51
|
von Chamier L, Laine RF, Jukkala J, Spahn C, Krentzel D, Nehme E, Lerche M, Hernández-Pérez S, Mattila PK, Karinou E, Holden S, Solak AC, Krull A, Buchholz TO, Jones ML, Royer LA, Leterrier C, Shechtman Y, Jug F, Heilemann M, Jacquemet G, Henriques R. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 2021; 12:2276. [PMID: 33859193 PMCID: PMC8050272 DOI: 10.1038/s41467-021-22518-0] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/10/2021] [Indexed: 02/02/2023] Open
Abstract
Deep Learning (DL) methods are powerful analytical tools for microscopy and can outperform conventional image processing pipelines. Despite the enthusiasm and innovations fuelled by DL technology, the need to access powerful and compatible resources to train DL networks leads to an accessibility barrier that novice users often find difficult to overcome. Here, we present ZeroCostDL4Mic, an entry-level platform simplifying DL access by leveraging the free, cloud-based computational resources of Google Colab. ZeroCostDL4Mic allows researchers with no coding expertise to train and apply key DL networks to perform tasks including segmentation (using U-Net and StarDist), object detection (using YOLOv2), denoising (using CARE and Noise2Void), super-resolution microscopy (using Deep-STORM), and image-to-image translation (using Label-free prediction - fnet, pix2pix and CycleGAN). Importantly, we provide suitable quantitative tools for each network to evaluate model performance, allowing model optimisation. We demonstrate the application of the platform to study multiple biological processes.
Collapse
Affiliation(s)
- Lucas von Chamier
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Romain F Laine
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
| | - Johanna Jukkala
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Christoph Spahn
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Daniel Krentzel
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Elias Nehme
- Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Martina Lerche
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sara Hernández-Pérez
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Pieta K Mattila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
| | - Eleni Karinou
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Séamus Holden
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | | | - Alexander Krull
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for Physics of Complex Systems, Dresden, Germany
| | - Tim-Oliver Buchholz
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin L Jones
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | | | | | - Yoav Shechtman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Florian Jug
- Center for Systems Biology Dresden (CSBD), Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Fondatione Human Technopole, Milano, Italy
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.
| | - Ricardo Henriques
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK.
- The Francis Crick Institute, London, UK.
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
52
|
Zeugolis DI. Bioinspired in vitro microenvironments to control cell fate: focus on macromolecular crowding. Am J Physiol Cell Physiol 2021; 320:C842-C849. [PMID: 33656930 DOI: 10.1152/ajpcell.00380.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of therapeutic regenerative medicine and accurate drug discovery cell-based products requires effective, with respect to obtaining sufficient numbers of viable, proliferative, and functional cell populations, cell expansion ex vivo. Unfortunately, traditional cell culture systems fail to recapitulate the multifaceted tissue milieu in vitro, resulting in cell phenotypic drift, loss of functionality, senescence, and apoptosis. Substrate-, environment-, and media-induced approaches are under intense investigation as a means to maintain cell phenotype and function while in culture. In this context, herein, the potential of macromolecular crowding, a biophysical phenomenon with considerable biological consequences, is discussed.
Collapse
Affiliation(s)
- Dimitrios I Zeugolis
- Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland.,Faculty of Biomedical Sciences, Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), Università della Svizzera Italiana, Lugano, Switzerland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
53
|
Sulfated glycosaminoglycans in decellularized placenta matrix as critical regulators for cutaneous wound healing. Acta Biomater 2021; 122:199-210. [PMID: 33453408 DOI: 10.1016/j.actbio.2020.12.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Perinatal-related tissues, such as the placenta, umbilical cord, and amniotic membrane, are generally discarded after delivery and are increasingly attracting attention as alternative sources for decellularized extracellular matrix (dECM) isolation. Recent studies indicate that glycosaminoglycans (GAGs) in the dECM play key roles during tissue regeneration. However, the dECM is organ specific, and the glycosaminoglycanomics of dECMs from perinatal tissues and the regulatory function of GAGs have been poorly investigated. In this study, we explored the glycosaminoglycanomics of dECMs from the placenta, umbilical cord and amniotic membrane. We hypothesized that the therapeutic effects of dECMs are related to the detailed composition of GAGs. Hydrogels of dECM derived from perinatal tissues were generated, and glycosaminoglycanomics analysis was employed to identify the cues that promote tissue repair and regeneration in a murine cutaneous wound-healing model. We utilized highly sensitive liquid chromatography-tandem mass spectrometry for glycosaminoglycanomics analysis. Our results revealed that placenta-derived dECM (PL-dECM) hydrogel has higher contents of chondroitin sulfate (CS) and heparan sulfate (HS). In addition, molecular imaging showed that the PL-dECM hydrogel exerted the best anti-inflammatory and proangiogenic effects in the skin wound healing model. Further in vitro analyses demonstrated that CS with 6-O-sulfo group (CS-6S) has an anti-inflammatory effect, while HS with 6-O-sulfo group (HS-6S) plays a crucial role in angiogenesis. In conclusion, this study highlights the critical roles of GAGs in perinatal tissue-derived dECMs by promoting angiogenesis and inhibiting inflammation and indicates that it is feasible to utilize 6-sulfated GAG-enriched placental dECM hydrogel as an attractive candidate for tissue engineering and drug delivery.
Collapse
|
54
|
EPB41L5 controls podocyte extracellular matrix assembly by adhesome-dependent force transmission. Cell Rep 2021; 34:108883. [PMID: 33761352 DOI: 10.1016/j.celrep.2021.108883] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/21/2020] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
The integrity of the kidney filtration barrier essentially relies on the balanced interplay of podocytes and the glomerular basement membrane (GBM). Here, we show by analysis of in vitro and in vivo models that a loss of the podocyte-specific FERM-domain protein EPB41L5 results in impaired extracellular matrix (ECM) assembly. By using quantitative proteomics analysis of the secretome and matrisome, we demonstrate a shift in ECM composition characterized by diminished deposition of core GBM components, such as LAMA5. Integrin adhesome proteomics reveals that EPB41L5 recruits PDLIM5 and ACTN4 to integrin adhesion complexes (IACs). Consecutively, EPB41L5 knockout podocytes show insufficient maturation of integrin adhesion sites, which translates into impaired force transmission and ECM assembly. These observations build the framework for a model in which EPB41L5 functions as a cell-type-specific regulator of the podocyte adhesome and controls a localized adaptive module in order to prevent podocyte detachment and thereby ensures GBM integrity.
Collapse
|
55
|
Saygili E, Yildiz-Ozturk E, Green MJ, Ghaemmaghami AM, Yesil-Celiktas O. Human lung-on-chips: Advanced systems for respiratory virus models and assessment of immune response. BIOMICROFLUIDICS 2021; 15:021501. [PMID: 33791050 PMCID: PMC7990507 DOI: 10.1063/5.0038924] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/15/2021] [Indexed: 05/06/2023]
Abstract
Respiratory viral infections are leading causes of death worldwide. A number of human respiratory viruses circulate in all age groups and adapt to person-to-person transmission. It is vital to understand how these viruses infect the host and how the host responds to prevent infection and onset of disease. Although animal models have been widely used to study disease states, incisive arguments related to poor prediction of patient responses have led to the development of microfluidic organ-on-chip models, which aim to recapitulate organ-level physiology. Over the past decade, human lung chips have been shown to mimic many aspects of the lung function and its complex microenvironment. In this review, we address immunological responses to viral infections and elaborate on human lung airway and alveolus chips reported to model respiratory viral infections and therapeutic interventions. Advances in the field will expedite the development of therapeutics and vaccines for human welfare.
