51
|
DeBari MK, Abbott RD. Adipose Tissue Fibrosis: Mechanisms, Models, and Importance. Int J Mol Sci 2020; 21:ijms21176030. [PMID: 32825788 PMCID: PMC7503256 DOI: 10.3390/ijms21176030] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Increases in adipocyte volume and tissue mass due to obesity can result in inflammation, further dysregulation in adipose tissue function, and eventually adipose tissue fibrosis. Like other fibrotic diseases, adipose tissue fibrosis is the accumulation and increased production of extracellular matrix (ECM) proteins. Adipose tissue fibrosis has been linked to decreased insulin sensitivity, poor bariatric surgery outcomes, and difficulty in weight loss. With the rising rates of obesity, it is important to create accurate models for adipose tissue fibrosis to gain mechanistic insights and develop targeted treatments. This article discusses recent research in modeling adipose tissue fibrosis using in vivo and in vitro (2D and 3D) methods with considerations for biomaterial selections. Additionally, this article outlines the importance of adipose tissue in treating other fibrotic diseases and methods used to detect and characterize adipose tissue fibrosis.
Collapse
Affiliation(s)
- Megan K. DeBari
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
52
|
Systemic Insulin Resistance and Metabolic Perturbations in Chow Fed Inducible Nitric Oxide Synthase Knockout Male Mice: Partial Reversal by Nitrite Supplementation. Antioxidants (Basel) 2020; 9:antiox9080736. [PMID: 32806494 PMCID: PMC7465804 DOI: 10.3390/antiox9080736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
iNOS, an important mediator of inflammation, has emerged as an important metabolic regulator. There are conflicting observations on the incidence of insulin resistance (IR) due to hyperglycemia/dyslipidemia in iNOS−/− mice. There are reports that high fat diet (HFD) fed mice exhibited no change, protection, or enhanced susceptibility to IR. Similar observations were also reported for low fat diet (LFD) fed KO mice. In the present study chow fed iNOS−/− mice were examined for the incidence of IR, and metabolic perturbations, and also for the effect of sodium nitrite supplementation (50 mg/L). In IR-iNOS−/− mice, we observed significantly higher body weight, BMI, adiposity, blood glucose, HOMA-IR, serum/tissue lipids, glucose intolerance, enhanced gluconeogenesis, and disrupted insulin signaling. Expression of genes involved in hepatic and adipose tissue lipid uptake, synthesis, oxidation, and gluconeogenesis was upregulated with concomitant downregulation of genes for hepatic lipid excretion. Nitrite supplementation restored NO levels, significantly improved systemic IR, glucose tolerance, and also reduced lipid accumulation by rescuing hepatic insulin sensitivity, glucose, and lipid homeostasis. Obesity, gluconeogenesis, and adipose tissue insulin signaling were only partially reversed in nitrite supplemented iNOS−/− mice. Our results thus demonstrate that nitrite supplementation to iNOS−/− mice improves insulin sensitivity and metabolic homeostasis, thus further highlighting the metabolic role of iNOS.
Collapse
|
53
|
Ritter A, Kreis NN, Louwen F, Yuan J. Obesity and COVID-19: Molecular Mechanisms Linking Both Pandemics. Int J Mol Sci 2020; 21:E5793. [PMID: 32806722 PMCID: PMC7460849 DOI: 10.3390/ijms21165793] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 COVID-19 pandemic is rapidly spreading worldwide and is becoming a major public health crisis. Increasing evidence demonstrates a strong correlation between obesity and the COVID-19 disease. We have summarized recent studies and addressed the impact of obesity on COVID-19 in terms of hospitalization, severity, mortality, and patient outcome. We discuss the potential molecular mechanisms whereby obesity contributes to the pathogenesis of COVID-19. In addition to obesity-related deregulated immune response, chronic inflammation, endothelium imbalance, metabolic dysfunction, and its associated comorbidities, dysfunctional mesenchymal stem cells/adipose-derived mesenchymal stem cells may also play crucial roles in fueling systemic inflammation contributing to the cytokine storm and promoting pulmonary fibrosis causing lung functional failure, characteristic of severe COVID-19. Moreover, obesity may also compromise motile cilia on airway epithelial cells and impair functioning of the mucociliary escalators, reducing the clearance of severe acute respiratory syndrome coronavirus (SARS-CoV-2). Obese diseased adipose tissues overexpress the receptors and proteases for the SARS-CoV-2 entry, implicating its possible roles as virus reservoir and accelerator reinforcing violent systemic inflammation and immune response. Finally, anti-inflammatory cytokines like anti-interleukin 6 and administration of mesenchymal stromal/stem cells may serve as potential immune modulatory therapies for supportively combating COVID-19. Obesity is conversely related to the development of COVID-19 through numerous molecular mechanisms and individuals with obesity belong to the COVID-19-susceptible population requiring more protective measures.
Collapse
Affiliation(s)
- Andreas Ritter
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J.W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (N.-N.K.); (F.L.)
| | | | | | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J.W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (N.-N.K.); (F.L.)
| |
Collapse
|
54
|
Bou M, Torgersen JS, Østbye TKK, Ruyter B, Wang X, Škugor S, Kristiansen IØ, Todorčević M. DHA Modulates Immune Response and Mitochondrial Function of Atlantic Salmon Adipocytes after LPS Treatment. Int J Mol Sci 2020; 21:ijms21114101. [PMID: 32521827 PMCID: PMC7312884 DOI: 10.3390/ijms21114101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/18/2023] Open
Abstract
Adipocytes play a central role in overall energy homeostasis and are important contributors to the immune system. Fatty acids (FAs) act as signaling molecules capable to modulate adipocyte metabolism and functions. To identify the effects of two commonly used FAs in Atlantic salmon diets, primary adipocytes were cultured in the presence of oleic (OA) or docosahexaenoic (DHA) acid. DHA decreased adipocyte lipid droplet number and area compared to OA. The increase in lipid load in OA treated adipocytes was paralleled by an increase in iNOS activity and mitochondrial SOD2-GFP activity, which was probably directed to counteract increase in oxidative stress. Under lipopolysaccharide (LPS)-induced inflammation, DHA had a greater anti-inflammatory effect than OA, as evidenced by the higher SOD2 activity and the transcriptional regulation of antioxidant enzymes and pro- and anti-inflammatory markers. In addition, DHA maintained a healthy mitochondrial structure under induced inflammation while OA led to elongated mitochondria with a thin thread like structures in adipocytes exposed to LPS. Overall, DHA possess anti-inflammatory properties and protects Atlantic salmon against oxidative stress and limits lipid deposition. Furthermore, DHA plays a key role in protecting mitochondria shape and function.
Collapse
Affiliation(s)
- Marta Bou
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway; (M.B.); (J.S.T.); (T.-K.K.Ø.); (B.R.); (X.W.); (S.Š.); (I.Ø.K.)
| | - Jacob Seilø Torgersen
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway; (M.B.); (J.S.T.); (T.-K.K.Ø.); (B.R.); (X.W.); (S.Š.); (I.Ø.K.)
- AquaGen, P.O. Box 1240, N-7462 Trondheim, Norway
| | - Tone-Kari Knutsdatter Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway; (M.B.); (J.S.T.); (T.-K.K.Ø.); (B.R.); (X.W.); (S.Š.); (I.Ø.K.)
| | - Bente Ruyter
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway; (M.B.); (J.S.T.); (T.-K.K.Ø.); (B.R.); (X.W.); (S.Š.); (I.Ø.K.)
| | - Xinxia Wang
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway; (M.B.); (J.S.T.); (T.-K.K.Ø.); (B.R.); (X.W.); (S.Š.); (I.Ø.K.)
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Stanko Škugor
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway; (M.B.); (J.S.T.); (T.-K.K.Ø.); (B.R.); (X.W.); (S.Š.); (I.Ø.K.)
- Cargill Innovation Center, 0366 Oslo, Norway
| | - Inger Øien Kristiansen
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway; (M.B.); (J.S.T.); (T.-K.K.Ø.); (B.R.); (X.W.); (S.Š.); (I.Ø.K.)
| | - Marijana Todorčević
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1432 Ås, Norway; (M.B.); (J.S.T.); (T.-K.K.Ø.); (B.R.); (X.W.); (S.Š.); (I.Ø.K.)
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
- Correspondence: ; Tel.: +447979715263
| |
Collapse
|
55
|
Kataru RP, Park HJ, Baik JE, Li C, Shin J, Mehrara BJ. Regulation of Lymphatic Function in Obesity. Front Physiol 2020; 11:459. [PMID: 32499718 PMCID: PMC7242657 DOI: 10.3389/fphys.2020.00459] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
The lymphatic system has many functions, including macromolecules transport, fat absorption, regulation and modulation of adaptive immune responses, clearance of inflammatory cytokines, and cholesterol metabolism. Thus, it is evident that lymphatic function can play a key role in the regulation of a wide array of biologic phenomenon, and that physiologic changes that alter lymphatic function may have profound pathologic effects. Recent studies have shown that obesity can markedly impair lymphatic function. Obesity-induced pathologic changes in the lymphatic system result, at least in part, from the accumulation of inflammatory cells around lymphatic vessel leading to impaired lymphatic collecting vessel pumping capacity, leaky initial and collecting lymphatics, alterations in lymphatic endothelial cell (LEC) gene expression, and degradation of junctional proteins. These changes are important since impaired lymphatic function in obesity may contribute to the pathology of obesity in other organ systems in a feed-forward manner by increasing low-grade tissue inflammation and the accumulation of inflammatory cytokines. More importantly, recent studies have suggested that interventions that inhibit inflammatory responses, either pharmacologically or by lifestyle modifications such as aerobic exercise and weight loss, improve lymphatic function and metabolic parameters in obese mice. The purpose of this review is to summarize the pathologic effects of obesity on the lymphatic system, the cellular mechanisms that regulate these responses, the effects of impaired lymphatic function on metabolic syndrome in obesity, and the interventions that may improve lymphatic function in obesity.
Collapse
Affiliation(s)
- Raghu P Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hyeong Ju Park
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jung Eun Baik
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Claire Li
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jinyeon Shin
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Babak J Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
56
|
The therapeutic potential of second and third generation CB1R antagonists. Pharmacol Ther 2020; 208:107477. [DOI: 10.1016/j.pharmthera.2020.107477] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022]
|
57
|
Touati-Jallabe Y, Tintillier T, Mauchauffée E, Boucher JL, Leroy J, Ramassamy B, Hamzé A, Mezghenna K, Bouzekrini A, Verna C, Martinez J, Lajoix AD, Hernandez JF. Solid-Phase Synthesis of Substrate-Based Dipeptides and Heterocyclic Pseudo-dipeptides as Potential NO Synthase Inhibitors. ChemMedChem 2020; 15:517-531. [PMID: 32027778 DOI: 10.1002/cmdc.201900659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/03/2020] [Indexed: 11/06/2022]
Abstract
More than 160 arginine analogues modified on the C-terminus via either an amide bond or a heterocyclic moiety (1,2,4-oxadiazole, 1,3,4-oxadiazole and 1,2,4-triazole) were prepared as potential inhibitors of NO synthases (NOS). A methodology involving formation of a thiocitrulline intermediate linked through its side-chain on a solid support followed by modification of its carboxylate group was developed. Finally, the side-chain thiourea group was either let unchanged, S-alkylated (Me, Et) or guanidinylated (Me, Et) to yield respectively after TFA treatment the corresponding thiocitrulline, S-Me/Et-isothiocitrulline and N-Me/Et-arginine substrate analogues. They all were tested against three recombinant NOS isoforms. Several compounds containing a S-Et- or a S-Me-Itc moiety and mainly belonging to both the dipeptide-like and 1,2,4-oxadiazole series were shown to inhibit nNOS and iNOS with IC50 in the 1-50 μM range. Spectral studies confirmed that these new compounds interacted at the heme active site. The more active compounds were found to inhibit intra-cellular iNOS expressed in RAW264.7 and INS-1 cells with similar efficiency than the reference compounds L-NIL and SEIT.
