51
|
Davidson MB. Comment on Mittendorfer et al. Insulin Hypersecretion as Promoter of Body Fat Gain and Hyperglycemia. Diabetes 2024;73:837-843. Diabetes 2024; 73:e11. [PMID: 39432769 DOI: 10.2337/db24-0627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/23/2024]
|
52
|
Xu W, Zhang D, Ma Y, Gaspar RC, Kahn M, Nasiri A, Murray S, Samuel VT, Shulman GI. Ceramide synthesis inhibitors prevent lipid-induced insulin resistance through the DAG-PKCε-insulin receptor T1150 phosphorylation pathway. Cell Rep 2024; 43:114746. [PMID: 39302831 DOI: 10.1016/j.celrep.2024.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Inhibition of the ceramide synthetic pathway with myriocin or an antisense oligonucleotide (ASO) targeting dihydroceramide desaturase (DES1) both improved hepatic insulin sensitivity in rats fed either a saturated or unsaturated fat diet and was associated with reductions in both hepatic ceramide and plasma membrane (PM)-sn-1,2-diacylglycerol (DAG) content. The insulin sensitizing effects of myriocin and Des1 ASO were abrogated by acute treatment with an ASO against DGAT2, which increased hepatic PM-sn-1,2-DAG but not hepatic C16 ceramide content. Increased PM-sn-1,2-DAG content was associated with protein kinase C (PKC)ε activation, increased insulin receptor (INSR)T1150 phosphorylation leading to reduced insulin-stimulated INSRY1152/AktS473 phosphorylation, and impaired insulin-mediated suppression of endogenous glucose production. These results demonstrate that inhibition of de novo ceramide synthesis by either myriocin treatment or DES1 knockdown protects against lipid-induced hepatic insulin resistance through a C16 ceramide-independent mechanism and that they mediate their effects to protect from lipid-induced hepatic insulin resistance via the PM-sn-1,2-DAG-PKCε-INSRT1150 phosphorylation pathway.
Collapse
Affiliation(s)
- Weiwei Xu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yumin Ma
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Endocrinology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sue Murray
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Varman T Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
53
|
Tegegne BA, Adugna A, Yenet A, Yihunie Belay W, Yibeltal Y, Dagne A, Hibstu Teffera Z, Amare GA, Abebaw D, Tewabe H, Abebe RB, Zeleke TK. A critical review on diabetes mellitus type 1 and type 2 management approaches: from lifestyle modification to current and novel targets and therapeutic agents. Front Endocrinol (Lausanne) 2024; 15:1440456. [PMID: 39493778 PMCID: PMC11527681 DOI: 10.3389/fendo.2024.1440456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Diabetes mellitus (DM) has emerged as an international health epidemic due to its rapid rise in prevalence. Consequently, scientists and or researchers will continue to find novel, safe, effective, and affordable anti-diabetic medications. The goal of this review is to provide a thorough overview of the role that lifestyle changes play in managing diabetes, as well as the standard medications that are currently being used to treat the condition and the most recent advancements in the development of novel medical treatments that may be used as future interventions for the disease. A literature search was conducted using research databases such as PubMed, Web of Science, Scopus, ScienceDirect, Wiley Online Library, Google Scholar, etc. Data were then abstracted from these publications using words or Phrases like "pathophysiology of diabetes", "Signe and symptoms of diabetes", "types of diabetes", "major risk factors and complication of diabetes", "diagnosis of diabetes", "lifestyle modification for diabetes", "current antidiabetic agents", and "novel drugs and targets for diabetes management" that were published in English and had a strong scientific foundation. Special emphasis was given to the importance of lifestyle modification, as well as current, novel, and emerging/promising drugs and targets helpful for the management of both T1DM and T2DM.
Collapse
Affiliation(s)
- Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Aderaw Yenet
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Wubetu Yihunie Belay
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yared Yibeltal
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Haymanot Tewabe
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
54
|
Chen X, Lin E, Haghighatian MM, Shepard LW, Hattar S, Kuruvilla R, Zhao H. Light modulates glucose and lipid homeostasis via the sympathetic nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617839. [PMID: 39416062 PMCID: PMC11483057 DOI: 10.1101/2024.10.11.617839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Light is an important environmental factor for vision, and for diverse physiological and psychological functions. Light can also modulate glucose metabolism. Here, we show that in mice, light is critical for glucose and lipid homeostasis by regulating the sympathetic nervous system, independent of circadian disruption. Light deprivation from birth elicits insulin hypersecretion, glucagon hyposecretion, lower gluconeogenesis, and reduced lipolysis by 6-8 weeks, in male, but not, female mice. These metabolic defects are consistent with blunted sympathetic activity, and indeed, sympathetic responses to a cold stimulus are significantly attenuated in dark-reared mice. Further, long-term dark rearing leads to body weight gain, insulin resistance, and glucose intolerance. Notably, metabolic dysfunction can be partially alleviated by 5 weeks exposure to a regular light-dark cycle. These studies provide insight into circadian-independent mechanisms by which light directly influences whole-body physiology and inform new approaches for understanding metabolic disorders linked to aberrant environmental light conditions.
Collapse
Affiliation(s)
- Xiangning Chen
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Eugene Lin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | | | | | - Samer Hattar
- Section on Light and Circadian Rhythms, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| |
Collapse
|
55
|
Sun Q, Tang H, Zhu H, Liu Y, Zhang M, Che C, Xiang B, Wang S. Single-cell transcriptome analysis reveals the regulatory functions of islet exocrine cells after short-time obesogenic diet. Endocrine 2024; 86:204-214. [PMID: 38806892 DOI: 10.1007/s12020-024-03883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE This study aims to investigate the functions of exocrine islet cell subtypes in the early stage of obesity induced by high-fat diet (HFD), which is accompanied with deterioration of the systemic insulin response and islet subpopulation abnormalities. METHODS In this study, we analyzed published islet single-cell RNA sequencing (scRNA-seq) datasets from the early stage induced by HFD feeding. Bioinformatics tools such as findMarkers, Cellchat, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and Gene Ontology (GO) terms were applied to identify the different functions of exocrine cell clusters. RESULTS A total of 26 cell clusters were obtained were identified from this dietary intervention model. Most proportions of cell subtypes were consistent between high-fat diet (HFD) and low-fat diet (LFD) groups, except for partial endocrine islet clusters and exocrine clusters. Most differentiated expression of genes in the HFD group was found in exocrine cluster. And we also found that the cell-cell interactions between ductal and endothelial cells were reduced in the HFD group, with the significant alteration in C17 (ductal) cluster. By further analyzing the co-expression regulatory network of transcription in the C17 cluster, we speculate that differentially expressed transcription factors affected the function of duct cells by affecting the expression of related genes in intercellular interaction networks, thereby promoting insulin resistance (IR) development. CONCLUSION Our results provide a reference for the function and regulatory mechanisms of exocrine cells in the obesity induced by HFD and probably influence the process of following insulin resistance.
Collapse
Affiliation(s)
- Qianqian Sun
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Huiyu Tang
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Huan Zhu
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yanyan Liu
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Min Zhang
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chenghang Che
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Bing Xiang
- Department of Hematology, Sichuan University West China Hospital, Chengdu, Sichuan, China.
| | - Shuang Wang
- The Center of Gerontology and Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China.
- National Clinical Research Center for Geriatrics, Sichuan University West China Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
56
|
Luong TV, Pedersen MGB, Abild CB, Lauritsen KM, Kjærulff MLG, Møller N, Gormsen LC, Søndergaard E. A 3-Week Ketogenic Diet Increases Skeletal Muscle Insulin Sensitivity in Individuals With Obesity: A Randomized Controlled Crossover Trial. Diabetes 2024; 73:1631-1640. [PMID: 39052652 PMCID: PMC11417439 DOI: 10.2337/db24-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
A ketogenic diet (KD) can induce weight loss and improve glycemic regulation, potentially reducing the risk of type 2 diabetes development. To elucidate the underlying mechanisms behind these beneficial effects of a KD, we investigated the impact of a KD on organ-specific insulin sensitivity (IS) in skeletal muscle, liver, and adipose tissue. We hypothesized that a KD would increase IS in skeletal muscle. The study included 11 individuals with obesity who underwent a randomized, crossover trial with two 3-week interventions: 1) a KD and 2) a standard diet. Skeletal muscle IS was quantified as the increase in glucose disposal during a hyperinsulinemic-euglycemic clamp (HEC). Hepatic IS and adipose tissue IS were quantified as the relative suppression of endogenous glucose production (EGP) and the relative suppression of palmitate flux during the HEC. The KD led to a 2.2-kg weight loss and increased insulin-stimulated glucose disposal, whereas the relative suppression of EGP during the HEC was similar. In addition, the KD decreased insulin-mediated suppression of lipolysis. In conclusion, a KD increased skeletal muscle IS in individuals with obesity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Thien Vinh Luong
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mette Glavind Bülow Pedersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Mette Louise Gram Kjærulff
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Møller
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Esben Søndergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
57
|
Herms A, Colom B, Piedrafita G, Kalogeropoulou A, Banerjee U, King C, Abby E, Murai K, Caseda I, Fernandez-Antoran D, Ong SH, Hall MWJ, Bryant C, Sood RK, Fowler JC, Pol A, Frezza C, Vanhaesebroeck B, Jones PH. Organismal metabolism regulates the expansion of oncogenic PIK3CA mutant clones in normal esophagus. Nat Genet 2024; 56:2144-2157. [PMID: 39169259 PMCID: PMC11525199 DOI: 10.1038/s41588-024-01891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Oncogenic PIK3CA mutations generate large clones in aging human esophagus. Here we investigate the behavior of Pik3ca mutant clones in the normal esophageal epithelium of transgenic mice. Expression of a heterozygous Pik3caH1047R mutation drives clonal expansion by tilting cell fate toward proliferation. CRISPR screening and inhibitor treatment of primary esophageal keratinocytes confirmed the PI3K-mTOR pathway increased mutant cell competitive fitness. The antidiabetic drug metformin reduced mutant cell advantage in vivo and in vitro. Conversely, metabolic conditions such as type 1 diabetes or diet-induced obesity enhanced the competitive fitness of Pik3caH1047R cells. Consistently, we found a higher density of PIK3CA gain-of-function mutations in the esophagus of individuals with high body mass index compared with those with normal weight. We conclude that the metabolic environment selectively influences the evolution of the normal epithelial mutational landscape. Clinically feasible interventions to even out signaling imbalances between wild-type and mutant cells may limit the expansion of oncogenic mutants in normal tissues.
