0.04], and ghrelin β -5.95 [95% CI -11.71 to -0.20], specifically within the female population. CONCLUSION Our findings delineate significant associations between sAAa and markers indicative of cardiovascular disease risk and inflammation among overweight/obese adult Qatari females. Subsequent investigations are warranted to elucidate the nuances of these gender-specific associations comprehensively.
Collapse
Affiliation(s)
- Neyla S. Al Akl
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | | | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
64
|
Guitart X, Porubsky D, Yoo D, Dougherty ML, Dishuck PC, Munson KM, Lewis AP, Hoekzema K, Knuth J, Chang S, Pastinen T, Eichler EE. Independent expansion, selection and hypervariability of the TBC1D3 gene family in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584650. [PMID: 38654825 PMCID: PMC11037872 DOI: 10.1101/2024.03.12.584650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
TBC1D3 is a primate-specific gene family that has expanded in the human lineage and has been implicated in neuronal progenitor proliferation and expansion of the frontal cortex. The gene family and its expression have been challenging to investigate because it is embedded in high-identity and highly variable segmental duplications. We sequenced and assembled the gene family using long-read sequencing data from 34 humans and 11 nonhuman primate species. Our analysis shows that this particular gene family has independently duplicated in at least five primate lineages, and the duplicated loci are enriched at sites of large-scale chromosomal rearrangements on chromosome 17. We find that most humans vary along two TBC1D3 clusters where human haplotypes are highly variable in copy number, differing by as many as 20 copies, and structure (structural heterozygosity 90%). We also show evidence of positive selection, as well as a significant change in the predicted human TBC1D3 protein sequence. Lastly, we find that, despite multiple duplications, human TBC1D3 expression is limited to a subset of copies and, most notably, from a single paralog group: TBC1D3-CDKL. These observations may help explain why a gene potentially important in cortical development can be so variable in the human population.
Collapse
Affiliation(s)
- Xavi Guitart
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Max L. Dougherty
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip C. Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P. Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jordan Knuth
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephen Chang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Tomi Pastinen
- Department of Pediatrics, Genomic Medicine Center, Children’s Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
65
|
Zhang Q, Hutchison ER, Pan C, Warren MF, Keller MP, Attie AD, Lusis AJ, Rey FE. Systems genetics approach uncovers associations between host amylase locus, gut microbiome and metabolic traits in hyperlipidemic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582610. [PMID: 38464150 PMCID: PMC10925268 DOI: 10.1101/2024.02.28.582610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The molecular basis for how host genetic variation impacts gut microbial community and bacterial metabolic niches remain largely unknown. We leveraged 90 inbred hyperlipidemic mouse strains from the Hybrid Mouse Diversity Panel (HMDP), previously studied for a variety of cardio-metabolic traits. Metagenomic analysis of cecal DNA followed by genome-wide association analysis identified genomic loci that were associated with microbial enterotypes in the gut. Among these we detected a genetic locus surrounding multiple amylase genes that was associated with abundances of Firmicutes (Lachnospiraceae family) and Bacteroidetes (Muribaculaceae family) taxa encoding distinct starch and sugar metabolism functions. We also found that lower amylase gene number in the mouse genome was associated with higher gut Muribaculaceae levels. Previous work suggests that modulation of host amylase activity impacts the availability of carbohydrates to the host and potentially to gut bacteria. The genetic variants described above were associated with distinct gut microbial communities (enterotypes) with different predicted metabolic capacities for carbohydrate degradation. Mendelian randomization analysis revealed host phenotypes, including liver fibrosis and plasma HDL-cholesterol levels, that were associated with gut microbiome enterotypes. This work reveals novel relationships between host genetic variation, gut microbial enterotypes and host physiology/disease phenotypes in mice.
Collapse
Affiliation(s)
- Qijun Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evan R. Hutchison
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Calvin Pan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Matthew F. Warren
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Aldons J. Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
66
|
Assis R, Conant G, Holland B, Liberles DA, O'Reilly MM, Wilson AE. Models for the retention of duplicate genes and their biological underpinnings. F1000Res 2024; 12:1400. [PMID: 38173826 PMCID: PMC10762295 DOI: 10.12688/f1000research.141786.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 01/05/2024] Open
Abstract
Gene content in genomes changes through several different processes, with gene duplication being an important contributor to such changes. Gene duplication occurs over a range of scales from individual genes to whole genomes, and the dynamics of this process can be context dependent. Still, there are rules by which genes are retained or lost from genomes after duplication, and probabilistic modeling has enabled characterization of these rules, including their context-dependence. Here, we describe the biology and corresponding mathematical models that are used to understand duplicate gene retention and its contribution to the set of biochemical functions encoded in a genome.
Collapse
Affiliation(s)
- Raquel Assis
- Florida Atlantic University, Boca Raton, Florida, USA
| | - Gavin Conant
- North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | |
Collapse
|
67
|
Devarakonda SLS, Superdock DK, Ren J, Johnson LM, Loinard-González A(AP, Poole AC. Gut microbial features and dietary fiber intake predict gut microbiota response to resistant starch supplementation. Gut Microbes 2024; 16:2367301. [PMID: 38913541 PMCID: PMC11197919 DOI: 10.1080/19490976.2024.2367301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
Resistant starch (RS) consumption can have beneficial effects on metabolic health, but the response, in terms of effects on the gut microbiota and host physiology, varies between individuals. Factors predicting the response to RS are not yet established and would be useful for developing precision nutrition approaches that maximize the benefits of dietary fiber intake. We sought to identify predictors of gut microbiota response to RS supplementation. We enrolled 76 healthy adults into a 7-week crossover study with 59 individuals completing the study. Participants consumed RS type 2 (RS2), RS type 4 (RS4), and digestible starch, for 10 d each with 5-d washout periods in between. We collected fecal and saliva samples and food records during each treatment period. We performed 16S rRNA gene sequencing and measured fecal short-chain fatty acids (SCFAs), salivary amylase (AMY1) gene copy number, and salivary amylase activity (SAA). Dietary fiber intake was predictive of the relative abundance of several amplicon sequence variants (ASVs) at the end of both RS treatments. AMY1-related metrics were not predictive of response to RS. SAA was only predictive of the relative abundance of one ASV after digestible starch supplementation. Interestingly, SCFA concentrations increased the most during digestible starch supplementation. Treatment order (the order of consumption of RS2 and RS4), alpha diversity, and a subset of ASVs were predictive of SCFA changes after RS supplementation. Based on our findings, dietary fiber intake and gut microbiome composition would be informative if assessed prior to recommending RS supplementation because these data can be used to predict changes in specific ASVs and fecal SCFA concentrations. These findings lay a foundation to support the premise that using a precision nutrition approach to optimize the benefits of dietary fibers such as RS could be an effective strategy to compensate for the low consumption of dietary fiber nationwide.
Collapse
Affiliation(s)
| | | | - Jennifer Ren
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Lynn M. Johnson
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY, USA
| | | | - Angela C. Poole
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
68
|
Mauricio-Castillo R, Valdevit A, Gonzalez-Davalos L, Dominguez-Perez RA, Garcia-Solis P, Vazquez-Martinez O, Hernandez-Montiel HL, Solis-Sainz JC. Dental caries prevalence and severity positively associate with AMY1 gene copy number. Clin Oral Investig 2023; 28:25. [PMID: 38147184 DOI: 10.1007/s00784-023-05435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE To establish the possible relation between total caries (TC) and caries severity (CS) with the AMY1 gene copy number (AMY1GCN). MATERIALS AND METHODS This was an observational, cross-sectional, population-based, and association study with 303 participants. Each participant underwent a complete anamnesis and stomatological check-up, and peripheral blood was obtained to extract gDNA. TC and CS were determined as the number of caries at the dental exploration and the number of dental surfaces affected by caries, respectively, and AMY1GCN was determined by qPCR. RESULTS We found an elevated caries prevalence (92.7%); TC and CS were 8 ± 10 and 10 ± 13 (median ± IR). There were higher TC and CS in those participants with AMY1GCN above the mean value (0.02 and 0.01 p values, respectively). A positive correlation between TC and CS with AMY1GCN (0.11 and 0.125 r values, 0.03 and 0.01 p values, respectively) was found, in addition to an association between TC and CS with AMY1GCN (1.5 and 1.6 OR values, 0.48 and 0.26 p values, respectively). CONCLUSION TC and CS were positively related to the AMY1GCN. CLINICAL RELEVANCE Dental caries has a high prevalence and a multifactorial etiology and has been related to a genetic component. Indeed, the salivary enzyme alpha-amylase could play a significant role in caries susceptibility, considering that its codifying gene (AMY1) can show variation in its gene copy number. This can be considered an important factor for the development of caries at a genetic level.