Collapse
Affiliation(s)
- Ecem Saygili
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Ece Yildiz-Ozturk
- Translational Pulmonary Research Center, Ege University, 35100 Izmir, Turkey
| | | | | | | |
Collapse
|
56
|
Morales X, Cortés-Domínguez I, Ortiz-de-Solorzano C. Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels. Gels 2021; 7:17. [PMID: 33673091 PMCID: PMC7930983 DOI: 10.3390/gels7010017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding how cancer cells migrate, and how this migration is affected by the mechanical and chemical composition of the extracellular matrix (ECM) is critical to investigate and possibly interfere with the metastatic process, which is responsible for most cancer-related deaths. In this article we review the state of the art about the use of hydrogel-based three-dimensional (3D) scaffolds as artificial platforms to model the mechanobiology of cancer cell migration. We start by briefly reviewing the concept and composition of the extracellular matrix (ECM) and the materials commonly used to recreate the cancerous ECM. Then we summarize the most relevant knowledge about the mechanobiology of cancer cell migration that has been obtained using 3D hydrogel scaffolds, and relate those discoveries to what has been observed in the clinical management of solid tumors. Finally, we review some recent methodological developments, specifically the use of novel bioprinting techniques and microfluidics to create realistic hydrogel-based models of the cancer ECM, and some of their applications in the context of the study of cancer cell migration.
Collapse
Affiliation(s)
| | | | - Carlos Ortiz-de-Solorzano
- IDISNA, Ciberonc and Solid Tumors and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; (X.M.); (I.C.-D.)
| |
Collapse
|
57
|
|
58
|
Yemanyi F, Vranka J, Raghunathan VK. Crosslinked Extracellular Matrix Stiffens Human Trabecular Meshwork Cells Via Dysregulating β-catenin and YAP/TAZ Signaling Pathways. Invest Ophthalmol Vis Sci 2021; 61:41. [PMID: 32832971 PMCID: PMC7452853 DOI: 10.1167/iovs.61.10.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The purpose of this study was to determine whether genipin-induced crosslinked cell-derived matrix (XCDM) precipitates fibrotic phenotypes in human trabecular meshwork (hTM) cells by dysregulating β-catenin and Yes-associated protein (YAP)/ transcriptional coactivator with PDZ-binding motif (TAZ) signaling pathways. Methods Cell-derived matrices were treated with control or genipin for 5 hours to obtain respective uncrosslinked (CDM) and XCDMs and characterized. hTM cells were seeded on these matrices with/without Wnt pathway modulators in serum-free media for 24 hours. Elastic modulus, gene, and protein (whole cell and subcellular fractions) expressions of signaling mediators and targets of Wnt/β-catenin and YAP/TAZ pathways were determined. Results At the highest genipin concentration (10% XCDM), XCDM had increased immunostaining of N-ε(γ-glutamyl)-lysine crosslinks, appeared morphologically fused, and was stiffer (5.3-fold, P < 0.001). On 10% XCDM, hTM cells were 7.8-fold (P < 0.001) stiffer, total β-catenin was unchanged, pβ-catenin was elevated, and pGSK3β was suppressed. Although 10% XCDM had no effect on cytoplasmic β-catenin levels, it reduced nuclear β-catenin, cadherin 11, and key Wnt target genes/proteins. The 10% XCDM increased total TAZ, decreased pTAZ, and increased cytoplasmic TAZ levels in hTM cells. The 10% XCDM increased total YAP, reduced nuclear YAP levels, and critical YAP/TAZ target genes/proteins. Wnt activation rescued hTM cells from 10% XCDM-induced stiffening associated with increased nuclear β-catenin. Conclusions Increased cytoplasmic TAZ may inhibit β-catenin from its nuclear shuttling or regulating cadherin 11 important for aqueous homeostasis. Elevated cytoplasmic TAZ may inhibit YAP's probable homeostatic function in the nucleus. Together, TAZ's cytoplasmic localization may be an important downstream event of how increased TM extracellular matrix (ECM) crosslinking may cause increased stiffness and ocular hypertension in vivo. However, Wnt pathway activation may ameliorate ocular hypertensive phenotypes induced by crosslinked ECM.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, United States
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, United States
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, United States.,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
59
|
Systematic alteration of in vitro metabolic environments reveals empirical growth relationships in cancer cell phenotypes. Cell Rep 2021; 34:108647. [PMID: 33472066 PMCID: PMC7877896 DOI: 10.1016/j.celrep.2020.108647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/15/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023] Open
Abstract
Cancer cells, like microbes, live in complex metabolic environments. Recent evidence suggests that microbial behavior across metabolic environments is well described by simple empirical growth relationships, or growth laws. Do such empirical growth relationships also exist in cancer cells? To test this question, we develop a high-throughput approach to extract quantitative measurements of cancer cell behaviors in systematically altered metabolic environments. Using this approach, we examine relationships between growth and three frequently studied cancer phenotypes: drug-treatment survival, cell migration, and lactate overflow. Drug-treatment survival follows simple linear growth relationships, which differ quantitatively between chemotherapeutics and EGFR inhibition. Cell migration follows a weak grow-and-go growth relationship, with substantial deviation in some environments. Finally, lactate overflow is mostly decoupled from growth rate and is instead determined by the cells’ ability to maintain high sugar uptake rates. Altogether, this work provides a quantitative approach for formulating empirical growth laws of cancer. Kochanowski et al. quantify cancer cell phenotypes across systematically altered in vitro metabolic environments to search for phenotype-growth relationships, similar to the growth laws found in microbes. Three case studies highlight examples in which such growth relationships are clearly operating (cancer drug survival), weakly present (cell migration), or absent (lactate overflow).
Collapse
|
60
|
Abstract
The extracellular matrix (ECM) is the noncellular compartment of living organisms and is formed of a complex network of cross-linked proteins, which is collectively known as the matrisome. Apart from providing the structure for an organism, cells interact and thereby communicate with the ECM. Cells interact with their surrounding ECM using cell-surface receptors, such as integrins. Upon integrin engagement with the ECM, cytoskeletal proteins are recruited to integrins and form a molecular protein complex known as the integrin adhesome. Global descriptions of the matrisome and integrin adhesome have been proposed using in silico bioinformatics approaches, as well as through biochemical enrichment of matrisome and adhesome fractions coupled with mass spectrometry-based proteomic analyses, providing inventories of their compositions in different contexts. Here, methods are described for the computational downstream analyses of matrisome and adhesome mass spectrometry datasets that are accessible to wet lab biologists, which include comparing datasets to in silico descriptions, generating interaction networks and performing functional ontological analyses.