Collapse
Affiliation(s)
- Youness Touati-Jallabe
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France.,Avara Pharmaceutical Services, Boucherville, QC, J4B 7 K8, Canada
| | - Thibault Tintillier
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France.,Asymptote Project Management, 1 rue Edisson, 69500, Bron, France
| | - Elodie Mauchauffée
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR8601, CNRS, Université Paris-Descartes, 45 rue des Saints Pères, 75270, Paris Cedex 06, France
| | - Jérémy Leroy
- Centre Biocommunication en Cardio-métabolique, Université Montpellier, Faculté de Pharmacie, 34000, Montpellier, France
| | - Booma Ramassamy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques UMR8601, CNRS, Université Paris-Descartes, 45 rue des Saints Pères, 75270, Paris Cedex 06, France
| | - Abdallah Hamzé
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France.,Current address: BioCIS, UMR 8076, CNRS, Université Paris Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Karima Mezghenna
- Centre Biocommunication en Cardio-métabolique, Université Montpellier, Faculté de Pharmacie, 34000, Montpellier, France
| | - Amine Bouzekrini
- Centre Biocommunication en Cardio-métabolique, Université Montpellier, Faculté de Pharmacie, 34000, Montpellier, France
| | - Claudia Verna
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France
| | - Anne-Dominique Lajoix
- Centre Biocommunication en Cardio-métabolique, Université Montpellier, Faculté de Pharmacie, 34000, Montpellier, France
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron, Université Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 34000, Montpellier, France
| |
Collapse
|
58
|
Durand R, Pellerin G, Thibodeau J, Fraboulet E, Marette A, Bazinet L. Screening for metabolic syndrome application of a herring by-product hydrolysate after its separation by electrodialysis with ultrafiltration membrane and identification of novel anti-inflammatory peptides. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
59
|
Bahadoran Z, Mirmiran P, Ghasemi A. Role of Nitric Oxide in Insulin Secretion and Glucose Metabolism. Trends Endocrinol Metab 2020; 31:118-130. [PMID: 31690508 DOI: 10.1016/j.tem.2019.10.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) contributes to carbohydrate metabolism and decreased NO bioavailability is involved in the development of type 2 diabetes mellitus (T2DM). NO donors may improve insulin signaling and glucose homeostasis in T2DM and insulin resistance (IR), suggesting the potential clinical importance of NO-based interventions. In this review, site-specific roles of the NO synthase (NOS)-NO pathway in carbohydrate metabolism are discussed. In addition, the metabolic effects of physiological low levels of NO produced by constitutive NOS (cNOS) versus pathological high levels of NO produced by inducible NOS (iNOS) in pancreatic β-cells, adipocytes, hepatocytes, and skeletal muscle cells are summarized. A better understanding of the NOS-NO system in the regulation of glucose homeostasis can hopefully facilitate the development of new treatments for T2DM.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Human Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
60
|
Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K. Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: Implications in diabetes. Biochem Pharmacol 2020; 176:113819. [PMID: 31972170 DOI: 10.1016/j.bcp.2020.113819] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the human body and have a key role in many of the physiological activities of the various organ systems. Decreased NO bioavailability and deficiency of H2S are involved in the pathophysiology of type 2 diabetes and its complications. Restoration of NO levels have favorable metabolic effects in diabetes. The role of H2S in pathophysiology of diabetes is however controversial; H2S production is decreased during development of obesity, diabetes, and its complications, suggesting the potential therapeutic effects of H2S. On the other hand, increased H2S levels disturb the pancreatic β-cell function and decrease insulin secretion. In addition, there appear to be important interactions between NO and H2S at the levels of both biosynthesis and signaling pathways, yet clear an insight into this relationship is lacking. H2S potentiates the effects of NO in the cardiovascular system as well as NO release from its storage pools. Likewise, NO increases the activity and the expression of H2S-generating enzymes. Inhibition of NO production leads to elimination/attenuation of the cardioprotective effects of H2S. Regarding the increasing interest in the therapeutic applications of NO or H2S-releasing molecules in a variety of diseases, particularly in the cardiovascular disorders, much is to be learned about their function in glucose/insulin metabolism, especially in diabetes. The aim of this review is to provide a better understanding of the individual and the interactive roles of NO and H2S in carbohydrate metabolism.
Collapse
Affiliation(s)
- Sevda Gheibi
- Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden.
| | - Alan P Samsonov
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Shahsanam Gheibi
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Alexandra B Vazquez
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY, USA.
| |
Collapse
|
61
|
Small molecule inhibitors and stimulators of inducible nitric oxide synthase in cancer cells from natural origin (phytochemicals, marine compounds, antibiotics). Biochem Pharmacol 2020; 176:113792. [PMID: 31926145 DOI: 10.1016/j.bcp.2020.113792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Nitric oxide synthases (NOS) are a family of isoforms, which generate nitric oxide (NO). NO is one of the smallest molecules in nature and acts mainly as a potent vasodilator. It participates in various biological processes ranging from physiological to pathological conditions. Inducible NOS (iNOS, NOS2) is a calcium-independent and inducible isoform. Despite high iNOS expression in many tumors, the role of iNOS is still unclear and complex with both enhancing and prohibiting actions in tumorigenesis. Nature presents a broad variety of natural stimulators and inhibitors, which may either promote or inhibit iNOS response. In the present review, we give an overview of iNOS-modulating agents with a special focus on both natural and synthetic molecules and their effects in related biological processes. The role of iNOS in physiological and pathological conditions is also discussed.
Collapse
|
62
|
Sharma VK, Singh TG. Chronic Stress and Diabetes Mellitus: Interwoven Pathologies. Curr Diabetes Rev 2020; 16:546-556. [PMID: 31713487 DOI: 10.2174/1573399815666191111152248] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/25/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
Stress threatens the homeostasis and mobilizes a plethora of adaptive physiological and behavioral changes via the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system. The HPA axis influences the pituitary gland, hypothalamus and adrenal gland via a complex set of positive and negative feedback system. The feedback system operates in a well regulated neuroendocrine manner to reestablish the threatened body equilibrium. The HPA axis secreted major product is a glucocorticoid (cortisol) which is kept within a physiologically optimal range and serves to accomplish the various physiological functions crucial for survival. In chronically stressed individuals dishabituation of HPA axis is followed by increased release of glucocorticoids and catecholamines. Higher secretion of glucocorticoids influences glucose metabolism by promoting gluconeogenesis in the liver, suppressing glucose uptake (adipocytes and skeletal muscles), promoting lipolysis in adipocytes, suppressing insulin secretion, inflicting insulin resistance and inflammation. These biological changes alter neuroendocrine mechanisms and lead to maladaptive congregation of events that form the underlying cause of development of Type 2 diabetes (T2D). The currently reviewed evidences advocate that targeting stress mediated hypersecretion of glucocorticoids may be a viable approach for the treatment of T2D and to reinstate glucose homeostasis.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Department of Pharmacology, Government College of Pharmacy, Rohru, Distt. Shimla-171207, Himachal Pradesh, India
| | | |
Collapse
|
63
|
Cinelli MA, Do HT, Miley GP, Silverman RB. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev 2020; 40:158-189. [PMID: 31192483 PMCID: PMC6908786 DOI: 10.1002/med.21599] [Citation(s) in RCA: 451] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/14/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
A considerable number of human diseases have an inflammatory component, and a key mediator of immune activation and inflammation is inducible nitric oxide synthase (iNOS), which produces nitric oxide (NO) from l-arginine. Overexpressed or dysregulated iNOS has been implicated in numerous pathologies including sepsis, cancer, neurodegeneration, and various types of pain. Extensive knowledge has been accumulated about the roles iNOS plays in different tissues and organs. Additionally, X-ray crystal and cryogenic electron microscopy structures have shed new insights on the structure and regulation of this enzyme. Many potent iNOS inhibitors with high selectivity over related NOS isoforms, neuronal NOS, and endothelial NOS, have been discovered, and these drugs have shown promise in animal models of endotoxemia, inflammatory and neuropathic pain, arthritis, and other disorders. A major issue in iNOS inhibitor development is that promising results in animal studies have not translated to humans; there are no iNOS inhibitors approved for human use. In addition to assay limitations, both the dual modalities of iNOS and NO in disease states (ie, protective vs harmful effects) and the different roles and localizations of NOS isoforms create challenges for therapeutic intervention. This review summarizes the structure, function, and regulation of iNOS, with focus on the development of iNOS inhibitors (historical and recent). A better understanding of iNOS' complex functions is necessary before specific drug candidates can be identified for classical indications such as sepsis, heart failure, and pain; however, newer promising indications for iNOS inhibition, such as depression, neurodegenerative disorders, and epilepsy, have been discovered.
Collapse
Affiliation(s)
- Maris A. Cinelli
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Current address: Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824
| | - Ha T. Do
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Current address: Mersana Therapeutics, Inc., Cambridge, MA 02139
| | - Galen P. Miley
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
64
|
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions. Free Radic Biol Med 2020; 146:16-35. [PMID: 31672462 DOI: 10.1016/j.freeradbiomed.2019.10.411] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from l-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
65
|
Bai XL, Deng XL, Wu GJ, Li WJ, Jin S. Rhodiola and salidroside in the treatment of metabolic disorders. Mini Rev Med Chem 2019; 19:1611-1626. [PMID: 31481002 DOI: 10.2174/1389557519666190903115424] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Over the past three decades, the knowledge gained about the mechanisms that underpin the potential use of Rhodiola in stress- and ageing-associated disorders has increased, and provided a universal framework for studies that focused on the use of Rhodiola in preventing or curing metabolic diseases. Of particular interest is the emerging role of Rhodiola in the maintenance of energy homeostasis. Moreover, over the last two decades, great efforts have been undertaken to unravel the underlying mechanisms of action of Rhodiola in the treatment of metabolic disorders. Extracts of Rhodiola and salidroside, the most abundant active compound in Rhodiola, are suggested to provide a beneficial effect in mental, behavioral, and metabolic disorders. Both in vivo and ex vivo studies, Rhodiola extracts and salidroside ameliorate metabolic disorders when administered acutely or prior to experimental injury. The mechanism involved includes multi-target effects by modulating various synergistic pathways that control oxidative stress, inflammation, mitochondria, autophagy, and cell death, as well as AMPK signaling that is associated with possible beneficial effects on metabolic disorders. However, evidence-based data supporting the effectiveness of Rhodiola or salidroside in treating metabolic disorders is limited. Therefore, a comprehensive review of available trials showing putative treatment strategies of metabolic disorders that include both clinical effective perspectives and fundamental molecular mechanisms is warranted. This review highlights studies that focus on the potential role of Rhodiola extracts and salidroside in type 2 diabetes and atherosclerosis, the two most common metabolic diseases.