Collapse
Affiliation(s)
- Rubi Mauricio-Castillo
- PhD. program in Biomedical Sciences, School of Medicine, Autonomous University of Queretaro, Querétaro, Mexico
| | - Andres Valdevit
- Department of Biomedical Research, School of Medicine, Autonomous University of Queretaro, Clavel 200, Col. Prados de la Capilla, 76170, Querétaro, Mexico
| | - Laura Gonzalez-Davalos
- Department of Cellular and Molecular Neurobiology, Institute of Neurobiology, National Autonomous University of México, UAQ-Juriquilla Campus, Querétaro, Mexico
| | - Rubén Abraham Dominguez-Perez
- Laboratory of Multidisciplinary Dentistry Research, School of Medicine, Autonomous University of Queretaro, Querétaro, Mexico
| | - Pablo Garcia-Solis
- Department of Biomedical Research, School of Medicine, Autonomous University of Queretaro, Clavel 200, Col. Prados de la Capilla, 76170, Querétaro, Mexico
| | - Olivia Vazquez-Martinez
- Department of Cellular and Molecular Neurobiology, Institute of Neurobiology, National Autonomous University of México, UAQ-Juriquilla Campus, Querétaro, Mexico
| | - Hebert Luis Hernandez-Montiel
- Department of Biomedical Research, School of Medicine, Autonomous University of Queretaro, Clavel 200, Col. Prados de la Capilla, 76170, Querétaro, Mexico
| | - Juan Carlos Solis-Sainz
- Department of Biomedical Research, School of Medicine, Autonomous University of Queretaro, Clavel 200, Col. Prados de la Capilla, 76170, Querétaro, Mexico.
| |
Collapse
|
69
|
Bell AV. Selection and adaptation in human migration. Evol Anthropol 2023; 32:308-324. [PMID: 37589279 DOI: 10.1002/evan.22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
This article reviews the ways migration shapes human biology. This includes the physiological and genetic, but also socio-cultural aspects such as organization, behavior, and culture. Across disciplines I highlight the multiple levels of cultural and genetic selection whereby individuals and groups adapt to pressures along a migration timeline: the origin, transit, and destination. Generally, the evidence suggests that selective pressures and adaptations occur at the individual, family, and community levels. Consequently, across levels there are negotiations, interactions, and feedbacks that shape migration outcomes and the trajectory of evolutionary change. The rise and persistence of migration-relevant adaptations emerges as a central question, including the maintenance of cumulative culture adaptations, the persistence of "cultures of migration," as well as the individual-level physiological and cognitive adaptations applied to successful transit and settlement in novel environments.
Collapse
Affiliation(s)
- Adrian Viliami Bell
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
70
|
Evans-Yamamoto D, Dubé AK, Saha G, Plante S, Bradley D, Gagnon-Arsenault I, Landry CR. Parallel Nonfunctionalization of CK1δ/ε Kinase Ohnologs Following a Whole-Genome Duplication Event. Mol Biol Evol 2023; 40:msad246. [PMID: 37979156 PMCID: PMC10699747 DOI: 10.1093/molbev/msad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Whole-genome duplication (WGD) followed by speciation allows us to examine the parallel evolution of ohnolog pairs. In the yeast family Saccharomycetaceae, HRR25 is a rare case of repeated ohnolog maintenance. This gene has reverted to a single copy in Saccharomyces cerevisiae where it is now essential, but has been maintained as pairs in at least 7 species post-WGD. In S. cerevisiae, HRR25 encodes the casein kinase 1δ/ε and plays a role in a variety of functions through its kinase activity and protein-protein interactions (PPIs). We hypothesized that the maintenance of duplicated HRR25 ohnologs could be a result of repeated subfunctionalization. We tested this hypothesis through a functional complementation assay in S. cerevisiae, testing all pairwise combinations of 25 orthologs (including 7 ohnolog pairs). Contrary to our expectations, we observed no cases of pair-dependent complementation, which would have supported the subfunctionalization hypothesis. Instead, most post-WGD species have one ohnolog that failed to complement, suggesting their nonfunctionalization or neofunctionalization. The ohnologs incapable of complementation have undergone more rapid protein evolution, lost most PPIs that were observed for their functional counterparts and singletons from post-WGD and non-WGD species, and have nonconserved cellular localization, consistent with their ongoing loss of function. The analysis in Naumovozyma castellii shows that the noncomplementing ohnolog is expressed at a lower level and has become nonessential. Taken together, our results indicate that HRR25 orthologs are undergoing gradual nonfunctionalization.
Collapse
Affiliation(s)
- Daniel Evans-Yamamoto
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Gourav Saha
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, South Goa, India
| | - Samuel Plante
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
| | - David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Isabelle Gagnon-Arsenault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
| |
Collapse
|
71
|
Kuthyar S, Diaz J, Avalos-Villatoro F, Maltecca C, Tiezzi F, Dunn RR, Reese AT. Domestication shapes the pig gut microbiome and immune traits from the scale of lineage to population. J Evol Biol 2023; 36:1695-1711. [PMID: 37885134 DOI: 10.1111/jeb.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 10/28/2023]
Abstract
Animal ecology and evolution have long been known to shape host physiology, but more recently, the gut microbiome has been identified as a mediator between animal ecology and evolution and health. The gut microbiome has been shown to differ between wild and domestic animals, but the role of these differences for domestic animal evolution remains unknown. Gut microbiome responses to new animal genotypes and local environmental change during domestication may promote specific host phenotypes that are adaptive (or not) to the domestic environment. Because the gut microbiome supports host immune function, understanding the effects of animal ecology and evolution on the gut microbiome and immune phenotypes is critical. We investigated how domestication affects the gut microbiome and host immune state in multiple pig populations across five domestication contexts representing domestication status and current living conditions: free-ranging wild, captive wild, free-ranging domestic, captive domestic in research or industrial settings. We observed that domestication context explained much of the variation in gut microbiome composition, pathogen abundances and immune markers, yet the main differences in the repertoire of metabolic genes found in the gut microbiome were between the wild and domestic genetic lineages. We also documented population-level effects within domestication contexts, demonstrating that fine scale environmental variation also shaped host and microbe features. Our findings highlight that understanding which gut microbiome and immune traits respond to host genetic lineage and/or scales of local ecology could inform targeted interventions that manipulate the gut microbiome to achieve beneficial health outcomes.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Jessica Diaz
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | | | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Aspen T Reese
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
72
|
Xu Z, Li Q, Marchionni L, Wang K. PhenoSV: interpretable phenotype-aware model for the prioritization of genes affected by structural variants. Nat Commun 2023; 14:7805. [PMID: 38016949 PMCID: PMC10684511 DOI: 10.1038/s41467-023-43651-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023] Open
Abstract
Structural variants (SVs) represent a major source of genetic variation associated with phenotypic diversity and disease susceptibility. While long-read sequencing can discover over 20,000 SVs per human genome, interpreting their functional consequences remains challenging. Existing methods for identifying disease-related SVs focus on deletion/duplication only and cannot prioritize individual genes affected by SVs, especially for noncoding SVs. Here, we introduce PhenoSV, a phenotype-aware machine-learning model that interprets all major types of SVs and genes affected. PhenoSV segments and annotates SVs with diverse genomic features and employs a transformer-based architecture to predict their impacts under a multiple-instance learning framework. With phenotype information, PhenoSV further utilizes gene-phenotype associations to prioritize phenotype-related SVs. Evaluation on extensive human SV datasets covering all SV types demonstrates PhenoSV's superior performance over competing methods. Applications in diseases suggest that PhenoSV can determine disease-related genes from SVs. A web server and a command-line tool for PhenoSV are available at https://phenosv.wglab.org .