Collapse
Affiliation(s)
- Albert Herms
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Bartomeu Colom
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | - Gabriel Piedrafita
- Wellcome Sanger Institute, Hinxton, UK
- Spanish National Cancer Research Centre, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | | | - Irene Caseda
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - David Fernandez-Antoran
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Albert Pol
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Christian Frezza
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases, Cologne, Germany
| | | | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Oncology, University of Cambridge, Hutchison Research Centre, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
58
|
Akl MM, Ahmed A. Exploring the Interplay between the Warburg Effect and Glucolipotoxicity in Cancer Development: A Novel Perspective on Cancer Etiology. Adv Pharm Bull 2024; 14:705-713. [PMID: 39494260 PMCID: PMC11530886 DOI: 10.34172/apb.2024.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
The Warburg effect, first observed by Otto Warburg in the 1920s, delineates a metabolic phenomenon in which cancer cells exhibit heightened glucose uptake and lactate production, even under normoxic conditions. This metabolic shift towards glycolysis, despite the presence of oxygen, fuels the energy demands of rapidly proliferating cancer cells. Dysregulated glucose metabolism, characterized by the overexpression of glucose transporters and the redirection of metabolic pathways towards glycolysis, lies at the crux of this metabolic reprogramming. Consequently, the accumulation of lactate as a byproduct contributes to the creation of an acidic tumor microenvironment, fostering tumor progression and metastasis. However, recent research, notably proposed by Maher Akl, introduces a novel perspective regarding the role of glycolipids in cancer metabolism. Akl's glucolipotoxicity hypothesis posits that aberrant glycolipid metabolism, specifically the intracellular buildup of glycolipids, significantly influences tumor initiation and progression. This hypothesis underscores the disruptive impact of accumulated glycolipids on cellular homeostasis, thereby activating oncogenic pathways and promoting carcinogenesis. This perspective aims to synthesize the intricate mechanisms underlying both the Warburg effect and glucolipotoxicity, elucidating their collective contributions to tumor growth and malignancy. By comprehensively understanding these metabolic aberrations, novel avenues for therapeutic intervention targeting the fundamental drivers of cancer initiation and progression emerge, holding promise for more efficacious treatment strategies in the future.
Collapse
Affiliation(s)
- Maher Monir Akl
- Department of Chemistry, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Amr Ahmed
- The Public Health Department, Riyadh First Health Cluster, Ministry of Health, Saudi Arabia
| |
Collapse
|
59
|
Xu T, Zhang X, Zhao W, Shi J, Wan S, Zhang Y, Hao Y, Sun M, He J, Jiang L, Wang H, Gao H, Luo J, Luo Y, An P. Foxo1 is an iron-responsive transcriptional factor regulating systemic iron homeostasis. Blood 2024; 144:1314-1328. [PMID: 38848533 DOI: 10.1182/blood.2024024293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The liver plays a crucial role in maintaining systemic iron homeostasis by secreting hepcidin, which is essential for coordinating iron levels in the body. Imbalances in iron homeostasis are associated with various clinical disorders related to iron deficiency or iron overload. Despite the clinical significance, the mechanisms underlying how hepatocytes sense extracellular iron levels to regulate hepcidin synthesis and iron storage are not fully understood. In this study, we identified Foxo1, a well-known regulator of macronutrient metabolism, which translocates to the nucleus of hepatocytes in response to high-iron feeding, holo-transferrin, and bone morphogenetic protein 6 (BMP6) treatment. Furthermore, Foxo1 plays a crucial role in mediating hepcidin induction in response to both iron and BMP signals by directly interacting with evolutionally conserved Foxo binding sites within the hepcidin promoter region. These binding sites were found to colocalize with Smad-binding sites. To investigate the physiological relevance of Foxo1 in iron metabolism, we generated mice with hepatocyte-specific deletion of Foxo1. These mice exhibited reduced hepatic hepcidin expression and serum hepcidin levels, accompanied by elevated serum iron and liver nonheme iron concentrations. Moreover, high-iron diet further exacerbated these abnormalities in iron metabolism in mice lacking hepatic Foxo1. Conversely, hepatocyte-specific Foxo1 overexpression increased hepatic hepcidin expression and serum hepcidin levels, thereby ameliorating iron overload in a murine model of hereditary hemochromatosis (Hfe-/- mice). In summary, our study identifies Foxo1 as a critical regulator of hepcidin and systemic iron homeostasis. Targeting Foxo1 may offer therapeutic opportunities for managing conditions associated with aberrant iron metabolism.
Collapse
Affiliation(s)
- Teng Xu
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xu Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Wenting Zhao
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jiaxin Shi
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Sitong Wan
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yanling Hao
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Mingyue Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing He
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Li Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hao Wang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hong Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
60
|
Liu Z, Yang Y, Xu Y, Zhang Z, Tang R, Liu J, Jiang H, Zhao R. Procyanidin B1 and p-coumaric acid from whole highland barley ameliorated HFD-induced impaired glucose tolerance via small intestinal barrier and hepatic glucose metabolism. Food Funct 2024; 15:9272-9283. [PMID: 39162187 DOI: 10.1039/d4fo02805h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Highland barley is a natural source for the development of phenolic compounds that exhibit potential in preventing type 2 diabetes, which is important for the agricultural and industrial utilization of highland barley. However, very few studies have focused on their effect on small intestinal absorption and barrier dysfunction, as well as the direct target for the modulation of hepatic glucose metabolism. In this study, procyanidin B1 (PB) and p-coumaric acid (CA) isolated from highland barley supplementation in impaired glucose tolerance (IGT) mice significantly increased lactase-phlorizin hydrolase (LPH), sulfotransferase 1A1 (SULT1A1), UDP glucuronosyltransferase 1A (UGT1A) families and sodium-dependent glucose transporter 1 (SGLT1) expression in the small intestine of IGT mice, indicating beneficial effects on polyphenol deglycosylation and transportation. Supplementation with PB and CA also exhibited attenuation of small intestinal barrier dysfunction by improving the mucus layer and tight junctions, which was closely related to the transportation of phenolic compounds. In addition, PB and CA supplementation were explored directly to bind to the insulin receptor and activate the insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, thereby modulating hepatic glucose metabolism and ameliorating hyperglycemic in IGT mice. These results offer crucial insights into the potential development of PB and CA as non-food nutraceuticals, as well as the extensive utilization of highland barley as an industrial crop.
Collapse
Affiliation(s)
- Zehua Liu
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Yijie Yang
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yi Xu
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
| | - Zhaowan Zhang
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
| | - Ruoxin Tang
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
| | - Jianshen Liu
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
| | - Hongxin Jiang
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, No. 100, Lianhua Street, Zhengzhou, Henan 450001, China.
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| |
Collapse
|
61
|
Huang L, Guo Z, Huang M, Zeng X, Huang H. Triiodothyronine (T3) promotes browning of white adipose through inhibition of the PI3K/AKT signalling pathway. Sci Rep 2024; 14:20370. [PMID: 39223267 PMCID: PMC11369215 DOI: 10.1038/s41598-024-71591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity arises from an imbalance between energy consumption and energy expenditure, and thyroid hormone levels serve as a determinant of energy expenditure. We conducted experiments at the animal and cellular levels and combined those findings with clinical data to elucidate the role of triiodothyronine (T3) in facilitating the browning of white adipose tissue (WAT) and its underlying mechanism. The results showed (i) the impaired metabolic function of local WAT and the compensatory elevation of systemic thermogenesis in obesity; (ii) T3 treatment of white adipocytes in vitro and local WAT in vivo induced a shift towards a morphologically "brown" phenotype, accompanied by upregulation of mRNA and protein expression of browning-related and mitochondrial function markers, which suggest that T3 intervention promotes the browning of WAT; and (iii) the aforementioned processes could be modulated through inhibition of the PI3K/AKT signalling pathway; however, whether T3 affects the PI3K/AKT signalling pathway by affecting insulin signalling remains to be studied and clarified. The results of our study indicate that T3 treatment promotes browning of WAT through inhibition of the PI3K/AKT signalling pathway; these findings offer novel perspectives regarding the potential of localised therapies for addressing WAT volume in individuals with obesity.
Collapse
Affiliation(s)
- LingHong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - ZhiFeng Guo
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - MingJing Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - XiYing Zeng
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - HuiBin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
62
|
Bai H, Wang L, Lambo MT, Li Y, Zhang Y. Effect of changing the proportion of C16:0 and cis-9 C18:1 in fat supplements on rumen fermentation, glucose and lipid metabolism, antioxidation capacity, and visceral fatty acid profile in finishing Angus bulls. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:39-48. [PMID: 39026601 PMCID: PMC11254535 DOI: 10.1016/j.aninu.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 07/20/2024]
Abstract
This study evaluated the effects of different proportions of palmitic (C16:0) and oleic (cis-9 C18:1) acids in fat supplements on rumen fermentation, glucose (GLU) and lipid metabolism, antioxidant function, and visceral fat fatty acid (FA) composition in Angus bulls. The design of the experiment was a randomized block design with 3 treatments of 10 animals each. A total of 30 finishing Angus bulls (21 ± 0.5 months) with an initial body weight of 626 ± 69 kg were blocked by weight into 10 blocks, with 3 bulls per block. The bulls in each block were randomly assigned to one of three experimental diets: (1) control diet without additional fat (CON), (2) CON + 2.5% palmitic calcium salt (PA; 90% C16:0), (3) CON + 2.5% mixed FA calcium salts (MA; 60% C16:0 + 30% cis-9 C18:1). Both fat supplements increased C18:0 and cis-9 C18:1 in visceral fat (P < 0.05) and up-regulated the expression of liver FA transport protein 5 (FATP5; P < 0.001). PA increased the insulin concentration (P < 0.001) and aspartate aminotransferase activity (AST; P = 0.030) in bull's blood while reducing the GLU concentration (P = 0.009). PA increased the content of triglycerides (TG; P = 0.014) in the liver, the content of the C16:0 in visceral fat (P = 0.004), and weight gain (P = 0.032), and up-regulated the expression of liver diacylglycerol acyltransferase 2 (DGAT2; P < 0.001) and stearoyl-CoA desaturase 1 (SCD1; P < 0.05). MA increased plasma superoxide dismutase activity (SOD; P = 0.011), reduced the concentration of acetate and total volatile FA (VFA) in rumen fluid (P < 0.05), and tended to increase plasma non-esterified FA (NEFA; P = 0.069) concentrations. Generally, high C16:0 fat supplementation increased weight gain in Angus bulls and triggered the risk of fatty liver, insulin resistance, and reduced antioxidant function. These adverse effects were alleviated by partially replacing C16:0 with cis-9 C18:1.
