51
|
Muotri AR. The Human Model: Changing Focus on Autism Research. Biol Psychiatry 2016; 79:642-9. [PMID: 25861701 PMCID: PMC4573784 DOI: 10.1016/j.biopsych.2015.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 02/06/2023]
Abstract
The lack of live human brain cells for research has slowed progress toward understanding the mechanisms underlying autism spectrum disorders. A human model using reprogrammed patient somatic cells offers an attractive alternative, as it captures a patient's genome in relevant cell types. Despite the current limitations, the disease-in-a-dish approach allows for progressive time course analyses of target cells, offering a unique opportunity to investigate the cellular and molecular alterations before symptomatic onset. Understanding the current drawbacks of this model is essential for the correct data interpretation and extrapolation of conclusions applicable to the human brain. Innovative strategies for collecting biological material and clinical information from large patient cohorts are important for increasing the statistical power that will allow for the extraction of information from the noise resulting from the variability introduced by reprogramming and differentiation methods. Working with large patient cohorts is also important for understanding how brain cells derived from diverse human genetic backgrounds respond to specific drugs, creating the possibility of personalized medicine for autism spectrum disorders.
Collapse
Affiliation(s)
- Alysson Renato Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, University of California San Diego, La Jolla, California..
| |
Collapse
|
52
|
Remez N, Garcia-Serna R, Vidal D, Mestres J. The In Vitro Pharmacological Profile of Drugs as a Proxy Indicator of Potential In Vivo Organ Toxicities. Chem Res Toxicol 2016; 29:637-48. [PMID: 26952164 DOI: 10.1021/acs.chemrestox.5b00470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potential of a drug to cause certain organ toxicities is somehow implicitly contained in its full pharmacological profile, provided the drug reaches and accumulates at the various organs where the different interacting proteins in its profile, both targets and off-targets, are expressed. Under this assumption, a computational approach was implemented to obtain a projected anatomical profile of a drug from its in vitro pharmacological profile linked to protein expression data across 47 organs. It was observed that the anatomical profiles obtained when using only the known primary targets of the drugs reflected roughly the intended organ targets. However, when both known and predicted secondary pharmacology was considered, the projected anatomical profiles of the drugs were able to clearly highlight potential organ off-targets. Accordingly, when applied to sets of drugs known to cause cardiotoxicity and hepatotoxicity, the approach is able to identify heart and liver, respectively, as the organs where the proteins in the pharmacological profile of the corresponding drugs are specifically expressed. When applied to a set of drugs linked to a risk of Torsades de Pointes, heart is again the organ clearly standing out from the rest and a potential protein profile hazard is proposed. The approach can be used as a proxy indicator of potential in vivo organ toxicities.
Collapse
Affiliation(s)
- Nikita Remez
- Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and University Pompeu Fabra, Parc de Recerca Biomèdica , Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain.,Chemotargets SL, Parc Científic de Barcelona, Baldiri Reixac 4 (TI-05A7), 08028 Barcelona, Catalonia, Spain
| | - Ricard Garcia-Serna
- Chemotargets SL, Parc Científic de Barcelona, Baldiri Reixac 4 (TI-05A7), 08028 Barcelona, Catalonia, Spain
| | - David Vidal
- Chemotargets SL, Parc Científic de Barcelona, Baldiri Reixac 4 (TI-05A7), 08028 Barcelona, Catalonia, Spain
| | - Jordi Mestres
- Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and University Pompeu Fabra, Parc de Recerca Biomèdica , Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain.,Chemotargets SL, Parc Científic de Barcelona, Baldiri Reixac 4 (TI-05A7), 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
53
|
Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM. AMPA Receptors as Therapeutic Targets for Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:203-61. [DOI: 10.1016/bs.apcsb.2015.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
54
|
Lin M, Lachman HM, Zheng D. Transcriptomics analysis of iPSC-derived neurons and modeling of neuropsychiatric disorders. Mol Cell Neurosci 2015; 73:32-42. [PMID: 26631648 DOI: 10.1016/j.mcn.2015.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/31/2015] [Accepted: 11/25/2015] [Indexed: 12/19/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived neurons and neural progenitors are great resources for studying neural development and differentiation and their disruptions in disease conditions, and hold the promise of future cell therapy. In general, iPSC lines can be established either specifically from patients with neuropsychiatric disorders or from healthy subjects. The iPSCs can then be induced to differentiate into neural lineages and the iPSC-derived neurons are valuable for various types of cell-based assays that seek to understand disease mechanisms and identify and test novel therapies. In addition, it is an ideal system for gene expression profiling (i.e., transcriptomic analysis), an efficient and cost-effective way to explore the genetic programs regulating neurodevelopment. Moreover, transcriptomic comparison, which can be performed between patient-derived samples and controls, or in control lines in which the expression of specific genes has been disrupted, can uncover convergent gene targets and pathways that are downstream of the hundreds of candidate genes that have been associated with neuropsychiatric disorders. The results, especially after integration with spatiotemporal transcriptomic profiles of normal human brain development, have indeed helped to uncover gene networks, molecular pathways, and cellular signaling that likely play critical roles in disease development and progression. On the other hand, despite the great promise, many challenges remain in the usage of iPSC-derived neurons for modeling neuropsychiatric disorders, for example, how to generate relatively homogenous populations of specific neuronal subtypes that are affected in a particular disorder and how to better address the genetic heterogeneity that exists in the patient population.
Collapse
Affiliation(s)
- Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Herbert M Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.