Collapse
Affiliation(s)
- Zhuoran Xu
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G2C1, Canada
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
73
|
Le N, Heras J, Herrera MJ, German DP, Crummett LT. The genome of Anoplarchus purpurescens (Stichaeidae) reflects its carnivorous diet. Mol Genet Genomics 2023; 298:1419-1434. [PMID: 37690047 PMCID: PMC10657299 DOI: 10.1007/s00438-023-02067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Digestion is driven by digestive enzymes and digestive enzyme gene copy number can provide insights on the genomic underpinnings of dietary specialization. The "Adaptive Modulation Hypothesis" (AMH) proposes that digestive enzyme activity, which increases with increased gene copy number, should correlate with substrate quantity in the diet. To test the AMH and reveal some of the genetics of herbivory vs carnivory, we sequenced, assembled, and annotated the genome of Anoplarchus purpurescens, a carnivorous prickleback fish in the family Stichaeidae, and compared the gene copy number for key digestive enzymes to that of Cebidichthys violaceus, a herbivorous fish from the same family. A highly contiguous genome assembly of high quality (N50 = 10.6 Mb) was produced for A. purpurescens, using combined long-read and short-read technology, with an estimated 33,842 protein-coding genes. The digestive enzymes that we examined include pancreatic α-amylase, carboxyl ester lipase, alanyl aminopeptidase, trypsin, and chymotrypsin. Anoplarchus purpurescens had fewer copies of pancreatic α-amylase (carbohydrate digestion) than C. violaceus (1 vs. 3 copies). Moreover, A. purpurescens had one fewer copy of carboxyl ester lipase (plant lipid digestion) than C. violaceus (4 vs. 5). We observed an expansion in copy number for several protein digestion genes in A. purpurescens compared to C. violaceus, including trypsin (5 vs. 3) and total aminopeptidases (6 vs. 5). Collectively, these genomic differences coincide with measured digestive enzyme activities (phenotypes) in the two species and they support the AMH. Moreover, this genomic resource is now available to better understand fish biology and dietary specialization.
Collapse
Affiliation(s)
- Ninh Le
- Life Sciences Concentration, Soka University of America, Aliso Viejo, CA, 92656, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph Heras
- Department of Biology, California State University, San Bernardino, CA, 92407, USA
| | - Michelle J Herrera
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Donovan P German
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
| | - Lisa T Crummett
- Life Sciences Concentration, Soka University of America, Aliso Viejo, CA, 92656, USA.
| |
Collapse
|
74
|
Pajuste FD, Remm M. GeneToCN: an alignment-free method for gene copy number estimation directly from next-generation sequencing reads. Sci Rep 2023; 13:17765. [PMID: 37853040 PMCID: PMC10584998 DOI: 10.1038/s41598-023-44636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Genomes exhibit large regions with segmental copy number variation, many of which include entire genes and are multiallelic. We have developed a computational method GeneToCN that counts the frequencies of gene-specific k-mers in FASTQ files and uses this information to infer copy number of the gene. We validated the copy number predictions for amylase genes (AMY1, AMY2A, AMY2B) using experimental data from digital droplet PCR (ddPCR) on 39 individuals and observed a strong correlation (R = 0.99) between GeneToCN predictions and experimentally determined copy numbers. An additional validation on FCGR3 genes showed a higher concordance for FCGR3A compared to two other methods, but reduced accuracy for FCGR3B. We further tested the method on three different genomic regions (SMN, NPY4R, and LPA Kringle IV-2 domain). Predicted copy number distributions of these genes in a set of 500 individuals from the Estonian Biobank were in good agreement with the previously published studies. In addition, we investigated the possibility to use GeneToCN on sequencing data generated by different technologies by comparing copy number predictions from Illumina, PacBio, and Oxford Nanopore data of the same sample. Despite the differences in variability of k-mer frequencies, all three sequencing technologies give similar predictions with GeneToCN.
Collapse
Affiliation(s)
- Fanny-Dhelia Pajuste
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Str., 51010, Tartu, Estonia.
| | - Maido Remm
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Str., 51010, Tartu, Estonia
| |
Collapse
|
75
|
Di Pietro L, Boroumand M, Lattanzi W, Manconi B, Salvati M, Cabras T, Olianas A, Flore L, Serrao S, Calò CM, Francalacci P, Parolini O, Castagnola M. A Catalog of Coding Sequence Variations in Salivary Proteins' Genes Occurring during Recent Human Evolution. Int J Mol Sci 2023; 24:15010. [PMID: 37834461 PMCID: PMC10573131 DOI: 10.3390/ijms241915010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Saliva houses over 2000 proteins and peptides with poorly clarified functions, including proline-rich proteins, statherin, P-B peptides, histatins, cystatins, and amylases. Their genes are poorly conserved across related species, reflecting an evolutionary adaptation. We searched the nucleotide substitutions fixed in these salivary proteins' gene loci in modern humans compared with ancient hominins. We mapped 3472 sequence variants/nucleotide substitutions in coding, noncoding, and 5'-3' untranslated regions. Despite most of the detected variations being within noncoding regions, the frequency of coding variations was far higher than the general rate found throughout the genome. Among the various missense substitutions, specific substitutions detected in PRB1 and PRB2 genes were responsible for the introduction/abrogation of consensus sequences recognized by convertase enzymes that cleave the protein precursors. Overall, these changes that occurred during the recent human evolution might have generated novel functional features and/or different expression ratios among the various components of the salivary proteome. This may have influenced the homeostasis of the oral cavity environment, possibly conditioning the eating habits of modern humans. However, fixed nucleotide changes in modern humans represented only 7.3% of all the substitutions reported in this study, and no signs of evolutionary pressure or adaptative introgression from archaic hominins were found on the tested genes.
Collapse
Affiliation(s)
- Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mozhgan Boroumand
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Martina Salvati
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Laura Flore
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Simone Serrao
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Carla M. Calò
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Paolo Francalacci
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
76
|
Liu Z, Huang YF. Deep multiple-instance learning accurately predicts gene haploinsufficiency and deletion pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555384. [PMID: 37693607 PMCID: PMC10491176 DOI: 10.1101/2023.08.29.555384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Copy number losses (deletions) are a major contributor to the etiology of severe genetic disorders. Although haploinsufficient genes play a critical role in deletion pathogenicity, current methods for deletion pathogenicity prediction fail to integrate multiple lines of evidence for haploinsufficiency at the gene level, limiting their power to pinpoint deleterious deletions associated with genetic disorders. Here we introduce DosaCNV, a deep multiple-instance learning framework that, for the first time, models deletion pathogenicity jointly with gene haploinsufficiency. By integrating over 30 gene-level features potentially predictive of haploinsufficiency, DosaCNV shows unmatched performance in prioritizing pathogenic deletions associated with a broad spectrum of genetic disorders. Furthermore, DosaCNV outperforms existing methods in predicting gene haploinsufficiency even though it is not trained on known haploinsufficient genes. Finally, DosaCNV leverages a state-of-the-art technique to quantify the contributions of individual gene-level features to haploinsufficiency, allowing for human-understandable explanations of model predictions. Altogether, DosaCNV is a powerful computational tool for both fundamental and translational research.
Collapse
Affiliation(s)
- Zhihan Liu
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Program, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Yi-Fei Huang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
77
|
Evans-Yamamoto D, Dubé AK, Saha G, Plante S, Bradley D, Gagnon-Arsenault I, Landry CR. Parallel nonfunctionalization of CK1δ/ε kinase ohnologs following a whole-genome duplication event. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560513. [PMID: 37873368 PMCID: PMC10592909 DOI: 10.1101/2023.10.02.560513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Whole genome duplication (WGD) followed by speciation allows us to examine the parallel evolution of ohnolog pairs. In the yeast family Saccharomycetaceae, HRR25 is a rare case of repeated ohnolog maintenance. This gene has reverted to a single copy in S. cerevisiae where it is now essential, but has been maintained as pairs in at least 7 species post WGD. In S. cerevisiae, HRR25 encodes the casein kinase (CK) 1δ/ε and plays a role in a variety of functions through its kinase activity and protein-protein interactions (PPIs). We hypothesized that the maintenance of duplicated HRR25 ohnologs could be a result of repeated subfunctionalization. We tested this hypothesis through a functional complementation assay in S. cerevisiae, testing all pairwise combinations of 25 orthologs (including 7 ohnolog pairs). Contrary to our expectations, we observed no cases of pair-dependent complementation, which would have supported the subfunctionalization hypothesis. Instead, most post-WGD species have one ohnolog that failed to complement, suggesting their nonfunctionalization or neofunctionalization. The ohnologs incapable of complementation have undergone more rapid protein evolution, lost most PPIs that were observed for their functional counterparts and singletons from post and non-WGD species, and have non-conserved cellular localization, consistent with their ongoing loss of function. The analysis in N. castelli shows that the non-complementing ohnolog is expressed at a lower level and has become non-essential. Taken together, our results indicate that HRR25 orthologs are undergoing gradual nonfunctionalization.