Collapse
Affiliation(s)
- Xiang-Li Bai
- Department of Clinical Laboratory, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Xiu-Ling Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guang-Jie Wu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan, Hubei 430077, China
| | - Wen-Jing Li
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology. Wuhan, Hubei 430077, China
| |
Collapse
|
66
|
Lee CH, Kim HJ, Lee YS, Kang GM, Lim HS, Lee SH, Song DK, Kwon O, Hwang I, Son M, Byun K, Sung YH, Kim S, Kim JB, Choi EY, Kim YB, Kim K, Kweon MN, Sohn JW, Kim MS. Hypothalamic Macrophage Inducible Nitric Oxide Synthase Mediates Obesity-Associated Hypothalamic Inflammation. Cell Rep 2019; 25:934-946.e5. [PMID: 30355499 PMCID: PMC6284237 DOI: 10.1016/j.celrep.2018.09.070] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 06/13/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
Obesity-associated metabolic alterations are closely linked to low-grade
inflammation in peripheral organs, in which macrophages play a central role.
Using genetic labeling of myeloid lineage cells, we show that hypothalamic
macrophages normally reside in the perivascular area and circumventricular organ
median eminence. Chronic consumption of a high-fat diet (HFD) induces expansion
of the monocyte-derived macrophage pool in the hypothalamic arcuate nucleus
(ARC), which is significantly attributed to enhanced proliferation of
macrophages. Notably, inducible nitric oxide synthase (iNOS) is robustly
activated in ARC macrophages of HFD-fed obese mice. Hypothalamic macrophage iNOS
inhibition completely abrogates macrophage accumulation and activation,
proinflammatory cytokine overproduction, reactive astrogliosis,
blood-brain-barrier permeability, and lipid accumulation in the ARC of obese
mice. Moreover, central iNOS inhibition improves obesity-induced alterations in
systemic glucose metabolism without affecting adiposity. Our findings suggest a
critical role for hypothalamic macrophage-expressed iNOS in hypothalamic
inflammation and abnormal glucose metabolism in cases of overnutrition-induced
obesity. Lee et al. demonstrate in mice that, upon prolonged high-fat diet
feeding, hypothalamic macrophages proliferate, expand their pool, and sustain
hypothalamic inflammation. Moreover, they show that hypothalamic macrophage iNOS
inhibition diminishes macrophage activation, astrogliosis, blood-brain-barrier
permeability, and impaired glucose metabolism in diet-induced obese mice.
Collapse
Affiliation(s)
- Chan Hee Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyo Jin Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yong-Soo Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Gil Myoung Kang
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyo Sun Lim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seung-Hwan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Do Kyeong Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Obin Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Injae Hwang
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Myeongjoo Son
- Department of Anatomy and Cell Biology, Gachon University College of Medicine, Incheon 21565, Korea
| | - Kyunghee Byun
- Department of Anatomy and Cell Biology, Gachon University College of Medicine, Incheon 21565, Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Keetae Kim
- Department of New Biology, DGIST, Daegu 42988, Korea
| | - Mi-Na Kweon
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jong-Woo Sohn
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
67
|
Becerril S, Rodríguez A, Catalán V, Ramírez B, Unamuno X, Portincasa P, Gómez-Ambrosi J, Frühbeck G. Functional Relationship between Leptin and Nitric Oxide in Metabolism. Nutrients 2019; 11:nu11092129. [PMID: 31500090 PMCID: PMC6769456 DOI: 10.3390/nu11092129] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 12/28/2022] Open
Abstract
Leptin, the product of the ob gene, was originally described as a satiety factor, playing a crucial role in the control of body weight. Nevertheless, the wide distribution of leptin receptors in peripheral tissues supports that leptin exerts pleiotropic biological effects, consisting of the modulation of numerous processes including thermogenesis, reproduction, angiogenesis, hematopoiesis, osteogenesis, neuroendocrine, and immune functions as well as arterial pressure control. Nitric oxide (NO) is a free radical synthesized from L-arginine by the action of the NO synthase (NOS) enzyme. Three NOS isoforms have been identified: the neuronal NOS (nNOS) and endothelial NOS (eNOS) constitutive isoforms, and the inducible NOS (iNOS). NO mediates multiple biological effects in a variety of physiological systems such as energy balance, blood pressure, reproduction, immune response, or reproduction. Leptin and NO on their own participate in multiple common physiological processes, with a functional relationship between both factors having been identified. The present review describes the functional relationship between leptin and NO in different physiological processes.
Collapse
Affiliation(s)
- Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Medical Engineering Laboratory, University of Navarra, 31008 Pamplona, Spain.
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Policlinico Hospital, 70124 Bari, Italy.
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008 Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain.
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
68
|
Mu K, Sun Y, Zhao Y, Zhao T, Li Q, Zhang M, Li H, Zhang R, Hu C, Wang C, Jia W. Hepatic nitric oxide synthase 1 adaptor protein regulates glucose homeostasis and hepatic insulin sensitivity in obese mice depending on its PDZ binding domain. EBioMedicine 2019; 47:352-364. [PMID: 31473185 PMCID: PMC6796549 DOI: 10.1016/j.ebiom.2019.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND NOS1AP is an adaptor protein and its SNP rs12742393 was associated with type 2 diabetes (T2D). However, it remains uncertain whether NOS1AP plays a role in regulation of insulin sensitivity. Hepatic insulin resistance contributed to the development of T2D. Here, our investigation was focused on whether NOS1AP is involved in the regulation of hepatic insulin sensitivity and its underlying mechanisms. METHODS Liver specific NOS1AP condition knockout (CKO) and NOS1AP overexpression mice were generated and given a high fat diet. SNPs of NOS1AP gene were genotyped in 86 human subjects. FINDINGS NOS1AP protein is expressed in human and mouse liver. CKO mice exhibited impaired pyruvate, glucose and insulin tolerance, and increased lipid deposits in the liver. Conversely, NOS1AP overexpression in livers of obese mice improved pyruvate and/or glucose, and insulin tolerance, and attenuated liver lipid accumulation. Moreover, hepatocytes from CKO mice exhibited an elevated glucose production and mRNA expressions of Pc and Pck1. Overexpression of NOS1AP potentiated insulin-stimulated activation of IR/Akt in livers from obese mice. The insulin sensitizing effect of NOS1AP could be mimicked by overexpression of C-terminal domain of NOS1AP in ob/ob mice. Furthermore, NOS1AP overexpression in liver significantly inhibited p38 MAPK phosphorylation, and maintained ER homeostasis through p-eIF2a-ATF4-CHOP pathway. Subjects with rsl2742393 of NOS1AP have higher risk to develop hepatic steatosis. INTERPRETATION Our data demonstrate a novel role of NOS1AP in regulating hepatic insulin sensitivity and p38 MAPK inactivation in obese mice, which makes NOS1AP a potential therapeutic target for the prevention and treatment of T2D. FUND: This work was supported by the National Natural Science Foundation of China (81670707, 31340072) (to C. Wang), and National Basic Research Program of China (Nation 973 Program) (2011CB504001) (to W. Jia).
Collapse
Affiliation(s)
- Kaida Mu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Yun Sun
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Yu Zhao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Tianxue Zhao
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Qian Li
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Mingliang Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Huating Li
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Rong Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Cheng Hu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Chen Wang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China.
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, People's Republic of China; Shanghai Diabetes Institute, Shanghai Jiao Tong University, People's Republic of China; Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| |
Collapse
|
69
|
Meza CA, La Favor JD, Kim DH, Hickner RC. Endothelial Dysfunction: Is There a Hyperglycemia-Induced Imbalance of NOX and NOS? Int J Mol Sci 2019; 20:ijms20153775. [PMID: 31382355 PMCID: PMC6696313 DOI: 10.3390/ijms20153775] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
NADPH oxidases (NOX) are enzyme complexes that have received much attention as key molecules in the development of vascular dysfunction. NOX have the primary function of generating reactive oxygen species (ROS), and are considered the main source of ROS production in endothelial cells. The endothelium is a thin monolayer that lines the inner surface of blood vessels, acting as a secretory organ to maintain homeostasis of blood flow. The enzymatic production of nitric oxide (NO) by endothelial NO synthase (eNOS) is critical in mediating endothelial function, and oxidative stress can cause dysregulation of eNOS and endothelial dysfunction. Insulin is a stimulus for increases in blood flow and endothelium-dependent vasodilation. However, cardiovascular disease and type 2 diabetes are characterized by poor control of the endothelial cell redox environment, with a shift toward overproduction of ROS by NOX. Studies in models of type 2 diabetes demonstrate that aberrant NOX activation contributes to uncoupling of eNOS and endothelial dysfunction. It is well-established that endothelial dysfunction precedes the onset of cardiovascular disease, therefore NOX are important molecular links between type 2 diabetes and vascular complications. The aim of the current review is to describe the normal, healthy physiological mechanisms involved in endothelial function, and highlight the central role of NOX in mediating endothelial dysfunction when glucose homeostasis is impaired.
Collapse
Affiliation(s)
- Cesar A Meza
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Justin D La Favor
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Do-Houn Kim
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Robert C Hickner
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.
- Institute of Sports Sciences and Medicine, College of Human Sciences, Florida State University, Tallahassee, FL 32306, USA.
- Department of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville 4041, South Africa.
| |
Collapse
|
70
|
Hafidi ME, Buelna-Chontal M, Sánchez-Muñoz F, Carbó R. Adipogenesis: A Necessary but Harmful Strategy. Int J Mol Sci 2019; 20:ijms20153657. [PMID: 31357412 PMCID: PMC6696444 DOI: 10.3390/ijms20153657] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is considered to significantly increase the risk of the development of a vast range of metabolic diseases. However, adipogenesis is a complex physiological process, necessary to sequester lipids effectively to avoid lipotoxicity in other tissues, like the liver, heart, muscle, essential for maintaining metabolic homeostasis and has a crucial role as a component of the innate immune system, far beyond than only being an inert mass of energy storage. In pathophysiological conditions, adipogenesis promotes a pro-inflammatory state, angiogenesis and the release of adipokines, which become dangerous to health. It results in a hypoxic state, causing oxidative stress and the synthesis and release of harmful free fatty acids. In this review, we try to explain the mechanisms occurring at the breaking point, at which adipogenesis leads to an uncontrolled lipotoxicity. This review highlights the types of adipose tissue and their functions, their way of storing lipids until a critical point, which is associated with hypoxia, inflammation, insulin resistance as well as lipodystrophy and adipogenesis modulation by Krüppel-like factors and miRNAs.