| |
Collapse
|
55
|
Anderson GW, Deans PJM, Taylor RDT, Raval P, Chen D, Lowder H, Murkerji S, Andreae LC, Williams BP, Srivastava DP. Characterisation of neurons derived from a cortical human neural stem cell line CTX0E16. Stem Cell Res Ther 2015; 6:149. [PMID: 26296747 PMCID: PMC4546258 DOI: 10.1186/s13287-015-0136-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/29/2015] [Accepted: 07/17/2015] [Indexed: 01/11/2023] Open
Abstract
Introduction Conditionally immortalised human neural progenitor cells (hNPCs) represent a robust source of native neural cells to investigate physiological mechanisms in both health and disease. However, in order to recognise the utility of such cells, it is critical to determine whether they retain characteristics of their tissue of origin and generate appropriate neural cell types upon differentiation. To this end, we have characterised the conditionally immortalised, cortically-derived, human NPC line, CTX0E16, investigating the molecular and cellular phenotype of differentiated neurons to determine whether they possess characteristics of cortical glutamatergic neurons. Methods Differentiated CTX0E16 cells were characterised by assessing expression of several neural fates markers, and examination of developing neuronal morphology. Expression of neurotransmitter receptors, signalling proteins and related proteins were assessed by q- and RT-PCR and complemented by Ca2+ imaging, electrophysiology and assessment of ERK signalling in response to neurotransmitter ligand application. Finally, differentiated neurons were assessed for their ability to form putative synapses and to respond to activity-dependent stimulation. Results Differentiation of CTX0E16 hNPCs predominately resulted in the generation of neurons expressing markers of cortical and glutamatergic (excitatory) fate, and with a typical polarized neuronal morphology. Gene expression analysis confirmed an upregulation in the expression of cortical, glutamatergic and signalling proteins following differentiation. CTX0E16 neurons demonstrated Ca2+ and ERK1/2 responses following exogenous neurotransmitter application, and after 6 weeks displayed spontaneous Ca2+ transients and electrophysiological properties consistent with that of immature neurons. Differentiated CTX0E16 neurons also expressed a range of pre- and post-synaptic proteins that co-localized along distal dendrites, and moreover, displayed structural plasticity in response to modulation of neuronal activity. Conclusions Taken together, these findings demonstrate that the CTX0E16 hNPC line is a robust source of cortical neurons, which display functional properties consistent with a glutamatergic phenotype. Thus CTX0E16 neurons can be used to study cortical cell function, and furthermore, as these neurons express a range of disease-associated genes, they represent an ideal platform with which to investigate neurodevelopmental mechanisms in native human cells in health and disease. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0136-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Greg W Anderson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - P J Michael Deans
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ruth D T Taylor
- MRC Centre for Developmental Neurobiology, King's College London, London, SE5 8AF, UK.
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ding Chen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Harrison Lowder
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Srishti Murkerji
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Laura C Andreae
- MRC Centre for Developmental Neurobiology, King's College London, London, SE5 8AF, UK.
| | - Brenda P Williams
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| |
Collapse
|
56
|
Dragunow M, Feng S, Rustenhoven J, Curtis M, Faull R. Studying Human Brain Inflammation in Leptomeningeal and Choroid Plexus Explant Cultures. Neurochem Res 2015; 41:579-88. [PMID: 26243439 DOI: 10.1007/s11064-015-1682-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/28/2015] [Accepted: 07/23/2015] [Indexed: 01/04/2023]
Abstract
The meninges (dura, pia and arachnoid) are critical membranes encasing and protecting the brain within the skull. The leptomeninges, which comprise the arachnoid and pia, have many functions beyond brain protection including roles in neurogenesis, fibrotic scar formation and brain inflammation. Similarly, the choroid plexus plays important roles in normal brain function but is also involved in brain inflammation. We have begun studying the role of human leptomeninges and choroid plexus in brain inflammation and leptomeninges in fibrotic scar formation, using human brain derived explant cultures. To study the composition of the cells generated in these explants we undertook immunocytochemical characterisation. Cells, mainly pericytes and meningeal macrophages, emerge from leptomeningeal explants (LME's) and respond to inflammatory mediators by producing inflammatory molecules. LME-derived cells also respond to mechanical injury and cytokines, providing an in vitro human brain model of fibrotic scar formation. Choroid plexus explants (CPE's) generate epithelial cells, pericytes and microglia/macrophages. CPE-derived cells also respond to inflammatory mediators. LME and CPE explants survive and generate cells for many months in vitro and provide a remarkable opportunity to study basic mechanisms of human brain inflammation and fibrosis and to test human-active anti-inflammatory and anti-scarring treatments.
Collapse
Affiliation(s)
- Mike Dragunow
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Private Bag 92019, 1142, Auckland, New Zealand.
| | - Sheryl Feng
- Centre for Brain Research and Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
| | - Justin Rustenhoven
- Centre for Brain Research and Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
| | - Maurice Curtis
- Centre for Brain Research and Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
| | - Richard Faull
- Centre for Brain Research and Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
57
|
Shum C, Macedo SC, Warre-Cornish K, Cocks G, Price J, Srivastava DP. Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons. Horm Behav 2015; 74:228-42. [PMID: 26143621 PMCID: PMC4579404 DOI: 10.1016/j.yhbeh.2015.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/11/2015] [Accepted: 06/25/2015] [Indexed: 01/05/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Over recent years tremendous progress has been made towards understanding the molecular and cellular mechanism by which estrogens exert enhancing effects on cognition, and how they act as a neuroprotective or neurotrophic agent in disease. Currently, much of this work has been carried out in animal models with only a limited number of studies using native human tissue or cells. Recent advances in stem cell technology now make it possible to reprogram somatic cells from humans into induced pluripotent stem cells (iPSCs), which can subsequently be differentiated into neurons of specific lineages. Importantly, the reprogramming of cells allows for the generation of iPSCs that retain the genetic "makeup" of the donor. Therefore, it is possible to generate iPSC-derived neurons from patients diagnosed with specific diseases, that harbor the complex genetic background associated with the disorder. Here, we review the iPSC technology and how it's currently being used to model neural development and neurological diseases. Furthermore, we explore whether this cellular system could be used to understand the role of estrogens in human neurons, and present preliminary data in support of this. We further suggest that the use of iPSC technology offers a novel system to not only further understand estrogens' effects in human cells, but also to investigate the mechanism by which estrogens are beneficial in disease. Developing a greater understanding of these mechanisms in native human cells will also aid in the development of safer and more effective estrogen-based therapeutics.
Collapse
Affiliation(s)
- Carole Shum
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Sara C Macedo
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Faculty of Engineering, Universidade do Porto, 4200-465 Porto, Portugal
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Graham Cocks
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|
58
|
Neural Differentiation of Human Pluripotent Stem Cells for Nontherapeutic Applications: Toxicology, Pharmacology, and In Vitro Disease Modeling. Stem Cells Int 2015; 2015:105172. [PMID: 26089911 PMCID: PMC4454762 DOI: 10.1155/2015/105172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) derived from either blastocyst stage embryos (hESCs) or reprogrammed somatic cells (iPSCs) can provide an abundant source of human neuronal lineages that were previously sourced from human cadavers, abortuses, and discarded surgical waste. In addition to the well-known potential therapeutic application of these cells in regenerative medicine, these are also various promising nontherapeutic applications in toxicological and pharmacological screening of neuroactive compounds, as well as for in vitro modeling of neurodegenerative and neurodevelopmental disorders. Compared to alternative research models based on laboratory animals and immortalized cancer-derived human neural cell lines, neuronal cells differentiated from hPSCs possess the advantages of species specificity together with genetic and physiological normality, which could more closely recapitulate in vivo conditions within the human central nervous system. This review critically examines the various potential nontherapeutic applications of hPSC-derived neuronal lineages and gives a brief overview of differentiation protocols utilized to generate these cells from hESCs and iPSCs.