Collapse
Affiliation(s)
- Daniel Evans-Yamamoto
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Fujisawa, 252-0882, Japan
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
| | - Gourav Saha
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani K K Birla Goa campus, Zuarinagar, South Goa, Goa, India
- Current address: Department of Bioengineering, University of California, CA 90095, United States
| | - Samuel Plante
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
- Current address: Département de Biochimie, Université de Sherbrooke, Québec, J1K 0A5, Canada
| | - David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
| | - Isabelle Gagnon-Arsenault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
| |
Collapse
|
78
|
Vertacnik KL, Herrig DK, Godfrey RK, Hill T, Geib SM, Unckless RL, Nelson DR, Linnen CR. Evolution of five environmentally responsive gene families in a pine-feeding sawfly, Neodiprion lecontei (Hymenoptera: Diprionidae). Ecol Evol 2023; 13:e10506. [PMID: 37791292 PMCID: PMC10542623 DOI: 10.1002/ece3.10506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 10/05/2023] Open
Abstract
A central goal in evolutionary biology is to determine the predictability of adaptive genetic changes. Despite many documented cases of convergent evolution at individual loci, little is known about the repeatability of gene family expansions and contractions. To address this void, we examined gene family evolution in the redheaded pine sawfly Neodiprion lecontei, a noneusocial hymenopteran and exemplar of a pine-specialized lineage evolved from angiosperm-feeding ancestors. After assembling and annotating a draft genome, we manually annotated multiple gene families with chemosensory, detoxification, or immunity functions before characterizing their genomic distributions and molecular evolution. We find evidence of recent expansions of bitter gustatory receptor, clan 3 cytochrome P450, olfactory receptor, and antimicrobial peptide subfamilies, with strong evidence of positive selection among paralogs in a clade of gustatory receptors possibly involved in the detection of bitter compounds. In contrast, these gene families had little evidence of recent contraction via pseudogenization. Overall, our results are consistent with the hypothesis that in response to novel selection pressures, gene families that mediate ecological interactions may expand and contract predictably. Testing this hypothesis will require the comparative analysis of high-quality annotation data from phylogenetically and ecologically diverse insect species and functionally diverse gene families. To this end, increasing sampling in under-sampled hymenopteran lineages and environmentally responsive gene families and standardizing manual annotation methods should be prioritized.
Collapse
Affiliation(s)
- Kim L. Vertacnik
- Department of EntomologyUniversity of KentuckyLexingtonKentuckyUSA
| | | | - R. Keating Godfrey
- McGuire Center for Lepidoptera and Biodiversity, University of FloridaGainesvilleFloridaUSA
| | - Tom Hill
- National Institute of Allergy and Infectious DiseasesBethesdaMarylandUSA
| | - Scott M. Geib
- Tropical Crop and Commodity Protection Research UnitUnited States Department of Agriculture: Agriculture Research Service Pacific Basin Agricultural Research CenterHiloHawaiiUSA
| | - Robert L. Unckless
- Department of Molecular BiosciencesUniversity of KansasLawrenceKansasUSA
| | - David R. Nelson
- Department of Microbiology, Immunology and BiochemistryUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | | |
Collapse
|
79
|
Pollen AA, Kilik U, Lowe CB, Camp JG. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nat Rev Genet 2023; 24:687-711. [PMID: 36737647 PMCID: PMC9897628 DOI: 10.1038/s41576-022-00568-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/05/2023]
Abstract
Our ancestors acquired morphological, cognitive and metabolic modifications that enabled humans to colonize diverse habitats, develop extraordinary technologies and reshape the biosphere. Understanding the genetic, developmental and molecular bases for these changes will provide insights into how we became human. Connecting human-specific genetic changes to species differences has been challenging owing to an abundance of low-effect size genetic changes, limited descriptions of phenotypic differences across development at the level of cell types and lack of experimental models. Emerging approaches for single-cell sequencing, genetic manipulation and stem cell culture now support descriptive and functional studies in defined cell types with a human or ape genetic background. In this Review, we describe how the sequencing of genomes from modern and archaic hominins, great apes and other primates is revealing human-specific genetic changes and how new molecular and cellular approaches - including cell atlases and organoids - are enabling exploration of the candidate causal factors that underlie human-specific traits.
Collapse
Affiliation(s)
- Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Umut Kilik
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
80
|
Hu H, Leung WK. Mass Spectrometry-Based Proteomics for Discovering Salivary Biomarkers in Periodontitis: A Systematic Review. Int J Mol Sci 2023; 24:14599. [PMID: 37834046 PMCID: PMC10572407 DOI: 10.3390/ijms241914599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Periodontitis is one of the primary causes of tooth loss, and is also related to various systemic diseases. Early detection of this condition is crucial when it comes to preventing further oral damage and the associated health complications. This study offers a systematic review of the literature published up to April 2023, and aims to clearly explain the role of proteomics in identifying salivary biomarkers for periodontitis. Comprehensive searches were conducted on PubMed and Web of Science to shortlist pertinent studies. The inclusion criterion was those that reported on mass spectrometry-driven proteomic analyses of saliva samples from periodontitis cohorts, while those on gingivitis or other oral diseases were excluded. An assessment for risk of bias was carried out using the Newcastle-Ottawa Scale and Quality Assessment of Diagnostic Accuracy Studies or the NIH quality assessment tool, and a meta-analysis was performed for replicable candidate biomarkers, i.e., consistently reported candidate biomarkers (in specific saliva samples, and periodontitis subgroups, reported in ≥2 independent cohorts/reports) were identified. A Gene Ontology enrichment analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery bioinformatics resources, which consistently expressed candidate biomarkers, to explore the predominant pathway wherein salivary biomarkers consistently manifested. Of the 15 studies included, 13 were case-control studies targeting diagnostic biomarkers for periodontitis participants (periodontally healthy/diseased, n = 342/432), while two focused on biomarkers responsive to periodontal treatment (n = 26 participants). The case-control studies were considered to have a low risk of bias, while the periodontitis treatment studies were deemed fair. Summary estimate and confidence/credible interval, etc. determination for the identified putative salivary biomarkers could not be ascertained due to the low number of studies in each case. The results from the included case-control studies identified nine consistently expressed candidate biomarkers (from nine studies with 230/297 periodontally healthy/diseased participants): (i) those that were upregulated: alpha-amylase, serum albumin, complement C3, neutrophil defensin, profilin-1, and S100-P; and (ii) those that were downregulated: carbonic anhydrase 6, immunoglobulin J chain, and lactoferrin. All putative biomarkers exhibited consistent regulation patterns. The implications of the current putative marker proteins identified were reviewed, with a focus on their potential roles in periodontitis diagnosis and pathogenesis, and as putative therapeutic targets. Although in its early stages, mass spectrometry-based salivary periodontal disease biomarker proteomics detection appeared promising. More mass spectrometry-based proteomics studies, with or without the aid of already available clinical biochemical approaches, are warranted to aid the discovery, identification, and validation of periodontal health/disease indicator molecule(s). Protocol registration number: CRD42023447722; supported by RD-02-202410 and GRF17119917.
Collapse
Affiliation(s)
- Hongying Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medical Imaging, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
81
|
Kim DH, Wang Y, Jung H, Field RL, Zhang X, Liu TC, Ma C, Fraser JS, Brestoff JR, Van Dyken SJ. A type 2 immune circuit in the stomach controls mammalian adaptation to dietary chitin. Science 2023; 381:1092-1098. [PMID: 37676935 PMCID: PMC10865997 DOI: 10.1126/science.add5649] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Dietary fiber improves metabolic health, but host-encoded mechanisms for digesting fibrous polysaccharides are unclear. In this work, we describe a mammalian adaptation to dietary chitin that is coordinated by gastric innate immune activation and acidic mammalian chitinase (AMCase). Chitin consumption causes gastric distension and cytokine production by stomach tuft cells and group 2 innate lymphoid cells (ILC2s) in mice, which drives the expansion of AMCase-expressing zymogenic chief cells that facilitate chitin digestion. Although chitin influences gut microbial composition, ILC2-mediated tissue adaptation and gastrointestinal responses are preserved in germ-free mice. In the absence of AMCase, sustained chitin intake leads to heightened basal type 2 immunity, reduced adiposity, and resistance to obesity. These data define an endogenous metabolic circuit that enables nutrient extraction from an insoluble dietary constituent by enhancing digestive function.
