51
|
Tracey LJ, Brooke-Bisschop T, Jansen PWTC, Campos EI, Vermeulen M, Justice MJ. The Pluripotency Regulator PRDM14 Requires Hematopoietic Regulator CBFA2T3 to Initiate Leukemia in Mice. Mol Cancer Res 2019; 17:1468-1479. [PMID: 31015254 DOI: 10.1158/1541-7786.mcr-18-1327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/07/2019] [Accepted: 04/19/2019] [Indexed: 12/20/2022]
Abstract
PR domain-containing 14 (Prdm14) is a pluripotency regulator central to embryonic stem cell identity and primordial germ cell specification. Genomic regions containing PRDM14 are often amplified leading to misexpression in human cancer. Prdm14 expression in mouse hematopoietic stem cells (HSC) leads to progenitor cell expansion prior to the development of T-cell acute lymphoblastic leukemia (T-ALL), consistent with PRDM14's role in cancer initiation. Here, we demonstrate mechanistic insight into PRDM14-driven leukemias in vivo. Mass spectrometry revealed novel PRDM14-protein interactions including histone H1, RNA-binding proteins, and the master hematopoietic regulator CBFA2T3. In mouse leukemic cells, CBFA2T3 and PRDM14 associate independently of the related ETO family member CBFA2T2, PRDM14's primary protein partner in pluripotent cells. CBFA2T3 plays crucial roles in HSC self-renewal and lineage commitment, and participates in oncogenic translocations in acute myeloid leukemia. These results suggest a model whereby PRDM14 recruits CBFA2T3 to DNA, leading to gene misregulation causing progenitor cell expansion and lineage perturbations preceding T-ALL development. Strikingly, Prdm14-induced T-ALL does not occur in mice deficient for Cbfa2t3, demonstrating that Cbfa2t3 is required for leukemogenesis. Moreover, T-ALL develops in Cbfa2t3 heterozygotes with a significantly longer latency, suggesting that PRDM14-associated T-ALL is sensitive to Cbfa2t3 levels. Our study highlights how an oncogenic protein uses a native protein in progenitor cells to initiate leukemia, providing insight into PRDM14-driven oncogenesis in other cell types. IMPLICATIONS: The pluripotency regulator PRDM14 requires the master hematopoietic regulator CBFA2T3 to initiate leukemia in progenitor cells, demonstrating an oncogenic role for CBFA2T3 and providing an avenue for targeting cancer-initiating cells.
Collapse
Affiliation(s)
- Lauren J Tracey
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Travis Brooke-Bisschop
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pascal W T C Jansen
- Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Eric I Campos
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michiel Vermeulen
- Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Monica J Justice
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
52
|
A novel approach to differentiate rat embryonic stem cells in vitro reveals a role for RNF12 in activation of X chromosome inactivation. Sci Rep 2019; 9:6068. [PMID: 30988473 PMCID: PMC6465393 DOI: 10.1038/s41598-019-42246-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
X chromosome inactivation (XCI) is a mammalian specific, developmentally regulated process relying on several mechanisms including antisense transcription, non-coding RNA-mediated silencing, and recruitment of chromatin remodeling complexes. In vitro modeling of XCI, through differentiation of embryonic stem cells (ESCs), provides a powerful tool to study the dynamics of XCI, overcoming the need for embryos, and facilitating genetic modification of key regulatory players. However, to date, robust initiation of XCI in vitro has been mostly limited to mouse pluripotent stem cells. Here, we adapted existing protocols to establish a novel monolayer differentiation protocol for rat ESCs to study XCI. We show that differentiating rat ESCs properly downregulate pluripotency factor genes, and present female specific Xist RNA accumulation and silencing of X-linked genes. We also demonstrate that RNF12 seems to be an important player in regulation of initiation of XCI in rat, acting as an Xist activator. Our work provides the basis to investigate the mechanisms directing the XCI process in a model organism different from the mouse.
Collapse
|
53
|
Zhang J, Gao X, Yang J, Fan X, Wang W, Liang Y, Fan L, Han H, Xu X, Tang F, Bao S, Liu P, Li X. Xist Intron 1 Repression by Transcriptional-Activator-Like Effectors Designer Transcriptional Factor Improves Somatic Cell Reprogramming in Mice. Stem Cells 2019; 37:599-608. [PMID: 30353613 DOI: 10.1002/stem.2928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/06/2018] [Accepted: 08/18/2018] [Indexed: 11/11/2022]
Abstract
Xist is the master regulator of X chromosome inactivation. In order to further understand the Xist locus in the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) and in somatic cell nuclear transfer (SCNT), we tested transcription-activator-like effectors-based designer transcriptional factors (dTFs), which were specific to numerous regions at the Xist locus. We report that the selected dTF repressor 6 (R6) binding the intron 1 of Xist, which caused higher H3K9me3 followed by X chromosome opening and repression of X-linked genes in mouse embryonic fibroblasts, rather than affecting Xist expression, substantially improved the iPSC generation and the SCNT preimplantation embryo development. Conversely, the dTF activator targeting the same genomic region of R6 decreased iPSC formation and blocked SCNT-embryo development. These results thus uncover the critical requirement for the Xist locus in epigenetic resetting, which is not directly related to Xist transcription. This may provide a unique route to improving the reprogramming. Stem Cells 2019;37:599-608.
Collapse
Affiliation(s)
- Jindun Zhang
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China.,Wellcome Trust Sanger Institute, Cambridge, United Kingdom.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, People's Republic of China
| | - Xuefei Gao
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Jian Yang
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Xiaoying Fan
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, People's Republic of China.,College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Wei Wang
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Yanfeng Liang
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Lihong Fan
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Hongmei Han
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Xiaorong Xu
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, People's Republic of China.,College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Siqin Bao
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, Hohhot, People's Republic of China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, People's Republic of China
| |
Collapse
|
54
|
Kwon J, Li YH, Jo YJ, Oh Y, Namgoong S, Kim NH. Inhibition of MEK1/2 and GSK3 (2i system) affects blastocyst quality and early differentiation of porcine parthenotes. PeerJ 2019; 6:e5840. [PMID: 30643672 PMCID: PMC6327883 DOI: 10.7717/peerj.5840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023] Open
Abstract
Inhibition of both MEK1/2 and glycogen synthase kinase-3 (GSK3; 2i system) facilitates the maintenance of naïve stemness for embryonic stem cells in various mammalian species. However, the effect of the inhibition of the 2i system on porcine early embryogenesis is unknown. We investigated the effect of the 2i system on early embryo development, expression of pluripotency-related genes, and epigenetic modifications. Inhibition of MEK1/2 (by PD0325901) and/or GSK3 (by CHIR99021) did not alter the developmental potential of porcine parthenogenetic embryos, but improved blastocyst quality, as judged by the blastocyst cell number, diameter, and reduction in the number of apoptotic cells. The expression levels of octamer-binding transcription factor 4 and SOX2, the primary transcription factors that maintain embryonic pluripotency, were significantly increased by 2i treatments. Epigenetic modification-related gene expression was altered upon 2i treatment. The collective results indicate that the 2i system in porcine embryos improved embryo developmental potential and blastocyst quality by regulating epigenetic modifications and pluripotency-related gene expression.
Collapse
Affiliation(s)
- Jeongwoo Kwon
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Ying-Hua Li
- Department of Animal Sciences, Agricultural College, Yanbian University, Yanji, China
| | - Yu-Jin Jo
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - YoungJin Oh
- Genetic Engineering, Cheongchungbuk-do Veterinary Service Laboratory, Cheongju, Cheongchungbuk-do, Republic of Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
55
|
Tischler J, Gruhn WH, Reid J, Allgeyer E, Buettner F, Marr C, Theis F, Simons BD, Wernisch L, Surani MA. Metabolic regulation of pluripotency and germ cell fate through α-ketoglutarate. EMBO J 2019; 38:e99518. [PMID: 30257965 PMCID: PMC6315289 DOI: 10.15252/embj.201899518] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022] Open
Abstract
An intricate link is becoming apparent between metabolism and cellular identities. Here, we explore the basis for such a link in an in vitro model for early mouse embryonic development: from naïve pluripotency to the specification of primordial germ cells (PGCs). Using single-cell RNA-seq with statistical modelling and modulation of energy metabolism, we demonstrate a functional role for oxidative mitochondrial metabolism in naïve pluripotency. We link mitochondrial tricarboxylic acid cycle activity to IDH2-mediated production of alpha-ketoglutarate and through it, the activity of key epigenetic regulators. Accordingly, this metabolite has a role in the maintenance of naïve pluripotency as well as in PGC differentiation, likely through preserving a particular histone methylation status underlying the transient state of developmental competence for the PGC fate. We reveal a link between energy metabolism and epigenetic control of cell state transitions during a developmental trajectory towards germ cell specification, and establish a paradigm for stabilizing fleeting cellular states through metabolic modulation.