Collapse
|
59
|
Nityanandam A, Baldwin KK. Advances in reprogramming-based study of neurologic disorders. Stem Cells Dev 2015; 24:1265-83. [PMID: 25749371 DOI: 10.1089/scd.2015.0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The technology to convert adult human non-neural cells into neural lineages, through induced pluripotent stem cells (iPSCs), somatic cell nuclear transfer, and direct lineage reprogramming or transdifferentiation has progressed tremendously in recent years. Reprogramming-based approaches aimed at manipulating cellular identity have enormous potential for disease modeling, high-throughput drug screening, cell therapy, and personalized medicine. Human iPSC (hiPSC)-based cellular disease models have provided proof of principle evidence of the validity of this system. However, several challenges remain before patient-specific neurons produced by reprogramming can provide reliable insights into disease mechanisms or be efficiently applied to drug discovery and transplantation therapy. This review will first discuss limitations of currently available reprogramming-based methods in faithfully and reproducibly recapitulating disease pathology. Specifically, we will address issues such as culture heterogeneity, interline and inter-individual variability, and limitations of two-dimensional differentiation paradigms. Second, we will assess recent progress and the future prospects of reprogramming-based neurologic disease modeling. This includes three-dimensional disease modeling, advances in reprogramming technology, prescreening of hiPSCs and creating isogenic disease models using gene editing.
Collapse
Affiliation(s)
- Anjana Nityanandam
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - Kristin K Baldwin
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
60
|
A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing. J Biotechnol 2015; 205:36-46. [PMID: 25678136 DOI: 10.1016/j.jbiotec.2015.02.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/23/2015] [Accepted: 02/02/2015] [Indexed: 12/12/2022]
Abstract
Current in vitro and animal tests for drug development are failing to emulate the systemic organ complexity of the human body and, therefore, often do not accurately predict drug toxicity, leading to high attrition rates in clinical studies (Paul et al., 2010). The phylogenetic distance between humans and laboratory animals is enormous, this affects the transferability of animal data on the efficacy of neuroprotective drugs. Therefore, many neuroprotective treatments that have shown promise in animals have not been successful when transferred to humans (Dragunow, 2008; Gibbons and Dragunow, 2010). We present a multi-organ chip capable of maintaining 3D tissues derived from various cell sources in a combined media circuit which bridges the gap in systemic and human tests. A steady state co-culture of human artificial liver microtissues and human neurospheres exposed to fluid flow over two weeks in the multi-organ chip has successfully proven its long-term performance. Daily lactate dehydrogenase activity measurements of the medium and immunofluorescence end-point staining proved the viability of the tissues and the maintenance of differentiated cellular phenotypes. Moreover, the lactate production and glucose consumption values of the tissues cultured indicated that a stable steady-state was achieved after 6 days of co-cultivation. The neurospheres remained differentiated neurons over the two-week cultivation in the multi-organ chip, proven by qPCR and immunofluorescence of the neuronal markers βIII-tubulin and microtubule-associated protein-2. Additionally, a two-week toxicity assay with a repeated substance exposure to the neurotoxic 2,5-hexanedione in two different concentrations induced high apoptosis within the neurospheres and liver microtissues, as shown by a strong increase of lactate dehydrogenase activity in the medium. The principal finding of the exposure of the co-culture to 2,5-hexanedione was that not only toxicity profiles of two different doses could be discriminated, but also that the co-cultures were more sensitive to the substance compared to respective single-tissue cultures in the multi-organ-chip. Thus, we provide here a new in vitro tool which might be utilized to predict the safety and efficacy of substances in clinical studies more accurately in the future.
Collapse
|
61
|
Hernandez-Encinas E, Aguilar-Morante D, Cortes-Canteli M, Morales-Garcia JA, Gine E, Santos A, Perez-Castillo A. CCAAT/enhancer binding protein β directly regulates the expression of the complement component 3 gene in neural cells: implications for the pro-inflammatory effects of this transcription factor. J Neuroinflammation 2015; 12:14. [PMID: 25617152 PMCID: PMC4348118 DOI: 10.1186/s12974-014-0223-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background The CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor, which was first identified as a regulator of differentiation and inflammatory processes mainly in adipose tissue and liver; however, its function in the brain was largely unknown for many years. Previous studies from our laboratory indicated that C/EBPβ is implicated in inflammatory process and brain injury, since mice lacking this gene were less susceptible to kainic acid-induced injury. Methods We first performed cDNA microarrays analysis using hippocampal RNA isolated from C/EBPβ+/+ and C/EBPβ−/− mice. Immunocytochemical and immunohistochemical studies were done to evaluate C/EBPβ and C3 levels. Transient transfection experiments were made to analyze transcriptional regulation of C3 by C/EBPβ. To knockdown C/EBPβ and C3 expression, mouse astrocytes were infected with lentiviral particles expressing an shRNA specific for C/EBPβ or an siRNA specific for C3. Results Among the genes displaying significant changes in expression was complement component 3 (C3), which showed a dramatic decrease in mRNA content in the hippocampus of C/EBPβ−/− mice. C3 is the central component of the complement and is implicated in different brain disorders. In this work we have found that C/EBPβ regulates C3 levels in rodents glial in vitro and in the rat Substantia nigra pars compacta (SNpc) in vivo following an inflammatory insult. Analysis of the mouse C3 promoter showed that it is directly regulated by C/EBPβ through a C/EBPβ consensus site located at position −616/-599 of the gene. In addition, we show that depletion of C/EBPβ by a specific shRNA results in a significant decrease in the levels of C3 together with a reduction in the increased levels of pro-inflammatory agents elicited by lipopolysaccharide treatment. Conclusions Altogether, these results indicate that C3 is a downstream target of C/EBPβ, and it could be a mediator of the pro-inflammatory effects of this transcription factor in neural cells.