Collapse
Affiliation(s)
- Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico.
| |
Collapse
|
71
|
Abstract
Autophagy plays a key role in cellular homeostasis since it allows optimal cellular functioning and provides energy under conditions of stress. Initial is revealed that alterations of macroautophagy disturb adipogenic differentiation in cultured cells, and in mice, leading to a drastic reduction of adipose tissue depots. Nevertheless, more recent studies indicate that autophagy participates in the control of adipose tissue biology in a more complex manner. The protein TP53INP2 activates the formation of autophagosomes by binding to ATG8 proteins such as LC3 or GATE16, and its genetic elimination reduces but does not cancel this activity. TP53INP2 deficiency increases adipogenic differentiation and induces a gain in adiposity in the mouse. At the cellular level, TP53INP2 promotes the sequestration of the regulatory protein GSK3β in multivesicular bodies (MVBs) by a process that involves autophagic activity and the participation of the endosomal sorting complexes required for transport (ESCRT) machinery. Through this mechanism, TP53INP2 stabilizes and activates β-catenin, which in turn triggers the inhibition of adipogenesis. In summary, autophagic pathways provide a whole set of mechanisms that may regulate in an opposite way the biology of adipose tissue, and consequently, have a variable impact on the whole body adiposity. This concept may be extensible to other cell types.
Collapse
Affiliation(s)
- Montserrat Romero
- a Institute for Research in Biomedicine (IRB Barcelona) , The Barcelona Institute of Science and Technology , Barcelona , Spain.,b Departament de Bioquímica i Biologia Molecular , Facultat de Biologia , Barcelona , Spain.,c CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Instituto de Salud Carlos III , Madrid , Spain
| | - Antonio Zorzano
- a Institute for Research in Biomedicine (IRB Barcelona) , The Barcelona Institute of Science and Technology , Barcelona , Spain.,b Departament de Bioquímica i Biologia Molecular , Facultat de Biologia , Barcelona , Spain.,c CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Instituto de Salud Carlos III , Madrid , Spain
| |
Collapse
|
72
|
Bahadoran Z, Mirmiran P, Tahmasebinejad Z, Azizi F, Ghasemi A. Serum nitric oxide metabolites and hard clinical endpoints: a population-based prospective study. SCAND CARDIOVASC J 2019; 53:176-182. [PMID: 31081695 DOI: 10.1080/14017431.2019.1618493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective. Limited data are available regarding prognostic value of nitric oxide metabolites (NOx) for clinical hard end points. In this study, we defined optimum cut-off values of serum NOx for predicting all-cause and cardiovascular disease (CVD) mortality events and prospectively investigated their hazards in the presence of traditional risk factors. Design. Serum NOx concentrations were measured at baseline (2006-2008) and 3520 adult men and women were followed during 7.7 years for all-cause and cardiovascular disease (CVD) mortality. To determine the optimal cut-off points of serum NOx, the receiver operator characteristic (ROC) curve analysis was used. Multivariate Cox proportional hazard models were used to estimate the hazard ratios (HRs) with 95% confidence intervals (95% CIs) of all-cause and CVD mortality below and above the defined optimal cut-off points of serum NOx. Results. Mean age of participants was 44.5 ± 16.0 years at baseline and 40.2% were male. Median (inter-quartile range) of serum NOx levels was 25.0 µmol/L (19.0-37.0), at baseline. The optimal cut-off points of serum NOx levels for predicting CVD and all-cause mortality were 30.5 and 32.5 µmol/L, respectively. In the presence of age, sex, body mass index, smoking, type 2 diabetes, hypertension, and history of CVD, a significant increased risk of CVD mortality (HR = 1.98, 95% CI = 1.10-3.58) and all-cause mortality (HR = 1.52, 95% CI = 1.05-2.21) was observed for serum NOx values higher than their cut-offs. Conclusion. Serum NOx level may be predictor of CVD mortality and death, in general populations.
Collapse
Affiliation(s)
- Zahra Bahadoran
- a Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Parvin Mirmiran
- b Department of Clinical Nutrition and Diet Therapy, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zhaleh Tahmasebinejad
- a Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Fereidoun Azizi
- c Endocrine Research Center, Research Institute for Endocrine Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Asghar Ghasemi
- d Endocrine Physiology Research Center, Research Institute for Endocrine Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
73
|
Takasugi N, Hiraoka H, Nakahara K, Akiyama S, Fujikawa K, Nomura R, Furuichi M, Uehara T. The Emerging Role of Electrophiles as a Key Regulator for Endoplasmic Reticulum (ER) Stress. Int J Mol Sci 2019; 20:E1783. [PMID: 30974903 PMCID: PMC6480251 DOI: 10.3390/ijms20071783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/28/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
The unfolded protein response (UPR) is activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which is called ER stress. ER stress sensors PERK, IRE1, and ATF6 play a central role in the initiation and regulation of the UPR; they inhibit novel protein synthesis and upregulate ER chaperones, such as protein disulfide isomerase, to remove unfolded proteins. However, when recovery from ER stress is difficult, the UPR pathway is activated to eliminate unhealthy cells. This signaling transition is the key event of many human diseases. However, the precise mechanisms are largely unknown. Intriguingly, reactive electrophilic species (RES), which exist in the environment or are produced through cellular metabolism, have been identified as a key player of this transition. In this review, we focused on the function of representative RES: nitric oxide (NO) as a gaseous RES, 4-hydroxynonenal (HNE) as a lipid RES, and methylmercury (MeHg) as an environmental organic compound RES, to outline the relationship between ER stress and RES. Modulation by RES might be a target for the development of next-generation therapy for ER stress-associated diseases.
Collapse
Affiliation(s)
- Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Hideki Hiraoka
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Kengo Nakahara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Shiori Akiyama
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Kana Fujikawa
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Ryosuke Nomura
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Moeka Furuichi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
74
|
Stomberski CT, Hess DT, Stamler JS. Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling. Antioxid Redox Signal 2019; 30:1331-1351. [PMID: 29130312 PMCID: PMC6391618 DOI: 10.1089/ars.2017.7403] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Protein S-nitrosylation, the oxidative modification of cysteine by nitric oxide (NO) to form protein S-nitrosothiols (SNOs), mediates redox-based signaling that conveys, in large part, the ubiquitous influence of NO on cellular function. S-nitrosylation regulates protein activity, stability, localization, and protein-protein interactions across myriad physiological processes, and aberrant S-nitrosylation is associated with diverse pathophysiologies. Recent Advances: It is recently recognized that S-nitrosylation endows S-nitroso-protein (SNO-proteins) with S-nitrosylase activity, that is, the potential to trans-S-nitrosylate additional proteins, thereby propagating SNO-based signals, analogous to kinase-mediated signaling cascades. In addition, it is increasingly appreciated that cellular S-nitrosylation is governed by dynamically coupled equilibria between SNO-proteins and low-molecular-weight SNOs, which are controlled by a growing set of enzymatic denitrosylases comprising two main classes (high and low molecular weight). S-nitrosylases and denitrosylases, which together control steady-state SNO levels, may be identified with distinct physiology and pathophysiology ranging from cardiovascular and respiratory disorders to neurodegeneration and cancer. CRITICAL ISSUES The target specificity of protein S-nitrosylation and the stability and reactivity of protein SNOs are determined substantially by enzymatic machinery comprising highly conserved transnitrosylases and denitrosylases. Understanding the differential functionality of SNO-regulatory enzymes is essential, and is amenable to genetic and pharmacological analyses, read out as perturbation of specific equilibria within the SNO circuitry. FUTURE DIRECTIONS The emerging picture of NO biology entails equilibria among potentially thousands of different SNOs, governed by denitrosylases and nitrosylases. Thus, to elucidate the operation and consequences of S-nitrosylation in cellular contexts, studies should consider the roles of SNO-proteins as both targets and transducers of S-nitrosylation, functioning according to enzymatically governed equilibria.
Collapse
Affiliation(s)
- Colin T Stomberski
- 1 Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio.,2 Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Douglas T Hess
- 1 Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio.,3 Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jonathan S Stamler
- 2 Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio.,3 Department of Medicine, Case Western Reserve University, Cleveland, Ohio.,4 Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
75
|
Qian Q, Zhang Z, Li M, Savage K, Cheng D, Rauckhorst AJ, Ankrum JA, Taylor EB, Ding WX, Xiao Y, Cao HJ, Yang L. Hepatic Lysosomal iNOS Activity Impairs Autophagy in Obesity. Cell Mol Gastroenterol Hepatol 2019; 8:95-110. [PMID: 30926581 PMCID: PMC6522853 DOI: 10.1016/j.jcmgh.2019.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The lysosome is an acidic organelle that is important for maintaining cellular and metabolic homeostasis in hepatocytes. Lysosomal dysfunction and chronic inflammation coexist, and both contribute to obesity-associated hepatic insulin resistance. However, in the context of obesity, the interplay between inflammatory signals and hepatic lysosomal function remains largely unknown. Inducible nitric oxide synthase (iNOS) is a hallmark for inflammation, and is activated in obesity. The aim of this study is to understand the molecular link between iNOS-mediated lysosomal nitric oxide (NO) production, hepatic lysosomal function, and autophagy in the context of obesity-associated insulin resistance. METHODS The role of iNOS in hepatic autophagy, as related to insulin and glucose homeostasis were studied in mice with diet-induced obesity (DIO). The effects and mechanisms of iNOS-mediated lysosomal NO production on lysosomal function and hepatic autophagy were studied in primary hepatocytes as well as in a mouse model of DIO. RESULTS We demonstrate that obesity promotes iNOS localization to the lysosome and decreases levels of lysosomal arginine, resulting in an accumulation of NO in hepatic lysosomes. This lysosomal NO production is attenuated by treatment with a NO scavenger, while co-overexpression of mTOR and a lysosomal arginine transporter (SLC38A9) enhances lysosomal NO production and suppresses autophagy. In addition, we show that deletion of iNOS ameliorates lysosomal nitrosative stress in the livers of DIO mice, promotes lysosomal biogenesis by activating transcription factor EB (TFEB), and enhances lysosomal function and autophagy. Lastly, deletion of iNOS in mice with DIO improves hepatic insulin sensitivity, which is diminished by suppression of TFEB or autophagy related 7 (Atg7). CONCLUSIONS Our studies suggest that lysosomal iNOS-mediated NO signaling disrupts hepatic lysosomal function, contributing to obesity-associated defective hepatic autophagy and insulin resistance.