Collapse
|
61
|
Usansky I, Jaworska P, Asti L, Kenny FN, Hobbs C, Sofra V, Song H, Logan M, Graham A, Shaw TJ. A developmental basis for the anatomical diversity of dermis in homeostasis and wound repair. J Pathol 2020; 253:315-325. [PMID: 33197044 PMCID: PMC7898902 DOI: 10.1002/path.5589] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
The dermis has disparate embryonic origins; abdominal dermis develops from lateral plate mesoderm, dorsal dermis from paraxial mesoderm and facial dermis from neural crest. However, the cell and molecular differences and their functional implications have not been described. We hypothesise that the embryonic origin of the dermis underpins regional characteristics of skin, including its response to wounding. We have compared abdomen, back and cheek, three anatomical sites representing the distinct embryonic tissues from which the dermis can arise, during homeostasis and wound repair using RNA sequencing, histology and fibroblast cultures. Our transcriptional analyses demonstrate differences between body sites that reflect their diverse origins. Moreover, we report histological and transcriptional variations during a wound response, including site differences in ECM composition, cell migration and proliferation, and re‐enactment of distinct developmental programmes. These findings reveal profound regional variation in the mechanisms of tissue repair. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ivy Usansky
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| | - Patrycja Jaworska
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| | - Ludovica Asti
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| | - Fiona N Kenny
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Carl Hobbs
- Wolfson Centre for Age-Related Disease, King's College London, London, UK
| | - Vasiliki Sofra
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| | - Hanfei Song
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| | - Malcolm Logan
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Anthony Graham
- Department of Developmental Neurobiology, King's College London, London, UK
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, King's College London, London, UK
| |
Collapse
|
62
|
Assunção M, Dehghan-Baniani D, Yiu CHK, Später T, Beyer S, Blocki A. Cell-Derived Extracellular Matrix for Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2020; 8:602009. [PMID: 33344434 PMCID: PMC7744374 DOI: 10.3389/fbioe.2020.602009] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cell-derived extracellular matrices (CD-ECMs) captured increasing attention since the first studies in the 1980s. The biological resemblance of CD-ECMs to their in vivo counterparts and natural complexity provide them with a prevailing bioactivity. CD-ECMs offer the opportunity to produce microenvironments with costumizable biological and biophysical properties in a controlled setting. As a result, CD-ECMs can improve cellular functions such as stemness or be employed as a platform to study cellular niches in health and disease. Either on their own or integrated with other materials, CD-ECMs can also be utilized as biomaterials to engineer tissues de novo or facilitate endogenous healing and regeneration. This review provides a brief overview over the methodologies used to facilitate CD-ECM deposition and manufacturing. It explores the versatile uses of CD-ECM in fundamental research and therapeutic approaches, while highlighting innovative strategies. Furthermore, current challenges are identified and it is accentuated that advancements in methodologies, as well as innovative interdisciplinary approaches are needed to take CD-ECM-based research to the next level.
Collapse
Affiliation(s)
- Marisa Assunção
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dorsa Dehghan-Baniani
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Him Kendrick Yiu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Thomas Später
- Institute for Clinical and Experimental Surgery, University of Saarland, Saarbrücken, Germany
| | - Sebastian Beyer
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anna Blocki
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
63
|
Zaghdoudi S, Decaup E, Belhabib I, Samain R, Cassant‐Sourdy S, Rochotte J, Brunel A, Schlaepfer D, Cros J, Neuzillet C, Strehaiano M, Alard A, Tomasini R, Rajeeve V, Perraud A, Mathonnet M, Pearce OMT, Martineau Y, Pyronnet S, Bousquet C, Jean C. FAK activity in cancer-associated fibroblasts is a prognostic marker and a druggable key metastatic player in pancreatic cancer. EMBO Mol Med 2020; 12:e12010. [PMID: 33025708 PMCID: PMC7645544 DOI: 10.15252/emmm.202012010] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are considered the most abundant type of stromal cells in pancreatic ductal adenocarcinoma (PDAC), playing a critical role in tumour progression and chemoresistance; however, a druggable target on CAFs has not yet been identified. Here we report that focal adhesion kinase (FAK) activity (evaluated based on 397 tyrosine phosphorylation level) in CAFs is highly increased compared to its activity in fibroblasts from healthy pancreas. Fibroblastic FAK activity is an independent prognostic marker for disease-free and overall survival of PDAC patients (cohort of 120 PDAC samples). Genetic inactivation of FAK within fibroblasts (FAK kinase-dead, KD) reduces fibrosis and immunosuppressive cell number within primary tumours and dramatically decreases tumour spread. FAK pharmacologic or genetic inactivation reduces fibroblast migration/invasion, decreases extracellular matrix (ECM) expression and deposition by CAFs, modifies ECM track generation and negatively impacts M2 macrophage polarization and migration. Thus, FAK activity within CAFs appears as an independent PDAC prognostic marker and a druggable driver of tumour cell invasion.
Collapse
Affiliation(s)
- Sonia Zaghdoudi
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Emilie Decaup
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Ismahane Belhabib
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Rémi Samain
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Stéphanie Cassant‐Sourdy
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Julia Rochotte
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Alexia Brunel
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - David Schlaepfer
- Department of Reproductive Medicine Moores Cancer CenterUniversity of California San DiegoLa JollaCAUSA
| | - Jérome Cros
- Department of PathologyBeaujon HospitalINSERM U1149ClichyFrance
| | - Cindy Neuzillet
- Medical Oncology DepartmentCurie InstituteVersailles Saint‐Quentin UniversitySaint‐CloudFrance
| | - Manon Strehaiano
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Amandine Alard
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | | | - Vinothini Rajeeve
- Centre for Genomics and Computational BiologyBarts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Aurélie Perraud
- EA 3842 Laboratory, Medicine and Pharmacy FacultiesLimoges UniversityLimogesFrance
| | - Muriel Mathonnet
- EA 3842 Laboratory, Medicine and Pharmacy FacultiesLimoges UniversityLimogesFrance
| | - Oliver MT Pearce
- Centre for Tumour MicroenvironmentBarts Cancer InstituteLondonUK
| | - Yvan Martineau
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Stéphane Pyronnet
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| | - Christine Jean
- Cancer Research Center of Toulouse (CRCT)team 6 “Protein synthesis & secretion in carcinogenesis”Equipe labellisée Ligue Contre Le CancerLabex TOUCANINSERM UMR 1037‐ University Toulouse III Paul SabatierToulouseFrance
| |
Collapse
|
64
|
Parvanian S, Yan F, Su D, Coelho-Rato LS, Venu AP, Yang P, Zou X, Jiu Y, Chen H, Eriksson JE, Cheng F. Exosomal vimentin from adipocyte progenitors accelerates wound healing. Cytoskeleton (Hoboken) 2020; 77:399-413. [PMID: 32978896 DOI: 10.1002/cm.21634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023]
Abstract
Adipose stem cell-derived exosomes have great potential in accelerating cutaneous wound healing by optimizing fibroblast activities. Recent studies have demonstrated that exosomes play an active role in the transport of functional cytoskeletal proteins such as vimentin. Previously we showed that vimentin serves as a coordinator of the healing process. Therefore, we hypothesized that vimentin incorporated into the exosomes may contribute to mediate fibroblast activities in wound healing. Our results revealed that exosomal vimentin from adipocyte progenitor cells acts as a promoter of fibroblast proliferation, migration, and ECM secretion. Furthermore, our in vitro and in vivo experiments provide evidence that exosomal vimentin shortens the healing time and reduces scar formation. These findings suggest the reciprocal roles of exosomes and vimentin in accelerating wound healing. Exosomes can serve as an efficient transportation system to deliver and internalize vimentin into target cells, while vimentin could have an impact on exosome transportation, internalization, and cell communication.