Collapse
Affiliation(s)
- Haixin Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Lubo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
63
|
Yang SR, Chen L, Luo D, Wang YY, Liang FX. Unlocking the potential: How acupuncture reshapes the liver-centered lipid metabolism pattern to fight obesity. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:523-532. [PMID: 39209583 DOI: 10.1016/j.joim.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
Obesity, a widespread global health issue, is frequently linked to disrupted lipid metabolism, resulting in excessive accumulation of adipose tissue and associated health complications. Acupuncture, a traditional Chinese medical modality, has exhibited potential as a viable intervention for addressing obesity. The underlying mechanism proposed involves the stimulation of specific acupoints to exert a regulatory influence on hepatic function. The liver has a central role in lipid metabolism, including processes such as lipid synthesis, storage and distribution. Acupuncture is believed to enhance the liver's efficiency in processing lipids, thereby reducing lipid accumulation and improving metabolic functions. Research indicates that acupuncture can influence the expression of certain genes and proteins involved in lipid metabolism in the liver. This includes upregulating genes that promote lipid breakdown and oxidation, and downregulating those involved in lipid synthesis. Additionally, acupuncture has been shown to improve insulin sensitivity, which is crucial for the regulation of lipid metabolism. Furthermore, the potential anti-inflammatory effects of acupuncture may play a significant role in its efficacy for the treatment of obesity. The presence of chronic inflammation has been strongly associated with metabolic disorders such as obesity. Through its ability to mitigate inflammation, acupuncture can potentially aid in the restoration of lipid metabolism and the reduction of body weight. Moreover, the amelioration of hepatic oxidative stress represents another mechanism by which acupuncture may contribute to the reduction of lipid deposition. Notably, the liver, being the primary site of lipid metabolism, maintains communication with various organs including the brain, adipose tissue, skeletal muscle and intestines. This perspective opens new avenues for the treatment of obesity, emphasizing the importance of holistic approaches in managing complex metabolic disorders. Please cite this article as: Yang SR, Chen L, Luo D, Wang YY, Liang FX. Unlocking the potential: How acupuncture reshapes the liver-centered lipid metabolism pattern to fight obesity. J Integr Med. 2024; 22(5): 523-532.
Collapse
Affiliation(s)
- Shu-Rui Yang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China; Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan 430060, Hubei Province, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China
| | - Li Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China; Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan 430060, Hubei Province, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China
| | - Dan Luo
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China; Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan 430060, Hubei Province, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China
| | - Ya-Yuan Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China; Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan 430060, Hubei Province, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China
| | - Feng-Xia Liang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, China; Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China; Hubei Shizhen Laboratory, Wuhan 430060, Hubei Province, China; Hubei International Science and Technology Cooperation Base of Preventive Treatment by Acupuncture and Moxibustion, Wuhan 430061, Hubei Province, China; Acupuncture and Moxibustion Department, Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan 430060, Hubei Province, China.
| |
Collapse
|
64
|
Russell-Guzmán J, Américo-Da Silva L, Cadagan C, Maturana M, Palomero J, Estrada M, Barrientos G, Buvinic S, Hidalgo C, Llanos P. Activation of the ROS/TXNIP/NLRP3 pathway disrupts insulin-dependent glucose uptake in skeletal muscle of insulin-resistant obese mice. Free Radic Biol Med 2024; 222:187-198. [PMID: 38897422 DOI: 10.1016/j.freeradbiomed.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Oxidative stress and the activation of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain containing 3 (NLRP3) inflammasome have been linked to insulin resistance in skeletal muscle. In immune cells, the exacerbated generation of reactive oxygen species (ROS) activates the NLRP3 inflammasome, by facilitating the interaction between thioredoxin interacting protein (TXNIP) and NLRP3. However, the precise role of ROS/TXNIP-dependent NLRP3 inflammasome activation in skeletal muscle during obesity-induced insulin resistance remains undefined. Here, we induced insulin resistance in C57BL/6J mice by feeding them for 8 weeks with a high-fat diet (HFD) and explored whether the ROS/TXNIP/NLRP3 pathway was involved in the induction of insulin resistance in skeletal muscle. Skeletal muscle fibers from insulin-resistant mice exhibited increased oxidative stress, as evidenced by elevated malondialdehyde levels, and altered peroxiredoxin 2 dimerization. Additionally, these fibers displayed augmented activation of the NLRP3 inflammasome, accompanied by heightened ROS-dependent proximity between TXNIP and NLRP3, which was abolished by the antioxidant N-acetylcysteine (NAC). Inhibition of the NLRP3 inflammasome with MCC950 or suppressing the ROS/TXNIP/NLRP3 pathway with NAC restored insulin-dependent glucose uptake in muscle fibers from insulin-resistant mice. These findings provide insights into the mechanistic link between oxidative stress, NLRP3 inflammasome activation, and obesity-induced insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Javier Russell-Guzmán
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, 8380544, Chile; Pedagogy in Physical Education, Faculty of Education, Universidad Autónoma de Chile, Santiago, 8910123, Chile
| | - Luan Américo-Da Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, 8380544, Chile
| | - Cynthia Cadagan
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, 8380544, Chile
| | - Martín Maturana
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, 8380544, Chile
| | - Jesús Palomero
- Department of Physiology and Pharmacology, Faculty of Medicine, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca, 37007, Spain
| | - Manuel Estrada
- Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, 8380000, Chile
| | - Genaro Barrientos
- Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, 8380000, Chile; Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Sonja Buvinic
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, 8380544, Chile; Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile
| | - Cecilia Hidalgo
- Institute of Biomedical Sciences, Facultad de Medicina, Universidad de Chile, Santiago, 8380000, Chile; Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile; Department of Neurosciences and Biomedical Neuroscience Institute, Universidad de Chile, Santiago, 8380453, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, 8380544, Chile; Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Universidad de Chile, Santiago, 8380453, Chile.
| |
Collapse
|
65
|
Li S, Hao L, Yu F, Li N, Deng J, Zhang J, Xiong S, Hu X. Capsaicin: a spicy way in liver disease. Front Pharmacol 2024; 15:1451084. [PMID: 39281271 PMCID: PMC11392895 DOI: 10.3389/fphar.2024.1451084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
The incidence of liver disease continues to rise, encompassing a spectrum from simple steatosis or non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH), cirrhosis and liver cancer. Dietary habits in individuals with liver disease may significantly impact the treatment and prevention of these conditions. This article examines the role of chili peppers, a common dietary component, in this context, focusing on capsaicin, the active ingredient in chili peppers. Capsaicin is an agonist of the transient receptor potential vanilloid subfamily 1 (TRPV1) and has been shown to exert protective effects on liver diseases, including liver injury, NAFLD, liver fibrosis and liver cancer. These protective effects are attributed to capsaicin's anti-oxidant, anti-inflammatory, anti-steatosis and anti-fibrosis effects. This article reviewed the different molecular mechanisms of the protective effect of capsaicin on liver diseases.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junli Zhang
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Shuai Xiong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
66
|
Chen X, Tao X, Wang M, Cannon RD, Chen B, Yu X, Qi H, Saffery R, Baker PN, Zhou X, Han TL, Zhang H. Circulating extracellular vesicle-derived miR-1299 disrupts hepatic glucose homeostasis by targeting the STAT3/FAM3A axis in gestational diabetes mellitus. J Nanobiotechnology 2024; 22:509. [PMID: 39182087 PMCID: PMC11344378 DOI: 10.1186/s12951-024-02766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are membrane-enclosed structures containing lipids, proteins, and RNAs that play a crucial role in cell-to-cell communication. However, the precise mechanism through which circulating EVs disrupt hepatic glucose homeostasis in gestational diabetes mellitus (GDM) remains unclear. RESULTS Circulating EVs isolated from human plasma were co-cultured with mammalian liver cells to investigate the potential induction of hepatic insulin resistance by GDM-EVs using glucose output assays, Seahorse assays, metabolomics, fluxomics, qRT-PCR, bioinformatics analyses, and luciferase assays. Our findings demonstrated that hepatocytes exposed to GDM-EVs exhibited increased gluconeogenesis, attenuated energy metabolism, and upregulated oxidative stress. Particularly noteworthy was the discovery of miR-1299 as the predominant miRNA in GDM-EVs, which directly targeting the 3'-untranslated regions (UTR) of STAT3. Our experiments involving loss- and gain-of-function revealed that miR-1299 inhibits the insulin signaling pathway by regulating the STAT3/FAM3A axis, resulting in increased insulin resistance through the modulation of mitochondrial function and oxidative stress in hepatocytes. Moreover, experiments conducted in vivo on mice inoculated with GDM-EVs confirmed the development of glucose intolerance, insulin resistance, and downregulation of STAT3 and FAM3A. CONCLUSIONS These results provide insights into the role of miR-1299 derived from circulating GDM-EVs in the progression of insulin resistance in hepatic cells via the STAT3/FAM3A axis and downstream metabolic reprogramming.
Collapse
Affiliation(s)
- Xuyang Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xinyi Tao
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Min Wang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Richard D Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Bingnan Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xinyang Yu
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Richard Saffery
- Molecular Immunity, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Philip N Baker
- College of Life Sciences, University of Leicester, Leicester, UK
| | - Xiaobo Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
- Department of Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Ting-Li Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, No.74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
67
|
Dzubanova M, Bond JM, Craige SM, Tencerova M. NOX4-reactive oxygen species axis: critical regulators of bone health and metabolism. Front Cell Dev Biol 2024; 12:1432668. [PMID: 39188529 PMCID: PMC11345137 DOI: 10.3389/fcell.2024.1432668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Bone marrow stromal cells (BMSCs) play a significant role in bone metabolism as they can differentiate into osteoblasts, bone marrow adipocytes (BMAds), and chondrocytes. BMSCs chronically exposed to nutrient overload undergo adipogenic programming, resulting in bone marrow adipose tissue (BMAT) formation. BMAT is a fat depot transcriptionally, metabolically, and morphologically distinct from peripheral adipose depots. Reactive oxygen species (ROS) are elevated in obesity and serve as important signals directing BMSC fate. ROS produced by the NADPH oxidase (NOX) family of enzymes, such as NOX4, may be responsible for driving BMSC adipogenesis at the expense of osteogenic differentiation. The dual nature of ROS as both cellular signaling mediators and contributors to oxidative stress complicates their effects on bone metabolism. This review discusses the complex interplay between ROS and BMSC differentiation in the context of metabolic bone diseases.Special attention is paid to the role of NOX4-ROS in regulating cellular processes within the bone marrow microenvironment and potential target in metabolic bone diseases.
Collapse
Affiliation(s)
- Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Jacob M. Bond
- Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, United States
| | - Siobhan M. Craige
- Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
68
|
Yang X, Li X, Hu M, Huang J, Yu S, Zeng H, Mao L. EPA and DHA differentially improve insulin resistance by reducing adipose tissue inflammation-targeting GPR120/PPARγ pathway. J Nutr Biochem 2024; 130:109648. [PMID: 38631512 DOI: 10.1016/j.jnutbio.2024.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Insulin resistance (IR) is a global health challenge, often initiated by dysfunctional adipose tissue. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may have different effects on IR, but the mechanisms are unknown. This study aims to evaluate the protective effect of EPA and DHA against IR in a high-fat diet (HFD) mice model and investigate whether EPA and DHA alter IR modulate the G-protein-poupled receptor 120/peroxisome proliferator-activated receptor γ (GPR120/PPARγ) pathway in macrophages and adipocytes, which may affect IR in adipocytes. The findings of this study show that 4% DHA had a better effect in improving IR and reducing inflammatory cytokines in adipose tissue of mice. Additionally, in the cell experiment, the use of AH7614 (a GPR120 antagonist) inhibited the glucose consumption increase and the increasable expression of PPARγ and insulin signaling molecules mediated by DHA in adipocytes. Furthermore, GW9662 (a PPARγ antagonist) hindered the upregulation of glucose consumption and insulin signaling molecule expression induced by EPA and DHA in adipocytes. DHA exhibited significant effects in reducing the number of migrated cells and inflammation. The compounds AH7614 and GW9662 hindered the suppressive effects of EPA and DHA on macrophage-induced IR in adipocytes. These findings suggest that DHA has a stronger potential in improving IR in adipocytes through the GPR120/PPARγ pathway in macrophages, when compared to EPA.