Collapse
Affiliation(s)
- Julia Tischler
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Wolfram H Gruhn
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - John Reid
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- The Alan Turing Institute, British Library, London, UK
| | - Edward Allgeyer
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Florian Buettner
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Chair of Mathematical Modeling of Biological Systems Technische Universität München, Garching, Germany
| | - Ben D Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Lorenz Wernisch
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
56
|
Lebedeva LA, Yakovlev KV, Kozlov EN, Schedl P, Deshpande G, Shidlovskii YV. Transcriptional quiescence in primordial germ cells. Crit Rev Biochem Mol Biol 2018; 53:579-595. [PMID: 30280955 PMCID: PMC8729227 DOI: 10.1080/10409238.2018.1506733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
Abstract
In most animal species, newly formed primordial germ cells (PGCs) acquire the special characteristics that distinguish them from the surrounding somatic cells. Proper fate specification of the PGCs is coupled with transcriptional quiescence, whether they are segregated by determinative or inductive mechanisms. Inappropriate differentiation of PGCs into somatic cells is thought to be prevented due to repression of RNA polymerase (Pol) II-dependent transcription. In the case of a determinative mode of PGC formation (Drosophila, Caenorhabditis elegans, etc.), there is a broad downregulation of Pol II activity. By contrast, PGCs display only gene-specific repression in organisms that rely on inductive signaling-based mechanism (e.g., mice). In addition to the global block of Pol II activity in PGCs, gene expression can be suppressed in other ways, such as chromatin remodeling and Piwi-mediated RNAi. Here, we discuss the mechanisms responsible for the transcriptionally silent state of PGCs in common experimental animals, such as Drosophila, C. elegans, Danio rerio, Xenopus, and mouse. While a PGC-specific downregulation of transcription is a common feature among these organisms, the diverse nature of underlying mechanisms suggests that this functional trait likely evolved independently on several instances. We discuss the possible biological relevance of these silencing mechanisms vis-a-vis fate determination of PGCs.
Collapse
Affiliation(s)
| | - Konstantin V. Yakovlev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Cytotechnology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Eugene N. Kozlov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Paul Schedl
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, USA
| | - Yulii V. Shidlovskii
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
57
|
Cheetham SW, Gruhn WH, van den Ameele J, Krautz R, Southall TD, Kobayashi T, Surani MA, Brand AH. Targeted DamID reveals differential binding of mammalian pluripotency factors. Development 2018; 145:dev.170209. [PMID: 30185410 DOI: 10.1242/dev.170209] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Abstract
The precise control of gene expression by transcription factor networks is crucial to organismal development. The predominant approach for mapping transcription factor-chromatin interactions has been chromatin immunoprecipitation (ChIP). However, ChIP requires a large number of homogeneous cells and antisera with high specificity. A second approach, DamID, has the drawback that high levels of Dam methylase are toxic. Here, we modify our targeted DamID approach (TaDa) to enable cell type-specific expression in mammalian systems, generating an inducible system (mammalian TaDa or MaTaDa) to identify genome-wide protein/DNA interactions in 100 to 1000 times fewer cells than ChIP-based approaches. We mapped the binding sites of two key pluripotency factors, OCT4 and PRDM14, in mouse embryonic stem cells, epiblast-like cells and primordial germ cell-like cells (PGCLCs). PGCLCs are an important system for elucidating primordial germ cell development in mice. We monitored PRDM14 binding during the specification of PGCLCs, identifying direct targets of PRDM14 that are key to understanding its crucial role in PGCLC development. We show that MaTaDa is a sensitive and accurate method for assessing cell type-specific transcription factor binding in limited numbers of cells.
Collapse
Affiliation(s)
- Seth W Cheetham
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Wolfram H Gruhn
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jelle van den Ameele
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Robert Krautz
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Tony D Southall
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Toshihiro Kobayashi
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - M Azim Surani
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
58
|
Taniguchi H, Hoshino D, Moriya C, Zembutsu H, Nishiyama N, Yamamoto H, Kataoka K, Imai K. Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer. Oncotarget 2018; 8:46856-46874. [PMID: 28423353 PMCID: PMC5564528 DOI: 10.18632/oncotarget.16776] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
PR domain zinc finger protein 14 (PRDM14) maintains stemness in embryonic stem cells via epigenetic mechanisms. Although PRDM14 is elevated in several cancers, it is unclear if and how PRDM14 confers stem cell-like properties and epigenetic changes to cancer cells. Here, we examined the phenotypic characteristics and epigenetic and gene expression profiles of cancer cells that differentially express PRDM14, and assessed the potential of PRDM14-targeted cancer therapy. PRDM14 expression was markedly increased in many different cancer types and correlated with poor survival of breast cancer patients. PRDM14 conferred stem cell-like phenotypes to cancer cells and regulated the expression of genes involved in cancer stemness, metastasis, and chemoresistance. PRDM14 also reduced the methylation of proto-oncogene and stemness gene promoters and PRDM14-binding regions were primarily occupied by histone H3 Lys-4 trimethylation (H3K4me3), both of which are positively correlated with gene expression. Moreover, strong PRDM14 binding sites coincided with promoters containing both H3K4me3 and H3K27me3 histone marks. Using calcium phosphate hybrid micelles as an RNAi delivery system, silencing of PRDM14 expression by chimera RNAi reduced tumor size and metastasis in vivo without causing adverse effects. Conditional loss of PRDM14 function also improved survival of MMTV-Wnt-1 transgenic mice, a spontaneous model of murine breast cancer. Our findings suggest that PRDM14 inhibition may be an effective and novel therapy for cancer stem cells.
Collapse
Affiliation(s)
- Hiroaki Taniguchi
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Daisuke Hoshino
- Cancer Biology Department, The Kanagawa Cancer Center Research Institute, Kanagawa 241-0815, Japan
| | - Chiharu Moriya
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hitoshi Zembutsu
- Division of Genetics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
| | - Hiroyuki Yamamoto
- Department of Gastroenterology and Hepatology, School of Medicine, St. Marianna Medical University, Kanagawa 216-0015, Japan
| | - Kazunori Kataoka
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kohzoh Imai
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
59
|
Seki Y. PRDM14 Is a Unique Epigenetic Regulator Stabilizing Transcriptional Networks for Pluripotency. Front Cell Dev Biol 2018; 6:12. [PMID: 29487849 PMCID: PMC5816753 DOI: 10.3389/fcell.2018.00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
PR-domain containing protein 14 (PRDM14) is a site-specific DNA-binding protein and is required for establishment of pluripotency in embryonic stem cells (ESCs) and primordial germ cells (PGCs) in mice. DNA methylation status is regulated by the balance between de novo methylation and passive/active demethylation, and global DNA hypomethylation is closely associated with cellular pluripotency and totipotency. PRDM14 ensures hypomethylation in mouse ESCs and PGCs through two distinct layers, transcriptional repression of the DNA methyltransferases Dnmt3a/b/l and active demethylation by recruitment of TET proteins. However, the function of PRDM14 remains unclear in other species including humans. Hence, here we focus on the unique characteristics of mouse PRDM14 in the epigenetic regulation of pluripotent cells and primordial germ cells. In addition, we discuss the expression regulation and function of PRDM14 in other species compared with those in mice.
Collapse
Affiliation(s)
- Yoshiyuki Seki
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo, Japan
| |
Collapse
|
60
|
Cinghu S, Yang P, Kosak JP, Conway AE, Kumar D, Oldfield AJ, Adelman K, Jothi R. Intragenic Enhancers Attenuate Host Gene Expression. Mol Cell 2017; 68:104-117.e6. [PMID: 28985501 DOI: 10.1016/j.molcel.2017.09.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/10/2017] [Accepted: 09/06/2017] [Indexed: 01/06/2023]
Abstract
Eukaryotic gene transcription is regulated at many steps, including RNA polymerase II (Pol II) recruitment, transcription initiation, promoter-proximal Pol II pause release, and transcription termination; however, mechanisms regulating transcription during productive elongation remain poorly understood. Enhancers, which activate gene transcription, themselves undergo Pol II-mediated transcription, but our understanding of enhancer transcription and enhancer RNAs (eRNAs) remains incomplete. Here we show that transcription at intragenic enhancers interferes with and attenuates host gene transcription during productive elongation. While the extent of attenuation correlates positively with nascent eRNA expression, the act of intragenic enhancer transcription alone, but not eRNAs, explains the attenuation. Through CRISPR/Cas9-mediated deletions, we demonstrate a physiological role for intragenic enhancer-mediated transcription attenuation in cell fate determination. We propose that intragenic enhancers not only enhance transcription of one or more genes from a distance but also fine-tune transcription of their host gene through transcription interference, facilitating differential utilization of the same regulatory element for disparate functions.