Collapse
Affiliation(s)
- Do-Hyun Kim
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yilin Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haerin Jung
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachael L. Field
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xinya Zhang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ta-Chiang Liu
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Changqing Ma
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan R. Brestoff
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven J. Van Dyken
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
82
|
Lieberman DE, Worthington S, Schell LD, Parkent CM, Devinsky O, Carmody RN. Comparing measured dietary variation within and between tropical hunter-gatherer groups to the Paleo Diet. Am J Clin Nutr 2023; 118:549-560. [PMID: 37343704 DOI: 10.1016/j.ajcnut.2023.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Although human diets varied considerably before the spread of agriculture, public perceptions of preagricultural diets have been strongly influenced by the Paleo Diet, which prescribes percentage calorie ranges of 19-35% protein, 22-40% carbohydrate, and 28-47% fat, and prohibits foods with added sugar, dairy, grains, most starchy tubers, and legumes. However, the empirical basis for Paleolithic nutrition remains unclear, with some of its assumptions challenged by the archaeological record and theoretical first principles. OBJECTIVES We assessed the variation in diets among tropical hunter-gatherers, including the effect of collection methods on implied macronutrient percentages. METHODS We analyzed data on animal food, plant food, and honey consumption by weight and kcal from 15 high-quality published ethnographic studies representing 11 recent tropical hunter-gatherer groups. We used Bayesian analyses to perform inference and included data collection methods and environmental variables as predictors in our models. RESULTS Our analyses reveal high levels of variation in animal versus plant foods consumed and in corresponding percentages of protein, fat, and carbohydrates. In addition, studies that weighed food items consumed in and out of camp and across seasons and years reported higher consumption of animal foods, which varied with annual mean temperature. CONCLUSIONS The ethnographic evidence from tropical foragers refutes the concept of circumscribed macronutrient ranges modeling preagricultural diets.
Collapse
Affiliation(s)
- Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States.
| | - Steven Worthington
- Institute for Quantitative Social Science, Harvard University, Cambridge, MA, United States
| | - Laura D Schell
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Christine M Parkent
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States; Frank H. Netter MD School of Medicine, Quinnipiac University, North Haven, CT, United States
| | - Orrin Devinsky
- Department of Neurology, Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, United States
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States.
| |
Collapse
|
83
|
Brovkina MV, Chapman MA, Holding ML, Clowney EJ. Emergence and influence of sequence bias in evolutionarily malleable, mammalian tandem arrays. BMC Biol 2023; 21:179. [PMID: 37612705 PMCID: PMC10463633 DOI: 10.1186/s12915-023-01673-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The radiation of mammals at the extinction of the dinosaurs produced a plethora of new forms-as diverse as bats, dolphins, and elephants-in only 10-20 million years. Behind the scenes, adaptation to new niches is accompanied by extensive innovation in large families of genes that allow animals to contact the environment, including chemosensors, xenobiotic enzymes, and immune and barrier proteins. Genes in these "outward-looking" families are allelically diverse among humans and exhibit tissue-specific and sometimes stochastic expression. RESULTS Here, we show that these tandem arrays of outward-looking genes occupy AT-biased isochores and comprise the "tissue-specific" gene class that lack CpG islands in their promoters. Models of mammalian genome evolution have not incorporated the sharply different functions and transcriptional patterns of genes in AT- versus GC-biased regions. To examine the relationship between gene family expansion, sequence content, and allelic diversity, we use population genetic data and comparative analysis. First, we find that AT bias can emerge during evolutionary expansion of gene families in cis. Second, human genes in AT-biased isochores or with GC-poor promoters experience relatively low rates of de novo point mutation today but are enriched for non-synonymous variants. Finally, we find that isochores containing gene clusters exhibit low rates of recombination. CONCLUSIONS Our analyses suggest that tolerance of non-synonymous variation and low recombination are two forces that have produced the depletion of GC bases in outward-facing gene arrays. In turn, high AT content exerts a profound effect on their chromatin organization and transcriptional regulation.
Collapse
Affiliation(s)
- Margarita V Brovkina
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Margaret A Chapman
- Neurosciences Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
84
|
Abstract
Within the next decade, the genomes of 1.8 million eukaryotic species will be sequenced. Identifying genes in these sequences is essential to understand the biology of the species. This is challenging due to the transcriptional complexity of eukaryotic genomes, which encode hundreds of thousands of transcripts of multiple types. Among these, a small set of protein-coding mRNAs play a disproportionately large role in defining phenotypes. Due to their sequence conservation, orthology can be established, making it possible to define the universal catalog of eukaryotic protein-coding genes. This catalog should substantially contribute to uncovering the genomic events underlying the emergence of eukaryotic phenotypes. This piece briefly reviews the basics of protein-coding gene prediction, discusses challenges in finalizing annotation of the human genome, and proposes strategies for producing annotations across the eukaryotic Tree of Life. This lays the groundwork for obtaining the catalog of all genes-the Earth's code of life.
Collapse
Affiliation(s)
- Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Dr. Aiguader 88, 08003 Barcelona, Catalonia
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia
| |
Collapse
|
85
|
Konner M, Eaton SB. Hunter-gatherer diets and activity as a model for health promotion: Challenges, responses, and confirmations. Evol Anthropol 2023; 32:206-222. [PMID: 37417918 DOI: 10.1002/evan.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 07/27/2022] [Accepted: 04/17/2023] [Indexed: 07/08/2023]
Abstract
Beginning in 1985, we and others presented estimates of hunter-gatherer (and ultimately ancestral) diet and physical activity, hoping to provide a model for health promotion. The Hunter-Gatherer Model was designed to offset the apparent mismatch between our genes and the current Western-type lifestyle, a mismatch that arguably affects prevalence of many chronic degenerative diseases. The effort has always been controversial and subject to both scientific and popular critiques. The present article (1) addresses eight such challenges, presenting for each how the model has been modified in response, or how the criticism can be rebutted; (2) reviews new epidemiological and experimental evidence (including especially randomized controlled clinical trials); and (3) shows how official recommendations put forth by governments and health authorities have converged toward the model. Such convergence suggests that evolutionary anthropology can make significant contributions to human health.
Collapse
Affiliation(s)
- Melvin Konner
- Department of Anthropology, Program in Anthropology and Human Biology, Emory University, Atlanta, Georgia, USA
| | - S Boyd Eaton
- Department of Radiology, Emory University School of Medicine (Emeritus), Adjunct Lecturer, Department of Anthropology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
86
|
Soto DC, Uribe-Salazar JM, Shew CJ, Sekar A, McGinty S, Dennis MY. Genomic structural variation: A complex but important driver of human evolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181 Suppl 76:118-144. [PMID: 36794631 PMCID: PMC10329998 DOI: 10.1002/ajpa.24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single-nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever-expanding SV compendium propelled by biotechnology advancements.
Collapse
Affiliation(s)
- Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Colin J. Shew
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Aarthi Sekar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Sean McGinty
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
87
|
Ruvindy R, Barua A, Bolch CJS, Sarowar C, Savela H, Murray SA. Genomic copy number variability at the genus, species and population levels impacts in situ ecological analyses of dinoflagellates and harmful algal blooms. ISME COMMUNICATIONS 2023; 3:70. [PMID: 37422553 PMCID: PMC10329664 DOI: 10.1038/s43705-023-00274-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
The application of meta-barcoding, qPCR, and metagenomics to aquatic eukaryotic microbial communities requires knowledge of genomic copy number variability (CNV). CNV may be particularly relevant to functional genes, impacting dosage and expression, yet little is known of the scale and role of CNV in microbial eukaryotes. Here, we quantify CNV of rRNA and a gene involved in Paralytic Shellfish Toxin (PST) synthesis (sxtA4), in 51 strains of 4 Alexandrium (Dinophyceae) species. Genomes varied up to threefold within species and ~7-fold amongst species, with the largest (A. pacificum, 130 ± 1.3 pg cell-1 /~127 Gbp) in the largest size category of any eukaryote. Genomic copy numbers (GCN) of rRNA varied by 6 orders of magnitude amongst Alexandrium (102- 108 copies cell-1) and were significantly related to genome size. Within the population CNV of rRNA was 2 orders of magnitude (105 - 107 cell-1) in 15 isolates from one population, demonstrating that quantitative data based on rRNA genes needs considerable caution in interpretation, even if validated against locally isolated strains. Despite up to 30 years in laboratory culture, rRNA CNV and genome size variability were not correlated with time in culture. Cell volume was only weakly associated with rRNA GCN (20-22% variance explained across dinoflagellates, 4% in Gonyaulacales). GCN of sxtA4 varied from 0-102 copies cell-1, was significantly related to PSTs (ng cell-1), displaying a gene dosage effect modulating PST production. Our data indicate that in dinoflagellates, a major marine eukaryotic group, low-copy functional genes are more reliable and informative targets for quantification of ecological processes than unstable rRNA genes.