Collapse
Affiliation(s)
- Xian Yang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xudong Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Manjiang Hu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jie Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Siyan Yu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Huanting Zeng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Limei Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
69
|
Müller L, Hoffmann A, Bernhart SH, Ghosh A, Zhong J, Hagemann T, Sun W, Dong H, Noé F, Wolfrum C, Dietrich A, Stumvoll M, Massier L, Blüher M, Kovacs P, Chakaroun R, Keller M. Blood methylation pattern reflects epigenetic remodelling in adipose tissue after bariatric surgery. EBioMedicine 2024; 106:105242. [PMID: 39002385 PMCID: PMC11284569 DOI: 10.1016/j.ebiom.2024.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Studies on DNA methylation following bariatric surgery have primarily focused on blood cells, while it is unclear to which extend it may reflect DNA methylation profiles in specific metabolically relevant organs such as adipose tissue. Here, we investigated whether adipose tissue depots specific methylation changes after bariatric surgery are mirrored in blood. METHODS Using Illumina 850K EPIC technology, we analysed genome-wide DNA methylation in paired blood, subcutaneous and omental visceral AT (SAT/OVAT) samples from nine individuals (N = 6 female) with severe obesity pre- and post-surgery. FINDINGS The numbers and effect sizes of differentially methylated regions (DMRs) post-bariatric surgery were more pronounced in AT (SAT: 12,865 DMRs from -11.5 to 10.8%; OVAT: 14,632 DMRs from -13.7 to 12.8%) than in blood (9267 DMRs from -8.8 to 7.7%). Cross-tissue DMRs implicated immune-related genes. Among them, 49 regions could be validated with similar methylation changes in blood from independent individuals. Fourteen DMRs correlated with differentially expressed genes in AT post bariatric surgery, including downregulation of PIK3AP1 in both SAT and OVAT. DNA methylation age acceleration was significantly higher in AT compared to blood, but remained unaffected after surgery. INTERPRETATION Concurrent methylation pattern changes in blood and AT, particularly in immune-related genes, suggest blood DNA methylation mirrors AT's inflammatory state post-bariatric surgery. FUNDING The funding sources are listed in the Acknowledgments section.
Collapse
Affiliation(s)
- Luise Müller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Stephan H Bernhart
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany; Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany; Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany
| | - Adhideb Ghosh
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Jiawei Zhong
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, 141 83, Huddinge, Sweden
| | - Tobias Hagemann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Falko Noé
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Arne Dietrich
- Leipzig University Hospital, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Section of Bariatric Surgery, 04103, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Lucas Massier
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, 141 83, Huddinge, Sweden
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Maria Keller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany.
| |
Collapse
|
70
|
Morshed MN, Awais M, Akter R, Park J, Ling L, Kong BM, Yang DC, Yang DU, Kang SC, Jung SK. Exploring the therapeutic potential of Terminalia ferdinandiana (Kakadu Plum) in targeting obesity-induced Type 2 diabetes and chronic inflammation: An in silico and experimental study. SOUTH AFRICAN JOURNAL OF BOTANY 2024; 171:32-44. [DOI: 10.1016/j.sajb.2024.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
71
|
Wang D, Kang X, Zhang L, Guo Y, Zhang Z, Ren H, Yuan G. TRIB2-Mediated Modulation of AMPK Promotes Hepatic Insulin Resistance. Diabetes 2024; 73:1199-1214. [PMID: 38394623 DOI: 10.2337/db23-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Insulin resistance and its linked health complications are increasing in prevalence. Recent work has caused the role of Tribbles2 (TRIB2) in metabolism and cellular signaling to be increasingly appreciated, but its role in the progression of insulin resistance has not been elucidated. Here, we explore the functions of TRIB2 in modulating insulin resistance and the mechanism involved in insulin-resistant mice and palmitic acid-treated HepG2 cells. We demonstrate that whole-body knockout and hepatic-specific TRIB2 deficiency protect against diet-induced insulin resistance, inflammation, and endoplasmic reticulum stress. Accordingly, upregulation of TRIB2 in the liver aggravates these metabolic disturbances in high-fat diet-induced mice and ob/ob mice. Mechanistically, TRIB2 directly binds to the αγ-SBS domain of PRKAB through its pseudokinase domain, subsequently inhibiting the formation and activity of the AMPK complex. Moreover, the results of intervention against AMPK suggest that the effects of TRIB2 depend on AMPK. Our findings reveal that TRIB2 is a novel target for the treatment of insulin resistance and its associated metabolic complications and clarify the function of TRIB2 as a regulatory component of AMPK activity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Dan Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaonan Kang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lu Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yaoyao Guo
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ziyin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huihui Ren
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Clinical Research Center for Metabolic Disease, Wuhan, Hubei, People's Republic of China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Clinical Research Center for Metabolic Disease, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
72
|
Shen X, Yang H, Yang Y, Zhu X, Sun Q. The cellular and molecular targets of natural products against metabolic disorders: a translational approach to reach the bedside. MedComm (Beijing) 2024; 5:e664. [PMID: 39049964 PMCID: PMC11266934 DOI: 10.1002/mco2.664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Metabolic disorders, including obesity, dyslipidemia, diabetes, nonalcoholic fatty liver disease, and metabolic syndrome, are characterized by insulin resistance, abnormalities in circulating cholesterol and lipid profiles, and hypertension. The most common pathophysiologies of metabolic disorders are glucose/lipid metabolism dysregulation, insulin resistance, inflammatory response, and oxidative stress. Although several agents have been approved for the treatment of metabolic disorders, there is still a strong demand for more efficacious drugs with less side effects. Natural products have been critical sources of drug research and discovery for decades. However, the usefulness of bioactive natural products is often limited by incomplete understanding of their direct cellular targets. In this review, we highlight the current understanding of the established and emerging molecular mechanisms of metabolic disorders. We further summarize the therapeutic effects and underlying mechanisms of natural products on metabolic disorders, with highlights on their direct cellular targets, which are mainly implicated in the regulation of glucose/lipid metabolism, insulin resistance, metabolic inflammation, and oxidative stress. Finally, this review also covers the clinical studies of natural products in metabolic disorders. These progresses are expected to facilitate the application of these natural products and their derivatives in the development of novel drugs against metabolic disorders.
Collapse
Affiliation(s)
- Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengdu University of Traditional Chinese MedicineChengduChina
| | - Hongling Yang
- Department of Nephrology and Institute of NephrologySichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney DiseasesChengduChina
| | - Yang Yang
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical GeneticsSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| | - Qingxiang Sun
- Department of Respiratory and Critical Care MedicineSichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
| |
Collapse
|
73
|
Hafezi SG, Saberi-Karimian M, Ghasemi M, Ghamsary M, Moohebati M, Esmaily H, Maleki S, Ferns GA, Alinezhad-Namaghi M, Ghayour-Mobarhan M. Prediction of the 10-year incidence of type 2 diabetes mellitus based on advanced anthropometric indices using machine learning methods in the Iranian population. Diabetes Res Clin Pract 2024; 214:111755. [PMID: 38936481 DOI: 10.1016/j.diabres.2024.111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a growing chronic disease that can lead to disability and early death. This study aimed to establish a predictive model for the 10-year incidence of T2DM based on novel anthropometric indices. METHODS This was a prospective cohort study comparing people with (n = 1256) and without (n = 5193) diabetes mellitus in phase II of the Mashhad Stroke and Heart Atherosclerotic Disorder (MASHAD) study. The association of several anthropometric indices in phase I, including Body Mass Index (BMI), Body Adiposity Index (BAI), Abdominal Volume Index (AVI), Visceral Adiposity Index (VAI), Weight-Adjusted-Waist Index (WWI), Body Roundness Index (BRI), Body Surface Area (BSA), Conicity Index (C-Index) and Lipid Accumulation Product (LAP) with T2DM incidence (in phase II) were examined; using Logistic Regression (LR) and Decision Tree (DT) analysis. RESULTS BMI followed by VAI and LAP were the best predictors of T2DM incidence. Participants with BMI < 21.25 kg/m2 and VAI ≤ 5.9 had a lower chance of diabetes than those with higher BMI and VAI levels (0.033 vs. 0.967 incident rate). For BMI > 25 kg/m2, the chance of diabetes rapidly increased (OR = 2.27). CONCLUSIONS BMI, VAI, and LAP were the best predictors of T2DM incidence.
Collapse
Affiliation(s)
- Somayeh Ghiasi Hafezi
- Department of Biostatistics, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Saberi-Karimian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Ghasemi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mark Ghamsary
- School of public health, Department of Epidemiology and Biostatistics, Loma Linda University, Loma Linda, USA
| | - Mohsen Moohebati
- Cardiovascular research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Department of Biostatistics, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran; Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Saba Maleki
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Maryam Alinezhad-Namaghi
- Transplant research center, Clinical research institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
74
|
Cui J, Wang Z, Yin J, Li M, Wu Q, Liu M, Su H, Ren H, Xu M, Yang J, Xu L. The relationship between 25-hydroxy vitamin D and serum asprosin in patients with type 2 diabetes in the community. Front Endocrinol (Lausanne) 2024; 15:1409156. [PMID: 39145312 PMCID: PMC11322110 DOI: 10.3389/fendo.2024.1409156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Objectives This study aimed to investigate the link between 25-hydroxy vitamin D and serum asprosin in individuals with type 2 diabetes within the community. The goal was to provide a foundation for clinical interventions. Methods Between November 2019 and July 2021, data from 463 patients with type 2 diabetes were consistently gathered at a community health service station in Southeast Shanxi Province. General information and laboratory metrics were compiled, including serum asprosin levels. The participants were categorized based on three serum asprosin quantiles, allowing for a comparison of various factors among the groups. The correlation between serum asprosin levels and other factors was analyzed. Employing a general linear model, the connection between 25-hydroxy vitamin D and serum asprosin levels was studied. Utilizing three quantiles of 25-hydroxy vitamin D, serum asprosin was treated as the dependent variable, while 25-hydroxy vitamin D served as the independent variable for linear regression analysis. Results As serum asprosin increased, there were gradual increments in age, disease duration, SBP, BMI, WC, creatinine, and SUA levels (P<0.05). Conversely, HbA1c, HDL-C, GFR, and 25-hydroxy vitamin D levels exhibited gradual declines (P<0.05). Age, 25-hydroxy vitamin D, SUA, creatinine, and LDL-C emerged as independent influencing factors for serum asprosin. Across the 1st to 3rd 25-hydroxy vitamin D quantiles, elevated 25-hydroxy vitamin D levels correlated with a gradual reduction in mean serum asprosin (P<0.05). Conclusion Serum asprosin levels demonstrate an inverse correlation with 25-hydroxy vitamin D levels in community-dwelling individuals with type 2 diabetes. Serum asprosin levels might independently contribute to 25-hydroxy vitamin D levels.