Collapse
Affiliation(s)
- Elena Hernandez-Encinas
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Marta Cortes-Canteli
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Present address: Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Elena Gine
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
62
|
Eugène E, Cluzeaud F, Cifuentes-Diaz C, Fricker D, Le Duigou C, Clemenceau S, Baulac M, Poncer JC, Miles R. An organotypic brain slice preparation from adult patients with temporal lobe epilepsy. J Neurosci Methods 2014; 235:234-44. [PMID: 25064188 PMCID: PMC4426207 DOI: 10.1016/j.jneumeth.2014.07.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/13/2014] [Accepted: 07/15/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND A long-term in vitro preparation of diseased brain tissue would facilitate work on human pathologies. Organotypic tissue cultures retain an appropriate neuronal form, spatial arrangement, connectivity and electrical activity over several weeks. However, they are typically prepared with tissue from immature animals. In work using tissue from adult animals or humans, survival times longer than a few days have not been reported and it is not clear that pathological neuronal activities are retained. NEW METHOD We modified tissue preparation procedures and used a defined culture medium to make organotypic cultures of temporal lobe tissue obtained after operations on adult patients with pharmaco-resistant mesial temporal lobe epilepsies. RESULTS Organototypic culture preparation and maintenance techniques were judged on criteria of morphology and the generation of epileptiform activities. Short-duration (30-100 ms) interictal-like population activities were initiated spontaneously in either the subiculum, dentate gyrus or the CA2/CA3 region, but not the cortex, for up to 3-4 weeks in culture. Ictal-like discharges, of duration greater than 10s, were induced by convulsants. Epileptiform activities were modulated by both glutamatergic and GABAergic receptor antagonists. COMPARISON WITH EXISTING METHODS Our methods now permit the maintenance in organotypic culture of epileptic adult human tissue, generating appropriate epileptiform activity over 3-4 weeks. CONCLUSIONS We have shown that characteristic morphology and pathological activities are maintained in organotypic cultures of adult human tissue. These cultures should permit studies on the effects of prolonged drug treatments and long-term procedures such as viral transduction.
Collapse
Affiliation(s)
- Emmanuel Eugène
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France; INSERM, UMR-839, Paris 75005, France; UPMC Univ Paris, UMR-839, Paris 75005, France; Institut du Fer a Moulin, Paris 75005 France.
| | - Françoise Cluzeaud
- Service Microscopie, Centre de recherche biomedicale, CHU Bichat, Université Paris Diderot, 16 rue Henri Huchard, Paris 75870, France
| | - Carmen Cifuentes-Diaz
- INSERM, UMR-839, Paris 75005, France; UPMC Univ Paris, UMR-839, Paris 75005, France; Institut du Fer a Moulin, Paris 75005 France
| | - Desdemona Fricker
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France
| | - Caroline Le Duigou
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France
| | - Stephane Clemenceau
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France
| | - Michel Baulac
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France
| | - Jean-Christophe Poncer
- INSERM, UMR-839, Paris 75005, France; UPMC Univ Paris, UMR-839, Paris 75005, France; Institut du Fer a Moulin, Paris 75005 France
| | - Richard Miles
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France.
| |
Collapse
|
63
|
Aigner S, Heckel T, Zhang JD, Andreae LC, Jagasia R. Human pluripotent stem cell models of autism spectrum disorder: emerging frontiers, opportunities, and challenges towards neuronal networks in a dish. Psychopharmacology (Berl) 2014; 231:1089-104. [PMID: 24232378 PMCID: PMC3932166 DOI: 10.1007/s00213-013-3332-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/10/2013] [Indexed: 01/29/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by deficits in language development and social cognition and the manifestation of repetitive and restrictive behaviors. Despite recent major advances, our understanding of the pathophysiological mechanisms leading to ASD is limited. Although most ASD cases have unknown genetic underpinnings, animal and human cellular models of several rare, genetically defined syndromic forms of ASD have provided evidence for shared pathophysiological mechanisms that may extend to idiopathic cases. Here, we review our current knowledge of the genetic basis and molecular etiology of ASD and highlight how human pluripotent stem cell-based disease models have the potential to advance our understanding of molecular dysfunction. We summarize landmark studies in which neuronal cell populations generated from human embryonic stem cells and patient-derived induced pluripotent stem cells have served to model disease mechanisms, and we discuss recent technological advances that may ultimately allow in vitro modeling of specific human neuronal circuitry dysfunction in ASD. We propose that these advances now offer an unprecedented opportunity to help better understand ASD pathophysiology. This should ultimately enable the development of cellular models for ASD, allowing drug screening and the identification of molecular biomarkers for patient stratification.
Collapse
Affiliation(s)
- Stefan Aigner
- Neuroscience Research and Early Clinical Development, F. Hoffmann–La Roche Ltd, 4070 Basel, Switzerland
| | - Tobias Heckel
- Translational Technology and Bioinformatics, Non-Clinical Safety, F. Hoffmann–La Roche Ltd, 4070 Basel, Switzerland
| | - Jitao D. Zhang
- Translational Technology and Bioinformatics, Non-Clinical Safety, F. Hoffmann–La Roche Ltd, 4070 Basel, Switzerland
| | - Laura C. Andreae
- MRC Centre for Developmental Neurobiology, Kings College London, London, SE1 1UL UK
| | - Ravi Jagasia
- Neuroscience Research and Early Clinical Development, F. Hoffmann–La Roche Ltd, 4070 Basel, Switzerland
| |
Collapse
|
64
|
Boyd JD, Lee P, Feiler MS, Zauur N, Liu M, Concannon J, Ebata A, Wolozin B, Glicksman MA. A high-content screen identifies novel compounds that inhibit stress-induced TDP-43 cellular aggregation and associated cytotoxicity. ACTA ACUST UNITED AC 2013; 19:44-56. [PMID: 24019256 DOI: 10.1177/1087057113501553] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TDP-43 is an RNA binding protein found to accumulate in the cytoplasm of brain and spinal cord from patients affected with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Nuclear TDP-43 protein regulates transcription through several mechanisms, and under stressed conditions, it forms cytoplasmic aggregates that co-localize with stress granule (SG) proteins in cell culture. These granules are also found in the brain and spinal cord of patients affected with ALS and FTLD. The mechanism through which TDP-43 might contribute to neurodegenerative diseases is poorly understood. To investigate the pathophysiology of TDP-43 aggregation and to isolate potential therapeutic targets, we screened a chemical library of 75,000 compounds using high-content analysis with PC12 cells that inducibly express human TDP-43 tagged with green fluorescent protein (GFP). The screen identified 16 compounds that dose-dependently decreased the TDP-43 inclusions without significant cellular toxicity or changes in total TDP-43 expression levels. To validate the effect, we tested compounds by Western blot analysis and in a Caenorhabditis elegans model that replicates some of the relevant disease phenotypes. The hits from this assay will be useful for elucidating regulation of TDP-43, stress granule response, and possible ALS therapeutics.