Collapse
Affiliation(s)
- Senthilkumar Cinghu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Pengyi Yang
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Justin P Kosak
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Amanda E Conway
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Dhirendra Kumar
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Andrew J Oldfield
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Karen Adelman
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Raja Jothi
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
61
|
Sex chromosomes drive gene expression and regulatory dimorphisms in mouse embryonic stem cells. Biol Sex Differ 2017; 8:28. [PMID: 28818098 PMCID: PMC5561606 DOI: 10.1186/s13293-017-0150-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/10/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Pre-implantation embryos exhibit sexual dimorphisms in both primates and rodents. To determine whether these differences reflected sex-biased expression patterns, we generated transcriptome profiles for six 40,XX, six 40,XY, and two 39,X mouse embryonic stem (ES) cells by RNA sequencing. RESULTS We found hundreds of coding and non-coding RNAs that were differentially expressed between male and female cells. Surprisingly, the majority of these were autosomal and included RNA encoding transcription and epigenetic and chromatin remodeling factors. We showed differential Prdm14-responsive enhancer activity in male and female cells, correlating with the sex-specific levels of Prdm14 expression. This is the first time sex-specific enhancer activity in ES cells has been reported. Evaluation of X-linked gene expression patterns between our XX and XY lines revealed four distinct categories: (1) genes showing 2-fold greater expression in the female cells; (2) a set of genes with expression levels well above 2-fold in female cells; (3) genes with equivalent RNA levels in male and female cells; and strikingly, (4) a small number of genes with higher expression in the XY lines. Further evaluation of autosomal gene expression revealed differential expression of imprinted loci, despite appropriate parent-of-origin patterns. The 39,X lines aligned closely with the XY cells and provided insights into potential regulation of genes associated with Turner syndrome in humans. Moreover, inclusion of the 39,X lines permitted three-way comparisons, delineating X and Y chromosome-dependent patterns. CONCLUSIONS Overall, our results support the role of the sex chromosomes in establishing sex-specific networks early in embryonic development and provide insights into effects of sex chromosome aneuploidies originating at those stages.
Collapse
|
62
|
Mzoughi S, Zhang J, Hequet D, Teo SX, Fang H, Xing QR, Bezzi M, Seah MKY, Ong SLM, Shin EM, Wollmann H, Wong ESM, Al-Haddawi M, Stewart CL, Tergaonkar V, Loh YH, Dunn NR, Messerschmidt DM, Guccione E. PRDM15 safeguards naive pluripotency by transcriptionally regulating WNT and MAPK-ERK signaling. Nat Genet 2017; 49:1354-1363. [PMID: 28740264 DOI: 10.1038/ng.3922] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/30/2017] [Indexed: 12/11/2022]
Abstract
The transcriptional network acting downstream of LIF, WNT and MAPK-ERK to stabilize mouse embryonic stem cells (ESCs) in their naive state has been extensively characterized. However, the upstream factors regulating these three signaling pathways remain largely uncharted. PR-domain-containing proteins (PRDMs) are zinc-finger sequence-specific chromatin factors that have essential roles in embryonic development and cell fate decisions. Here we characterize the transcriptional regulator PRDM15, which acts independently of PRDM14 to regulate the naive state of mouse ESCs. Mechanistically, PRDM15 modulates WNT and MAPK-ERK signaling by directly promoting the expression of Rspo1 (R-spondin1) and Spry1 (Sprouty1). Consistent with these findings, CRISPR-Cas9-mediated disruption of PRDM15-binding sites in the Rspo1 and Spry1 promoters recapitulates PRDM15 depletion, both in terms of local chromatin organization and the transcriptional modulation of these genes. Collectively, our findings uncover an essential role for PRDM15 as a chromatin factor that modulates the transcription of upstream regulators of WNT and MAPK-ERK signaling to safeguard naive pluripotency.
Collapse
Affiliation(s)
- Slim Mzoughi
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jingxian Zhang
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Delphine Hequet
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shun Xie Teo
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Haitong Fang
- Epigenetics and Cell Fates Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Qiao Rui Xing
- Epigenetics and Cell Fates Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Marco Bezzi
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michelle Kay Yi Seah
- Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sheena L M Ong
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Eun Myoung Shin
- Cancer Science Institute of Singapore (CSI), National University of Singapore, Singapore.,NF-κB Signaling in Human Ailments, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Heike Wollmann
- DNA Sequencing Facility NGS Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Esther S M Wong
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Colin L Stewart
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Vinay Tergaonkar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NF-κB Signaling in Human Ailments, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,National Cancer Centre Singapore, Singapore.,Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - N Ray Dunn
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel M Messerschmidt
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Developmental Epigenetics and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ernesto Guccione
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore (CSI), National University of Singapore, Singapore.,National Cancer Centre Singapore, Singapore.,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
63
|
Zhou J, Zhang S, Wang H, Sun H. LncFunNet: an integrated computational framework for identification of functional long noncoding RNAs in mouse skeletal muscle cells. Nucleic Acids Res 2017; 45:e108. [PMID: 28379566 PMCID: PMC5499579 DOI: 10.1093/nar/gkx232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/27/2017] [Indexed: 02/01/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are key regulators of diverse cellular processes. Recent advances in high-throughput sequencing have allowed for an unprecedented discovery of novel lncRNAs. To identify functional lncRNAs from thousands of candidates for further functional validation is still a challenging task. Here, we present a novel computational framework, lncFunNet (lncRNA Functional inference through integrated Network) that integrates ChIP-seq, CLIP-seq and RNA-seq data to predict, prioritize and annotate lncRNA functions. In mouse embryonic stem cells (mESCs), using lncFunNet we not only recovered most of the functional lncRNAs known to maintain mESC pluripotency but also predicted a plethora of novel functional lncRNAs. Similarly, in mouse myoblast C2C12 cells, applying lncFunNet led to prediction of reservoirs of functional lncRNAs in both proliferating myoblasts (MBs) and differentiating myotubes (MTs). Further analyses demonstrated that these lncRNAs are frequently bound by key transcription factors, interact with miRNAs and constitute key nodes in biological network motifs. Further experimentations validated their dynamic expression profiles and functionality during myoblast differentiation. Collectively, our studies demonstrate the use of lncFunNet to annotate and identify functional lncRNAs in a given biological system.
Collapse
Affiliation(s)
- Jiajian Zhou
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Suyang Zhang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Hao Sun
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
64
|
Abstract
The tripartite network of Prdm14, Blimp1, and AP2γ is essential for the important process of germ cell specification, but their precise molecular mechanisms of action remain lacking. Tu and colleagues (2016) report in Nature that the transcriptional co-repressor CBFA2T2 is an essential interactor protein regulating PRDM14 function, shedding light into the mechanisms directing germline formation and pluripotency.
Collapse
Affiliation(s)
- Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany.
| | - Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U964, 67404 Illkirch, CU de Strasbourg, France; Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany
| |
Collapse
|
65
|
Molotkov A, Mazot P, Brewer JR, Cinalli RM, Soriano P. Distinct Requirements for FGFR1 and FGFR2 in Primitive Endoderm Development and Exit from Pluripotency. Dev Cell 2017; 41:511-526.e4. [PMID: 28552557 DOI: 10.1016/j.devcel.2017.05.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 03/13/2017] [Accepted: 04/30/2017] [Indexed: 12/23/2022]
Abstract
Activation of the FGF signaling pathway during preimplantation development of the mouse embryo is known to be essential for differentiation of the inner cell mass and the formation of the primitive endoderm (PrE). We now show using fluorescent reporter knockin lines that Fgfr1 is expressed in all cell populations of the blastocyst, while Fgfr2 expression becomes restricted to extraembryonic lineages, including the PrE. We further show that loss of both receptors prevents the development of the PrE and demonstrate that FGFR1 plays a more prominent role in this process than FGFR2. Finally, we document an essential role for FGFRs in embryonic stem cell (ESC) differentiation, with FGFR1 again having a greater influence than FGFR2 in ESC exit from the pluripotent state. Collectively, these results identify mechanisms through which FGF signaling regulates inner cell mass lineage restriction and cell commitment during preimplantation development.