Collapse
Affiliation(s)
- Junfang Cui
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhengqian Wang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianhong Yin
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mina Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qianqian Wu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ming Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hong Su
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huijuan Ren
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Minggang Xu
- Department of Endocrinology, Changzhi Second People's Hospital, Changzhi, Shanxi, China
| | - Jing Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Linxin Xu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Innovation Center for Integrated Management of Hypertension, Hyperlipidemia and Hyperglycemia Correlated with Cardiovascular and Cerebrovascular Diseases, Taiyuan, Shanxi, China
| |
Collapse
|
75
|
Lino M, Garcia-Martin R, Muñoz VR, Ruiz GP, Nawaz A, Brandão BB, Dreyfus J, Pan H, Kahn CR. Multi-step regulation of microRNA expression and secretion into small extracellular vesicles by insulin. Cell Rep 2024; 43:114491. [PMID: 39002127 PMCID: PMC11363058 DOI: 10.1016/j.celrep.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024] Open
Abstract
Tissues release microRNAs (miRNAs) in small extracellular vesicles (sEVs) including exosomes, which can regulate gene expression in distal cells, thus acting as modulators of local and systemic metabolism. Here, we show that insulin regulates miRNA secretion into sEVs from 3T3-L1 adipocytes and that this process is differentially regulated from cellular expression. Thus, of the 53 miRNAs upregulated and 66 miRNAs downregulated by insulin in 3T3-L1 sEVs, only 12 were regulated in parallel in cells. Insulin regulated this process in part by phosphorylating hnRNPA1, causing it to bind to AU-rich motifs in miRNAs, mediating their secretion into sEVs. Importantly, 43% of insulin-regulated sEV-miRNAs are implicated in obesity and insulin resistance. These include let-7 and miR-103, which we show regulate insulin signaling in AML12 hepatocytes. Together, these findings demonstrate an important layer to insulin's regulation of adipose biology and provide a mechanism of tissue crosstalk in obesity and other hyperinsulinemic states.
Collapse
Affiliation(s)
- Marsel Lino
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ruben Garcia-Martin
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Vitor Rosetto Muñoz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gabriel Palermo Ruiz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Allah Nawaz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bruna Brasil Brandão
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jonathan Dreyfus
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Hui Pan
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA.
| |
Collapse
|
76
|
Vo N, Zhang Q, Sung HK. From fasting to fat reshaping: exploring the molecular pathways of intermittent fasting-induced adipose tissue remodeling. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13062. [PMID: 39104461 PMCID: PMC11298356 DOI: 10.3389/jpps.2024.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
Obesity, characterised by excessive fat accumulation, is a complex chronic condition that results from dysfunctional adipose tissue expansion due to prolonged calorie surplus. This leads to rapid adipocyte enlargement that exceeds the support capacity of the surrounding neurovascular network, resulting in increased hypoxia, inflammation, and insulin resistance. Intermittent fasting (IF), a dietary regimen that cycles between periods of fasting and eating, has emerged as an effective strategy to combat obesity and improve metabolic homeostasis by promoting healthy adipose tissue remodeling. However, the precise molecular and cellular mechanisms behind the metabolic improvements and remodeling of white adipose tissue (WAT) driven by IF remain elusive. This review aims to summarise and discuss the relationship between IF and adipose tissue remodeling and explore the potential mechanisms through which IF induces alterations in WAT. This includes several key structural changes, including angiogenesis and sympathetic innervation of WAT. We will also discuss the involvement of key signalling pathways, such as PI3K, SIRT, mTOR, and AMPK, which potentially play a crucial role in IF-mediated metabolic adaptations.
Collapse
Affiliation(s)
- Nathaniel Vo
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Qiwei Zhang
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
77
|
Kim DH, Lee MJ, Kang D, Khang AR, Bae JH, Kim JY, Kim SH, Kang YH, Yi D. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Transcription Regulation of AgRP and POMC Genes. Curr Issues Mol Biol 2024; 46:7505-7515. [PMID: 39057086 PMCID: PMC11275895 DOI: 10.3390/cimb46070445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors regulate plasma glucose levels in patients with type 2 diabetes mellitus (T2DM) by inhibiting renal glucose reabsorption. This study investigated the impact of empagliflozin (EMPA), an SGLT2 inhibitor, on hypothalamic energy regulation. To directly investigate the role of SGLT2 inhibitors in the hypothalamus, we administered EMPA through intracerebroventricular (i.c.v.) injections into the murine ventricles. After dental cementing the i.c.v. cannula onto the skull, the mice were given 5 days to recover before receiving vehicle or EMPA (50 nM/2 μL) injections. In a high-fat diet (HFD)-induced obesity model, we determined the gene expression levels of agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) in the hypothalamus. Additionally, we assessed FoxO1 expression, which regulates AgRP and POMC gene transcription in hypothalamic cell lines. We found that EMPA directly influenced the expression of endogenous mRNA of POMC and AgRP, which are critical for energy homeostasis, and modulated their transcription in high-fat diet-induced obese mice. Additionally, EMPA affected the expression of FoxO1, a key transcriptional regulator of glucose homeostasis, thereby regulating the transcriptional activity of POMC and AgRP. These results indicate that EMPA significantly influences hypothalamic energy homeostasis, highlighting its potential as a regulator in obesity and T2DM management.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of BIT Fusion Technology Center, Pusan National University, Busan 46241, Republic of Korea;
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
| | - Min Jin Lee
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Dasol Kang
- Department of Biological Sciences, College of National Sciences, University of Ulsan, Ulsan 44919, Republic of Korea;
| | - Ah Reum Khang
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Ji Hyun Bae
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Joo Yeon Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Su Hyun Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Yang Ho Kang
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Dongwon Yi
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (M.J.L.); (A.R.K.); (J.H.B.); (J.Y.K.); (S.H.K.); (Y.H.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
78
|
Domingo-Relloso A, Feng Y, Rodriguez-Hernandez Z, Haack K, Cole SA, Navas-Acien A, Tellez-Plaza M, Bermudez JD. Omics feature selection with the extended SIS R package: identification of a body mass index epigenetic multimarker in the Strong Heart Study. Am J Epidemiol 2024; 193:1010-1018. [PMID: 38375692 PMCID: PMC11228868 DOI: 10.1093/aje/kwae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/22/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
The statistical analysis of omics data poses a great computational challenge given their ultra-high-dimensional nature and frequent between-features correlation. In this work, we extended the iterative sure independence screening (ISIS) algorithm by pairing ISIS with elastic-net (Enet) and 2 versions of adaptive elastic-net (adaptive elastic-net (AEnet) and multistep adaptive elastic-net (MSAEnet)) to efficiently improve feature selection and effect estimation in omics research. We subsequently used genome-wide human blood DNA methylation data from American Indian participants in the Strong Heart Study (n = 2235 participants; measured in 1989-1991) to compare the performance (predictive accuracy, coefficient estimation, and computational efficiency) of ISIS-paired regularization methods with that of a bayesian shrinkage and traditional linear regression to identify an epigenomic multimarker of body mass index (BMI). ISIS-AEnet outperformed the other methods in prediction. In biological pathway enrichment analysis of genes annotated to BMI-related differentially methylated positions, ISIS-AEnet captured most of the enriched pathways in common for at least 2 of all the evaluated methods. ISIS-AEnet can favor biological discovery because it identifies the most robust biological pathways while achieving an optimal balance between bias and efficient feature selection. In the extended SIS R package, we also implemented ISIS paired with Cox and logistic regression for time-to-event and binary endpoints, respectively, and a bootstrap approach for the estimation of regression coefficients.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Corresponding author: Arce Domingo-Relloso, National Center for Epidemiology, Carlos III Health Institute, C. de Melchor Fernández Almagro Street, 5, Madrid 28029, Spain
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Wu Y, Liu Y, Jia Y, Feng C, Zhang H, Ren F. Strategic exploration of whole grain cereals in modulating the glycaemic response. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38976377 DOI: 10.1080/10408398.2024.2374055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In the current context, diabetes presents itself as a widespread and complex global health issue. This study explores the significant influence of food microstructure and food matrix components interaction (protein, lipid, polyphenols, etc.) on the starch digestibility and the glycaemic response of post-prandial glycemia, focusing on the potential effectiveness of incorporating bioactive components from whole grain cereals into dietary strategies for the management and potential prevention of diabetes. This study aims to integrate the regulation of postprandial glycaemic homeostasis, including the complexities of starch digestion, the significant potential of bioactive whole grain components and the impact of food processing, to develop a comprehensive framework that combines these elements into a strategic approach to diabetes nutrition. The convergence of these nutritional strategies is analyzed in the context of various prevalent dietary patterns, with the objective of creating an accessible approach to mitigate and prevent diabetes. The objective remains to coalesce these nutritional paradigms into a coherent strategy that not only addresses the current public health crisis but also threads a preventative approach to mitigate future prevalence and impact.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Chaohui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
80
|
Patel Y, Woo A, Shi S, Ayoub R, Shin J, Botta A, Ketela T, Sung HK, Lerch J, Nieman B, Paus T, Pausova Z. Obesity and the cerebral cortex: Underlying neurobiology in mice and humans. Brain Behav Immun 2024; 119:637-647. [PMID: 38663773 DOI: 10.1016/j.bbi.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
Obesity is a major modifiable risk factor for Alzheimer's disease (AD), characterized by progressive atrophy of the cerebral cortex. The neurobiology of obesity contributions to AD is poorly understood. Here we show with in vivo MRI that diet-induced obesity decreases cortical volume in mice, and that higher body adiposity associates with lower cortical volume in humans. Single-nuclei transcriptomics of the mouse cortex reveals that dietary obesity promotes an array of neuron-adverse transcriptional dysregulations, which are mediated by an interplay of excitatory neurons and glial cells, and which involve microglial activation and lowered neuronal capacity for neuritogenesis and maintenance of membrane potential. The transcriptional dysregulations of microglia, more than of other cell types, are like those in AD, as assessed with single-nuclei cortical transcriptomics in a mouse model of AD and two sets of human donors with the disease. Serial two-photon tomography of microglia demonstrates microgliosis throughout the mouse cortex. The spatial pattern of adiposity-cortical volume associations in human cohorts interrogated together with in silico bulk and single-nucleus transcriptomic data from the human cortex implicated microglia (along with other glial cells and subtypes of excitatory neurons), and it correlated positively with the spatial profile of cortical atrophy in patients with mild cognitive impairment and AD. Thus, multi-cell neuron-adverse dysregulations likely contribute to the loss of cortical tissue in obesity. The dysregulations of microglia may be pivotal to the obesity-related risk of AD.