Collapse
Affiliation(s)
- Justin D Boyd
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA
| | - Peter Lee
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA
| | - Marisa S Feiler
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA
| | - Nava Zauur
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA
| | - Min Liu
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA
| | - John Concannon
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA
| | - Atsushi Ebata
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA.,Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Marcie A Glicksman
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA
| |
Collapse
|
65
|
Smith AM, Gibbons HM, Oldfield RL, Bergin PM, Mee EW, Curtis MA, Faull RLM, Dragunow M. M-CSF increases proliferation and phagocytosis while modulating receptor and transcription factor expression in adult human microglia. J Neuroinflammation 2013; 10:85. [PMID: 23866312 PMCID: PMC3729740 DOI: 10.1186/1742-2094-10-85] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/09/2013] [Indexed: 11/18/2022] Open
Abstract
Background Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation. Methods Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function. Results We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide. Conclusions We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit.
Collapse
Affiliation(s)
- Amy M Smith
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Smith AM, Gibbons HM, Oldfield RL, Bergin PM, Mee EW, Faull RLM, Dragunow M. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia 2013; 61:929-42. [PMID: 23483680 DOI: 10.1002/glia.22486] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/25/2013] [Indexed: 12/31/2022]
Abstract
Microglia are the predominant resident immune cells of the brain and can assume a range of phenotypes. They are critical for normal brain development and function but can also contribute to many disease processes. Although they are widely studied, the transcriptional control of microglial phenotype and activation requires further research. PU.1 is a key myeloid transcription factor expressed by peripheral macrophages and rodent microglia. In this article, we report the presence of PU.1 specifically in microglia of the adult human brain and we examine its functional role in primary human microglia. Using siRNA, we achieved substantial PU.1 protein knock-down in vitro. By assessing a range of characteristic microglial proteins we found decreased viability of adult human microglia with reduced PU.1 protein expression. This observation was confirmed with PU.1 antisense DNA oligonucleotides. An important function of microglia is to clear debris by phagocytosis. We assessed the impact of loss of PU.1 on microglial phagocytosis and show that PU.1 siRNA reduces the ability of adult human microglia to phagocytose amyloid-beta1-42 peptide. These results show that PU.1 controls human microglial viability and function and suggest PU.1 as a molecular target for manipulation of human microglial phenotype.
Collapse
Affiliation(s)
- Amy M Smith
- Department of Pharmacology and Clinical Pharmacology, the University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
67
|
Dragunow M. Meningeal and choroid plexus cells--novel drug targets for CNS disorders. Brain Res 2013; 1501:32-55. [PMID: 23328079 DOI: 10.1016/j.brainres.2013.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
The meninges and choroid plexus perform many functions in the developing and adult human central nervous system (CNS) and are composed of a number of different cell types. In this article I focus on meningeal and choroid plexus cells as targets for the development of drugs to treat a range of traumatic, ischemic and chronic brain disorders. Meningeal cells are involved in cortical development (and their dysfunction may be involved in cortical dysplasia), fibrotic scar formation after traumatic brain injuries (TBI), brain inflammation following infections, and neurodegenerative disorders such as Multiple Sclerosis (MS) and Alzheimer's disease (AD) and other brain disorders. The choroid plexus regulates the composition of the cerebrospinal fluid (CSF) as well as brain entry of inflammatory cells under basal conditions and after injuries. The meninges and choroid plexus also link peripheral inflammation (occurring in the metabolic syndrome and after infections) to CNS inflammation which may contribute to the development and progression of a range of CNS neurological and psychiatric disorders. They respond to cytokines generated systemically and secrete cytokines and chemokines that have powerful effects on the brain. The meninges may also provide a stem cell niche in the adult brain which could be harnessed for brain repair. Targeting meningeal and choroid plexus cells with therapeutic agents may provide novel therapies for a range of human brain disorders.
Collapse
Affiliation(s)
- Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
68
|
The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants. Mol Psychiatry 2013; 18:38-52. [PMID: 22547114 DOI: 10.1038/mp.2012.34] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After decades of halting progress, recent large genome-wide association studies (GWAS) are finally shining light on the genetic architecture of schizophrenia. The picture emerging is one of sobering complexity, involving large numbers of risk alleles across the entire allelic spectrum. The aims of this article are to summarize the key genetic findings to date and to compare and contrast methods for identifying additional risk alleles, including GWAS, targeted genotyping and sequencing. A further aim is to consider the challenges and opportunities involved in determining the functional basis of genetic associations, for instance using functional genomics, cellular models, animal models and imaging genetics. We conclude that diverse approaches will be required to identify and functionally characterize the full spectrum of risk variants for schizophrenia. These efforts should adhere to the stringent standards of statistical association developed for GWAS and are likely to entail very large sample sizes. Nonetheless, now more than any previous time, there are reasons for optimism and the ultimate goal of personalized interventions and therapeutics, although still distant, no longer seems unattainable.
Collapse
|
69
|
Smith AM, Gibbons HM, Lill C, Faull RLM, Dragunow M. Isolation and culture of adult human microglia within mixed glial cultures for functional experimentation and high-content analysis. Methods Mol Biol 2013; 1041:41-51. [PMID: 23813368 DOI: 10.1007/978-1-62703-520-0_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microglia are thought to be involved in diseases of the adult human brain as well as normal aging processes. While neonatal and rodent microglia are often used in studies investigating microglial function, there are important differences between rodent microglia and their adult human counterparts. Human brain tissue provides a unique and valuable tool for microglial cell and molecular biology. Routine protocols can now enable use of this culture method in many laboratories. Detailed protocols and advice for culture of human brain microglia are provided here. We demonstrate the protocol for culturing human adult microglia within a mixed glial culture and use a phagocytosis assay as an example of the functional studies possible with these cells as well as a high-content analysis method of quantification.