Collapse
Affiliation(s)
- Andrei Molotkov
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre Mazot
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - J Richard Brewer
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ryan M Cinalli
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
66
|
Cruz-Molina S, Respuela P, Tebartz C, Kolovos P, Nikolic M, Fueyo R, van Ijcken WF, Grosveld F, Frommolt P, Bazzi H, Rada-Iglesias A. PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation. Cell Stem Cell 2017; 20:689-705.e9. [DOI: 10.1016/j.stem.2017.02.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/19/2016] [Accepted: 02/07/2017] [Indexed: 01/28/2023]
|
67
|
Kumar DL, DeFalco T. Of Mice and Men: In Vivo and In Vitro Studies of Primordial Germ Cell Specification. Semin Reprod Med 2017; 35:139-146. [PMID: 28278531 DOI: 10.1055/s-0037-1599085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Specification of mouse primordial germ cells (PGCs), the precursors of sperm and eggs, involves three major molecular events: repression of the somatic program, reacquisition of pluripotency, and reprogramming to a unique epigenetic ground state. Gene knockout studies in mouse models, along with global transcriptome analyses, have revealed the key signaling pathways and transcription factors essential for PGC specification. Knowledge obtained from these studies has been utilized extensively to develop robust in vitro PGC induction models not only in mice but also in humans. These models have, in turn, formed the basis for a detailed understanding of the signaling pathways and epigenetic dynamics during in vivo PGC specification and development. Recapitulation of human PGC specification in culture is of tremendous significance for understanding the mechanisms of human germ cell development in normal and disease states and has implications for addressing germ-cell-based causes of infertility.
Collapse
Affiliation(s)
- Deepti Lava Kumar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
68
|
Kim D, Jung YG, Roh S. Microarray analysis of embryo-derived bovine pluripotent cells: The vulnerable state of bovine embryonic stem cells. PLoS One 2017; 12:e0173278. [PMID: 28257460 PMCID: PMC5336296 DOI: 10.1371/journal.pone.0173278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/17/2017] [Indexed: 12/20/2022] Open
Abstract
Although there are many studies about pluripotent stem cells, little is known about pluripotent pathways and the difficulties of maintaining the pluripotency of bovine cells in vitro. Here, we investigated differently expressed genes (DEG) in bovine embryo-derived stem-like cells (eSLCs) from various origins to validate their distinct characteristics of pluripotency and differentiation. We identified core pluripotency markers and additional markers which were not determined as pluripotency markers yet in bovine eSLCs. Using the KEGG database, TGFβ, WNT, and LIF signaling were related to the maintenance of pluripotency. In contrast, some DEGs related to the LIF pathway were down-regulated, suggesting that reactivation of the pathway may be required for the establishment of true bovine embryonic stem cells (ESCs). Interestingly, oncogenes were co-down-regulated, while tumor suppressor genes were co-up-regulated in eSLCs, implying that this pattern may induce abnormal teratomas. These data analyses of signaling pathways provide essential information on authentic ESCs in addition to providing evidence for pluripotency in bovine eSLCs.
Collapse
Affiliation(s)
- Daehwan Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | | | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
69
|
Cell Fate Specification Based on Tristability in the Inner Cell Mass of Mouse Blastocysts. Biophys J 2017; 110:710-722. [PMID: 26840735 DOI: 10.1016/j.bpj.2015.12.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/18/2023] Open
Abstract
During development, interactions between transcription factors control the specification of different cell fates. The regulatory networks of genetic interactions often exhibit multiple stable steady states; such multistability provides a common dynamical basis for differentiation. During early murine embryogenesis, cells from the inner cell mass (ICM) can be specified in epiblast (Epi) or primitive endoderm (PrE). Besides the intracellular gene regulatory network, specification is also controlled by intercellular interactions involving Erk signaling through extracellular Fgf4. We previously proposed a model that describes the gene regulatory network and its interaction with Erk signaling in ICM cells. The model displays tristability in a range of Fgf4 concentrations and accounts for the self-organized specification process observed in vivo. Here, we further investigate the origin of tristability in the model and analyze in more detail the specification process by resorting to a simplified two-cell model. We also carry out simulations of a population of 25 cells under various experimental conditions to compare their outcome with that of mutant embryos or of embryos submitted to exogenous treatments that interfere with Fgf signaling. The results are analyzed by means of bifurcation diagrams. Finally, the model predicts that heterogeneities in extracellular Fgf4 concentration play a primary role in the spatial arrangement of the Epi/PrE cells in a salt-and-pepper pattern. If, instead of heterogeneities in extracellular Fgf4 concentration, internal fluctuations in the levels of expression of the transcription factors are considered as a source of randomness, simulations predict the occurrence of unrealistic switches between the Epi and the PrE cell fates, as well as the evolution of some cells toward one of these states without passing through the previous ICM state, in contrast to what is observed in vivo.
Collapse
|
70
|
Pérez-Rico YA, Boeva V, Mallory AC, Bitetti A, Majello S, Barillot E, Shkumatava A. Comparative analyses of super-enhancers reveal conserved elements in vertebrate genomes. Genome Res 2016; 27:259-268. [PMID: 27965291 PMCID: PMC5287231 DOI: 10.1101/gr.203679.115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/09/2016] [Indexed: 12/11/2022]
Abstract
Super-enhancers (SEs) are key transcriptional drivers of cellular, developmental, and disease states in mammals, yet the conservational and regulatory features of these enhancer elements in nonmammalian vertebrates are unknown. To define SEs in zebrafish and enable sequence and functional comparisons to mouse and human SEs, we used genome-wide histone H3 lysine 27 acetylation (H3K27ac) occupancy as a primary SE delineator. Our study determined the set of SEs in pluripotent state cells and adult zebrafish tissues and revealed both similarities and differences between zebrafish and mammalian SEs. Although the total number of SEs was proportional to the genome size, the genomic distribution of zebrafish SEs differed from that of the mammalian SEs. Despite the evolutionary distance separating zebrafish and mammals and the low overall SE sequence conservation, ∼42% of zebrafish SEs were located in close proximity to orthologs that also were associated with SEs in mouse and human. Compared to their nonassociated counterparts, higher sequence conservation was revealed for those SEs that have maintained orthologous gene associations. Functional dissection of two of these SEs identified conserved sequence elements and tissue-specific expression patterns, while chromatin accessibility analyses predicted transcription factors governing the function of pluripotent state zebrafish SEs. Our zebrafish annotations and comparative studies show the extent of SE usage and their conservation across vertebrates, permitting future gene regulatory studies in several tissues.
Collapse
Affiliation(s)
- Yuvia A Pérez-Rico
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR 3215, F-75005, Paris, France.,INSERM, U900, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
| | - Valentina Boeva
- INSERM, U900, F-75005, Paris, France.,Institut Curie, Mines ParisTech, PSL Research University, F-75005, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes UMR-S1016, F-75014 Paris, France
| | - Allison C Mallory
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR 3215, F-75005, Paris, France
| | - Angelo Bitetti
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR 3215, F-75005, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
| | - Sara Majello
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR 3215, F-75005, Paris, France
| | - Emmanuel Barillot
- INSERM, U900, F-75005, Paris, France.,Institut Curie, Mines ParisTech, PSL Research University, F-75005, Paris, France
| | - Alena Shkumatava
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR 3215, F-75005, Paris, France
| |
Collapse
|
71
|
Lu Y, Wan Z, Zhang X, Zhong X, Rui L, Li Z. PRDM14 inhibits 293T cell proliferation by influencing the G1/S phase transition. Gene 2016; 595:180-186. [DOI: 10.1016/j.gene.2016.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/16/2016] [Accepted: 09/26/2016] [Indexed: 11/29/2022]
|
72
|
PRDM14 Drives OCT3/4 Recruitment via Active Demethylation in the Transition from Primed to Naive Pluripotency. Stem Cell Reports 2016; 7:1072-1086. [PMID: 27866876 PMCID: PMC5161533 DOI: 10.1016/j.stemcr.2016.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022] Open
Abstract
Primordial germ cells (PGCs) are specified from epiblast cells in mice. Genes associated with naive pluripotency are repressed in the transition from inner cell mass to epiblast cells, followed by upregulation after PGC specification. However, the molecular mechanisms underlying the reactivation of pluripotency genes are poorly characterized. Here, we exploited the in vitro differentiation of epiblast-like cells (EpiLCs) from embryonic stem cells (ESCs) to elucidate the molecular and epigenetic functions of PR domain-containing 14 (PRDM14). We found that Prdm14 overexpression in EpiLCs induced their conversion to ESC-like cells even in the absence of leukemia inhibitory factor in adherent culture. This was impaired by the loss of Kruppel-like factor 2 and ten-eleven translocation (TET) proteins. Furthermore, PRDM14 recruited OCT3/4 to the enhancer regions of naive pluripotency genes via TET-base excision repair-mediated demethylation. Our results provide evidence that PRDM14 establishes a transcriptional network for naive pluripotency via active DNA demethylation.