Collapse
Affiliation(s)
- Qingwen Qian
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Zeyuan Zhang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Mark Li
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kalie Savage
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Dechun Cheng
- Department of Parasitology, Harbin Medical School, Harbin, China
| | - Adam J. Rauckhorst
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, Fraternal Order of Eagles Diabetes Research Center Metabolomics Core, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa College of Engineering, Iowa City, Iowa
| | - Eric B. Taylor
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, Fraternal Order of Eagles Diabetes Research Center Metabolomics Core, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Wen-xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Huo-jun Cao
- Departments of Endodontics, University of Iowa College of Dentistry, Iowa City, Iowa
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa,Correspondence Address requests for reprints to: Ling Yang, PhD, Departments of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242. fax: (319) 335–3865.
| |
Collapse
|
76
|
Stanisic J, Koricanac G, Kostic M, Stojiljkovic M, Culafic T, Romic S, Tepavcevic S. Low-intensity exercise in the prevention of cardiac insulin resistance-related inflammation and disturbances in NOS and MMP-9 regulation in fructose-fed ovariectomized rats. Appl Physiol Nutr Metab 2019; 44:1219-1229. [PMID: 30897341 DOI: 10.1139/apnm-2018-0785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Exercise is important nonpharmacological treatment for improvement of insulin sensitivity in menopause. However, its effect on menopausal cardiac insulin resistance is needing further research. We investigated protective effects of low-intensity exercise on cardiac insulin signaling, inflammation, regulation of nitric oxide synthase (NOS) and matrix metalloproteinase 9 (MMP-9) in ovariectomized (OVX) Wistar rats, submitted to 10% fructose solution for 9 weeks. OVX rats were divided into control, sedentary fructose, and exercise fructose groups. Measurements of physical and biochemical characteristics were carried out to evaluate metabolic syndrome development. Messenger RNA and protein levels and phosphorylation of cardiac insulin signaling molecules, endothelial and inducible NOS (eNOS and iNOS), p65 subunit of nuclear factor κB (NFκB), tumor necrosis factor α (TNF-α), suppressor of cytokine signaling 3 (SOCS3), and MMP-9 were analyzed. Fructose increased insulin level, homeostasis model assessment (HOMA) index, and visceral adipose tissue weight, while low-intensity exercise prevented insulin level and HOMA index increase. Fructose also decreased cardiac pAkt (Ser473), peNOS (Ser1177) and increased insulin receptor substrate 1 (IRS1) phosphorylation at Ser307, pNFκB (Ser276) and NFκB and MMP-9 content, without any effect on iNOS, protein-tyrosine phosphatase 1B, TNF-α, and SOCS3. Exercise prevented changes in pIRS1 (Ser307), pAkt (Ser473), peNOS (Ser1177), pNFκB (Ser276), and NFκB expression. In addition, exercise increased pIRS1 (Tyr632), pAkt (Thr308), and eNOS expression. Low-intensity exercise prevented cardiac insulin signaling disarrangement in fructose-fed OVX rats and therefore eNOS dysfunction, as well as pro-inflammatory signaling activation, without effect on tissue remodeling, suggesting physical training as a way to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Jelena Stanisic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia.,Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia.,Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia
| | - Milan Kostic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia.,Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia
| | - Mojca Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia.,Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia
| | - Tijana Culafic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia.,Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia
| | - Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia.,Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia.,Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Republic of Serbia
| |
Collapse
|
77
|
Venditti P, Reed TT, Victor VM, Di Meo S. Insulin resistance and diabetes in hyperthyroidism: a possible role for oxygen and nitrogen reactive species. Free Radic Res 2019; 53:248-268. [PMID: 30843740 DOI: 10.1080/10715762.2019.1590567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In addition to insulin, glycemic control involves thyroid hormones. However, an excess of thyroid hormone can disturb the blood glucose equilibrium, leading to alterations of carbohydrate metabolism and, eventually, diabetes. Indeed, experimental and clinical hyperthyroidism is often accompanied by abnormal glucose tolerance. A common characteristic of hyperthyroidism and type 2 diabetes is the altered mitochondrial efficiency caused by the enhanced production of reactive oxygen and nitrogen species. It is known that an excess of thyroid hormone leads to increased oxidant production and mitochondrial oxidative damage. It can be hypothesised that these species represent the link between hyperthyroidism and development of insulin resistance and diabetes, even though direct evidence of this relationship is lacking. In this review, we examine the literature concerning the effects of insulin and thyroid hormones on glucose metabolism and discuss alterations of glucose metabolism in hyperthyroid conditions and the cellular and molecular mechanisms that may underline them.
Collapse
Affiliation(s)
- Paola Venditti
- a Dipartimento di Biologia , Università di Napoli Federico II , Napoli , Italy
| | - Tanea T Reed
- b Department of Chemistry , Eastern Kentucky University , Richmond , KY , USA
| | - Victor M Victor
- c Service of Endocrinology, Dr. Peset University Hospital, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO) , Valencia , Spain.,d Department of Physiology , University of Valencia , Valencia , Spain
| | - Sergio Di Meo
- a Dipartimento di Biologia , Università di Napoli Federico II , Napoli , Italy
| |
Collapse
|
78
|
Bahadoran Z, Mirmiran P, Jeddi S, Carlström M, Azizi F, Ghasemi A. Circulating markers of nitric oxide homeostasis and cardiometabolic diseases: insights from population-based studies. Free Radic Res 2019; 53:359-376. [PMID: 30821533 DOI: 10.1080/10715762.2019.1587168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging data suggest that impaired nitric oxide (NO) homeostasis has a key role in development of cardiometabolic disorders. The association between circulating levels of NO metabolites, i.e. nitrate and nitrite (NOx), and risk of chronic diseases has not yet been fully clarified. This work aims to address epidemiologic aspects of NO metabolism and discusses different physiologic and pathophysiologic conditions influencing circulating NOx. Further, cross-sectional associations of serum NOx with metabolic disorders are described and along the way, potential short-term and long-term power of serum NOx for predicting cardiometabolic outcomes are reviewed. Results from population-based studies show that circulating NOx is affected by aging, smoking habits, pregnancy, menopause status, thyroid hormones, and various pathologic conditions including type 2 diabetes, insulin resistance, hypertension, and renal dysfunction. Lifestyle factors, especially dietary habits, but also smoking habits and the degree of physical activity influence NO homeostasis and the circulating levels of NOx. Elevated serum NOx, due to increased iNOS activity, is associated with increased incidence of metabolic syndrome, different obesity phenotypes, and cardiovascular events.
Collapse
Affiliation(s)
- Zahra Bahadoran
- a Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Parvin Mirmiran
- b Department of Clinical Nutrition and Diet Therapy, Faculty of Nutrition Sciences and Food Technology , National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Sajad Jeddi
- c Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mattias Carlström
- d Department of Physiology and Pharmacology , Karolinska Institutet , Stockholm , Sweden
| | - Fereidoun Azizi
- e Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Asghar Ghasemi
- c Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
79
|
Kakimoto PA, Chausse B, Caldeira da Silva CC, Donato Júnior J, Kowaltowski AJ. Resilient hepatic mitochondrial function and lack of iNOS dependence in diet-induced insulin resistance. PLoS One 2019; 14:e0211733. [PMID: 30716103 PMCID: PMC6361450 DOI: 10.1371/journal.pone.0211733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity-derived inflammation and metabolic dysfunction has been related to the activity of the inducible nitric oxide synthase (iNOS). To understand the interrelation between metabolism, obesity and NO., we evaluated the effects of obesity-induced NO. signaling on liver mitochondrial function. We used mouse strains containing mitochondrial nicotinamide transhydrogenase activity, while prior studies involved a spontaneous mutant of this enzyme, and are, therefore, more prone to oxidative imbalance. Wild-type and iNOS knockout mice were fed a high fat diet for 2, 4 or 8 weeks. iNOS knockout did not protect against diet-induced metabolic changes. However, the diet decreased fatty-acid oxidation capacity in liver mitochondria at 4 weeks in both wild-type and knockout groups; this was recovered at 8 weeks. Interestingly, other mitochondrial functional parameters were unchanged, despite significant modifications in insulin resistance in wild type and iNOS knockout animals. Overall, we found two surprising features of obesity-induced metabolic dysfunction: (i) iNOS does not have an essential role in obesity-induced insulin resistance under all experimental conditions and (ii) liver mitochondria are resilient to functional changes in obesity-induced metabolic dysfunction.
Collapse
Affiliation(s)
- Pamela A. Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| | - Bruno Chausse
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - José Donato Júnior
- Departamento de Fisiologia e Biofísica, Instituto de Ciência Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alicia J. Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
80
|
Aggarwal H, Kanuri BN, Dikshit M. Role of iNOS in Insulin Resistance and Endothelial Dysfunction. OXIDATIVE STRESS IN HEART DISEASES 2019:461-482. [DOI: 10.1007/978-981-13-8273-4_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
81
|
Yu Y, Park SJ, Beyak MJ. Inducible nitric oxide synthase-derived nitric oxide reduces vagal satiety signalling in obese mice. J Physiol 2018; 597:1487-1502. [PMID: 30565225 DOI: 10.1113/jp276894] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Obesity is associated with disrupted satiety regulation. Mice with diet-induced obesity have reduced vagal afferent neuronal excitability and a decreased afferent response to satiety signals. A low grade inflammation occurs in obesity with increased expression of inducible nitric oxide synthase (iNOS). Inhibition of iNOS in diet-induced obese mice restored vagal afferent neuronal excitability, increased the afferent response to satiety mediators and distention of the gut, and reduced short-term energy intake. A prolonged inhibition of iNOS reduced energy intake and body weight gain during the first week, and reduced amounts of epididymal fat after 3 weeks. We identified a novel pathway underlying disrupted satiety regulation in obesity. Blocking of this pathway might be clinically useful for the management of obesity. ABSTRACT Vagal afferents regulate feeding by transmitting satiety signals to the brain. Mice with diet-induced obesity have reduced vagal afferent sensitivity to satiety signals. We investigated whether inducible nitric oxide synthase (iNOS)-derived NO contributed to this reduction. C57BL/6J mice were fed a high- or low-fat diet for 6-8 weeks. Nodose ganglia and jejunum were analysed by immunoblotting for iNOS expression; NO production was measured using a fluorometric assay. Nodose neuron excitability and intestinal afferent sensitivity were evaluated by whole-cell patch clamp and in vitro afferent recording, respectively. Expression of iNOS and production of NO were increased in nodose ganglia and the small intestine in obese mice. Inhibition of iNOS in obese mice by pre-treatment with an iNOS inhibitor increased nodose neuron excitability via 2-pore-domain K+ channel leak currents, restored afferent sensitivity to satiety signals and reduced short-term energy intake. Obese mice given the iNOS inhibitor daily for 3 weeks had reduced energy intake and decreased body weight gain during the first week, compared to mice given saline, and lower amounts of epididymal fat at the end of 3 weeks. Inhibition of iNOS or blocking the action of iNOS-derived NO on vagal afferent pathways might comprise therapeutic strategies for hyperphagia and obesity.
Collapse
Affiliation(s)
- Yang Yu
- Gastrointestinal Disease Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Sung Jin Park
- Gastrointestinal Disease Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Michael J Beyak
- Gastrointestinal Disease Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| |
Collapse
|
82
|
The immune-metabolic regulatory roles of epoxyeicosatrienoic acids on macrophages phenotypic plasticity in obesity-related insulin resistance. Prostaglandins Other Lipid Mediat 2018; 139:36-40. [DOI: 10.1016/j.prostaglandins.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/18/2018] [Accepted: 10/04/2018] [Indexed: 01/12/2023]
|
83
|
Issa N, Lachance G, Bellmann K, Laplante M, Stadler K, Marette A. Cytokines promote lipolysis in 3T3-L1 adipocytes through induction of NADPH oxidase 3 expression and superoxide production. J Lipid Res 2018; 59:2321-2328. [PMID: 30317185 DOI: 10.1194/jlr.m086504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/12/2018] [Indexed: 01/14/2023] Open
Abstract
NADPH oxidase (NOX) enzymes are one of the major superoxide-generating systems in cells. NOX-generated superoxide has been suggested to promote insulin resistance in the liver. However, the role of NOX enzymes in mediating metabolic dysfunction in other insulin target tissues remains unclear. Here, we show that NOX3 expression is induced in differentiated 3T3-L1 adipocytes upon treatment with proinflammatory cytokines. Superoxide production increased concurrently with NOX3 protein expression in cytokine-treated adipocytes, which was inhibited by the NOX inhibitor diphenyleneiodonium (DPI). Treatment of adipocytes with cytokines increased lipolysis and decreased PPARγ activity. Interestingly, treatment with DPI blunted lipolysis activation by cytokines but failed to restore PPARγ activity. siRNA-mediated NOX3 downregulation also prevented cytokine-induced superoxide generation and lipolysis. In line with increasing lipolysis, cytokines increased the phosphorylation of hormone-sensitive lipase (HSL), which was reversed by treatment with DPI and silencing of NOX3 expression. We conclude that NOX3 is a cytokine-inducible superoxide-generating enzyme in adipocytes, which promotes lipolysis through increasing phosphorylation of HSL. This suggests a key role for NOX3-mediated superoxide production in the increased adipocyte lipolysis in inflammatory settings.