Collapse
Affiliation(s)
- Amy M Smith
- The University of Auckland, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
70
|
Shaikh SB, Uy B, Perera A, Nicholson LF. AGEs–RAGE mediated up-regulation of connexin43 in activated human microglial CHME-5 cells. Neurochem Int 2012; 60:640-51. [DOI: 10.1016/j.neuint.2012.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/14/2011] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
71
|
Baird CA, Furek MW. Adolescents and inhalant abuse: how huffing affects the myelin sheath. J Addict Nurs 2012; 23:129-31. [PMID: 22471781 DOI: 10.3109/10884602.2012.669422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
As concern grows over the impact that accidental chemical exposures may have on the long term health of individuals, our young people are deliberately exposing themselves to the effect of neurotoxic chemicals with the intent of feeling high. Over time the result of inhaling these chemicals is often the development of symptoms and behavior that may suggest serious physiological damage. Research is being conducted to examine what the exact nature of the damage might be, especially the impact of inhaled lipophilic chemicals on structures in the brain and other parts of the nervous system. Healthcare professionals responsible for assessing adolescents in all settings need to be aware of the prevalence of inhalant abuse, as well as the chemicals, terminology, and potential symptomatology in order to intervene in the behavior and provide diagnosis and treatment as indicated. Some implications for nursing are included.
Collapse
|
72
|
Margineanu DG. Systems biology impact on antiepileptic drug discovery. Epilepsy Res 2011; 98:104-15. [PMID: 22055355 DOI: 10.1016/j.eplepsyres.2011.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/21/2011] [Accepted: 10/06/2011] [Indexed: 01/22/2023]
Abstract
Systems biology (SB), a recent trend in bioscience research to consider the complex interactions in biological systems from a holistic perspective, sees the disease as a disturbed network of interactions, rather than alteration of single molecular component(s). SB-relying network pharmacology replaces the prevailing focus on specific drug-receptor interaction and the corollary of rational drug design of "magic bullets", by the search for multi-target drugs that would act on biological networks as "magic shotguns". Epilepsy being a multi-factorial, polygenic and dynamic pathology, SB approach appears particularly fit and promising for antiepileptic drug (AED) discovery. In fact, long before the advent of SB, AED discovery already involved some SB-like elements. A reported SB project aimed to find out new drug targets in epilepsy relies on a relational database that integrates clinical information, recordings from deep electrodes and 3D-brain imagery with histology and molecular biology data on modified expression of specific genes in the brain regions displaying spontaneous epileptic activity. Since hitting a single target does not treat complex diseases, a proper pharmacological promiscuity might impart on an AED the merit of being multi-potent. However, multi-target drug discovery entails the complicated task of optimizing multiple activities of compounds, while having to balance drug-like properties and to control unwanted effects. Specific design tools for this new approach in drug discovery barely emerge, but computational methods making reliable in silico predictions of poly-pharmacology did appear, and their progress might be quite rapid. The current move away from reductionism into network pharmacology allows expecting that a proper integration of the intrinsic complexity of epileptic pathology in AED discovery might result in literally anti-epileptic drugs.
Collapse
Affiliation(s)
- Doru Georg Margineanu
- Department of Neurosciences, Faculty of Medicine and Pharmacy, University of Mons, Ave. Champ de Mars 6, B-7000 Mons, Belgium.
| |
Collapse
|
73
|
Dolmetsch R, Geschwind DH. The human brain in a dish: the promise of iPSC-derived neurons. Cell 2011; 145:831-4. [PMID: 21663789 DOI: 10.1016/j.cell.2011.05.034] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Indexed: 01/08/2023]
Abstract
Induced pluripotent stem cell-derived neurons from patients promise to fill an important niche between studies in humans and model organisms in deciphering mechanisms and identifying therapeutic avenues for neurologic and psychiatric diseases. Recent work begins to tap this potential and also highlights challenges that must be overcome to be fully realized.
Collapse
Affiliation(s)
- Ricardo Dolmetsch
- Department of Neurobiology, Fairchild Research Building, Room D227, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
74
|
Rice MJ. The institutional review board is an impediment to human research: the result is more animal-based research. Philos Ethics Humanit Med 2011; 6:12. [PMID: 21649895 PMCID: PMC3127833 DOI: 10.1186/1747-5341-6-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 06/07/2011] [Indexed: 05/15/2023] Open
Abstract
Biomedical research today can be generally classified as human-based or nonhuman animal-based, each with separate and distinct review boards that must approve research protocols. Researchers wishing to work with humans or human tissues have become frustrated by the required burdensome approval panel, the Institutional Review Board. However, scientists have found it is much easier to work with the animal-based research review board, the Institutional Animal Care and Use Committee. Consequently, animals are used for investigations even when scientists believe these studies should be performed with humans or human tissue. This situation deserves attention from society and more specifically the animal protection and patient advocate communities, as neither patients nor animals are well served by the present situation.
Collapse
Affiliation(s)
- Mark J Rice
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL 32610-0254, USA.
| |
Collapse
|
75
|
Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex. Nat Protoc 2011; 6:214-28. [PMID: 21293461 DOI: 10.1038/nprot.2010.188] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Instructing glial cells to generate neurons may prove to be a strategy to replace neurons that have degenerated. Here, we describe a robust protocol for the efficient in vitro conversion of postnatal astroglia from the mouse cerebral cortex into functional, synapse-forming neurons. This protocol involves two steps: (i) expansion of astroglial cells (7 d) and (ii) astroglia-to-neuron conversion induced by persistent and strong retroviral expression of Neurog2 (encoding neurogenin-2) or Mash1 (also referred to as achaete-scute complex homolog 1 or Ascl1) and/or distal-less homeobox 2 (Dlx2) for generation of glutamatergic or GABAergic neurons, respectively (7-21 d for different degrees of maturity). Our protocol of astroglia-to-neuron conversion by a single neurogenic transcription factor provides a stringent experimental system to study the specification of a selective neuronal subtype, thus offering an alternative to the use of embryonic or neural stem cells. Moreover, it can be a useful model for studies of lineage conversion from non-neuronal cells, with potential for brain regenerative medicine.