Collapse
|
73
|
Respuela P, Nikolić M, Tan M, Frommolt P, Zhao Y, Wysocka J, Rada-Iglesias A. Foxd3 Promotes Exit from Naive Pluripotency through Enhancer Decommissioning and Inhibits Germline Specification. Cell Stem Cell 2016; 18:118-33. [PMID: 26748758 DOI: 10.1016/j.stem.2015.09.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/24/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022]
Abstract
Following implantation, mouse epiblast cells transit from a naive to a primed state in which they are competent for both somatic and primordial germ cell (PGC) specification. Using mouse embryonic stem cells as an in vitro model to study the transcriptional regulatory principles orchestrating peri-implantation development, here we show that the transcription factor Foxd3 is necessary for exit from naive pluripotency and progression to a primed pluripotent state. During this transition, Foxd3 acts as a repressor that dismantles a significant fraction of the naive pluripotency expression program through decommissioning of active enhancers associated with key naive pluripotency and early germline genes. Subsequently, Foxd3 needs to be silenced in primed pluripotent cells to allow re-activation of relevant genes required for proper PGC specification. Our findings therefore uncover a cycle of activation and deactivation of Foxd3 required for exit from naive pluripotency and subsequent PGC specification.
Collapse
Affiliation(s)
- Patricia Respuela
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany
| | - Miloš Nikolić
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Peter Frommolt
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Yingming Zhao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Strasse 21, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.
| |
Collapse
|
74
|
Xist and Tsix Transcription Dynamics Is Regulated by the X-to-Autosome Ratio and Semistable Transcriptional States. Mol Cell Biol 2016; 36:2656-2667. [PMID: 27528619 PMCID: PMC5064214 DOI: 10.1128/mcb.00183-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022] Open
Abstract
In female mammals, X chromosome inactivation (XCI) is a key process in the control of gene dosage compensation between X-linked genes and autosomes. Xist and Tsix, two overlapping antisense-transcribed noncoding genes, are central elements of the X inactivation center (Xic) regulating XCI. Xist upregulation results in the coating of the entire X chromosome by Xist RNA in cis, whereas Tsix transcription acts as a negative regulator of Xist. Here, we generated Xist and Tsix reporter mouse embryonic stem (ES) cell lines to study the genetic and dynamic regulation of these genes upon differentiation. Our results revealed mutually antagonistic roles for Tsix on Xist and vice versa and indicate the presence of semistable transcriptional states of the Xic locus predicting the outcome of XCI. These transcriptional states are instructed by the X-to-autosome ratio, directed by regulators of XCI, and can be modulated by tissue culture conditions.
Collapse
|
75
|
Leitch HG, Surani MA, Hajkova P. DNA (De)Methylation: The Passive Route to Naïvety? Trends Genet 2016; 32:592-595. [DOI: 10.1016/j.tig.2016.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/08/2016] [Indexed: 11/27/2022]
|
76
|
Global Landscape and Regulatory Principles of DNA Methylation Reprogramming for Germ Cell Specification by Mouse Pluripotent Stem Cells. Dev Cell 2016; 39:87-103. [PMID: 27642137 DOI: 10.1016/j.devcel.2016.08.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 06/29/2016] [Accepted: 08/19/2016] [Indexed: 11/22/2022]
Abstract
Specification of primordial germ cells (PGCs) activates epigenetic reprogramming for totipotency, the elucidation of which remains a fundamental challenge. Here, we uncover regulatory principles for DNA methylation reprogramming during in vitro PGC specification, in which mouse embryonic stem cells (ESCs) are induced into epiblast-like cells (EpiLCs) and then PGC-like cells (PGCLCs). While ESCs reorganize their methylome to form EpiLCs, PGCLCs essentially dilute the EpiLC methylome at constant, yet different, rates between unique sequence regions and repeats. ESCs form hypomethylated domains around pluripotency regulators for their activation, whereas PGCLCs create demethylation-sensitive domains around developmental regulators by accumulating abundant H3K27me3 for their repression. Loss of PRDM14 globally upregulates methylation and diminishes the hypomethylated domains, but it preserves demethylation-sensitive domains. Notably, female ESCs form hypomethylated lamina-associated domains, while female PGCLCs effectively reverse such states into a more normal configuration. Our findings illuminate the unique orchestration of DNA methylation and histone modification reprogramming during PGC specification.
Collapse
|
77
|
Tang WWC, Kobayashi T, Irie N, Dietmann S, Surani MA. Specification and epigenetic programming of the human germ line. Nat Rev Genet 2016; 17:585-600. [DOI: 10.1038/nrg.2016.88] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
78
|
Co-repressor CBFA2T2 regulates pluripotency and germline development. Nature 2016; 534:387-90. [PMID: 27281218 PMCID: PMC4911307 DOI: 10.1038/nature18004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 04/13/2016] [Indexed: 01/01/2023]
Abstract
Developmental specification of germ cells lies at the heart of inheritance, as germ cells contain all of the genetic and epigenetic information transmitted between generations. The critical developmental event distinguishing germline from somatic lineages is the differentiation of primordial germ cells (PGCs), precursors of sex-specific gametes that produce an entire organism upon fertilization. Germ cells toggle between uni- and pluripotent states as they exhibit their own 'latent' form of pluripotency. For example, PGCs express a number of transcription factors in common with embryonic stem (ES) cells, including OCT4 (encoded by Pou5f1), SOX2, NANOG and PRDM14 (refs 2, 3, 4). A biochemical mechanism by which these transcription factors converge on chromatin to produce the dramatic rearrangements underlying ES-cell- and PGC-specific transcriptional programs remains poorly understood. Here we identify a novel co-repressor protein, CBFA2T2, that regulates pluripotency and germline specification in mice. Cbfa2t2(-/-) mice display severe defects in PGC maturation and epigenetic reprogramming. CBFA2T2 forms a biochemical complex with PRDM14, a germline-specific transcription factor. Mechanistically, CBFA2T2 oligomerizes to form a scaffold upon which PRDM14 and OCT4 are stabilized on chromatin. Thus, in contrast to the traditional 'passenger' role of a co-repressor, CBFA2T2 functions synergistically with transcription factors at the crossroads of the fundamental developmental plasticity between uni- and pluripotency.
Collapse
|
79
|
Carofino BL, Ayanga B, Tracey LJ, Brooke-Bisschop T, Justice MJ. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open 2016; 5:645-53. [PMID: 27106930 PMCID: PMC4874358 DOI: 10.1242/bio.017699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PRDM14 is an epigenetic regulator known for maintaining embryonic stem cell identity and resetting potency in primordial germ cells. However, hematopoietic expression of Prdm14 at supraphysiological levels results in fully penetrant and rapid-onset T-cell acute lymphoblastic leukemia (T-ALL) in the mouse. Here, we show that PRDM14-induced T-ALLs are driven by NOTCH1, a frequently mutated driver of human T-ALL. Notch1 is activated in this murine model via RAG-dependent promoter deletions and subsequent production of truncated, ligand-independent protein from downstream regions of the Notch1 locus. These T-ALLs also have focal changes in H3K4me3 deposition at the Notch1 locus and global increases in both H3K4me1 and H3K4me3. Using a PRDM14-FLAG mouse model, we show that PRDM14 binds within an intron of Notch1 prior to leukemia development. Our data support the idea that PRDM14 binding promotes a chromatin state that allows access of the RAG recombinase complex to cryptic RAG signal sequences embedded at the Notch1 locus. Indeed, breeding into a RAG recombination-deficient background abrogates T-ALL development and prevents Notch1 deletions, while allowing for transient hematopoietic stem cell (HSC)-like pre-leukemia cell expansion. Together, our data suggest that PRDM14 expands a progenitor cell population while promoting a permissive epigenetic state for the creation of driver mutations (here, in Notch1), enabling cancer development through the misappropriation of endogenous cellular DNA recombination machinery. Summary: PRDM14 promotes an epigenetic state that facilitates RAG-dependent Notch1 driver mutations, coupling progenitor cell expansion with genomic instability to produce T-ALL with shorter latency than other NOTCH1-driven mouse models.