Collapse
Affiliation(s)
- Nahla Issa
- Department of Medicine, Cardiology Axis of the Quebec Heart and Lung Research Institute, Laval University, Quebec, QC, Canada
| | - Gabriel Lachance
- Department of Medicine, Cardiology Axis of the Quebec Heart and Lung Research Institute, Laval University, Quebec, QC, Canada
| | - Kerstin Bellmann
- Department of Medicine, Cardiology Axis of the Quebec Heart and Lung Research Institute, Laval University, Quebec, QC, Canada
| | - Mathieu Laplante
- Department of Medicine, Cardiology Axis of the Quebec Heart and Lung Research Institute, Laval University, Quebec, QC, Canada.,Cancer Research Center (CRC), Laval University, Quebec, QC, Canada
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - André Marette
- Department of Medicine, Cardiology Axis of the Quebec Heart and Lung Research Institute, Laval University, Quebec, QC, Canada
| |
Collapse
|
84
|
Bahadoran Z, Mirmiran P, Jeddi S, Momenan AA, Azizi F, Ghasemi A. The Nitrate-Nitrite-Nitric Oxide Pathway: Findings from 20 Years of the Tehran Lipid and Glucose Study. Int J Endocrinol Metab 2018; 16:e84775. [PMID: 30584441 PMCID: PMC6289293 DOI: 10.5812/ijem.84775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 01/09/2023] Open
Abstract
CONTEXT We describe here the contributions of the Tehran lipid and glucose study (TLGS) to understanding different aspects of the nitrate (NO3)-nitrite (NO2)-nitric oxide (NO) pathway in health and disease. EVIDENCE ACQUISITION All English-language documents from the TLGS, focused on NO pathway were searched using the PubMed, Scopus, and Embase databases. RESULTS Reference values of serum concentrations of NO metabolites (nitrate+nitrite or NOx) were 11.5 - 76.4, 10.1 - 65.6, and 10.3 - 66.8 μmol/L in men, women, and the total population, respectively. Circulating NOx was affected by age, smoking habits, menopause status, thyroid hormones, and various pathologic conditions. Elevated serum NOx was related to increased incidence of metabolic syndrome (odds ratio (OR) = 1.75, 95% confidence interval (CI) = 1.19 - 2.59), hypertriglyceridemic-waist phenotype (OR = 1.39, 95% CI = 1.05 - 1.93), chronic kidney disease (OR = 1.86, 95% CI = 1.10 - 3.14) in women, and cardiovascular disease (hazard ratio (HR) = 1.35, 95% CI = 1.01 - 1.80] in the total population. In participants with low vitamin C intake, higher intakes of NO2 (≥ 8.77 mg/d) were accompanied with increased risk of diabetes (HR = 2.43, 95% CI = 1.45 - 4.05). A decreased risk of hypertension (OR = 0.58, 95% CI = 0.33 - 0.98) and chronic kidney disease (OR = 0.50, 95% CI = 0.24 - 0.89) was observed in response to higher intakes of NO2. CONCLUSIONS Circulating NOx is associated with and could predict the risk of metabolic disorders in a general population. Moreover, dietary NO3/NO2 exposure from usual diets seems to contribute to development of noncommunicable diseases.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Diet Therapy, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Momenan
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
85
|
Ojha A, Watve M. Blind fish: An eye opener. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:186-189. [PMID: 30151194 PMCID: PMC6105095 DOI: 10.1093/emph/eoy020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/20/2018] [Indexed: 01/07/2023]
Abstract
Lay Summary: Different species of vertebrates have conditions similar to human obesity, insulin resistance and type 2 diabetes. Increasing number of studies are now revealing that the causes and interrelationships between these states are substantially different in different species. Comparative physiology may turn out to be an eye opener for evolutionary theories of diabetes. Obesity induced insulin resistance is believed to be central to type 2 diabetes. Recent work on Mexican cavefish, Astyanax mexicanus, has revealed a hyperglycemic phenotype similar to human type 2 diabetes but here insulin resistance is the cause of obesity rather than an effect. Instead of developing diabetic complications, the hyperglycemic fish lead a healthy and long life. In addition to fish, insulin resistance in hibernating bears, dolphins, horses, bonnet macaques and chimpanzees demonstrate that the relationship between diet, obesity, insulin sensitivity and diabetes is widely different in different species. Evolutionary hypotheses about type 2 diabetes should explain these differences.
Collapse
Affiliation(s)
- Akanksha Ojha
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune, India
| | - Milind Watve
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune, India
| |
Collapse
|
86
|
Paschoal VA, Belchior T, Amano MT, Burgos-Silva M, Peixoto AS, Magdalon J, Vieira TS, Andrade ML, Moreno MF, Chimin P, Câmara NO, Festuccia WT. Constitutive Activation of the Nutrient Sensor mTORC1 in Myeloid Cells Induced by Tsc1 Deletion Protects Mice from Diet-Induced Obesity. Mol Nutr Food Res 2018; 62:e1800283. [DOI: 10.1002/mnfr.201800283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/27/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Vivian A. Paschoal
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo 05508000 Brazil
| | - Thiago Belchior
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo 05508000 Brazil
| | - Mariane T. Amano
- Department of Immunology, Institute of Biomedical Sciences; University of São Paulo; São Paulo 05508000 Brazil
| | - Marina Burgos-Silva
- Department of Immunology, Institute of Biomedical Sciences; University of São Paulo; São Paulo 05508000 Brazil
| | - Albert S. Peixoto
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo 05508000 Brazil
| | - Juliana Magdalon
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo 05508000 Brazil
- Israelita Albert Einstein Hospital; São Paulo 05652-900 Brazil
| | - Thayna S. Vieira
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo 05508000 Brazil
| | - Maynara L. Andrade
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo 05508000 Brazil
| | - Mayara F. Moreno
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo 05508000 Brazil
| | - Patricia Chimin
- Department of Physical Education; Physical Education and Sports Center; Londrina State University; Londrina 86051-990 Parana Brazil
| | - Niels O. Câmara
- Department of Immunology, Institute of Biomedical Sciences; University of São Paulo; São Paulo 05508000 Brazil
| | - William T. Festuccia
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo 05508000 Brazil
| |
Collapse
|
87
|
Panic A, Stanimirovic J, Obradovic M, Sudar-Milovanovic E, Perovic M, Lackovic M, Petrovic N, Isenovic ER. Estradiol-mediated regulation of hepatic iNOS in obese rats: Impact of Src, ERK1/2, AMPKα, and miR-221. Biotechnol Appl Biochem 2018; 65:797-806. [PMID: 29957877 DOI: 10.1002/bab.1680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/07/2018] [Accepted: 06/26/2018] [Indexed: 01/19/2023]
Abstract
PURPOSE This study aimed to investigate in vivo effects of estradiol on the regulation of hepatic inducible nitric oxide synthase (iNOS) expression in the high fat (HF) diet-induced obesity. Also, we aimed to investigate whether activation of the extracellular signal-regulated kinase (ERK1/2), adenosine monophosphate-activated protein kinase (AMPK), Src kinase, and miR-221 is involved in estradiol-mediated regulation of iNOS in the liver of obese male Wistar rats. Male Wistar rats were fed a standard laboratory diet or a HF diet for 10 weeks. Half of HF rats were treated with estradiol intraperitoneally (40 μg/kg), whereas the other half were placebo-treated 24 H before euthanasia. Results show that estradiol treatment of HF rats decreased hepatic iNOS mRNA (P < 0.05) and protein expression (P < 0.01), the protein levels of p65 subunit of nuclear factor κB (P < 0.05) and ERα (P < 0.05), ERK1/2 phosphorylation (P < 0.001), and ERα/Src kinase association (P < 0.05). By contrast, hepatic Src protein level (P < 0.05), AMPKα phosphorylation (P < 0.05), and miR-221 expression (P < 0.05) were increased in HF rats after estradiol treatment. Our results indicate that estradiol in vivo regulates hepatic iNOS expression in obese rats via molecular mechanisms involving ERK1/2, AMPK, Src, and miR-221 signaling.
Collapse
Affiliation(s)
- Anastasija Panic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Julijana Stanimirovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Milan Obradovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Milan Perovic
- Clinic for Gineacology and Obstetrics "Narodni front,", Belgrade, Serbia
| | - Milena Lackovic
- Clinical Hospital Centre Zemun, Clinic for Internal Medicine, University of Belgrade, Belgrade, Serbia
| | - Nina Petrovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.,Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Esma R Isenovic
- Laboratory of Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
88
|
Ma X, Chen Z, Wang L, Wang G, Wang Z, Dong X, Wen B, Zhang Z. The Pathogenesis of Diabetes Mellitus by Oxidative Stress and Inflammation: Its Inhibition by Berberine. Front Pharmacol 2018; 9:782. [PMID: 30100874 PMCID: PMC6072898 DOI: 10.3389/fphar.2018.00782] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022] Open
Abstract
A substantial knowledge on the pathogenesis of diabetes mellitus (DM) by oxidative stress and inflammation is available. Berberine is a biologically active botanical that can combat oxidative stress and inflammation and thus ameliorate DM, especially type 2 DM. This article describes the potential of berberine against oxidative stress and inflammation with special emphasis on its mechanistic aspects. In diabetic animal studies, the modified levels of proinflammatory cytokines and oxidative stress markers were observed after administering berberine. In renal, fat, hepatic, pancreatic and several others tissues, berberine-mediated suppression of oxidative stress and inflammation was noted. Berberine acted against oxidative stress and inflammation through a very complex mechanism consisting of several kinases and signaling pathways involving various factors, including NF-κB (nuclear factor-κB) and AMPK (AMP-activated protein kinases). Moreover, MAPKs (mitogen-activated protein kinases) and Nrf2 (nuclear factor erythroid-2 related factor 2) also have mechanistic involvement in oxidative stress and inflammation. In spite of above advancements, the mechanistic aspects of the inhibitory role of berberine against oxidative stress and inflammation in diabetes mellitus still necessitate additional molecular studies. These studies will be useful to examine the new prospects of natural moieties against DM.