Collapse
|
76
|
Malgrange B, Borgs L, Grobarczyk B, Purnelle A, Ernst P, Moonen G, Nguyen L. Using human pluripotent stem cells to untangle neurodegenerative disease mechanisms. Cell Mol Life Sci 2011; 68:635-49. [PMID: 20976521 PMCID: PMC11115022 DOI: 10.1007/s00018-010-0557-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/14/2010] [Accepted: 10/04/2010] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells, including embryonic (hES) and induced pluripotent stem cells (hiPS), retain the ability to self-renew indefinitely, while maintaining the capacity to differentiate into all cell types of the nervous system. While human pluripotent cell-based therapies are unlikely to arise soon, these cells can currently be used as an inexhaustible source of committed neurons to perform high-throughput screening and safety testing of new candidate drugs. Here, we describe critically the available methods and molecular factors that are used to direct the differentiation of hES or hiPS into specific neurons. In addition, we discuss how the availability of patient-specific hiPS offers a unique opportunity to model inheritable neurodegenerative diseases and untangle their pathological mechanisms, or to validate drugs that would prevent the onset or the progression of these neurological disorders.
Collapse
|
77
|
Zingg JM, Libinaki R, Lai CQ, Meydani M, Gianello R, Ogru E, Azzi A. Modulation of gene expression by α-tocopherol and α-tocopheryl phosphate in THP-1 monocytes. Free Radic Biol Med 2010; 49:1989-2000. [PMID: 20923704 DOI: 10.1016/j.freeradbiomed.2010.09.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/09/2010] [Accepted: 09/27/2010] [Indexed: 11/16/2022]
Abstract
The natural vitamin E analog α-tocopheryl phosphate (αTP) modulates atherosclerotic and inflammatory events more efficiently than the unphosphorylated α-tocopherol (αT). To investigate the molecular mechanisms involved, we have measured plasma levels of αTP and compared the cellular effects of αT and αTP in THP-1 monocytes. THP-1 cell proliferation is slightly increased by αT, whereas it is inhibited by αTP. CD36 surface expression is inhibited by αTP within hours without requiring transport of αTP into cells, suggesting that αTP may bind to CD36 and/or trigger its internalization. As assessed by gene expression microarrays, more genes are regulated by αTP than by αT. Among a set of confirmed genes, the expression of vascular endothelial growth factor is induced by αTP as a result of activating protein kinase B (PKB/Akt) and is associated with increased levels of reactive oxygen species (ROS). Increased Akt(Ser473) phosphorylation and induction of ROS by αTP occur in a wortmannin-sensitive manner, indicating the involvement of phosphatidylinositol kinases. The induction of Akt(Ser473) phosphorylation and ROS production by αTP can be attenuated by αT. It is concluded that αTP and αT influence cell proliferation, ROS production, and Akt(Ser473) phosphorylation in an antagonistic manner, most probably by modulating phosphatidylinositol kinases.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
78
|
Smith AM, Gibbons HM, Dragunow M. Valproic acid enhances microglial phagocytosis of amyloid-beta(1-42). Neuroscience 2010; 169:505-15. [PMID: 20423723 DOI: 10.1016/j.neuroscience.2010.04.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 04/01/2010] [Accepted: 04/19/2010] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder manifested by memory loss, confusion and changes in mood. A principal pathology of this debilitating disorder is extracellular deposits of amyloid-beta (Abeta) protein. The "amyloid hypothesis" postulates that a build-up of Abeta protein is responsible for neuronal loss and the ensuing symptoms of AD. One possible mechanism of Abeta clearance, and hence AD therapy, is phagocytosis of Abeta protein by microglial cells. Microglia are the brain's resident immune cells and phagocytosis is one of their innate functions. We are interested in identifying molecules that augment microglial-mediated phagocytosis of Abeta protein. We used the rodent BV-2 microglial cell line which readily phagocytose fluorescent latex beads and synthetic Abeta(1-42) peptide. BV-2 cells treated with the neuroactive drug valproic acid (VPA) showed greatly enhanced phagocytic activity for both latex beads and Abeta. VPA also reduced microglial viability by inducing apoptosis, as previously reported. The relevance of these in vitro results to the treatment of AD is unclear but further investigation into the effects of VPA on the clearance of Abeta through enhanced microglial phagocytosis is warranted.
Collapse
Affiliation(s)
- A M Smith
- Department of Pharmacology, Faculty of Medical and Health Sciences and the National Research Centre for Growth and Development, The University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
79
|
Shaikh SB, Nicholson LF. Effects of chronic low dose rotenone treatment on human microglial cells. Mol Neurodegener 2009; 4:55. [PMID: 20042120 PMCID: PMC2806357 DOI: 10.1186/1750-1326-4-55] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 12/31/2009] [Indexed: 12/21/2022] Open
Abstract
Background Exposure to toxins/chemicals is considered to be a significant risk factor in the pathogenesis of Parkinson's disease (PD); one putative chemical is the naturally occurring herbicide rotenone that is now used widely in establishing PD models. We, and others, have shown that chronic low dose rotenone treatment induces excessive accumulation of Reactive Oxygen Species (ROS), inclusion body formation and apoptosis in dopaminergic neurons of animal and human origin. Some studies have also suggested that microglia enhance the rotenone induced neurotoxicity. While the effects of rotenone on neurons are well established, there is little or no information available on the effect of rotenone on microglial cells, and especially cells of human origin. The aim of the present study was to investigate the effects of chronic low dose rotenone treatment on human microglial CHME-5 cells. Methods We have shown previously that rotenone induced inclusion body formation in human dopaminergic SH-SY5Y cells and therefore used these cells as a control for inclusion body formation in this study. SH-SY5Y and CHME-5 cells were treated with 5 nM rotenone for four weeks. At the end of week 4, both cell types were analysed for the presence of inclusion bodies, superoxide dismutases and cell activation (only in CHME-5 cells) using Haematoxylin and Eosin staining, immunocytochemical and western blotting methods. Levels of active caspases and ROS (both extra and intra cellular) were measured using biochemical methods. Conclusion The results suggest that chronic low dose rotenone treatment activates human microglia (cell line) in a manner similar to microglia of animal origin as shown by others. However human microglia release excessive amounts of ROS extracellularly, do not show excessive amounts of intracellular ROS and active caspases and most importantly do not show any protein aggregation or inclusion body formation. Human microglia appear to be resistant to rotenone (chronic, low dose) induced damage.