Collapse
Affiliation(s)
- Brandi L Carofino
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030 USA Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Bernard Ayanga
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Lauren J Tracey
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8 Canada Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, M5G 0A4 Canada
| | - Travis Brooke-Bisschop
- Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, M5G 0A4 Canada
| | - Monica J Justice
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030 USA Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8 Canada Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, M5G 0A4 Canada
| |
Collapse
|
80
|
Papatsenko D, Darr H, Kulakovskiy IV, Waghray A, Makeev VJ, MacArthur BD, Lemischka IR. Single-Cell Analyses of ESCs Reveal Alternative Pluripotent Cell States and Molecular Mechanisms that Control Self-Renewal. Stem Cell Reports 2016; 5:207-20. [PMID: 26267829 PMCID: PMC4618835 DOI: 10.1016/j.stemcr.2015.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 12/22/2022] Open
Abstract
Analyses of gene expression in single mouse embryonic stem cells (mESCs) cultured in serum and LIF revealed the presence of two distinct cell subpopulations with individual gene expression signatures. Comparisons with published data revealed that cells in the first subpopulation are phenotypically similar to cells isolated from the inner cell mass (ICM). In contrast, cells in the second subpopulation appear to be more mature. Pluripotency Gene Regulatory Network (PGRN) reconstruction based on single-cell data and published data suggested antagonistic roles for Oct4 and Nanog in the maintenance of pluripotency states. Integrated analyses of published genomic binding (ChIP) data strongly supported this observation. Certain target genes alternatively regulated by OCT4 and NANOG, such as Sall4 and Zscan10, feed back into the top hierarchical regulator Oct4. Analyses of such incoherent feedforward loops with feedback (iFFL-FB) suggest a dynamic model for the maintenance of mESC pluripotency and self-renewal. Mouse embryonic stem cells grown on serum and LIF contain two subpopulations of cells Oct4 and Nanog alternatively regulate a class of pluripotency genes We demonstrate stabilization of Oct4 concentration and pluripotency via feedback control The “state exchange” model explains self-renewal
Collapse
Affiliation(s)
- Dmitri Papatsenko
- Department of Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Henia Darr
- Department of Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Strasse 32, Moscow 119991, Russia; Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Strasse 3, Moscow 119991, Russia
| | - Avinash Waghray
- Department of Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Vsevolod J Makeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Strasse 32, Moscow 119991, Russia; Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Strasse 3, Moscow 119991, Russia
| | - Ben D MacArthur
- Centre for Human Development, Stem Cells, and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Ihor R Lemischka
- Department of Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Pharmacology and System Therapeutics, Icahn School of Medicine at Mount Sinai, Systems Biology Center New York, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
81
|
Payer B. Developmental regulation of X-chromosome inactivation. Semin Cell Dev Biol 2016; 56:88-99. [PMID: 27112543 DOI: 10.1016/j.semcdb.2016.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 12/01/2022]
Abstract
With the emergence of sex-determination by sex chromosomes, which differ in composition and number between males and females, appeared the need to equalize X-chromosomal gene dosage between the sexes. Mammals have devised the strategy of X-chromosome inactivation (XCI), in which one of the two X-chromosomes is rendered transcriptionally silent in females. In the mouse, the best-studied model organism with respect to XCI, this inactivation process occurs in different forms, imprinted and random, interspersed by periods of X-chromosome reactivation (XCR), which is needed to switch between the different modes of XCI. In this review, I describe the recent advances with respect to the developmental control of XCI and XCR and in particular their link to differentiation and pluripotency. Furthermore, I review the mechanisms, which influence the timing and choice, with which one of the two X-chromosomes is chosen for inactivation during random XCI. This has an impact on how females are mosaics with regard to which X-chromosome is active in different cells, which has implications on the severity of diseases caused by X-linked mutations.
Collapse
Affiliation(s)
- Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and Universitat Pompeu Fabra (UPF), Dr. Aiguader, 88, Barcelona 08003, Spain.
| |
Collapse
|
82
|
Graham B, Marcais A, Dharmalingam G, Carroll T, Kanellopoulou C, Graumann J, Nesterova TB, Bermange A, Brazauskas P, Xella B, Kriaucionis S, Higgs DR, Brockdorff N, Mann M, Fisher AG, Merkenschlager M. MicroRNAs of the miR-290-295 Family Maintain Bivalency in Mouse Embryonic Stem Cells. Stem Cell Reports 2016; 6:635-642. [PMID: 27150236 PMCID: PMC4939759 DOI: 10.1016/j.stemcr.2016.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 03/19/2016] [Accepted: 03/21/2016] [Indexed: 11/03/2022] Open
Abstract
Numerous developmentally regulated genes in mouse embryonic stem cells (ESCs) are marked by both active (H3K4me3)- and polycomb group (PcG)-mediated repressive (H3K27me3) histone modifications. This bivalent state is thought to be important for transcriptional poising, but the mechanisms that regulate bivalent genes and the bivalent state remain incompletely understood. Examining the contribution of microRNAs (miRNAs) to the regulation of bivalent genes, we found that the miRNA biogenesis enzyme DICER was required for the binding of the PRC2 core components EZH2 and SUZ12, and for the presence of the PRC2-mediated histone modification H3K27me3 at many bivalent genes. Genes that lost bivalency were preferentially upregulated at the mRNA and protein levels. Finally, reconstituting Dicer-deficient ESCs with ESC miRNAs restored bivalent gene repression and PRC2 binding at formerly bivalent genes. Therefore, miRNAs regulate bivalent genes and the bivalent state itself.
Collapse
Affiliation(s)
- Bryony Graham
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Antoine Marcais
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Gopuraja Dharmalingam
- Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Thomas Carroll
- Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Chryssa Kanellopoulou
- Laboratory of Immunology, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Johannes Graumann
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | | | - Anna Bermange
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Pijus Brazauskas
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Oxford OX3 7DQ, UK
| | - Barbara Xella
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, University of Oxford, Nuffield Department of Clinical Medicine, Oxford OX3 7DQ, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK; Epigenetics Section, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
83
|
Pirouz M, Rahjouei A, Shamsi F, Eckermann KN, Salinas-Riester G, Pommerenke C, Kessel M. Destabilization of pluripotency in the absence of Mad2l2. Cell Cycle 2016; 14:1596-610. [PMID: 25928475 DOI: 10.1080/15384101.2015.1026485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The induction and maintenance of pluripotency requires the expression of several core factors at appropriate levels (Oct4, Sox2, Klf4, Prdm14). A subset of these proteins (Oct4, Sox2, Prdm14) also plays crucial roles for the establishment of primordial germ cells (PGCs). Here we demonstrate that the Mad2l2 (MAD2B, Rev7) gene product is not only required by PGCs, but also by pluripotent embryonic stem cells (ESCs), depending on the growth conditions. Mad2l2(-/-) ESCs were unstable in LIF/serum medium, and differentiated into primitive endoderm. However, they could be stably propagated using small molecule inhibitors of MAPK signaling. Several components of the MAPK cascade were up- or downregulated even in undifferentiated Mad2l2(-/-) ESCs. Global levels of repressive histone H3 variants were increased in mutant ESCs, and the epigenetic signatures on pluripotency-, primitive endoderm-, and MAPK-related loci differed. Thus, H3K9me2 repressed the Nanog promoter, while the promoter of Gata4 lost H3K27me3 and became de-repressed in LIF/serum condition. Promoters associated with genes involved in MAPK signaling also showed misregulation of these histone marks. Such epigenetic modifications could be indirect consequences of mutating Mad2l2. However, our previous observations suggested the histone methyltransferases as direct (G9a) or indirect (Ezh2) targets of Mad2l2. In effect, the intricate balance necessary for pluripotency becomes perturbed in the absence of Mad2l2.