Collapse
Affiliation(s)
- Rendy Ruvindy
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Abanti Barua
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Christopher J S Bolch
- Institute for Marine & Antarctic Studies, University of Tasmania, Launceston, 7248, TAS, Australia
| | - Chowdhury Sarowar
- Sydney Institute of Marine Science, Chowder Bay Rd, Mosman, NSW, Australia
| | - Henna Savela
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW, 2007, Australia
- Finnish Environment Institute, Marine Research Centre, Helsinki, Finland
| | - Shauna A Murray
- University of Technology Sydney, School of Life Sciences, Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
88
|
Ruiz-Giralt A, Nixon-Darcus L, D’Andrea AC, Meresa Y, Biagetti S, Lancelotti C. On the verge of domestication: Early use of C 4 plants in the Horn of Africa. Proc Natl Acad Sci U S A 2023; 120:e2300166120. [PMID: 37364120 PMCID: PMC10319037 DOI: 10.1073/pnas.2300166120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
The earliest evidence of agriculture in the Horn of Africa dates to the Pre-Aksumite period (ca. 1600 BCE). Domesticated C3 cereals are considered to have been introduced from the Near East, whereas the origin (local or not) and time of domestication of various African C4 species such as sorghum, finger millet, or t'ef remain unknown. In this paper, we present the results of the analysis of microbotanical residues (starch and phytoliths) from grinding stones recovered from two archaeological sites in northeastern Tigrai (Ethiopia), namely Mezber and Ona Adi. Together, both sites cover a time period that encompasses the earliest evidence of agriculture in the region (ca. 1600 BCE) to the fall of the Kingdom of Aksum (ca. 700 CE). Our data indicate that these communities featured complex mixed economies which included the consumption of both domestic and wild plant products since the Initial Pre-Aksumite Phase (ca. 1600 to 900 BCE), including C3 crops and legumes, but also C4 cereals and geophytes. These new data expand the record of C4 plant use in the Horn of Africa to over 1,000 y. It also represents the first evidence for the consumption of starchy products in the region. These results have parallels in the wider northeastern African region where complex food systems have been documented. Altogether, our data represent a significant challenge to our current knowledge of Pre-Aksumite and Aksumite economies, forcing us to rethink the way we define these cultural horizons.
Collapse
Affiliation(s)
- Abel Ruiz-Giralt
- Departament de Humanitats, Culture, Archaeology and Socio-Ecological Dynamics, Universitat Pompeu Fabra, Barcelona08005, Spain
| | - Laurie Nixon-Darcus
- Department of Archaeology, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | | | - Yemane Meresa
- Department of Archaeology and Heritage Management, Aksum University, Aksum7080, Ethiopia
| | - Stefano Biagetti
- Departament de Humanitats, Culture, Archaeology and Socio-Ecological Dynamics, Universitat Pompeu Fabra, Barcelona08005, Spain
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg2000, South Africa
| | - Carla Lancelotti
- Departament de Humanitats, Culture, Archaeology and Socio-Ecological Dynamics, Universitat Pompeu Fabra, Barcelona08005, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona08010, Spain
| |
Collapse
|
89
|
Veilleux CC, Garrett EC, Pajic P, Saitou M, Ochieng J, Dagsaan LD, Dominy NJ, Perry GH, Gokcumen O, Melin AD. Human subsistence and signatures of selection on chemosensory genes. Commun Biol 2023; 6:683. [PMID: 37400713 DOI: 10.1038/s42003-023-05047-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Chemosensation (olfaction, taste) is essential for detecting and assessing foods, such that dietary shifts elicit evolutionary changes in vertebrate chemosensory genes. The transition from hunting and gathering to agriculture dramatically altered how humans acquire food. Recent genetic and linguistic studies suggest agriculture may have precipitated olfactory degeneration. Here, we explore the effects of subsistence behaviors on olfactory (OR) and taste (TASR) receptor genes among rainforest foragers and neighboring agriculturalists in Africa and Southeast Asia. We analyze 378 functional OR and 26 functional TASR genes in 133 individuals across populations in Uganda (Twa, Sua, BaKiga) and the Philippines (Agta, Mamanwa, Manobo) with differing subsistence histories. We find no evidence of relaxed selection on chemosensory genes in agricultural populations. However, we identify subsistence-related signatures of local adaptation on chemosensory genes within each geographic region. Our results highlight the importance of culture, subsistence economy, and drift in human chemosensory perception.
Collapse
Affiliation(s)
- Carrie C Veilleux
- Department of Anatomy, Midwestern University, 19555 N 59th Ave, Glendale, AZ, 85308, USA.
- Department of Anthropology & Archaeology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| | - Eva C Garrett
- Department of Anthropology & Archaeology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Department of Anthropology, Boston University, 232 Bay State Road, Boston, MA, 02215, USA
| | - Petar Pajic
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY, 14260, USA
| | - Marie Saitou
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY, 14260, USA
| | - Joseph Ochieng
- Department of Anatomy, Makerere University College of Health Sciences, Kampala, Uganda
| | - Lilia D Dagsaan
- National Commission for Indigenous Peoples, Botolan, Philippines
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, 6047 Silsby Hall, Hanover, NH, 03755, USA
| | - George H Perry
- Departments of Anthropology and Biology, The Pennsylvania State University, 410 Carpenter Building, University Park, PA, 16802, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, 109 Cooke Hall, Buffalo, NY, 14260, USA
| | - Amanda D Melin
- Department of Anthropology & Archaeology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
- Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, 3330 Hospital Dr. NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
90
|
Laufer VA, Glover TW, Wilson TE. Applications of advanced technologies for detecting genomic structural variation. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108475. [PMID: 37931775 PMCID: PMC10792551 DOI: 10.1016/j.mrrev.2023.108475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Chromosomal structural variation (SV) encompasses a heterogenous class of genetic variants that exerts strong influences on human health and disease. Despite their importance, many structural variants (SVs) have remained poorly characterized at even a basic level, a discrepancy predicated upon the technical limitations of prior genomic assays. However, recent advances in genomic technology can identify and localize SVs accurately, opening new questions regarding SV risk factors and their impacts in humans. Here, we first define and classify human SVs and their generative mechanisms, highlighting characteristics leveraged by various SV assays. We next examine the first-ever gapless assembly of the human genome and the technical process of assembling it, which required third-generation sequencing technologies to resolve structurally complex loci. The new portions of that "telomere-to-telomere" and subsequent pangenome assemblies highlight aspects of SV biology likely to develop in the near-term. We consider the strengths and limitations of the most promising new SV technologies and when they or longstanding approaches are best suited to meeting salient goals in the study of human SV in population-scale genomics research, clinical, and public health contexts. It is a watershed time in our understanding of human SV when new approaches are expected to fundamentally change genomic applications.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
91
|
Vaill M, Kawanishi K, Varki N, Gagneux P, Varki A. Comparative physiological anthropogeny: exploring molecular underpinnings of distinctly human phenotypes. Physiol Rev 2023; 103:2171-2229. [PMID: 36603157 PMCID: PMC10151058 DOI: 10.1152/physrev.00040.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Anthropogeny is a classic term encompassing transdisciplinary investigations of the origins of the human species. Comparative anthropogeny is a systematic comparison of humans and other living nonhuman hominids (so-called "great apes"), aiming to identify distinctly human features in health and disease, with the overall goal of explaining human origins. We begin with a historical perspective, briefly describing how the field progressed from the earliest evolutionary insights to the current emphasis on in-depth molecular and genomic investigations of "human-specific" biology and an increased appreciation for cultural impacts on human biology. While many such genetic differences between humans and other hominids have been revealed over the last two decades, this information remains insufficient to explain the most distinctive phenotypic traits distinguishing humans from other living hominids. Here we undertake a complementary approach of "comparative physiological anthropogeny," along the lines of the preclinical medical curriculum, i.e., beginning with anatomy and considering each physiological system and in each case considering genetic and molecular components that are relevant. What is ultimately needed is a systematic comparative approach at all levels from molecular to physiological to sociocultural, building networks of related information, drawing inferences, and generating testable hypotheses. The concluding section will touch on distinctive considerations in the study of human evolution, including the importance of gene-culture interactions.