Collapse
Affiliation(s)
- Sepideh Parvanian
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China.,Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, Turku, Finland
| | - Fuxia Yan
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Dandan Su
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Leila S Coelho-Rato
- Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, Turku, Finland
| | - Arun P Venu
- Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, Turku, Finland
| | - Peiru Yang
- Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, Turku, Finland
| | - Xiaoheng Zou
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yaming Jiu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbo Chen
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - John E Eriksson
- Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, Turku, Finland
| | - Fang Cheng
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China.,Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, Turku, Finland
| |
Collapse
|
65
|
Yemanyi F, Vranka J, Raghunathan VK. Glucocorticoid-induced cell-derived matrix modulates transforming growth factor β2 signaling in human trabecular meshwork cells. Sci Rep 2020; 10:15641. [PMID: 32973273 PMCID: PMC7518434 DOI: 10.1038/s41598-020-72779-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/28/2020] [Indexed: 01/11/2023] Open
Abstract
Aberrant remodeling of trabecular meshwork (TM) extracellular matrix (ECM) may induce ocular hypertensive phenotypes in human TM (hTM) cells to cause ocular hypertension, via a yet unknown mechanism. Here, we show that, in the absence of exogenous transforming growth factor-beta2 (TGFβ2), compared with control matrices (VehMs), glucocorticoid-induced cell-derived matrices (GIMs) trigger non-Smad TGFβ2 signaling in hTM cells, correlated with overexpression/activity of structural ECM genes (fibronectin, collagen IV, collagen VI, myocilin), matricellular genes (connective tissue growth factor [CTGF], secreted protein, acidic and rich in cysteine), crosslinking genes/enzymes (lysyl oxidase, lysyl oxidase-like 2–4, tissue transglutaminase-2), and ECM turnover genes/enzymes (matrix metalloproteinases-MMP2,14 and their inhibitors-TIMP2). However, in the presence of exogenous TGFβ2, VehMs and GIMs activate Smad and non-Smad TGFβ2 signaling in hTM cells, associated with overexpression of α-smooth muscle actin (α-SMA), and differential upregulation of aforementioned ECM genes/proteins with new ones emerging (collagen-I, thrombospondin-I, plasminogen activator inhibitor, MMP1, 9, ADAMTS4, TIMP1); with GIM-TGFβ2-induced changes being mostly more pronounced. This suggests dual glaucomatous insults potentiate profibrotic signaling/phenotypes. Lastly, we demonstrate type I TGFβ receptor kinase inhibition abrogates VehM-/GIM- and/or TGFβ2-induced upregulation of α-SMA and CTGF. Collectively, pathological TM microenvironments are sufficient to elicit adverse cellular responses that may be ameliorated by targeting TGFβ2 pathway.
Collapse
Affiliation(s)
- Felix Yemanyi
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Janice Vranka
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Vijay Krishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, USA. .,Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
66
|
Harikrishnan K, Joshi O, Madangirikar S, Balasubramanian N. Cell Derived Matrix Fibulin-1 Associates With Epidermal Growth Factor Receptor to Inhibit Its Activation, Localization and Function in Lung Cancer Calu-1 Cells. Front Cell Dev Biol 2020; 8:522. [PMID: 32719793 PMCID: PMC7348071 DOI: 10.3389/fcell.2020.00522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) is a known promoter of tumor progression and is overexpressed in lung cancers. Growth factor receptors (including EGFR) are known to interact with extracellular matrix (ECM) proteins, which regulate their activation and function. Fibulin-1 (FBLN1) is a major component of the ECM in lung tissue, and its levels are known to be downregulated in non-small cell lung cancers (NSCLC). To test the possible role FBLN1 isoforms could have in regulating EGFR signaling and function in lung cancer, we performed siRNA mediated knockdown of FBLN1C and FBLN1D in NSCLC Calu-1 cells. Their loss significantly increased basal (with serum) and EGF (Epidermal Growth Factor) mediated EGFR activation without affecting net EGFR levels. Overexpression of FBLN1C and FBLN1D also inhibits EGFR activation confirming their regulatory crosstalk. Loss of FBLN1C and FBLN1D promotes EGFR-dependent cell migration, inhibited upon Erlotinib treatment. Mechanistically, both FBLN1 isoforms interact with EGFR, their association not dependent on its activation. Notably, cell-derived matrix (CDM) enriched FBLN1 binds EGFR. Calu-1 cells plated on CDM derived from FBLN1C and FBLN1D knockdown cells show a significant increase in EGF mediated EGFR activation. This promotes cell adhesion and spreading with active EGFR enriched at membrane ruffles. Both adhesion and spreading on CDMs is significantly reduced by Erlotinib treatment. Together, these findings show FBLN1C/1D, as part of the ECM, can bind and regulate EGFR activation and function in NSCLC Calu-1 cells. They further highlight the role tumor ECM composition could have in influencing EGFR dependent lung cancers.
Collapse
Affiliation(s)
| | - Omkar Joshi
- Indian Institute of Science Education and Research, Pune, India
| | | | | |
Collapse
|
67
|
Gounani Z, Şen Karaman D, Venu AP, Cheng F, Rosenholm JM. Coculture of P. aeruginosa and S. aureus on cell derived matrix - An in vitro model of biofilms in infected wounds. J Microbiol Methods 2020; 175:105994. [PMID: 32593628 DOI: 10.1016/j.mimet.2020.105994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/22/2023]
Abstract
Polymicrobial biofilms are major complications of various chronic infections. Therefore, in vitro biorelevant polymicrobial biofilm models are essential tools for medical studies. This study presents an in vitro model for dual species biofilm of Pseudomonas aeruginosa and Staphylococcus aureus developed on cell-derived matrices (CDMs), in order to simulate the microenvironment of in vivo biofilms. P. aeruginosa and S. aureus are two of the most frequent pathogens in polymicrobial biofilms of wound infections. Although they are commonly isolated from polymicrobial biofilms, their interaction is antagonistic; and there is severe battle between them for nutrients and space. We introduced a nutritious formulation supporting co-cultures of P. aeruginosa and S. aureus in order to study the interaction of these gram-positive and gram-negative bacterial species. Quantitative analyses demonstrated that the enrichment of tryptic soy broth (TSB) with NaCl and glucose facilitate dual-species biofilm formation of P. aeruginosa and S. aureus when it is mixed with fetal bovine serum (FBS). Furthermore, the dual species biofilm was incubated on CDMs. Characterization of the model by fluorescent and electron microscopy techniques revealed realistic features of chronic multi-species biofilms, including competitive distribution pattern of two bacterial species and small-colony variants (SCVs) morphology of S. aureus.