Collapse
Affiliation(s)
- Xueling Ma
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhongjun Chen
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Le Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gesheng Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zihui Wang
- Chaoyang Hospital, Capital Medical University, Beijing, China
| | - XiaoBo Dong
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Binyu Wen
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhichen Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
89
|
Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, Federico A, Persico M. Role of Oxidative Stress in Pathophysiology of Nonalcoholic Fatty Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9547613. [PMID: 29991976 PMCID: PMC6016172 DOI: 10.1155/2018/9547613] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Liver steatosis without alcohol consumption, namely, nonalcoholic fatty liver disease (NAFLD), is a common hepatic condition that encompasses a wide spectrum of presentations, ranging from simple accumulation of triglycerides in the hepatocytes without any liver damage to inflammation, necrosis, ballooning, and fibrosis (namely, nonalcoholic steatohepatitis) up to severe liver disease and eventually cirrhosis and/or hepatocellular carcinoma. The pathophysiology of fatty liver and its progression is influenced by multiple factors (environmental and genetics), in a "multiple parallel-hit model," in which oxidative stress plays a very likely primary role as the starting point of the hepatic and extrahepatic damage. The aim of this review is to give a comprehensive insight on the present researches and findings on the role of oxidative stress mechanisms in the pathogenesis and pathophysiology of NAFLD. With this aim, we evaluated the available data in basic science and clinical studies in this field, reviewing the most recent works published on this topic.
Collapse
Affiliation(s)
- Mario Masarone
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| | - Valerio Rosato
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| | - Marcello Dallio
- Hepatogastroenterology Division, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonietta Gerarda Gravina
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| | - Andrea Aglitti
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| | - Carmelina Loguercio
- Hepatogastroenterology Division, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Alessandro Federico
- Hepatogastroenterology Division, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marcello Persico
- Internal Medicine and Hepatology Division, Department of Medicine, University of Medicine of Salerno, Salerno, Italy
| |
Collapse
|
90
|
Abstract
Obesity is a worldwide public health concern yet no safe therapies are currently available. The activity of sympathetic neurons is necessary and sufficient for fat mass reduction, via norepinephrine (NE) signaling. Macrophage accumulation in the adipose tissue is thought to play the central role in the onset of obesity, yet their relation to NE has been controversial. We have identified a population of sympathetic neuron-associated macrophages (SAMs) that control obesity via the uptake and clearing of NE. Here we focus on the neuro-immune regulation of obesity by discussing the genetic, cellular and functional signatures of SAMs vis-a-vis adipose tissue macrophages (ATMs).
Collapse
|
91
|
Pérez S, Finamor I, Martí-Andrés P, Pereda J, Campos A, Domingues R, Haj F, Sabater L, de-Madaria E, Sastre J. Role of obesity in the release of extracellular nucleosomes in acute pancreatitis: a clinical and experimental study. Int J Obes (Lond) 2018; 43:158-168. [PMID: 29717278 DOI: 10.1038/s41366-018-0073-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES A high body mass index increases the risk of severe pancreatitis and associated mortality. Our aims were: (1) To determine whether obesity affects the release of extracellular nucleosomes in patients with pancreatitis; (2) To determine whether pancreatic ascites confers lipotoxicity and triggers the release of extracellular nucleosomes in lean and obese rats. METHODS DNA and nucleosomes were determined in plasma from patients with mild or moderately severe acute pancreatitis either with normal or high body mass index (BMI). Lipids from pancreatic ascites from lean and obese rats were analyzed and the associated toxicity measured in vitro in RAW 264.7 macrophages. The inflammatory response, extracellular DNA and nucleosomes were determined in lean or obese rats with pancreatitis after peritoneal lavage. RESULTS Nucleosome levels in plasma from obese patients with mild pancreatitis were higher than in normal BMI patients; these levels markedly increased in obese patients with moderately severe pancreatitis vs. those with normal BMI. Ascites from obese rats exhibited high levels of palmitic, oleic, stearic, and arachidonic acids. Necrosis and histone 4 citrullination-marker of extracellular traps-increased in macrophages incubated with ascites from obese rats but not with ascites from lean rats. Peritoneal lavage abrogated the increase in DNA and nucleosomes in plasma from lean or obese rats with pancreatitis. It prevented fat necrosis and induction of HIF-related genes in lung. CONCLUSIONS Extracellular nucleosomes are intensely released in obese patients with acute pancreatitis. Pancreatitis-associated ascitic fluid triggers the release of extracellular nucleosomes in rats with severe pancreatitis.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain.,Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), 1000, Santa Maria, Brazil
| | - Pablo Martí-Andrés
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain
| | - Javier Pereda
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain
| | - Ana Campos
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosário Domingues
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fawaz Haj
- Department of Nutrition, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Luis Sabater
- Department of Surgery, University of Valencia, University Clinic Hospital, Av. Blasco Ibañez 15, 46010, Valencia, Spain
| | - Enrique de-Madaria
- Department of Gastroenterology, University General Hospital of Alicante, Institute of Sanitary and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
| | - Juan Sastre
- Department of Physiology, School of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjasot, Valencia, Spain.
| |
Collapse
|
92
|
Romero M, Sabaté-Pérez A, Francis VA, Castrillón-Rodriguez I, Díaz-Ramos Á, Sánchez-Feutrie M, Durán X, Palacín M, Moreno-Navarrete JM, Gustafson B, Hammarstedt A, Fernández-Real JM, Vendrell J, Smith U, Zorzano A. TP53INP2 regulates adiposity by activating β-catenin through autophagy-dependent sequestration of GSK3β. Nat Cell Biol 2018; 20:443-454. [PMID: 29593329 DOI: 10.1038/s41556-018-0072-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/23/2018] [Indexed: 12/14/2022]
Abstract
Excessive fat accumulation is a major risk factor for the development of type 2 diabetes mellitus and other common conditions, including cardiovascular disease and certain types of cancer. Here, we identify a mechanism that regulates adiposity based on the activator of autophagy TP53INP2. We report that TP53INP2 is a negative regulator of adipogenesis in human and mouse preadipocytes. In keeping with this, TP53INP2 ablation in mice caused enhanced adiposity, which was characterized by greater cellularity of subcutaneous adipose tissue and increased expression of master adipogenic genes. TP53INP2 modulates adipogenesis through autophagy-dependent sequestration of GSK3β into late endosomes. GSK3β sequestration was also dependent on ESCRT activity. As a result, TP53INP2 promotes greater β-catenin levels and induces the transcriptional activity of TCF/LEF transcription factors. These results demonstrate a link between autophagy, sequestration of GSK3β into late endosomes and inhibition of adipogenesis in vivo.
Collapse
Affiliation(s)
- Montserrat Romero
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alba Sabaté-Pérez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Víctor A Francis
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ignacio Castrillón-Rodriguez
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ángels Díaz-Ramos
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuela Sánchez-Feutrie
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Xavier Durán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Endocrinology, Hospital Joan XXIII, Rovira i Virgili University, Tarragona, Spain.,Institut d'Investigació Sanitaria Pere Virgili (IISPV), Tarragona, Spain
| | - Manuel Palacín
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta', Girona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
| | - Birgit Gustafson
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ann Hammarstedt
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Hospital of Girona 'Dr Josep Trueta', Girona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
| | - Joan Vendrell
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Endocrinology, Hospital Joan XXIII, Rovira i Virgili University, Tarragona, Spain.,Institut d'Investigació Sanitaria Pere Virgili (IISPV), Tarragona, Spain
| | - Ulf Smith
- Department of Molecular and Clinical Medicine, The Lundberg Laboratory for Diabetes Research, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain. .,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
93
|
Li T, Bai B, Tian C, Wang H, Jiang D, Ma F, Shan M. High sucrose/fat diet and isosorbide mononitrate increase insulin resistance, nitric oxide production and myocardial apoptosis in a hypertensive rat model. Mol Med Rep 2018; 17:6789-6795. [PMID: 29488615 DOI: 10.3892/mmr.2018.8651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 12/07/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the association between insulin resistance (IR), nitric oxide (NO) production and myocardial apoptosis in a background of coexisting hypertension in a rodent animal model. A hypertensive rat model was established by feeding Wistar and spontaneously hypertensive rats (SHR) with a high sucrose/fat (HSF) diet for 12 weeks, in conjunction with isosorbide mononitrate (ISMN). Increased IR, NO content, apoptotic gene and protein expression, and morphological alterations within rat myocardium were evaluated. Following a total of 12 weeks of feeding with HSF and ISMN resulted in increased IR and NO content within the myocardial tissue of Wistar and SHR rats. HSF and ISMN activated myocardial apoptosis by downregulating the gene transcription and protein expression levels of the anti‑apoptotic B‑cell lymphoma 2 (Bcl‑2), and increasing the pro‑apoptotic Bcl‑2 associated X protein. Apoptosis was demonstrated by DNA fragmentation in terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labelling assay. In all experiments, the combination of HSF and ISMN was associated with more pronounced effects, indicating the possible synergistic effects. In addition, the correlation analysis in the Wistar rats fed with HSF only, revealed a positive association between NO production and IR. The results of the present study indicated that HSF and ISMN simultaneously increased IR, NO production and myocardial apoptosis in the hypertensive rat model, and may therefore contribute to investigations into the long‑term clinical use of ISMN in hypertensive patients.
Collapse
Affiliation(s)
- Ting Li
- Department of Endocrinology and Metabolic Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Bing Bai
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenguang Tian
- Department of Endocrinology and Metabolic Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Huihui Wang
- Department of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Deyue Jiang
- Department of Endocrinology and Metabolic Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Fangfei Ma
- Department of Endocrinology and Metabolic Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Mengting Shan
- Department of Endocrinology and Metabolic Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| |
Collapse
|
94
|
Targeted disruption of the iNOS gene improves adipose tissue inflammation and fibrosis in leptin-deficient ob/ob mice: role of tenascin C. Int J Obes (Lond) 2018; 42:1458-1470. [PMID: 29449623 DOI: 10.1038/s41366-018-0005-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity is related to a dynamic extracellular matrix (ECM) remodeling, which involves the synthesis and degradation of different proteins, such as tenascin C (TNC) in the adipose tissue (AT). Given the functional relationship between leptin and inducible nitric oxide synthase (iNOS), our aim was to analyze the impact of the absence of the iNOS gene in AT inflammation and ECM remodeling in ob/ob mice. SUBJECTS/METHODS The expression of genes involved in inflammation and ECM remodeling was evaluated in 10-week-old male double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes as well as in ob/ob mice classified into three groups [control, leptin-treated (1 mg kg-1 day-1) and pair-fed]. RESULTS Leptin deficiency increased inflammation and fibrosis in AT. As expected, leptin treatment improved the obesity phenotype. iNOS deficiency in ob/ob mice improved insulin sensitivity, AT inflammation, and ECM remodeling, as evidenced by lower AT macrophage infiltration and collagen deposition, a downregulation of proinflammatory and profibrogenic genes Tnf, Emr1, Hif1a, Col6a1, Col6a3, and Tnc, as well as lower circulating TNC levels. Interestingly, leptin upregulated TNC expression and release in 3T3-L1 adipocytes, and iNOS knockdown in 3T3-L1 fat cells produced a significant decrease in basal and leptin-induced Tnc expression. CONCLUSIONS Ablation of iNOS in leptin-deficient mice improved AT inflammation and ECM remodeling-related genes, attenuating fibrosis, and metabolic dysfunction. The activation of iNOS by leptin is necessary for the synthesis and secretion of TNC in adipocytes, suggesting an important role of this alarmin in the development of AT inflammation and fibrosis.