Collapse
Affiliation(s)
- Michael Vaill
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| | - Kunio Kawanishi
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nissi Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Pascal Gagneux
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Ajit Varki
- Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
92
|
Zhang X, Moran C, Wang R, Zhou Y, Brooks N. Salivary amylase gene (AMY1) copy number variation has only a minor correlation with body composition in Chinese adults. Genes Genomics 2023; 45:935-943. [PMID: 37043131 DOI: 10.1007/s13258-023-01381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/26/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND According to the WHO, about 39% of the global adult population were overweight or obese in 2016. Obesity has high heritability, with more than 1000 variants so far identified. There have been reports indicating that salivary amylase gene (AMY1) copy number was one of these variants, yet its association with obesity remains controversial. OBJECTIVE Our research aimed to provide more evidence on the relationship of AMY1 copy number variation (CNV) with body mass index (BMI) and body composition. METHODS We recruited 133 Chinese adults (65 males, 68 females, 18-25 years old) with normal fasting blood glucose and blood pressure levels. 19 males were selected for a 10-week intervention to change body composition. After anthropometric measurements, BMI was calculated, and body composition was measured using dual energy X-ray absorptiometry (DEXA). For the 19 selected participants, we collected their height, weight, and body composition data one more time after intervention. All participants were required to leave their saliva samples and their AMY1 copy number was determined by real-time fluorescence quantitative PCR. RESULTS We failed to find any significant difference in BMI and body composition between different copy number groups. Only a weak correlation was found between body muscle mass and body fat mass. After adjusted for height and weight, AMY1 CNV explained 4.83% of the variance and one single increase in AMY1 CNV can increase 0.214 kg of the body muscle mass, while one single increase in AMY1 CNV can decrease 0.217 kg of the body fat mass and explained 4.69% of the variance. CONCLUSIONS As a genetic factor, the AMY1 gene copy number variation has only a minor correlation with BMI and body composition, and its effect can easily be hidden by other factors such as individual diet and exercise habit.
Collapse
Affiliation(s)
- Xinming Zhang
- School of Sport Science, Nantong University, Nantong, Jiangsu Province, China.
| | - Colin Moran
- School of Health Sciences and Sport, University of Stirling, Stirling, Scotland, UK
| | - Ruiyuan Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing City, China
| | - Yue Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing City, China
| | - Naomi Brooks
- School of Health Sciences and Sport, University of Stirling, Stirling, Scotland, UK
| |
Collapse
|
93
|
Salehian-Dehkordi H, Huang JH, Pirany N, Mehrban H, Lv XY, Sun W, Esmailizadeh A, Lv FH. Genomic Landscape of Copy Number Variations and Their Associations with Climatic Variables in the World's Sheep. Genes (Basel) 2023; 14:1256. [PMID: 37372436 PMCID: PMC10298528 DOI: 10.3390/genes14061256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Sheep show characteristics of phenotypic diversity and adaptation to diverse climatic regions. Previous studies indicated associations between copy number variations (CNVs) and climate-driven adaptive evolution in humans and other domestic animals. Here, we constructed a genomic landscape of CNVs (n = 39,145) in 47 old autochthonous populations genotyped at a set of high-density (600 K) SNPs to detect environment-driven signatures of CNVs using a multivariate regression model. We found 136 deletions and 52 duplications that were significantly (Padj. < 0.05) associated with climatic variables. These climate-mediated selective CNVs are involved in functional candidate genes for heat stress and cold climate adaptation (e.g., B3GNTL1, UBE2L3, and TRAF2), coat and wool-related traits (e.g., TMEM9, STRA6, RASGRP2, and PLA2G3), repairing damaged DNA (e.g., HTT), GTPase activity (e.g., COPG), fast metabolism (e.g., LMF2 and LPIN3), fertility and reproduction (e.g., SLC19A1 and CCDC155), growth-related traits (e.g., ADRM1 and IGFALS), and immune response (e.g., BEGAIN and RNF121) in sheep. In particular, we identified significant (Padj. < 0.05) associations between probes in deleted/duplicated CNVs and solar radiation. Enrichment analysis of the gene sets among all the CNVs revealed significant (Padj. < 0.05) enriched gene ontology terms and pathways related to functions such as nucleotide, protein complex, and GTPase activity. Additionally, we observed overlapping between the CNVs and 140 known sheep QTLs. Our findings imply that CNVs can serve as genomic markers for the selection of sheep adapted to specific climatic conditions.
Collapse
Affiliation(s)
- Hosein Salehian-Dehkordi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.S.-D.); (J.-H.H.)
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (N.P.); (H.M.)
| | - Jia-Hui Huang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.S.-D.); (J.-H.H.)
| | - Nasrollah Pirany
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (N.P.); (H.M.)
| | - Hossein Mehrban
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord 88186-34141, Iran; (N.P.); (H.M.)
| | - Xiao-Yang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.-Y.L.); (W.S.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.-Y.L.); (W.S.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| | - Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.S.-D.); (J.-H.H.)
| |
Collapse
|
94
|
Elechi JOG, Sirianni R, Conforti FL, Cione E, Pellegrino M. Food System Transformation and Gut Microbiota Transition: Evidence on Advancing Obesity, Cardiovascular Diseases, and Cancers-A Narrative Review. Foods 2023; 12:2286. [PMID: 37372497 PMCID: PMC10297670 DOI: 10.3390/foods12122286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Food, a vital component of our daily life, is fundamental to our health and well-being, and the knowledge and practices relating to food have been passed down from countless generations of ancestors. Systems may be used to describe this extremely extensive and varied body of agricultural and gastronomic knowledge that has been gathered via evolutionary processes. The gut microbiota also underwent changes as the food system did, and these alterations had a variety of effects on human health. In recent decades, the gut microbiome has gained attention due to its health benefits as well as its pathological effects on human health. Many studies have shown that a person's gut microbiota partially determines the nutritional value of food and that diet, in turn, shapes both the microbiota and the microbiome. The current narrative review aims to explain how changes in the food system over time affect the makeup and evolution of the gut microbiota, advancing obesity, cardiovascular disease (CVD), and cancer. After a brief discussion of the food system's variety and the gut microbiota's functions, we concentrate on the relationship between the evolution of food system transformation and gut microbiota system transition linked to the increase of non-communicable diseases (NCDs). Finally, we also describe sustainable food system transformation strategies to ensure healthy microbiota composition recovery and maintain the host gut barrier and immune functions to reverse advancing NCDs.
Collapse
Affiliation(s)
- Jasper Okoro Godwin Elechi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (R.S.); (F.L.C.); (E.C.); (M.P.)
| | | | | | | | | |
Collapse
|
95
|
Ohta J, Minegishi S, Noda N, Sakurada K. Estimating the way of deposition of saliva stains using quantitative analysis of forensic salivary biomarkers. Leg Med (Tokyo) 2023; 64:102277. [PMID: 37300921 DOI: 10.1016/j.legalmed.2023.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Analyzing the way of deposition of saliva stains contributes to appropriate interpretation of saliva as evidence in court, particularly in sexual assault cases. In this proof-of-concept study, we aimed to confirm the difference between drooling-derived (non-contact) saliva and licking-derived (contact) saliva and clarify whether objectively distinguishing between the two saliva is possible. To allow discrimination between these two samples, an indicator was devised where the relative Streptococcus salivarius DNA quantity was calculated by dividing the S. salivarius DNA copies by the amount of stained saliva from the same saliva sample using quantitative polymerase chain reaction and salivary α-amylase activity assays. The study findings reveal that the value of the proposed indicator of licking-derived saliva was 100-fold significantly greater than that of drooling-derived saliva (P < 0.05, Welch's t-test). However, theoretical and technical challenges preclude the application of this indicator as a practical method. We believe that this saliva-specific bacterial DNA-based approach could allow estimation of the saliva stain deposition method.
Collapse
Affiliation(s)
- Jun Ohta
- Department of Forensic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Forensic Biology Unit, Scientific Crime Laboratory, Kanagawa Prefectural Police, 155-1 Yamashita-cho, Naka-ku, Yokohama, Kanagawa 231-0023, Japan.