Collapse
Affiliation(s)
- Yash Patel
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anita Woo
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Sammy Shi
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Ramy Ayoub
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada
| | - Jean Shin
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Amy Botta
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada
| | - Troy Ketela
- Princess Margaret Genomics Centre, Toronto, ON, Canada
| | - Hoon-Ki Sung
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada
| | - Jason Lerch
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, Great Britton
| | - Brian Nieman
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Tomas Paus
- Department of Psychiatry and Addictology and Department of Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, QC, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, Translational Medicine Program, Toronto, ON, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada; Department of Pediatrics and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, QC, Canada.
| |
Collapse
|
81
|
Roy S, Ghosh A, Majie A, Karmakar V, Das S, Dinda SC, Bose A, Gorain B. Terpenoids as potential phytoconstituent in the treatment of diabetes: From preclinical to clinical advancement. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155638. [PMID: 38728916 DOI: 10.1016/j.phymed.2024.155638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/21/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Diabetes mellitus, a hyperglycemic condition associated with multitudinous organ dysfunction, is a hallmark of the metabolic disorder. This life-threatening condition affects millions of individuals globally, harming them financially, physically and psychologically in the course of therapy. PURPOSES The course therapy for illnesses has undergone ground-breaking transformations due to recent technical advances and insights. Alternatively, the administration of hyperglycemia-reducing agents results in several complications, including severe cardiovascular disease, kidney failure, hepatic problems, and several dermatological conditions. Consideration of alternate diabetic therapy having minimal side effects or no adverse reactions has been driven by such problems. STUDY DESIGN An extensive literature study was conducted in authoritative scientific databases such as PubMed, Scopus, and Web of Science to identify the studies elucidating the bioactivities of terpenoids in diabetic conditions. METHODS Keywords including 'terpenoids', 'monoterpenes', 'diterpenes', 'sesquiterpenes', 'diabetes', 'diabetes mellitus', 'clinical trials', 'preclinical studies', and 'increased blood glucose' were used to identify the relevant research articles. The exclusion criteria, such as English language, duplication, open access, abstract only, and studies not involving preclinical and clinical research, were set. Based on these criteria, 937 relevant articles were selected for further evaluation. RESULTS Triterpenes can serve as therapeutic agents for diabetic retinopathy, peripheral neuropathy, and kidney dysfunction by inhibiting several pathways linked to hyperglycemia and its complications. Therefore, it is essential to draw special attention to these compounds' therapeutic effectiveness and provide scientific professionals with novel data. CONCLUSION This study addressed recent progress in research focussing on mechanisms of terpenoid, its by-products, physiological actions, and therapeutic applications, particularly in diabetic and associated disorders.
Collapse
Affiliation(s)
- Sukanta Roy
- School of Pharmacy, The Neotia University, Diamond Harbour Rd, Sarisha, West Bengal, India
| | - Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sourav Das
- School of Pharmacy, The Neotia University, Diamond Harbour Rd, Sarisha, West Bengal, India
| | - Subas Chandra Dinda
- School of Pharmacy, The Neotia University, Diamond Harbour Rd, Sarisha, West Bengal, India
| | - Anirbandeep Bose
- School of Medical Science, Adamas University, Barbaria, Jagannathpur, Kolkata, India.
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
82
|
Uprety LP, Lee CG, Oh KI, Jeong H, Yeo S, Yong Y, Seong JK, Kim IY, Go H, Park E, Jeong SY. Anti-obesity effects of Celosia cristata flower extract in vitro and in vivo. Biomed Pharmacother 2024; 176:116799. [PMID: 38805969 DOI: 10.1016/j.biopha.2024.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND The overstoring of surplus calories in mature adipocytes causes obesity and abnormal metabolic activity. The anti-obesity effect of a Celosia cristata (CC) total flower extract was assessed in vitro, using 3T3-L1 pre-adipocytes and mouse adipose-derived stem cells (ADSCs), and in vivo, using high-fat diet (HFD)-treated C57BL/6 male mice. METHODS CC extract was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs. After differentiation, lipid droplets were assessed by oil red O staining, adipogenesis and lipolytic factors were evaluated, and intracellular triglyceride and glycerol concentrations were analyzed. For in vivo experiments, histomorphological analysis, mRNA expression levels of adipogenic and lipolytic factors in adipose tissue, blood plasma analysis, metabolic profiles were investigated. RESULTS CC treatment significantly prevented adipocyte differentiation and lipid droplet accumulation, reducing adipogenesis-related factors and increasing lipolysis-related factors. Consequently, the intracellular triacylglycerol content was diminished, whereas the glycerol concentration in the cell supernatant increased. Mice fed an HFD supplemented with the CC extract exhibited decreased HFD-induced weight gain with metabolic abnormalities such as intrahepatic lipid accumulation and adipocyte hypertrophy. Improved glucose utilization and insulin sensitivity were observed, accompanied by the amelioration of metabolic disturbances, including alterations in liver enzymes and lipid profiles, in CC-treated mice. Moreover, the CC extract helped restore the disrupted energy metabolism induced by the HFD, based on a metabolic animal monitoring system. CONCLUSION This study suggests that CC total flower extract is a potential natural herbal supplement for the prevention and management of obesity.
Collapse
Affiliation(s)
- Laxmi Prasad Uprety
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Chang-Gun Lee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, South Korea
| | - Kang-Il Oh
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea
| | | | - Subin Yeo
- Nine B Co., Ltd., Daejeon 34121, South Korea
| | | | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, South Korea
| | - Il Yong Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, South Korea
| | - Hyesun Go
- College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea; Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul 08826, South Korea
| | - Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea.
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, South Korea.
| |
Collapse
|
83
|
Diao H, Fan X, Li Z, Hou L, Dong Z, Pang S. Circulating asprosin concentrations in individuals with new-onset type 2 diabetes and prediabetes. Diabetes Res Clin Pract 2024; 213:111730. [PMID: 38866185 DOI: 10.1016/j.diabres.2024.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
AIMS This research aimed to clarify the relationship between serum asprosin levels and the occurrence of type 2 diabetes mellitus (T2DM) in light of mixed findings about the role of asprosin in T2DM and the lack of studies on its effects on prediabetic conditions. METHODS In this observational analysis the cohort included 252 adults aged22-69 recruitedfromJinan Central Hospital were categorized into three groups, normal glucose tolerance (NGT), impaired glucose regulation (IGR) and T2DM groups. Serum asprosin levels were measured using enzyme linked immunosorbent assay (ELISA). Additionally, all participants underwent assessments of various anthropometric and biochemical markers. RESULTS Analysis revealed a notable increase in serum asprosin levels among individuals with newly diagnosed T2DM, with IGR subjects also demonstrating slightly elevated asprosin levels compared to the healthy group. Further stratification by quartiles of asprosin levels revealed a progressive increase in the proportions of IGR + T2DM patients, highlighting a potential association between elevated asprosin and increased T2DM risk. The Receiver Operating Characteristic (ROC) curve analysis for the efficacy of asprosin in identifying IGR + T2DM yielded an area under curve (AUC) of 0.853 (95 % CI: 0.808-0.899), pointing a threshold value of 4.95 ng/ml for asprosin. CONCLUSIONS This investigation revealed that individuals with prediabetes and those newly diagnosed with T2DM exhibit increased serum asprosin levels, suggesting that elevated asprosin concentrations are linked to early disturbances in glucose homeostasis.
Collapse
Affiliation(s)
- Hongcui Diao
- Department of Endocrinology, Jinan Central Hospital, Shandong University, Jinan, China; Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Endocrine and Metabolic Disease, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Xiujie Fan
- The Medical Laboratory Diagnosis Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Zhe Li
- Health Management Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Lulu Hou
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Zhenhua Dong
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Shuguang Pang
- Department of Endocrinology, Jinan Central Hospital, Shandong University, Jinan, China; Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
84
|
Wong A, Sun Q, Latif II, Karwi QG. Metabolic flux in macrophages in obesity and type-2 diabetes. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13210. [PMID: 38988822 PMCID: PMC11233469 DOI: 10.3389/jpps.2024.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
Recent literature extensively investigates the crucial role of energy metabolism in determining the inflammatory response and polarization status of macrophages. This rapidly expanding area of research highlights the importance of understanding the link between energy metabolism and macrophage function. The metabolic pathways in macrophages are intricate and interdependent, and they can affect the polarization of macrophages. Previous studies suggested that glucose flux through cytosolic glycolysis is necessary to trigger pro-inflammatory phenotypes of macrophages, and fatty acid oxidation is crucial to support anti-inflammatory responses. However, recent studies demonstrated that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully understood yet. How the metabolic flux through different metabolic pathways (glycolysis, glucose oxidation, fatty acid oxidation, ketone oxidation, and amino acid oxidation) is altered by obesity- and type 2 diabetes (T2D)-associated insulin resistance is also not fully defined. This mini-review focuses on the impact of insulin resistance in obesity and T2D on the metabolic flux through the main metabolic pathways in macrophages, which might be linked to changes in their inflammatory responses. We closely evaluated the experimental studies and methodologies used in the published research and highlighted priority research areas for future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Qiuyu Sun
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ismail Ibrahim Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, Canada
| |
Collapse
|
85
|
Netam RK. Short-term feeding of high-fat diet induces neuroinflammation and oxidative stress in arcuate nucleus in rats. INDIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2024; 68:126-134. [DOI: 10.25259/ijpp_627_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Objectives:
This study aimed to compare the effects of high-fat diet-induced neuroinflammation and oxidative stress in the arcuate nucleus (ARC) of obese-prone and obese-resistant rats.
Materials and Methods:
Rats were divided into obese-prone and obese-resistant groups based on their initial body weight. They were then fed either a 5% or 60% fat-containing diet. In the ARC, the expression of inflammatory markers [Interleukin (IL-6); Nuclear Factor Kappa-B Inhibitor Alpha (NFKBIA); Cluster of Differentiation (CD)-66; and mucin-like hormone receptor-like 1 (EMR-1)], as well as levels of reactive oxygen species (ROS) and antioxidant enzymes (glutathione and glutathione peroxidase and superoxide dismutase), was assessed along with body weight, blood glucose, Homeostatic Model Assessment for Insulin Resistance, plasma insulin and plasma leptin levels after ten days of intervention.
Results:
The results showed a significantly higher expression of inflammatory markers in the ARC of high-fat diet-induced obese rats after ten days. Body weight, plasma insulin, plasma leptin and hydrogen peroxide production were also significantly higher in obese-prone rats fed a high-fat diet.
Conclusion:
In conclusion, this study demonstrates that short-term consumption of a high-fat diet can lead to hypothalamic inflammation and ROS production in the ARC of rats. Obese-prone rats exhibited hyperinsulinaemia and hyperleptinaemia after short-term high-fat diet consumption.