Collapse
|
95
|
lyoussi B, Cherkaoui-Tangi K, Morel N, Wibo M. Characterization of vascular dysregulation in meriones shawi after high-calorie diet feeding. Clin Exp Hypertens 2018; 40:353-362. [PMID: 29420089 DOI: 10.1080/10641963.2017.1377219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Badiaa lyoussi
- Laboratoire de physiologie-pharmacologie et santé environnementale, Faculté des Sciences Dhar-Mahraz, Université Sidi Mohamed Ben Abdallah, POBox 1976 Fès Atlas, Fès, Morocco
| | - khadija Cherkaoui-Tangi
- Laboratoire de physiologie-pharmacologie et santé environnementale, Faculté des Sciences Dhar-Mahraz, Université Sidi Mohamed Ben Abdallah, POBox 1976 Fès Atlas, Fès, Morocco
- Secteur des Sciences de la Santé, Université catholique de Louvain, Bruxelles, Belgium
| | - Nicole Morel
- Secteur des Sciences de la Santé, Université catholique de Louvain, Bruxelles, Belgium
| | - Maurice Wibo
- Secteur des Sciences de la Santé, Université catholique de Louvain, Bruxelles, Belgium
| |
Collapse
|
96
|
Carelli S, Colli M, Vinci V, Caviggioli F, Klinger M, Gorio A. Mechanical Activation of Adipose Tissue and Derived Mesenchymal Stem Cells: Novel Anti-Inflammatory Properties. Int J Mol Sci 2018; 19:ijms19010267. [PMID: 29337886 PMCID: PMC5796213 DOI: 10.3390/ijms19010267] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/29/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The adipose tissue is a source of inflammatory proteins, such as TNF, IL-6, and CXCL8. Most of their production occurs in macrophages that act as scavengers of dying adipocytes. The application of an orbital mechanical force for 6-10 min at 97 g to the adipose tissue, lipoaspirated and treated according to Coleman procedures, abolishes the expression of TNF-α and stimulates the expression of the anti-inflammatory protein TNF-stimulated gene-6 (TSG-6). This protein had protective and anti-inflammatory effects when applied to animal models of rheumatic diseases. We examined biopsy, lipoaspirate, and mechanically activated fat and observed that in addition to the increased TSG-6, Sox2, Nanog, and Oct4 were also strongly augmented by mechanical activation, suggesting an effect on stromal cell stemness. Human adipose tissue-derived mesenchymal stem cells (hADSCs), produced from activated fat, grow and differentiate normally with proper cell surface markers and chromosomal integrity, but their anti-inflammatory action is far superior compared to those mesenchymal stem cells (MSCs) obtained from lipoaspirate. The expression and release of inflammatory cytokines from THP-1 cells was totally abolished in mechanically activated adipose tissue-derived hADSCs. In conclusion, we report that the orbital shaking of adipose tissue enhances its anti-inflammatory properties, and derived MSCs maintain such enhanced activity.
Collapse
Affiliation(s)
- Stephana Carelli
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", University of Milan, 20142 Milan, Italy.
| | - Mattia Colli
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", University of Milan, 20142 Milan, Italy.
| | - Valeriano Vinci
- Humanitas Research Hospital, Plastic Surgery Unit, Via Manzoni 56, 20089 Rozzano, Italy.
| | - Fabio Caviggioli
- Multimedica San Giuseppe Hospital, Plastic Surgery Unit, Via San Vittore 12, 20123 Milan, Italy.
| | - Marco Klinger
- Humanitas Research Hospital, Plastic Surgery Unit, Via Manzoni 56, 20089 Rozzano, Italy.
| | - Alfredo Gorio
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
97
|
Araujo HN, Victório JA, Valgas da Silva CP, Sponton ACS, Vettorazzi JF, de Moraes C, Davel AP, Zanesco A, Delbin MA. Anti-contractile effects of perivascular adipose tissue in thoracic aorta from rats fed a high-fat diet: role of aerobic exercise training. Clin Exp Pharmacol Physiol 2017; 45:293-302. [PMID: 29265399 DOI: 10.1111/1440-1681.12882] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Hygor N. Araujo
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas SP Brazil
| | - Jamaira A. Victório
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas SP Brazil
| | - Carmem P. Valgas da Silva
- Department of Physical Education; Institute of Biosciences; São Paulo State University (UNESP); Rio Claro SP Brazil
| | - Amanda C. S. Sponton
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas SP Brazil
| | - Jean F. Vettorazzi
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas SP Brazil
| | - Camila de Moraes
- School of Physical Education and Sport of Ribeirão Preto; University of São Paulo (USP); RibeirãoPreto SP Brazil
| | - Ana P. Davel
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas SP Brazil
| | | | - Maria A. Delbin
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas SP Brazil
| |
Collapse
|
98
|
High-fat diet-induced obesity impairs insulin signaling in lungs of allergen-challenged mice: Improvement by resveratrol. Sci Rep 2017; 7:17296. [PMID: 29229986 PMCID: PMC5725490 DOI: 10.1038/s41598-017-17558-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance plays an important role in obesity-associated asthma exacerbations. Using a murine model of allergic airway inflammation, we evaluated the insulin signaling transmission in lungs of obese compared with lean mice. We further evaluated the effects of the polyphenol resveratrol in the pulmonary insulin signaling. In lean mice, insulin stimulation significantly increased phosphorylations of AKT, insulin receptor substrate 1 (IRS-1) and insulin receptor β (IRβ) in lung tissue and isolated bronchi (p < 0.05), which were impaired in obese group. Instead, obese mice displayed increased tyrosine nitrations of AKT, IRβ and IRS-1 (p < 0.05). Two-week therapy of obese mice with resveratrol (100 mg/kg/day) restored insulin-stimulated AKT, IRS-1 and IRβ phosphorylations, and simultaneously blunted the tyrosine nitration of these proteins. Additionally, the c-Jun N-terminal kinase (JNK) and inhibitor of NF-κB Kinase (IκK) phosphorylations were significantly increased in obese group, an effect normalized by resveratrol. In separate experiments, the inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (20 mg/kg/day, three weeks) mimicked the protective effects exerted by resveratrol in lungs of obese mice. Lungs of obese mice display nitrosative-associated impairment of insulin signaling, which is reversed by resveratrol. Polyphenols may be putative drugs to attenuate asthma exacerbations in obese individuals.
Collapse
|
99
|
Martin B, Caron N, Jadot I, Colombaro V, Federici G, Depommier C, Declèves AÉ. Evaluation of inducible nitric oxide synthase inhibition on kidney function and structure in high-fat diet-induced kidney disease. Exp Physiol 2017; 103:125-140. [PMID: 28944982 DOI: 10.1113/ep086594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? The metabolic pathways regulating the effects of obesity on the kidney remain unknown. We sought to determine whether inducible nitric oxide synthase (iNOS) is involved in the underlying mechanisms of high-fat diet-induced kidney disease using a specific iNOS inhibitor, N6-(1-iminoethyl)-l-lysine hydrochloride (L-NIL). What is the main finding and its importance? We did not demonstrate an upregulation of iNOS renal expression after high caloric intake, suggesting that iNOS might not be a crucial player in the development of obesity-induced kidney disease. Although L-NIL treatment clearly ameliorated systemic metabolic parameters, the effect on loss of renal function, impairment of tubular integrity, oxidative stress and inflammation appeared to be more moderate. Central obesity is related to caloric excess, promoting deleterious cellular responses in targeted organs. Nitric oxide (NO) has been determined as a key player in the pathogenesis of metabolic diseases. Here, we investigated the implication of inducible NO synthase (iNOS) in the development of obesity-induced kidney disease. C57Bl/6 male mice were randomized to a low-fat diet (LFD) or a high-fat diet (HFD) and treated with N6-(1-iminoethyl)-l-lysine hydrochloride (L-NIL), a specific iNOS inhibitor, for 16 weeks. Mice fed an HFD exhibited a significant increase in body weight, fasting blood glucose and plasma concentrations of non-esterified fatty acids, triglyceride and insulin. Inhibition of iNOS prevented these changes in mice fed an HFD. Interestingly, the significant increase in albuminuria and mesangial matrix expansion were not ameliorated with L-NIL, whereas a significant decrease in proteinuria, N-acetyl-β-d-glucosaminidase excretion and renal triglyceride content were found, suggesting that iNOS inhibition is more suitable for tubular function than glomerular function. The urinary concentration of hydrogen peroxide, a stable product of reactive oxygen species production, that was found to be increased in mice fed an HFD, was significantly reduced with L-NIL. Finally, despite a moderate effect of L-NIL on inflammatory processes in the kidney, we demonstrated a positive impact of this treatment on adipocyte hypertrophy and on adipose tissue inflammation. These results suggest that inhibition of iNOS leads to a moderate beneficial effect on kidney function in mice fed an HFD. Further studies are needed for better understanding of the role of iNOS in obesity-induced kidney disease.
Collapse
Affiliation(s)
- Blanche Martin
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium
| | - Nathalie Caron
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium
| | - Inès Jadot
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium
| | - Vanessa Colombaro
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium
| | - Gabrielle Federici
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium
| | - Clara Depommier
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium
| | - Anne-Émilie Declèves
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium.,Laboratory of Molecular Biology, University of Mons (UMONS), Mons, Belgium
| |
Collapse
|
100
|
Gupta A, Beg M, Kumar D, Shankar K, Varshney S, Rajan S, Srivastava A, Singh K, Sonkar S, Mahdi AA, Dikshit M, Gaikwad AN. Chronic hyper-leptinemia induces insulin signaling disruption in adipocytes: Implications of NOS2. Free Radic Biol Med 2017; 112:93-108. [PMID: 28739528 DOI: 10.1016/j.freeradbiomed.2017.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 07/11/2017] [Accepted: 07/20/2017] [Indexed: 01/12/2023]
Abstract
Leptin, following its discovery, has developed a formidable interest in the scientific community to delineate its contribution towards overall metabolic homeostasis. Contradictory reports have been published on leptin administration effects on whole body insulin sensitivity. Following late reports, we surveyed human serum leptin levels along with other metabolic parameters including BMI and HOMA-IR. We found a positive correlation between leptin levels and insulin resistance parameters. Considering the presence of the long form of leptin receptor on adipocytes, we explored the effects of chronic physiological hyper-leptinemic exposure on adipocyte insulin sensitivity. Chronic leptin (50ng/ml) treatment in 3T3-L1 adipocytes decreased insulin-induced phosphorylation of nodal insulin signaling proteins along with reduced glucose uptake. Metabolic flux studies indicated mitochondrial dysfunction and reduced oxygen consumption rate. Leptin treatment also increased both cellular and mitochondrial superoxide levels concomitant to increased expression of nitric oxide synthase-2 (NOS2). Further, pharmacological depletion of NOS2 reversed leptin mediated effects on insulin signaling. In-vivo implantation of leptin osmotic pumps in C57BL/6 mice also decreased insulin responsiveness. Interestingly, these effects were lacking in NOS2 knockout strain. In conclusion, our studies put forward a potential link between leptin and adipocyte insulin responsiveness in an NOS2 dependent manner.
Collapse
Affiliation(s)
- Abhishek Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Muheeb Beg
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Durgesh Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kripa Shankar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Salil Varshney
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sujith Rajan
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ankita Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kalpana Singh
- Department of Biochemistry, King George's Medical University, Lucknow 226003, India
| | - Satyendra Sonkar
- Department of Internal Medicine, King George's Medical University, Lucknow 226003, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow 226003, India
| | - Madhu Dikshit
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Nilkanth Gaikwad
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|