Collapse
Affiliation(s)
- Shamim B Shaikh
- Department of Anatomy with Radiology and The Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|
80
|
Kimmelman J, London AJ, Ravina B, Ramsay T, Bernstein M, Fine A, Stahnisch FW, Emborg ME. Launching invasive, first-in-human trials against Parkinson's disease: ethical considerations. Mov Disord 2009; 24:1893-901. [PMID: 19672990 PMCID: PMC2989599 DOI: 10.1002/mds.22712] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The decision to initiate invasive, first-in-human trials involving Parkinson's disease presents a vexing ethical challenge. Such studies present significant surgical risks, and high degrees of uncertainty about intervention risks and biological effects. We argue that maintaining a favorable risk-benefit balance in such circumstances requires a higher than usual degree of confidence that protocols will lead to significant direct and/or social benefits. One critical way of promoting such confidence is through the application of stringent evidentiary standards for preclinical studies. We close with a series of recommendations for strengthening the internal and external validity of preclinical studies, reducing their tendency toward optimism and publication biases, and improving the knowledge base used to design and evaluate preclinical studies.
Collapse
Affiliation(s)
- Jonathan Kimmelman
- Biomedical Ethics Unit, Department of Social Studies of Medicine, McGill University, 3647 Peel Street, Montreal, QB H3A 1X1, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Parkinson's disease is characterised by a slow and progressive degeneration of dopaminergic neurons in the substantia nigra. Despite intensive research, the cause of the neuronal loss in Parkinson's disease is poorly understood. Neuroinflammatory mechanisms might contribute to the cascade of events leading to neuronal degeneration. In this Review, we describe the evidence for neuroinflammatory processes from post-mortem and in vivo studies in Parkinson's disease. We further identify the cellular and molecular events associated with neuroinflammation that are involved in the degeneration of dopaminergic neurons in animal models of the disease. Overall, available data support the importance of non-cell-autonomous pathological mechanisms in Parkinson's disease, which are mostly mediated by activated glial and peripheral immune cells. This cellular response to neurodegeneration triggers deleterious events (eg, oxidative stress and cytokine-receptor-mediated apoptosis), which might eventually lead to dopaminergic cell death and hence disease progression. Finally, we highlight possible therapeutic strategies (including immunomodulatory drugs and therapeutic immunisation) aimed at downregulating these inflammatory processes that might be important to slow the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Etienne C Hirsch
- INSERM, UMRS 975, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Experimental Therapeutics of Neurodegeneration, Paris, France.
| | | |
Collapse
|
82
|
Podrygajlo G, Tegenge MA, Gierse A, Paquet-Durand F, Tan S, Bicker G, Stern M. Cellular phenotypes of human model neurons (NT2) after differentiation in aggregate culture. Cell Tissue Res 2009; 336:439-52. [PMID: 19377856 DOI: 10.1007/s00441-009-0783-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/12/2009] [Indexed: 11/25/2022]
Abstract
The well-characterized human teratocarcinoma line Ntera2 (NT2) can be differentiated into mature neurons. We have significantly shortened the time-consuming process for generating postmitotic neurons to approximately 4 weeks by introducing a differentiation protocol for free-floating cell aggregates and a subsequent purification step. Here, we characterize the neurochemical phenotypes of the neurons derived from this cell aggregate method. During differentiation, the NT2 cells lose immunoreactivity for vimentin and nestin filaments, which are characteristic for the immature state of neuronal precursors. Instead, they acquire typical neuronal markers such as beta-tubulin type III, microtubule-associated protein 2, and phosphorylated tau, but no astrocyte markers such as glial fibrillary acidic protein. They grow neural processes that express punctate immunoreactivity for synapsin and synaptotagmin suggesting the formation of presynaptic structures. Despite their common clonal origin, neurons cultured for 2-4 weeks in vitro comprise a heterogeneous population expressing several neurotransmitter phenotypes. Approximately 40% of the neurons display glutamatergic markers. A minority of neurons is immunoreactive for serotonin, gamma-amino-butyric acid, and its synthesizing enzyme glutamic acid decarboxylase. We have found no evidence for a dopaminergic phenotype. Subgroups of NT2 neurons respond to the application of nitric oxide donors with the synthesis of cGMP. A major subset shows immunoreactivity to the cholinergic markers choline acetyl-transferase, vesicular acetylcholine transporter, and the non-phosphorylated form of neurofilament H, all indicative of motor neurons. The NT2 system may thus be well suited for research related to motor neuron diseases.
Collapse
Affiliation(s)
- Grzegorz Podrygajlo
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
83
|
Villoslada P, Steinman L, Baranzini SE. Systems biology and its application to the understanding of neurological diseases. Ann Neurol 2009; 65:124-39. [PMID: 19260029 DOI: 10.1002/ana.21634] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent advances in molecular biology, neurobiology, genetics, and imaging have demonstrated important insights about the nature of neurological diseases. However, a comprehensive understanding of their pathogenesis is still lacking. Although reductionism has been successful in enumerating and characterizing the components of most living organisms, it has failed to generate knowledge on how these components interact in complex arrangements to allow and sustain two of the most fundamental properties of the organism as a whole: its fitness, also termed its robustness, and its capacity to evolve. Systems biology complements the classic reductionist approaches in the biomedical sciences by enabling integration of available molecular, physiological, and clinical information in the context of a quantitative framework typically used by engineers. Systems biology employs tools developed in physics and mathematics such as nonlinear dynamics, control theory, and modeling of dynamic systems. The main goal of a systems approach to biology is to solve questions related to the complexity of living systems such as the brain, which cannot be reconciled solely with the currently available tools of molecular biology and genomics. As an example of the utility of this systems biological approach, network-based analyses of genes involved in hereditary ataxias have demonstrated a set of pathways related to RNA splicing, a novel pathogenic mechanism for these diseases. Network-based analysis is also challenging the current nosology of neurological diseases. This new knowledge will contribute to the development of patient-specific therapeutic approaches, bringing the paradigm of personalized medicine one step closer to reality.
Collapse
Affiliation(s)
- Pablo Villoslada
- Department of Neuroscience, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| | | | | |
Collapse
|
84
|
Margineanu DG, Klitgaard H. Mechanisms of drug resistance in epilepsy: relevance for antiepileptic drug discovery. Expert Opin Drug Discov 2008; 4:23-32. [DOI: 10.1517/17460440802611729] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
85
|
Panetta R, Greenwood MT. Physiological relevance of GPCR oligomerization and its impact on drug discovery. Drug Discov Today 2008; 13:1059-66. [DOI: 10.1016/j.drudis.2008.09.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/21/2008] [Accepted: 09/01/2008] [Indexed: 12/20/2022]
|