Collapse
Affiliation(s)
- Mehdi Pirouz
- a Department of Molecular Cell Biology ; Max Planck Institute for Biophysical Chemistry ; Goettingen ; Germany
| | | | | | | | | | | | | |
Collapse
|
84
|
The role of PRDMs in cancer: one family, two sides. Curr Opin Genet Dev 2016; 36:83-91. [DOI: 10.1016/j.gde.2016.03.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/24/2016] [Indexed: 12/24/2022]
|
85
|
Noor DAM, Jeyapalan JN, Alhazmi S, Carr M, Squibb B, Wallace C, Tan C, Cusack M, Hughes J, Reader T, Shipley J, Sheer D, Scotting PJ. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines. NPJ Genom Med 2016; 1:15009. [PMID: 29263807 PMCID: PMC5685295 DOI: 10.1038/npjgenmed.2015.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/09/2015] [Accepted: 11/06/2015] [Indexed: 01/13/2023] Open
Abstract
Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours’ biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription–quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.
Collapse
Affiliation(s)
- Dzul Azri Mohamed Noor
- School of Life Sciences, University of Nottingham, Nottingham, UK.,School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Jennie N Jeyapalan
- School of Life Sciences, University of Nottingham, Nottingham, UK.,The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | - Safiah Alhazmi
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Matthew Carr
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Benjamin Squibb
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Claire Wallace
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Christopher Tan
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Martin Cusack
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jaime Hughes
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Tom Reader
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Denise Sheer
- The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | - Paul J Scotting
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
86
|
Murakami K, Günesdogan U, Zylicz JJ, Tang WWC, Sengupta R, Kobayashi T, Kim S, Butler R, Dietmann S, Surani MA. NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. Nature 2016; 529:403-407. [PMID: 26751055 DOI: 10.1038/nature16480] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/23/2015] [Indexed: 12/18/2022]
Abstract
Nanog, a core pluripotency factor in the inner cell mass of blastocysts, is also expressed in unipotent primordial germ cells (PGCs) in mice, where its precise role is yet unclear. We investigated this in an in vitro model, in which naive pluripotent embryonic stem (ES) cells cultured in basic fibroblast growth factor (bFGF) and activin A develop as epiblast-like cells (EpiLCs) and gain competence for a PGC-like fate. Consequently, bone morphogenetic protein 4 (BMP4), or ectopic expression of key germline transcription factors Prdm1, Prdm14 and Tfap2c, directly induce PGC-like cells (PGCLCs) in EpiLCs, but not in ES cells. Here we report an unexpected discovery that Nanog alone can induce PGCLCs in EpiLCs, independently of BMP4. We propose that after the dissolution of the naive ES-cell pluripotency network during establishment of EpiLCs, the epigenome is reset for cell fate determination. Indeed, we found genome-wide changes in NANOG-binding patterns between ES cells and EpiLCs, indicating epigenetic resetting of regulatory elements. Accordingly, we show that NANOG can bind and activate enhancers of Prdm1 and Prdm14 in EpiLCs in vitro; BLIMP1 (encoded by Prdm1) then directly induces Tfap2c. Furthermore, while SOX2 and NANOG promote the pluripotent state in ES cells, they show contrasting roles in EpiLCs, as Sox2 specifically represses PGCLC induction by Nanog. This study demonstrates a broadly applicable mechanistic principle for how cells acquire competence for cell fate determination, resulting in the context-dependent roles of key transcription factors during development.
Collapse
Affiliation(s)
- Kazuhiro Murakami
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Laboratory for Pluripotent Cell Studies, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Laboratory for Molecular and Cellular Biology, Faculty of Advanced Life Science, Hokkaido University, Kita21 Nishi11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jan J Zylicz
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Walfred W C Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Roopsha Sengupta
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Toshihiro Kobayashi
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Shinseog Kim
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Sabine Dietmann
- Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
87
|
Wang JQ, Cao WG. Key Signaling Events for Committing Mouse Pluripotent Stem Cells to the Germline Fate. Biol Reprod 2015; 94:24. [PMID: 26674564 DOI: 10.1095/biolreprod.115.135095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023] Open
Abstract
The process of germline development carries genetic information and preparatory totipotency across generations. The last decade has witnessed remarkable successes in the generation of germline cells from mouse pluripotent stem cells, especially induced germline cells with the capacity for producing viable offspring, suggesting clinical applications of induced germline cells in humans. However, to date, the culture systems for germline induction with accurate sex-specific meiosis and epigenetic reprogramming have not been well-established. In this study, we primarily focus on the mouse model to discuss key signaling events for germline induction. We review mechanisms of competent regulators on primordial germ cell induction and discuss current achievements and difficulties in inducing sex-specific germline development. Furthermore, we review the developmental identities of mouse embryonic stem cells and epiblast stem cells under certain defined culture conditions as it relates to the differentiation process of becoming germline cells.
Collapse
Affiliation(s)
- Jian-Qi Wang
- Transgenic and Stem Cell Core, Institute of Animal Sciences and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen-Guang Cao
- Transgenic and Stem Cell Core, Institute of Animal Sciences and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
88
|
Kurimoto K, Saitou M. Mechanism and Reconstitution In Vitro of Germ Cell Development in Mammals. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:147-154. [PMID: 26642855 DOI: 10.1101/sqb.2015.80.027425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The germ cell lineage creates new individuals, perpetuating/diversifying the genetic and epigenetic information across generations. Based on the knowledge obtained through investigations into the mechanisms of germ cell specification and development in mice, we have succeeded in precisely reconstituting the specification and subsequent development of germ cells in culture in both males and females: Embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) are induced into epiblast-like cells (EpiLCs) and then into primordial germ cell-like cells (PGCLCs), which robustly contribute to spermatogenesis and oogenesis and to fertile offspring. This in vitro mouse PGC specification/development system has led to the elucidation of signaling, transcriptional, and epigenetic regulation during germ cell development in a detailed fashion. More recently, based on this system, we and others have demonstrated the induction of human PGCLCs from human ESCs/iPSCs, creating an opportunity for understanding the mechanism of human germ cell development in vitro.
Collapse
Affiliation(s)
- Kazuki Kurimoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Center for iPS Cell Research and Application, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
89
|
Iseki H, Nakachi Y, Hishida T, Yamashita-Sugahara Y, Hirasaki M, Ueda A, Tanimoto Y, Iijima S, Sugiyama F, Yagami KI, Takahashi S, Okuda A, Okazaki Y. Combined Overexpression of JARID2, PRDM14, ESRRB, and SALL4A Dramatically Improves Efficiency and Kinetics of Reprogramming to Induced Pluripotent Stem Cells. Stem Cells 2015; 34:322-33. [DOI: 10.1002/stem.2243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Hiroyoshi Iseki
- Division of Functional Genomics and Systems Medicine; Saitama Medical University; Saitama Japan
- CREST, Japan Science and Technology Agency (JST); Saitama Japan
| | - Yutaka Nakachi
- Division of Functional Genomics and Systems Medicine; Saitama Medical University; Saitama Japan
- Division of Translational Research; Saitama Medical University; Saitama Japan
| | - Tomoaki Hishida
- CREST, Japan Science and Technology Agency (JST); Saitama Japan
- Division of Developmental Biology, Research Center for Genomic Medicine; Saitama Medical University; Saitama Japan
| | | | - Masataka Hirasaki
- Division of Developmental Biology, Research Center for Genomic Medicine; Saitama Medical University; Saitama Japan
| | - Atsushi Ueda
- Division of Developmental Biology, Research Center for Genomic Medicine; Saitama Medical University; Saitama Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center; University of Tsukuba; Ibaraki Japan
| | - Saori Iijima
- Laboratory Animal Resource Center; University of Tsukuba; Ibaraki Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center; University of Tsukuba; Ibaraki Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center; University of Tsukuba; Ibaraki Japan
| | - Satoru Takahashi
- CREST, Japan Science and Technology Agency (JST); Saitama Japan
- Laboratory Animal Resource Center; University of Tsukuba; Ibaraki Japan
| | - Akihiko Okuda
- CREST, Japan Science and Technology Agency (JST); Saitama Japan
- Division of Developmental Biology, Research Center for Genomic Medicine; Saitama Medical University; Saitama Japan
| | - Yasushi Okazaki
- Division of Functional Genomics and Systems Medicine; Saitama Medical University; Saitama Japan
- CREST, Japan Science and Technology Agency (JST); Saitama Japan
- Division of Translational Research; Saitama Medical University; Saitama Japan
| |
Collapse
|
90
|
Yamashiro C, Hirota T, Kurimoto K, Nakamura T, Yabuta Y, Nagaoka SI, Ohta H, Yamamoto T, Saitou M. Persistent Requirement and Alteration of the Key Targets of PRDM1 During Primordial Germ Cell Development in Mice. Biol Reprod 2015; 94:7. [PMID: 26586842 DOI: 10.1095/biolreprod.115.133256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022] Open
Abstract
Primordial germ cells (PGCs) are the foundation of totipotency and vital for reproduction and heredity. PGCs in mice arise from the epiblast around Embryonic Day (E) 7.0, migrate through the hindgut endoderm, and colonize and proliferate in the embryonic gonads until around E13.5 prior to their differentiation either into prospermatogonia or oogonia. PRDM1, a transcriptional repressor, plays an essential role in PGC specification that includes robustly repressing a somatic mesodermal program. Using an inducible conditional knockout system, we show here that PRDM1 is critically required throughout PGC development. When Prdm1 was deleted in migrating PGCs at E9.5 or E10.5, or in male gonadal PGCs at E11.5, PGCs were eliminated by apoptosis from around E10.5, E11.5, or E13.5, respectively. When Prdm1 was deleted in female gonadal PGCs at E11.5, PGCs progressed into the first meiotic prophase in an apparently normal fashion, but the oogonia exhibited an aberrant pachytene phenotype, undergoing abrupt apoptosis from around E16.5. The escape of a fraction of PGCs (∼10%) from the Prdm1 deletion was sufficient to recover fairly normal germ cell pools, both in male and female adults. The key targets of PRDM1 in migrating and/or gonadal PGCs, including genes for development, apoptosis, and prospermatogonial differentiation, showed only a modest overlap with those upon PGC specification, and were enriched with histone H3 lysine 27 trimethylation (H3K27me3). Our findings provide critical insight into the mechanism for maintaining the transcriptional integrity of PGCs.