| | - Saki Minegishi
- Department of Forensic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Nanaka Noda
- Forensic Biology Unit, Scientific Crime Laboratory, Kanagawa Prefectural Police, 155-1 Yamashita-cho, Naka-ku, Yokohama, Kanagawa 231-0023, Japan
| | - Koichi Sakurada
- Department of Forensic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
96
|
Wilson AE, Liberles DA. Dosage balance acts as a time-dependent selective barrier to subfunctionalization. BMC Ecol Evol 2023; 23:14. [PMID: 37138246 PMCID: PMC10155369 DOI: 10.1186/s12862-023-02116-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Gene duplication is an important process for genome expansion, sometimes allowing for new gene functions to develop. Duplicate genes can be retained through multiple processes, either for intermediate periods of time through processes such as dosage balance, or over extended periods of time through processes such as subfunctionalization and neofunctionalization. RESULTS Here, we built upon an existing subfunctionalization Markov model by incorporating dosage balance to describe the interplay between subfunctionalization and dosage balance to explore selective pressures on duplicate copies. Our model incorporates dosage balance using a biophysical framework that penalizes the fitness of genetic states with stoichiometrically imbalanced proteins. These imbalanced states cause increased concentrations of exposed hydrophobic surface areas, which cause deleterious mis-interactions. We draw comparison between our Subfunctionalization + Dosage-Balance Model (Sub + Dos) and the previous Subfunctionalization-Only (Sub-Only) Model. This comparison includes how the retention probabilities change over time, dependent upon the effective population size and the selective cost associated with spurious interaction of dosage-imbalanced partners. We show comparison between Sub-Only and Sub + Dos models for both whole-genome duplication and small-scale duplication events. CONCLUSION These comparisons show that following whole-genome duplication, dosage balance serves as a time-dependent selective barrier to the subfunctionalization process, by causing an overall delay but ultimately leading to a larger portion of the genome retained through subfunctionalization. This higher percentage of the genome that is ultimately retained is caused by the alternative competing process, nonfunctionalization, being selectively blocked to a greater extent. In small-scale duplication, the reverse pattern is seen, where dosage balance drives faster rates of subfunctionalization, but ultimately leads to a smaller portion of the genome retained as duplicates. This faster rate of subfunctionalization is because the dosage balance of interacting gene products is negatively affected immediately after duplication and the loss of a duplicate restores the stoichiometric balance. Our findings provide support that the subfunctionalization of genes that are susceptible to dosage balance effects, such as proteins involved in complexes, is not a purely neutral process. With stronger selection against stoichiometrically imbalanced gene partners, the rates of subfunctionalization and nonfunctionalization slow; however, this ultimately leads to a greater proportion of subfunctionalized gene pairs.
Collapse
Affiliation(s)
- Amanda E Wilson
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
97
|
Vázquez-Moreno MA, Cruz-López M. [From genotype to phenotype: amylase gene in childhood obesity]. REVISTA MEDICA DEL INSTITUTO MEXICANO DEL SEGURO SOCIAL 2023; 61:356-362. [PMID: 37216679 PMCID: PMC10437226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/21/2022] [Indexed: 05/24/2023]
Abstract
Worldwide, Mexico is one of the countries with the highest rate of obesity, which is a condition considered the main risk factor for type 2 diabetes. Among the mechanisms that predispose to obesity, the interaction between food intake and genetic components has been little explored. Recently we evidenced a significant association between the copy number (CN) of AMY1A and AMY2A genes, the enzymatic activity of salivary and pancreatic amylase, and the frequency of childhood obesity in Mexico, a particular population due to the high consumption of starch in the diet and the high prevalence of obesity in children and adults. This review aims to find a better understanding of the role of amylase in obesity through a description of the evolution of the CN of its genes, the association of its enzymatic activity with obesity, and the effect of its interaction with starch intake on Mexican children. In addition, it denotes the importance of the experimental perspectives of further investigation regarding the mechanism by which amylase could regulate the abundance of oligosaccharide-fermenting bacteria and producers of short-chain fatty acids and/or branched-chain amino acids that could contribute to the alteration of the physiological processes associated with intestinal inflammation and metabolic deregulation that predispose to the development of obesity.
Collapse
Affiliation(s)
- Miguel Alexander Vázquez-Moreno
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Unidad de Investigación Médica en Bioquímica. Ciudad de México, México Instituto Mexicano del Seguro SocialMéxico
| | - Miguel Cruz-López
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades “Dr. Bernardo Sepúlveda Gutiérrez”, Unidad de Investigación Médica en Bioquímica. Ciudad de México, México Instituto Mexicano del Seguro SocialMéxico
| |
Collapse
|
98
|
Pfennig A, Petersen LN, Kachambwa P, Lachance J. Evolutionary Genetics and Admixture in African Populations. Genome Biol Evol 2023; 15:evad054. [PMID: 36987563 PMCID: PMC10118306 DOI: 10.1093/gbe/evad054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
As the ancestral homeland of our species, Africa contains elevated levels of genetic diversity and substantial population structure. Importantly, African genomes are heterogeneous: They contain mixtures of multiple ancestries, each of which have experienced different evolutionary histories. In this review, we view population genetics through the lens of admixture, highlighting how multiple demographic events have shaped African genomes. Each of these historical vignettes paints a recurring picture of population divergence followed by secondary contact. First, we give a brief overview of genetic variation in Africa and examine deep population structure within Africa, including the evidence of ancient introgression from archaic "ghost" populations. Second, we describe the genetic legacies of admixture events that have occurred during the past 10,000 years. This includes gene flow between different click-speaking Khoe-San populations, the stepwise spread of pastoralism from eastern to southern Africa, multiple migrations of Bantu speakers across the continent, as well as admixture from the Middle East and Europe into the Sahel region and North Africa. Furthermore, the genomic signatures of more recent admixture can be found in the Cape Peninsula and throughout the African diaspora. Third, we highlight how natural selection has shaped patterns of genetic variation across the continent, noting that gene flow provides a potent source of adaptive variation and that selective pressures vary across Africa. Finally, we explore the biomedical implications of population structure in Africa on health and disease and call for more ethically conducted studies of genetic variation in Africa.
Collapse
Affiliation(s)
- Aaron Pfennig
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | | | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
99
|
Carlberg C. Nutrigenomics in the context of evolution. Redox Biol 2023; 62:102656. [PMID: 36933390 PMCID: PMC10036735 DOI: 10.1016/j.redox.2023.102656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/13/2023] Open
Abstract
Nutrigenomics describes the interaction between nutrients and our genome. Since the origin of our species most of these nutrient-gene communication pathways have not changed. However, our genome experienced over the past 50,000 years a number of evolutionary pressures, which are based on the migration to new environments concerning geography and climate, the transition from hunter-gatherers to farmers including the zoonotic transfer of many pathogenic microbes and the rather recent change of societies to a preferentially sedentary lifestyle and the dominance of Western diet. Human populations responded to these challenges not only by specific anthropometric adaptations, such as skin color and body stature, but also through diversity in dietary intake and different resistance to complex diseases like the metabolic syndrome, cancer and immune disorders. The genetic basis of this adaptation process has been investigated by whole genome genotyping and sequencing including that of DNA extracted from ancient bones. In addition to genomic changes, also the programming of epigenomes in pre- and postnatal phases of life has an important contribution to the response to environmental changes. Thus, insight into the variation of our (epi)genome in the context of our individual's risk for developing complex diseases, helps to understand the evolutionary basis how and why we become ill. This review will discuss the relation of diet, modern environment and our (epi)genome including aspects of redox biology. This has numerous implications for the interpretation of the risks for disease and their prevention.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Juliana Tuwima 10, PL-10748, Olsztyn, Poland; School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland.
| |
Collapse
|
100
|
Jaegle B, Pisupati R, Soto-Jiménez LM, Burns R, Rabanal FA, Nordborg M. Extensive sequence duplication in Arabidopsis revealed by pseudo-heterozygosity. Genome Biol 2023; 24:44. [PMID: 36895055 PMCID: PMC9999624 DOI: 10.1186/s13059-023-02875-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND It is apparent that genomes harbor much structural variation that is largely undetected for technical reasons. Such variation can cause artifacts when short-read sequencing data are mapped to a reference genome. Spurious SNPs may result from mapping of reads to unrecognized duplicated regions. Calling SNP using the raw reads of the 1001 Arabidopsis Genomes Project we identified 3.3 million (44%) heterozygous SNPs. Given that Arabidopsis thaliana (A. thaliana) is highly selfing, and that extensively heterozygous individuals have been removed, we hypothesize that these SNPs reflected cryptic copy number variation. RESULTS The heterozygosity we observe consists of particular SNPs being heterozygous across individuals in a manner that strongly suggests it reflects shared segregating duplications rather than random tracts of residual heterozygosity due to occasional outcrossing. Focusing on such pseudo-heterozygosity in annotated genes, we use genome-wide association to map the position of the duplicates. We identify 2500 putatively duplicated genes and validate them using de novo genome assemblies from six lines. Specific examples included an annotated gene and nearby transposon that transpose together. We also demonstrate that cryptic structural variation produces highly inaccurate estimates of DNA methylation polymorphism. CONCLUSIONS Our study confirms that most heterozygous SNP calls in A. thaliana are artifacts and suggest that great caution is needed when analyzing SNP data from short-read sequencing. The finding that 10% of annotated genes exhibit copy-number variation, and the realization that neither gene- nor transposon-annotation necessarily tells us what is actually mobile in the genome suggests that future analyses based on independently assembled genomes will be very informative.
Collapse
Affiliation(s)
- Benjamin Jaegle
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Rahul Pisupati
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | | | - Robin Burns
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria.
| |
Collapse
|