Collapse
Affiliation(s)
- Ritesh Kumar Netam
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, India,
| |
Collapse
|
86
|
Wu Y, Wang Y, Lu Y, Yan J, Zhao H, Yang R, Pan J. Research advances in huntingtin-associated protein 1 and its application prospects in diseases. Front Neurosci 2024; 18:1402996. [PMID: 38975245 PMCID: PMC11224548 DOI: 10.3389/fnins.2024.1402996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Huntingtin-associated protein 1 (HAP1) was the first protein discovered to interact with huntingtin. Besides brain, HAP1 is also expressed in the spinal cord, dorsal root ganglion, endocrine, and digestive systems. HAP1 has diverse functions involving in vesicular transport, receptor recycling, gene transcription, and signal transduction. HAP1 is strongly linked to several neurological diseases, including Huntington's disease, Alzheimer's disease, epilepsy, ischemic stroke, and depression. In addition, HAP1 has been proved to participate in cancers and diabetes mellitus. This article provides an overview of HAP1 regarding the tissue distribution, cell localization, functions, and offers fresh perspectives to investigate its role in diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
87
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
88
|
He R, Chen Y. The Role of Adipose Tissue-derived Exosomes in Chronic Metabolic Disorders. Curr Med Sci 2024; 44:463-474. [PMID: 38900388 DOI: 10.1007/s11596-024-2902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Excessive fat deposition in obese subjects promotes the occurrence of metabolic diseases, such as type 2 diabetes mellitus (T2DM), cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Adipose tissue is not only the main form of energy storage but also an endocrine organ that not only secretes adipocytokines but also releases many extracellular vesicles (EVs) that play a role in the regulation of whole-body metabolism. Exosomes are a subtype of EVs, and accumulating evidence indicates that adipose tissue exosomes (AT Exos) mediate crosstalk between adipose tissue and multiple organs by being transferred to targeted cells or tissues through paracrine or endocrine mechanisms. However, the roles of AT Exos in crosstalk with metabolic organs remain to be fully elucidated. In this review, we summarize the latest research progress on the role of AT Exos in the regulation of metabolic disorders. Moreover, we discuss the potential role of AT Exos as biomarkers in metabolic diseases and their clinical application.
Collapse
Affiliation(s)
- Rui He
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Laboratory of Endocrinology & Metabolism, Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory of Endocrinology & Metabolism, Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, 430030, China.
| |
Collapse
|
89
|
Bannon CA, Meek CL, Reimann F, Gribble FM. Fasting and post prandial pancreatic and enteroendocrine hormone levels in obese and non-obese participants. Peptides 2024; 176:171186. [PMID: 38490484 PMCID: PMC7617300 DOI: 10.1016/j.peptides.2024.171186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Circulating insulin levels are known to be increased in people with higher body mass index (BMI) due to effects of adiposity on insulin resistance, whilst gut hormones have a more complex relationship, with fasting peptideYY (PYY) reported to be inversely related to BMI. This study aimed to further explore fasting and post prandial pancreatic and gut hormone concentrations in plasma samples from obese and non-obese participants. Participants with healthy BMI (n=15), overweight BMI (n=29) and obesity (n=161) had samples taken fasting and 30 min post mixed liquid meal for analysis of glucagon-like peptide-1 (GLP-1), PYY, glucose-dependent insulinotropic polypeptide (GIP), insulin and glucagon. Data visualiation used linear discriminant analysis for dimensionality reduction, to visualise the data and assess scaling of each hormone. Fasting levels of insulin, GIP and PYY were shown to be key classifiers between the 3 groups on ANCOVA analysis, with an observation of increased GIP levels in overweight, but not obese participants. In non-obese subjects, fasting GIP, PYY and insulin correlated with BMI, whereas in subjects with obesity only the pancreatic hormones glucagon and insulin correlated with BMI. Concentrations of total GLP-1 in the fasting state correlated strongly with glucagon levels, highlighting potential assay cross-reactivities. The study, which included a relatively large number of subjects with severe obesity, supported previous evidence of BMI correlating negatively with fasting PYY and positively with fasting insulin. The observation of increased fasting GIP levels in overweight but not obese participants deserves further validation and mechanistic investigation.
Collapse
Affiliation(s)
- Christopher A Bannon
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Cambridge Universities NHS Foundation Trust, Cambridge CB2 0QQ UK.
| | - Claire L Meek
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Cambridge Universities NHS Foundation Trust, Cambridge CB2 0QQ UK; Current addresses: Leicester Diabetes Centre, University of Leicester, Gwendoline Road, Leicester LE5 4PW, UK; and University Hospitals Leicester, Leicester General Hospitals, Gwendoline Road, Leicester LE5 4PW, UK
| | - Frank Reimann
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Fiona M Gribble
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
90
|
Deng X, Peng D, Yao Y, Huang K, Wang J, Ma Z, Fu J, Xu Y. Optogenetic therapeutic strategies for diabetes mellitus. J Diabetes 2024; 16:e13557. [PMID: 38751366 PMCID: PMC11096815 DOI: 10.1111/1753-0407.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024] Open
Abstract
Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.
Collapse
Affiliation(s)
- Xin Deng
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Dandan Peng
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Yuanfa Yao
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Ke Huang
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Jinling Wang
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Zhihao Ma
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
| | - Junfen Fu
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
| | - Yingke Xu
- Department of EndocrinologyChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child HealthHangzhouChina
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational ResearchZhejiang UniversityHangzhouChina
- Binjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
91
|
Solinas G, Becattini B. An adipoincretin effect links adipostasis with insulin secretion. Trends Endocrinol Metab 2024; 35:466-477. [PMID: 38861922 DOI: 10.1016/j.tem.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 06/13/2024]
Abstract
The current paradigm for the insulin system focuses on the phenomenon of glucose-stimulated insulin secretion and insulin action on blood glucose control. This historical glucose-centric perspective may have introduced a conceptual bias in our understanding of insulin regulation. A body of evidence demonstrating that in vivo variations in blood glucose and insulin secretion can be largely dissociated motivated us to reconsider the fundamental design of the insulin system as a control system for metabolic homeostasis. Here, we propose that a minimal glucose-centric model does not accurately describe the physiological behavior of the insulin system and propose a new paradigm focusing on the effects of incretins, arguing that under fasting conditions, insulin is regulated by an adipoincretin effect.
Collapse
Affiliation(s)
- Giovanni Solinas
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Barbara Becattini
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
92
|
Adeshina KA, Ibrahim KG, Abubakar MB, Imam MU. Transgenerational inheritance of insulin resistance in offspring of white rice-fed female fruit flies. SCIENTIFIC AFRICAN 2024; 24:e02208. [DOI: 10.1016/j.sciaf.2024.e02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
93
|
Wang T, Shi Z, Ren H, Xu M, Lu J, Yang F, Ye C, Wu K, Chen M, Xu X, Liu D, Kong L, Zheng R, Zheng J, Li M, Xu Y, Zhao Z, Chen Y, Yang H, Wang J, Ning G, Li J, Zhong H, Bi Y, Wang W. Divergent age-associated and metabolism-associated gut microbiome signatures modulate cardiovascular disease risk. Nat Med 2024; 30:1722-1731. [PMID: 38844795 DOI: 10.1038/s41591-024-03038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Insight into associations between the gut microbiome with metabolism and aging is crucial for tailoring interventions to promote healthy longevity. In a discovery cohort of 10,207 individuals aged 40-93 years, we used 21 metabolic parameters to classify individuals into five clusters, termed metabolic multimorbidity clusters (MCs), that represent different metabolic subphenotypes. Compared to the cluster classified as metabolically healthy (MC1), clusters classified as 'obesity-related mixed' (MC4) and 'hyperglycemia' (MC5) exhibited an increased 11.1-year cardiovascular disease (CVD) risk by 75% (multivariable-adjusted hazard ratio (HR): 1.75, 95% confidence interval (CI): 1.43-2.14) and by 117% (2.17, 1.72-2.74), respectively. These associations were replicated in a second cohort of 9,061 individuals with a 10.0-year follow-up. Based on analysis of 4,491 shotgun fecal metagenomes from the discovery cohort, we found that gut microbial composition was associated with both MCs and age. Next, using 55 age-specific microbial species to capture biological age, we developed a gut microbial age (MA) metric, which was validated in four external cohorts comprising 4,425 metagenomic samples. Among individuals aged 60 years or older, the increased CVD risk associated with MC4 or MC5, as compared to MC1, MC2 or MC3, was exacerbated in individuals with high MA but diminished in individuals with low MA, independent of age, sex and other lifestyle and dietary factors. This pattern, in which younger MA appears to counteract the CVD risk attributable to metabolic dysfunction, implies a modulating role of MA in cardiovascular health for metabolically unhealthy older people.
Collapse
Affiliation(s)
- Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhun Shi
- BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Huahui Ren
- BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Chaojie Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kui Wu
- BGI Research, Shenzhen, China
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, China
| | - Mingling Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Xu
- BGI Research, Shenzhen, China
| | - Dong Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijie Kong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruizhi Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Huanzi Zhong
- BGI Research, Shenzhen, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, China.
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
94
|
Mittendorfer B, Johnson JD, Solinas G, Jansson PA. Insulin Hypersecretion as Promoter of Body Fat Gain and Hyperglycemia. Diabetes 2024; 73:837-843. [PMID: 38768368 PMCID: PMC11109786 DOI: 10.2337/dbi23-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Bettina Mittendorfer
- Departments of Medicine and Nutrition & Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Giovanni Solinas
- Department of Molecular and Clinical Medicine, School of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Per-Anders Jansson
- Department of Molecular and Clinical Medicine, School of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
95
|
Yu Q, Zuo X, Bai H, Zhang S, Luan J, Zhao Q, Zhao X, Feng X. Alleviative effects of the parthenolide derivative ACT001 on insulin resistance induced by sodium propionate combined with a high-fat diet and its potential mechanisms. Eur J Pharmacol 2024; 971:176529. [PMID: 38554931 DOI: 10.1016/j.ejphar.2024.176529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
The increasing side effects of traditional medications used to treat type II diabetes have made research into the development of safer and more effective natural medications necessary. ACT001, a derivative of parthenolide, has been shown to have good anti-inflammatory and antitumor effects; however, its role in diabetes is unclear. The short-chain fatty acid propionate is a common food preservative that has been found to cause disturbances in glucose metabolism in mice and humans. This study aimed to investigate whether sodium propionate could aggravate insulin resistance in obese mice and cause diabetes and to study the alleviative effects and potential mechanisms of action of ACT001 on insulin resistance in diabetic mice. Type II diabetic mice were adminietered sodium propionate combined with a high-fat diet (HFD + propionate) by gavage daily for four weeks. Biochemical analysis showed that ACT001 significantly affected blood glucose concentration in diabetic mice, mainly by downregulating the expression of phosphoenolpyruvate carboxykinase 2 and glucose-6-phosphatase. Meanwhile, the level of fatty acid-binding protein 4 in the liver was significantly decreased. ACT001 has a protective effect on the liver and adipose tissue of mice. In addition, the results of the running wheel experiment indicated that ACT001 alleviated the circadian rhythm disorder caused by insulin resistance to a certain extent. This study revealed the potential mechanism by which ACT001 alleviates insulin resistance and provides ideas for developing natural antidiabetic drugs.