Collapse
Affiliation(s)
- Zahra Gounani
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland; Physics, Faculty of Science and Engineering, Åbo Akademi University, Turku 20500, Finland.
| | - Didem Şen Karaman
- Biomedical Engineering Department, Faculty of Engineering and Architecture, İzmir Katip Çelebi University, İzmir, Turkey
| | - Arun P Venu
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Fang Cheng
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland.
| |
Collapse
|
68
|
Kang SM, Lee JH, Huh YS, Takayama S. Alginate Microencapsulation for Three-Dimensional In Vitro Cell Culture. ACS Biomater Sci Eng 2020; 7:2864-2879. [PMID: 34275299 DOI: 10.1021/acsbiomaterials.0c00457] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in microscale 3D cell culture systems have helped to elucidate cellular physiology, understand mechanisms of stem cell differentiation, produce pathophysiological models, and reveal important cell-cell and cell-matrix interactions. An important consideration for such studies is the choice of material for encapsulating cells and associated extracellular matrix (ECM). This Review focuses on the use of alginate hydrogels, which are versatile owing to their simple gelation process following an ionic cross-linking mechanism in situ, with no need for procedures that can be potentially toxic to cells, such as heating, the use of solvents, and UV exposure. This Review aims to give some perspectives, particularly to researchers who typically work more with poly(dimethylsiloxane) (PDMS), on the use of alginate as an alternative material to construct microphysiological cell culture systems. More specifically, this Review describes how physicochemical characteristics of alginate hydrogels can be tuned with regards to their biocompatibility, porosity, mechanical strength, ligand presentation, and biodegradability. A number of cell culture applications are also described, and these are subcategorized according to whether the alginate material is used to homogeneously embed cells, to micropattern multiple cellular microenvironments, or to provide an outer shell that creates a space in the core for cells and other ECM components. The Review ends with perspectives on future challenges and opportunities for 3D cell culture applications.
Collapse
Affiliation(s)
- Sung-Min Kang
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, 30332, United States of America.,The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, United States of America.,NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Ji-Hoon Lee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, 30332, United States of America.,The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, United States of America
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Shuichi Takayama
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, 30332, United States of America.,The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, United States of America
| |
Collapse
|
69
|
Yang L, Ge L, van Rijn P. Synergistic Effect of Cell-Derived Extracellular Matrices and Topography on Osteogenesis of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25591-25603. [PMID: 32423202 PMCID: PMC7291345 DOI: 10.1021/acsami.0c05012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/19/2020] [Indexed: 05/03/2023]
Abstract
Cell-derived matrices (CDMs) are an interesting alternative to conventional sources of extracellular matrices (ECMs) as CDMs mimic the natural ECM composition better and are therefore attractive as a scaffolding material for regulating the functions of stem cells. Previous research on stem cell differentiation has demonstrated that both surface topography and CDMs have a significant influence. However, not much focus has been devoted to elucidating possible synergistic effects of CDMs and topography on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). In this study, polydimethylsiloxane (PDMS)-based anisotropic topographies (wrinkles) with various topography dimensions were prepared and subsequently combined with native ECMs produced by human fibroblasts that remained on the surface topography after decellularization. The synergistic effect of CDMs combined with topography on osteogenic differentiation of hBM-MSCs was investigated. The results showed that substrates with specific topography dimensions, coated with aligned CDMs, dramatically enhanced the capacity of osteogenesis as investigated using immunofluorescence staining for identifying osteopontin (OPN) and mineralization. Furthermore, the hBM-MSCs on the substrates decorated with CDMs exhibited a higher percentage of (Yes-associated protein) YAP inside the nucleus, stronger cell contractility, and greater formation of focal adhesions, illustrating that enhanced osteogenesis is partly mediated by cellular tension and mechanotransduction following the YAP pathway. Taken together, our findings highlight the importance of ECMs mediating the osteogenic differentiation of stem cells, and the combination of CDMs and topography will be a powerful approach for material-driven osteogenesis.
Collapse
Affiliation(s)
- Liangliang Yang
- Department
of Biomedical Engineering-FB40, University
of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J.
Kolff Institute for Biomedical Engineering and Materials Science-FB41,
Groningen, University of Groningen, University
Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lu Ge
- Department
of Biomedical Engineering-FB40, University
of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J.
Kolff Institute for Biomedical Engineering and Materials Science-FB41,
Groningen, University of Groningen, University
Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Patrick van Rijn
- Department
of Biomedical Engineering-FB40, University
of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J.
Kolff Institute for Biomedical Engineering and Materials Science-FB41,
Groningen, University of Groningen, University
Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
70
|
Ferreira LP, Gaspar VM, Mano JF. Decellularized Extracellular Matrix for Bioengineering Physiomimetic 3D in Vitro Tumor Models. Trends Biotechnol 2020; 38:1397-1414. [PMID: 32416940 DOI: 10.1016/j.tibtech.2020.04.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Recent advances in the extraction and purification of decellularized extracellular matrix (dECM) obtained from healthy or malignant tissues open new avenues for engineering physiomimetic 3D in vitro tumor models, which closely recapitulate key biomolecular hallmarks and the dynamic cancer cell-ECM interactions in the tumor microenvironment. We review current and upcoming methodologies for chemical modification of dECM-based biomaterials and advanced bioprocessing into organotypic 3D solid tumor models. A comprehensive review of disruptive advances and shortcomings of exploring dECM-based biomaterials for recapitulating the native tumor-supporting matrix is also provided. We hope to drive the discussion on how 3D dECM testing platforms can be leveraged for generating microphysiological tumor surrogates that generate more robust and predictive data on therapeutic bioperformance.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
71
|
Lee BJ, Hegewisch Solloa E, Shannon MJ, Mace EM. Generation of cell-derived matrices that support human NK cell migration and differentiation. J Leukoc Biol 2020; 108:1369-1378. [PMID: 32392635 DOI: 10.1002/jlb.1ma0420-635r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
Human NK cells are effectors of the innate immune system that originate from hematopoietic precursors in the bone marrow. While stromal cell lines that support NK cell development from hematopoietic precursors are often used to generate mature NK cells from lymphoid precursors in vitro, the nature of contributing factors of these stromal cells to the generation of functionally mature NK cells has been poorly described. Previous studies have shown that developing NK cells adhere to, and migrate on, developmentally supportive stroma. Here, we describe the generation of cell-derived matrices (CDMs) from a commonly used murine fetal liver stromal cell line. These CDMs are derived directly from the same EL08.1D2 stromal cell line known to support NK cell differentiation and contain ECM structural components fibronectin and collagen. We demonstrate that CDMs support NK cell adhesion and migration with similar properties as intact cells. Further, we show that CDMs support NK cell maturation from lymphoid precursors in vitro, albeit with reduced cell survival compared to intact cell-based differentiation. Together, these results describe a cell-free system that supports NK cell development and that can serve as a useful model for studying the nature of the biochemical interactions between NK cell developmental intermediates and developmentally supportive substrates.
Collapse
Affiliation(s)
- Barclay J Lee
- Department of Bioengineering, Rice University, Houston, Texas, USA.,Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Everardo Hegewisch Solloa
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Michael J Shannon
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Emily M Mace
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
72
|
Bachmann M, Schäfer M, Mykuliak VV, Ripamonti M, Heiser L, Weißenbruch K, Krübel S, Franz CM, Hytönen VP, Wehrle-Haller B, Bastmeyer M. Induction of ligand promiscuity of αVβ3 integrin by mechanical force. J Cell Sci 2020; 133:jcs242404. [PMID: 32193334 DOI: 10.1242/jcs.242404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
αVβ3 integrin can bind to multiple extracellular matrix proteins, including vitronectin (Vn) and fibronectin (Fn), which are often presented to cells in culture as homogenous substrates. However, in tissues, cells experience highly complex and changing environments. To better understand integrin ligand selection in such complex environments, we employed binary-choice substrates of Fn and Vn to dissect αVβ3 integrin-mediated binding to different ligands on the subcellular scale. Super-resolution imaging revealed that αVβ3 integrin preferred binding to Vn under various conditions. In contrast, binding to Fn required higher mechanical load on αVβ3 integrin. Integrin mutations, structural analysis and chemical inhibition experiments indicated that the degree of hybrid domain swing-out is relevant for the selection between Fn and Vn; only a force-mediated, full hybrid domain swing-out facilitated αVβ3-Fn binding. Thus, force-dependent conformational changes in αVβ3 integrin increased the diversity of available ligands for binding and therefore enhanced the ligand promiscuity of this integrin.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Michael Bachmann
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Markus Schäfer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Vasyl V Mykuliak
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, and Fimlab Laboratories, Tampere 33014, Finland
| | - Marta Ripamonti
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Lia Heiser
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Kai Weißenbruch
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Sarah Krübel
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Clemens M Franz
- DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology and BioMediTech, Tampere University, and Fimlab Laboratories, Tampere 33014, Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva 1211, Switzerland
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
73
|
Shang ZY, Sun H, Xiang HF, Zhang J, Yu M, Zhao HS, Zhao CT, Long YZ. Three-dimensional porous composite scaffolds for in vitro marrow microenvironment simulation to screen leukemia drug. Biomed Mater 2020; 15:035016. [DOI: 10.1088/1748-605x/ab74e2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
74
|
Chen Y, Lee K, Yang Y, Kawazoe N, Chen G. PLGA-collagen-ECM hybrid meshes mimicking stepwise osteogenesis and their influence on the osteogenic differentiation of hMSCs. Biofabrication 2020; 12:025027. [DOI: 10.1088/1758-5090/ab782b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
75
|
Cheng HW, Yuan MT, Li CW, Chan BP. Cell-derived matrices (CDM)-Methods, challenges and applications. Methods Cell Biol 2020; 156:235-258. [PMID: 32222221 DOI: 10.1016/bs.mcb.2020.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) provides both physical support and bioactive signals such as growth factors and cytokines to cells at their microenvironment or niche. Engineering the matrix niche becomes an important approach to study or manipulate cellular fate. This work presents an overview on the reconstitution of the ECM niche through a wide range of approaches ranging from coating culture dish with ECM molecules to decellularization of native tissues. In particular, we focused on reconstituting the complex ECM niche through cell-derived matrix (CDM) by reviewing the methodological approaches used in our group to derive ECM from mature cells such as chondrocytes and nucleus pulposus cells (NPCs), undifferentiated stem cells such as mesenchymal stem cells (MSCs), as well as MSCs undergoing chondrogenic and osteogenic differentiation, in 2D or 3D models. Specific attention has also been given to key factors that should be considered in various applications and challenges in relation to the CDM. Last but not the least, a few future perspectives and their significance have been proposed.
Collapse
Affiliation(s)
- H W Cheng
- Tissue Engineering Laboratory, Biomedical Engineering Programme, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - M T Yuan
- Tissue Engineering Laboratory, Biomedical Engineering Programme, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - C W Li
- Tissue Engineering Laboratory, Biomedical Engineering Programme, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - B P Chan
- Tissue Engineering Laboratory, Biomedical Engineering Programme, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
76
|
Liu H, Lu T, Kremers GJ, Seynhaeve ALB, Ten Hagen TLM. A microcarrier-based spheroid 3D invasion assay to monitor dynamic cell movement in extracellular matrix. Biol Proced Online 2020; 22:3. [PMID: 32021568 PMCID: PMC6995242 DOI: 10.1186/s12575-019-0114-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cell invasion through extracellular matrix (ECM) is a critical step in tumor metastasis. To study cell invasion in vitro, the internal microenvironment can be simulated via the application of 3D models. Results This study presents a method for 3D invasion examination using microcarrier-based spheroids. Cell invasiveness can be evaluated by quantifying cell dispersion in matrices or tracking cell movement through time-lapse imaging. It allows measuring of cell invasion and monitoring of dynamic cell behavior in three dimensions. Here we show different invasive capacities of several cell types using this method. The content and concentration of matrices can influence cell invasion, which should be optimized before large scale experiments. We also introduce further analysis methods of this 3D invasion assay, including manual measurements and homemade semi-automatic quantification. Finally, our results indicate that the position of spheroids in a matrix has a strong impact on cell moving paths, which may be easily overlooked by researchers and may generate false invasion results. Conclusions In all, the microcarrier-based spheroids 3D model allows exploration of adherent cell invasion in a fast and highly reproducible way, and provides informative results on dynamic cell behavior in vitro.
Collapse
Affiliation(s)
- Hui Liu
- 1Laboratory of Experimental Oncology, Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tao Lu
- 1Laboratory of Experimental Oncology, Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Gert-Jan Kremers
- 2Erasmus Optical Imaging Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ann L B Seynhaeve
- 1Laboratory of Experimental Oncology, Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Timo L M Ten Hagen
- 1Laboratory of Experimental Oncology, Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
77
|
Re-engineered cell-derived extracellular matrix as a new approach to clarify the role of native ECM. Methods Cell Biol 2020; 156:205-231. [PMID: 32222220 DOI: 10.1016/bs.mcb.2019.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An extracellular matrix (ECM) has both biochemical and mechanophysical characteristics obtained from multiple components, which provides cells a dynamic microenvironment. During reciprocal interactions with ECM, the cells actively remodel the matrix, including synthesis, degradation, and chemical modification, which play a pivotal role in various biological events such as disease progression or tissue developmental processes. Since a cell-derived decellularized ECM (cdECM) holds in vivo-like compositional heterogeneity and interconnected fibrillary architecture, it has received much attention as a promising tool for developing more physiological in vitro model systems. Despite these advantages, the cdECM has obvious limitations to mimic versatile ECMs precisely, suggesting the need for improved in vitro modeling to clarify the functions of native ECM. Recent studies propose to tailor the cdECM via biochemically, biomechanically, or incorporation with other systems as a new approach to address the limitations. In this chapter, we summarize the studies that re-engineered the cdECM to examine the features of native ECM in-depth and to increase physiological relevancy.
Collapse
|
78
|
Franco-Barraza J, Raghavan KS, Luong T, Cukierman E. Engineering clinically-relevant human fibroblastic cell-derived extracellular matrices. Methods Cell Biol 2020; 156:109-160. [PMID: 32222216 DOI: 10.1016/bs.mcb.2019.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) culturing models, replicating in vivo tissue microenvironments that incorporate native extracellular matrix (ECM), have revolutionized the cell biology field. Fibroblastic cells generate lattices of interstitial ECM proteins. Cell interactions with ECMs and with molecules sequestered/stored within these are crucial for tissue development and homeostasis maintenance. Hence, ECMs provide cells with biochemical and biomechanical cues to support and locally control cell function. Further, dynamic changes in ECMs, and in cell-ECM interactions, partake in growth, development, and temporary occurrences such as acute wound healing. Notably, dysregulation in ECMs and fibroblasts could be important triggers and modulators of pathological events such as developmental defects, and diseases associated with fibrosis and chronic inflammation such as cancer. Studying the type of fibroblastic cells producing these matrices and how alterations to these cells enable changes in ECMs are of paramount importance. This chapter provides a step-by-step method for producing multilayered (e.g., 3D) fibroblastic cell-derived matrices (fCDM). Methods also include means to assess ECM topography and other cellular traits, indicative of fibroblastic functional statuses, like naïve/normal vs. inflammatory and/or myofibroblastic. For these, protocols include indications for isolating normal and diseased fibroblasts (i.e., cancer-associated fibroblasts known as CAFs). Protocols also include means for conducting microscopy assessments, querying whether fibroblasts present with fCDM-dependent normal or CAF phenotypes. These are supported by discrete semi-quantitative digital imaging analyses, providing some imaging processing advice. Additionally, protocols include descriptions for effective fCDM decellularization, which renders cellular debris-free patho/physiological in vivo-like scaffolds, suitable as 3D substrates for subsequent cell culturing.