Collapse
Affiliation(s)
- Qian Yu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
96
|
Ghanem OM, Abi Mosleh K, Kerbage A, Lu L, Hage K, Abu Dayyeh BK. Continued Diabetes Remission Despite Weight Recurrence: Gastric Bypass Long-Term Metabolic Benefit. J Am Coll Surg 2024; 238:862-871. [PMID: 38349010 DOI: 10.1097/xcs.0000000000000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) demonstrates high rates of type 2 diabetes mellitus (T2DM) remission, a phenomenon hypothesized to be mediated mainly by weight loss. Compared with procedures that do not bypass the proximal small intestines, such as sleeve gastrectomy (SG), RYGB exhibits weight loss-independent intestinal mechanisms conducive to T2DM remission. We investigated continued diabetes remission (CDR) rates despite weight recurrence (WR) after RYGB compared with an SG cohort. STUDY DESIGN A retrospective review of patients who underwent successful primary RYGB or SG with a BMI value of 35 kg/m 2 or more and a preoperative diagnosis of T2DM was performed. Patients with less than 5 years of follow-up, absence of WR, or lack of T2DM remission at nadir weight were excluded. After selecting the optimal procedure for glycemic control, rates of CDR were then stratified into WR quartiles and compared. RESULTS A total of 224 RYGB and 46 SG patients were analyzed. The overall rate of CDR was significantly higher in the RYGB group (75%) compared with the SG group (34.8%; p < 0.001). The odds of T2DM recurrence were 5.5 times higher after SG compared with RYGB. Rates of CDR were stratified into WR quartiles (85.5%, <25%; 81.7%, 25% to 44.9%; 63.2%, 45% to 74.9%; and 60%, >75%). Baseline insulin use, higher preoperative glycosylated hemoglobin, and longer preoperative duration of T2DM were associated with T2DM recurrence, whereas WR was not. CONCLUSIONS T2DM remission rates after RYGB are maintained despite WR, arguing for a concurrent weight loss-independent metabolic benefit likely facilitated by bypassing the proximal small intestine.
Collapse
Affiliation(s)
- Omar M Ghanem
- From the Department of Surgery (Ghanem, Abi Mosleh, Hage), Mayo Clinic, Rochester, MN
| | - Kamal Abi Mosleh
- From the Department of Surgery (Ghanem, Abi Mosleh, Hage), Mayo Clinic, Rochester, MN
| | - Anthony Kerbage
- Division of Gastroenterology, Department of Medicine (Kerbage, Abu Dayyeh), Mayo Clinic, Rochester, MN
| | - Lauren Lu
- Mayo Clinic Alix School of Medicine (Lu), Mayo Clinic, Rochester, MN
| | - Karl Hage
- From the Department of Surgery (Ghanem, Abi Mosleh, Hage), Mayo Clinic, Rochester, MN
| | - Barham K Abu Dayyeh
- Division of Gastroenterology, Department of Medicine (Kerbage, Abu Dayyeh), Mayo Clinic, Rochester, MN
| |
Collapse
|
97
|
Kim TH. Ginsenosides for the treatment of insulin resistance and diabetes: Therapeutic perspectives and mechanistic insights. J Ginseng Res 2024; 48:276-285. [PMID: 38707641 PMCID: PMC11068994 DOI: 10.1016/j.jgr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024] Open
Abstract
Diabetes mellitus (DM) is a systemic disorder of energy metabolism characterized by a sustained elevation of blood glucose in conjunction with impaired insulin action in multiple peripheral tissues (i.e., insulin resistance). Although extensive research has been conducted to identify therapeutic targets for the treatment of DM, its global prevalence and associated mortailty rates are still increasing, possibly because of challenges related to long-term adherence, limited efficacy, and undesirable side effects of currently available medications, implying an urgent need to develop effective and safe pharmacotherapies for DM. Phytochemicals have recently drawn attention as novel pharmacotherapies for DM based on their clinical relevance, therapeutic efficacy, and safety. Ginsenosides, pharmacologically active ingredients primarily found in ginseng, have long been used as adjuvants to traditional medications in Asian countries and have been reported to exert promising therapeutic efficacy in various metabolic diseases, including hyperglycemia and diabetes. This review summarizes the current pharmacological effects of ginsenosides and their mechanistic insights for the treatment of insulin resistance and DM, providing comprehensive perspectives for the development of novel strategies to treat DM and related metabolic complications.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
98
|
Ahmed MB, Doi SA, Habib AM, Glass GE, Hammouda A, Alyazji ZTN, Al-Mohannadi FS, Khoogaly H, Syed A, Alsherawi A, Badran S. Bioelectrical Impedance Analysis Detects Body Fat Changes After Surgical Subcutaneous Fat Removal. Metab Syndr Relat Disord 2024; 22:281-286. [PMID: 38502809 DOI: 10.1089/met.2023.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Background: The risk and metabolic effects of obesity are determined by the distribution of fat throughout the body. It has been proposed that the distribution of abdominal fat is more closely related to the metabolic risks of obesity. High prevalence of overweight and obesity has thereby contributed to an increased uptake of surgical subcutaneous fat removal (SSFR) procedures. The goal of this study was to determine whether bioelectrical impedance analysis (Tanita system) can be used to detect the removal of excess abdominal subcutaneous fat tissue during SSFR when studying the metabolic effects of such procedures. Methods: Study population comprised patients who received body contouring procedures at the Hamad General Hospital's plastic surgery department between November 2020 and December 2022. To evaluate the factors of interest, subjects were prospectively followed up at two time points: within 1 week before the surgery and within 1-2 weeks thereafter. The following factors were measured: body weight, body fat percentage, body fat mass, body mass index (BMI), fat-free mass, estimated muscle mass, total body water, visceral fat score, and basal metabolic rate. Results: In total, 22 patients were included in the study. The two visits' medians for height, weight, BMI, fat percent (fat%), fat mass, visceral fat rating, and Doi's weighted average glucose (dwAG) were compared. Only in the case of Tanita fat% and fat mass, were the preoperative and postoperative medians significantly different. Furthermore, there was no association between these Tanita measures and dwAG or homeostatic model assessment (HOMA; insulin resistance [IR]) changes (before and after surgery). Tanita measures overestimated fat loss, as seen by the mountain plot and Bland-Altman plot agreement methods. Conclusions: Our findings indicated that the only two Tanita measures exhibited meaningful early associations with the amount of tissue excised which were fat mass and fat% differences. Although dwAG and HOMA-IR are not impacted immediately postsurgery, a trend was seen that suggested improvements in those parameters, even though the changes are not clinically significant.
Collapse
Affiliation(s)
- Mohamed Badie Ahmed
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Department of Plastic Surgery, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Suhail A Doi
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdella M Habib
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Graeme E Glass
- Department of Surgery, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Department of Surgery, Sidra Medicine, Doha, Qatar
| | - Atalla Hammouda
- Department of Plastic Surgery, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Zaki T N Alyazji
- Department of Plastic Surgery, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | - Hoda Khoogaly
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
| | - Asma Syed
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abeer Alsherawi
- Department of Plastic Surgery, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Saif Badran
- Division of Plastic and Reconstructive Surgery, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
99
|
Scoditti E, Sabatini S, Carli F, Gastaldelli A. Hepatic glucose metabolism in the steatotic liver. Nat Rev Gastroenterol Hepatol 2024; 21:319-334. [PMID: 38308003 DOI: 10.1038/s41575-023-00888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
The liver is central in regulating glucose homeostasis, being the major contributor to endogenous glucose production and the greatest reserve of glucose as glycogen. It is both a target and regulator of the action of glucoregulatory hormones. Hepatic metabolic functions are altered in and contribute to the highly prevalent steatotic liver disease (SLD), including metabolic dysfunction-associated SLD (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In this Review, we describe the dysregulation of hepatic glucose metabolism in MASLD and MASH and associated metabolic comorbidities, and how advances in techniques and models for the assessment of hepatic glucose fluxes in vivo have led to the identification of the mechanisms related to the alterations in glucose metabolism in MASLD and comorbidities. These fluxes can ultimately increase hepatic glucose production concomitantly with fat accumulation and alterations in the secretion and action of glucoregulatory hormones. No pharmacological treatment has yet been approved for MASLD or MASH, but some antihyperglycaemic drugs approved for treating type 2 diabetes have shown positive effects on hepatic glucose metabolism and hepatosteatosis. A deep understanding of how MASLD affects glucose metabolic fluxes and glucoregulatory hormones might assist in the early identification of at-risk individuals and the use or development of targeted therapies.
Collapse
Affiliation(s)
- Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, Lecce, Italy
| | - Silvia Sabatini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
100
|
Logesh R, Hari B, Chidambaram K, Das N. Molecular effects of Vitamin-D and PUFAs metabolism in skeletal muscle combating Type-II diabetes mellitus. Gene 2024; 904:148216. [PMID: 38307219 DOI: 10.1016/j.gene.2024.148216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Multiple post-receptor intracellular alterations such as impaired glucose transfer, glucose phosphorylation, decreased glucose oxidation, and glycogen production contribute to insulin resistance (IR) in skeletal muscle, manifested by diminished insulin-stimulated glucose uptake. Type-2 diabetes mellites (T2DM) has caused by IR, which is also seen in obese patients and those with metabolic syndrome. The Vitamin-D receptor (VDR) and poly unsaturated fatty acids (PUFAs) roles in skeletal muscle growth, shapes, and function for combating type-2 diabetes have been clarified throughout this research. VDR and PUFAs appears to show a variety of effects on skeletal muscle, in addition it shows a promising role on bone and mineral homeostasis. Individuals having T2DM are reported to suffer from severe muscular weakness and alterations in shape of the muscle. Several studies have investigated the effect on VDR on muscular strength and mass, which leads to Vitamin-D deficiency (VDD) in individuals, in which most commonly seen in elderly. VDR has been shown to affect skeletal cellular proliferation, intracellular calcium handling, as well as genomic activity in a variety of different ways such as muscle metabolism, insulin sensitivity, which is the major characteristic pathogenesis for IR in combating T2DM. The identified VDR gene polymorphisms are ApaI, TaqI, FokI, and BsmI that are associated with T2DM. This review collates informations on the mechanisms by which VDR activation takes place in skeletal muscles. Despite the significant breakthroughs made in recent decades, various studies show that IR affects VDR and PUFAs metabolism in skeletal muscle. Therefore, this review collates the data to show the role of VDR and PUFAs in the skeletal muscles to combat T2DM.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Karnataka, India.
| | - Balaji Hari
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, The Nilgiris, Ooty 643001, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Al-Qara, Asir Province, Saudi Arabia
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799155, Tripura, India
| |
Collapse
|