Collapse
Affiliation(s)
- Janusz Franco-Barraza
- Cancer Biology, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Kristopher S Raghavan
- Cancer Biology, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States; College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Tiffany Luong
- Cancer Biology, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Edna Cukierman
- Cancer Biology, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States.
| |
Collapse
|
79
|
Almici E, Caballero D, Montero Boronat J, Samitier Martí J. Engineering cell-derived matrices with controlled 3D architectures for pathophysiological studies. Methods Cell Biol 2020; 156:161-183. [PMID: 32222218 DOI: 10.1016/bs.mcb.2019.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The composition and architecture of the extracellular matrix (ECM) and their dynamic alterations, play an important regulatory role on numerous cellular processes. Cells embedded in 3D scaffolds show phenotypes and morphodynamics reminiscent of the native scenario. This is in contrast to flat environments, where cells display artificial phenotypes. The structural and biomolecular properties of the ECM are critical in regulating cell behavior via mechanical, chemical and topological cues, which induce cytoskeleton rearrangement and gene expression. Indeed, distinct ECM architectures are encountered in the native stroma, which depend on tissue type and function. For instance, anisotropic geometries are associated with ECM degradation and remodeling during tumor progression, favoring tumor cell invasion. Overall, the development of innovative in vitro ECM models of the ECM that reproduce the structural and physicochemical properties of the native scenario is of upmost importance to investigate the mechanistic determinants of tumor dissemination. In this chapter, we describe an extremely versatile technique to engineer three-dimensional (3D) matrices with controlled architectures for the study of pathophysiological processes in vitro. To this aim, a confluent culture of "sacrificial" fibroblasts was seeded on top of microfabricated guiding templates to induce the 3D ECM growth with specific isotropic or anisotropic architectures. The resulting matrices, and cells seeded on them, recapitulated the structure, composition, phenotypes and morphodynamics typically found in the native scenario. Overall, this method paves the way for the development of in vitro ECMs for pathophysiological studies with potential clinical relevance.
Collapse
Affiliation(s)
- Enrico Almici
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - David Caballero
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | - Joan Montero Boronat
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Josep Samitier Martí
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
80
|
Decellularized hASCs-derived matrices as biomaterials for 3D in vitro approaches. Methods Cell Biol 2020; 156:45-58. [DOI: 10.1016/bs.mcb.2019.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
81
|
Supsrisunjai C, Hsu CK, Michael M, Duval C, Lee JYW, Yang HS, Huang HY, Chaikul T, Onoufriadis A, Steiner RA, Ariëns RAS, Sarig O, Sprecher E, Eskin-Schwartz M, Samlaska C, Simpson MA, Calonje E, Parsons M, McGrath JA. Coagulation Factor XIII-A Subunit Missense Mutation in the Pathobiology of Autosomal Dominant Multiple Dermatofibromas. J Invest Dermatol 2019; 140:624-635.e7. [PMID: 31493396 DOI: 10.1016/j.jid.2019.08.441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023]
Abstract
Dermatofibromas are common benign skin lesions, the etiology of which is poorly understood. We identified two unrelated pedigrees in which there was autosomal dominant transmission of multiple dermatofibromas. Whole exome sequencing revealed a rare shared heterozygous missense variant in the F13A1 gene encoding factor XIII subunit A (FXIII-A), a transglutaminase involved in hemostasis, wound healing, tumor growth, and apoptosis. The variant (p.Lys679Met) has an allele frequency of 0.0002 and is predicted to be a damaging mutation. Recombinant human Lys679Met FXIII-A demonstrated reduced fibrin crosslinking activity in vitro. Of note, the treatment of fibroblasts with media containing Lys679Met FXIII-A led to enhanced adhesion, proliferation, and type I collagen synthesis. Immunostaining revealed co-localization between FXIII-A and α4β1 integrins, more prominently for Lys679Met FXIII-A than the wild type. In addition, both the α4β1 inhibitors and the mutation of the FXIII-A Isoleucine-Leucine-Aspartate-Threonine (ILDT) motif prevented Lys679Met FXIII-A-dependent proliferation and collagen synthesis of fibroblasts. Our data suggest that the Lys679Met mutation may lead to a conformational change in the FXIII-A protein that enhances α4-integrin binding and provides insight into an unexpected role for FXIII-A in the pathobiology of familial dermatofibroma.
Collapse
Affiliation(s)
- Chavalit Supsrisunjai
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom; Institute of Dermatology, Ministry of Public Health, Bangkok, Thailand
| | - Chao-Kai Hsu
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom; Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Magdalene Michael
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, United Kingdom
| | - Cédric Duval
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - John Y W Lee
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Hsing-San Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Yu Huang
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Thitiwat Chaikul
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Roberto A Steiner
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, United Kingdom
| | - Robert A S Ariëns
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Ofer Sarig
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Curt Samlaska
- Academic Dermatology of Nevada, University of Nevada School of Medicine, Reno, Nevada
| | - Michael A Simpson
- Department of Genetics, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Eduardo Calonje
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom; Department of Dermatopathology, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, United Kingdom
| | - John A McGrath
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, United Kingdom.
| |
Collapse
|
82
|
Camargo S, Shamis Y, Assis A, Mitrani E. An in vivo Like Micro-Carcinoma Model. Front Oncol 2019; 9:410. [PMID: 31192122 PMCID: PMC6540606 DOI: 10.3389/fonc.2019.00410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/01/2019] [Indexed: 11/13/2022] Open
Abstract
We here present a novel micro-system which allows to reconstitute an in vivo lung carcinoma where the various constituting epithelial and/or stromal structural and/or cellular components can be incorporated at will. In contrast to various "organs on a chip" the model is based on the observation that in nature, epithelial cells are always supported by a connective tissue or stroma. The model is based on acellular micro-scaffolds of microscopic dimensions which enable seeded cells to obtain gases and nutrients through diffusion thus avoiding the need for vascularization. As a proof of concept, we show that in this model, Calu-3 cells can form a well-organized, continuous, polarized, one-layer epithelium lining the stromal derived alveolar cavities, and express a different pattern of tumor-related genes than when grown as standard monolayer cultures on plastic culture dishes. To our knowledge, this model, introduces for the first time a system where the function of carcinogenic cells can be tested in vitro in an environment that closely mimics the natural in vivo situation.
Collapse
Affiliation(s)
- Sandra Camargo
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yulia Shamis
- Department of Developmental and Regenerative Biology, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Assaf Assis
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
83
|
Compositional and structural analysis of glycosaminoglycans in cell-derived extracellular matrices. Glycoconj J 2019; 36:141-154. [PMID: 30637588 DOI: 10.1007/s10719-019-09858-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/27/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is a highly dynamic and complex meshwork of proteins and glycosaminoglycans (GAGs) with a crucial role in tissue homeostasis and organization not only by defining tissue architecture and mechanical properties, but also by providing chemical cues that regulate major biological processes. GAGs are associated with important physiological functions, acting as modulators of signaling pathways regulating several cellular processes such as cell growth and differentiation. Recently, in vitro fabricated cell-derived ECM have emerged as promising materials for regenerative medicine due to their ability of better recapitulate the native ECM-like composition and structure, without the limitations of availability and pathogen transfer risks of tissue-derived ECM scaffolds. However, little is known about the molecular and more specifically, GAG composition of these cell-derived ECM. In this study, three different cell-derived ECM were produced in vitro and characterized in terms of their GAG content, composition and sulfation patterns using a highly sensitive liquid chromatography-tandem mass spectrometry technique. Distinct GAG compositions and disaccharide sulfation patterns were verified for the different cell-derived ECM. Additionally, the effect of decellularization method on the GAG and disaccharide relative composition was also assessed. In summary, the method presented here offers a novel approach to determine the GAG composition of cell-derived ECM, which we believe is critical for a better understanding of ECM role in directing cellular responses and has the potential for generating important knowledge to use in the development of novel ECM-like biomaterials for tissue engineering applications.
Collapse
|
84
|
Koledova Z, Sumbal J. FGF signaling in mammary gland fibroblasts regulates multiple fibroblast functions and mammary epithelial morphogenesis. Development 2019; 146:dev.185306. [DOI: 10.1242/dev.185306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor (FGF) signaling is crucial for mammary gland development. While multiple roles for FGF signaling in the epithelium were described, the function of FGF signaling in mammary stroma has not been elucidated. In this study, we investigated FGF signaling in mammary fibroblasts. We found that mammary fibroblasts express FGF receptors FGFR1 and FGFR2 and respond to FGF ligands. In particular, FGF2 and FGF9 induce sustained ERK1/2 signaling and promote fibroblast proliferation and migration in 2D. Intriguingly, only FGF2 induces fibroblast migration in 3D extracellular matrix (ECM) through regulation of actomyosin cytoskeleton and promotes force-mediated collagen remodeling by mammary fibroblasts. Moreover, FGF2 regulates production of ECM proteins by mammary fibroblasts, including collagens, fibronectin, osteopontin, and matrix metalloproteinases. Finally, using organotypic 3D co-cultures we show that FGF2 and FGF9 signaling in mammary fibroblasts enhances fibroblast-induced branching of mammary epithelium by modulating paracrine signaling and that knockdown of Fgfr1 and Fgfr2 in mammary fibroblasts reduces branching of mammary epithelium. Our results demonstrate a pleiotropic role for FGF signaling in mammary fibroblasts with implications for regulation of mammary stromal functions and epithelial branching morphogenesis.
Collapse
Affiliation(s)
- Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 625 00, Czech Republic
| | - Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 625 00, Czech Republic
| |
Collapse
|
85
|
Chen Y, Lee K, Kawazoe N, Yang Y, Chen G. PLGA–collagen–ECM hybrid scaffolds functionalized with biomimetic extracellular matrices secreted by mesenchymal stem cells during stepwise osteogenesis-co-adipogenesis. J Mater Chem B 2019; 7:7195-7206. [DOI: 10.1039/c9tb01959f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Development of an in vitro 3D model that reflects the dynamic remodeling of ECMs during simultaneous osteogenesis and adipogenesis of hMSCs.
Collapse
Affiliation(s)
- Yazhou Chen
- Research Center of Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| | - Kyubae Lee
- Research Center of Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| | - Naoki Kawazoe
- Research Center of Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science
- University of Tsukuba
- Tsukuba
- Japan
| | - Guoping Chen
- Research Center of Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
- Department of Materials Science and Engineering
| |
Collapse
|
86
|
Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C, Pillay M, Motaung KSCM. Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells Int 2018; 2018:2495848. [PMID: 30154861 PMCID: PMC6091336 DOI: 10.1155/2018/2495848] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/22/2018] [Accepted: 07/08/2018] [Indexed: 02/08/2023] Open
Abstract
Humans and animals lose tissues and organs due to congenital defects, trauma, and diseases. The human body has a low regenerative potential as opposed to the urodele amphibians commonly referred to as salamanders. Globally, millions of people would benefit immensely if tissues and organs can be replaced on demand. Traditionally, transplantation of intact tissues and organs has been the bedrock to replace damaged and diseased parts of the body. The sole reliance on transplantation has created a waiting list of people requiring donated tissues and organs, and generally, supply cannot meet the demand. The total cost to society in terms of caring for patients with failing organs and debilitating diseases is enormous. Scientists and clinicians, motivated by the need to develop safe and reliable sources of tissues and organs, have been improving therapies and technologies that can regenerate tissues and in some cases create new tissues altogether. Tissue engineering and/or regenerative medicine are fields of life science employing both engineering and biological principles to create new tissues and organs and to promote the regeneration of damaged or diseased tissues and organs. Major advances and innovations are being made in the fields of tissue engineering and regenerative medicine and have a huge impact on three-dimensional bioprinting (3D bioprinting) of tissues and organs. 3D bioprinting holds great promise for artificial tissue and organ bioprinting, thereby revolutionizing the field of regenerative medicine. This review discusses how recent advances in the field of regenerative medicine and tissue engineering can improve 3D bioprinting and vice versa. Several challenges must be overcome in the application of 3D bioprinting before this disruptive technology is widely used to create organotypic constructs for regenerative medicine.
Collapse
Affiliation(s)
- Kevin Dzobo
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Nicholas Ekow Thomford
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Dimakatso Alice Senthebane
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Hendrina Shipanga
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Arielle Rowe
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology (ICGEB) and UCT Medical Campus, Wernher and Beit Building (South), Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Collet Dandara
- Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology and Institute of Infectious Diseases and Molecular medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Michael Pillay
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, South Africa
| | | |
Collapse
|
87
|
Connexin 43 regulates the expression of wound healing-related genes in human gingival and skin fibroblasts. Exp Cell Res 2018; 367:150-161. [PMID: 29596891 DOI: 10.1016/j.yexcr.2018.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/21/2022]
Abstract
Fibroblasts are the most abundant connective tissue cells and play an important role in wound healing. It is possible that faster and scarless wound healing in oral mucosal gingiva relative to skin may relate to the distinct phenotype of the fibroblasts residing in these tissues. Connexin 43 (Cx43) is the most ubiquitous Cx in skin (SFBLs) and gingival fibroblasts (GFBLs), and assembles into hemichannels (HCs) and gap junctions (GJs) on the cell membrane. We hypothesized that SFBLs and GFBLs display distinct expression or function of Cx43, and that this may partly underlie the different wound healing outcomes in skin and gingiva. Here we show that Cx43 distinctly formed Cx43 GJs and HCs in human skin and gingiva in vivo. However, in SFBLs, in contrast to GFBLs, only a small proportion of total Cx43 assembled into HC plaques. Using an in vivo-like 3D culture model, we further show that the GJ, HC, and channel-independent functions of Cx43 distinctly regulated wound healing-related gene expression in GFBLs and SFBLs. Therefore, the distinct wound healing outcomes in skin and gingiva may partly relate to the inherently different assembly and function of Cx43 in the resident fibroblasts.
Collapse
|