Collapse
Affiliation(s)
- Chika Yamashiro
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Takayuki Hirota
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Kazuki Kurimoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Tomonori Nakamura
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Yukihiro Yabuta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - So I Nagaoka
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Ohta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan JST, Agency for Medical Research and Development (AMED) - Core Research for Evolutional Science and Technology (CREST), Saitama, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
91
|
Nady N, Gupta A, Ma Z, Swigut T, Koide A, Koide S, Wysocka J. ETO family protein Mtgr1 mediates Prdm14 functions in stem cell maintenance and primordial germ cell formation. eLife 2015; 4:e10150. [PMID: 26523391 PMCID: PMC4749557 DOI: 10.7554/elife.10150] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/01/2015] [Indexed: 01/15/2023] Open
Abstract
Prdm14 is a sequence-specific transcriptional regulator of embryonic stem cell (ESC) pluripotency and primordial germ cell (PGC) formation. It exerts its function, at least in part, through repressing genes associated with epigenetic modification and cell differentiation. Here, we show that this repressive function is mediated through an ETO-family co-repressor Mtgr1, which tightly binds to the pre-SET/SET domains of Prdm14 and co-occupies its genomic targets in mouse ESCs. We generated two monobodies, synthetic binding proteins, targeting the Prdm14 SET domain and demonstrate their utility, respectively, in facilitating crystallization and structure determination of the Prdm14-Mtgr1 complex, or as genetically encoded inhibitor of the Prdm14-Mtgr1 interaction. Structure-guided point mutants and the monobody abrogated the Prdm14-Mtgr1 association and disrupted Prdm14's function in mESC gene expression and PGC formation in vitro. Altogether, our work uncovers the molecular mechanism underlying Prdm14-mediated repression and provides renewable reagents for studying and controlling Prdm14 functions. DOI:http://dx.doi.org/10.7554/eLife.10150.001 In animals, there are many different types of cells that perform different roles. For example, stem cells divide to produce new cells that may then become other types of cells such as muscle or skin cells. Most stem cells can only produce a limited range of other cell types, except for a subset known as ‘pluripotent’ stem cells that can give rise to cells of any type in the body. A protein called Prdm14 helps to keep stem cells in a pluripotent state. In mouse embryos, Prdm14 binds to and represses particular genes that promote a process by which the stem cells can change into other cell types. If Prdm14 is missing from pluripotent stem cells, these cells become more sensitive to signals that encourage them to become other types of cells, which can lead to the loss of pluripotency. Prdm14 contains a region called the SET domain. In other proteins, this domain can alter how DNA is packaged to help switch particular genes on or off. However, such activity has not been found for the SET domain of Prdm14, raising questions about how it actually works. Here, Nady, Gupta et al. show that Prdm14 tightly interacts with a protein called Mtgr1, which belongs to a family of proteins known to be involved in leukemia. The loss of Mtgr1 also leads to the loss of pluripotency in mouse stem cells and disrupts the formation of reproductive stem cells. Furthermore, Mtgr1 binds to the same genes as Prdm14. Next, Nady, Gupta et al. made synthetic proteins, termed monobodies, that bind to the Prdm14 SET domain. One such monobody enabled the authors to determine the three-dimensional structure of Prdm1 and Mtgr1, which revealed that the SET domain of Prdm14 has many points of contact with Mtgr1. Importantly, interaction between the two partners is crucial for these proteins to maintain pluripotency and promote the production of reproductive stem cells. Altogether, these findings identify Mtgr1 as a key binding partner of Prdm14 in pluripotent stem cells and uncover a role for the SET domain in this interaction. A future challenge will be to understand the roles of these proteins in leukemia and other diseases. DOI:http://dx.doi.org/10.7554/eLife.10150.002
Collapse
Affiliation(s)
- Nataliya Nady
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Ankit Gupta
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Ziyang Ma
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Akiko Koide
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States.,National Institute of Environmental Health Sciences, , United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
92
|
Zannino DA, Sagerström CG. An emerging role for prdm family genes in dorsoventral patterning of the vertebrate nervous system. Neural Dev 2015; 10:24. [PMID: 26499851 PMCID: PMC4620005 DOI: 10.1186/s13064-015-0052-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
Abstract
The embryonic vertebrate neural tube is divided along its dorsoventral (DV) axis into eleven molecularly discrete progenitor domains. Each of these domains gives rise to distinct neuronal cell types; the ventral-most six domains contribute to motor circuits, while the five dorsal domains contribute to sensory circuits. Following the initial neurogenesis step, these domains also generate glial cell types—either astrocytes or oligodendrocytes. This DV pattern is initiated by two morphogens—Sonic Hedgehog released from notochord and floor plate and Bone Morphogenetic Protein produced in the roof plate—that act in concentration gradients to induce expression of genes along the DV axis. Subsequently, these DV-restricted genes cooperate to define progenitor domains and to control neuronal cell fate specification and differentiation in each domain. Many genes involved in this process have been identified, but significant gaps remain in our understanding of the underlying genetic program. Here we review recent work identifying members of the Prdm gene family as novel regulators of DV patterning in the neural tube. Many Prdm proteins regulate transcription by controlling histone modifications (either via intrinsic histone methyltransferase activity, or by recruiting histone modifying enzymes). Prdm genes are expressed in spatially restricted domains along the DV axis of the neural tube and play important roles in the specification of progenitor domains, as well as in the subsequent differentiation of motor neurons and various types of interneurons. Strikingly, Prdm proteins appear to function by binding to, and modulating the activity of, other transcription factors (particularly bHLH proteins). The identity of key transcription factors in DV patterning of the neural tube has been elucidated previously (e.g. the nkx, bHLH and pax families), but it now appears that an additional family is also required and that it acts in a potentially novel manner.
Collapse
Affiliation(s)
- Denise A Zannino
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA, 01605-2324, USA.
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St./LRB815, Worcester, MA, 01605-2324, USA.
| |
Collapse
|
93
|
Zhou X, Contreras-Trujillo H, Ying QL. New insights into the conserved mechanism of pluripotency maintenance. Curr Opin Genet Dev 2015; 34:1-9. [DOI: 10.1016/j.gde.2015.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/19/2015] [Accepted: 06/02/2015] [Indexed: 12/23/2022]
|
94
|
Robert VJ, Garvis S, Palladino F. Repression of somatic cell fate in the germline. Cell Mol Life Sci 2015; 72:3599-620. [PMID: 26043973 PMCID: PMC11113910 DOI: 10.1007/s00018-015-1942-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/13/2023]
Abstract
Germ cells must transmit genetic information across generations, and produce gametes while also maintaining the potential to form all cell types after fertilization. Preventing the activation of somatic programs is, therefore, crucial to the maintenance of germ cell identity. Studies in Caenorhabditis elegans, Drosophila melanogaster, and mouse have revealed both similarities and differences in how somatic gene expression is repressed in germ cells, thereby preventing their conversion into somatic tissues. This review will focus on recent developments in our understanding of how global or gene-specific transcriptional repression, chromatin regulation, and translational repression operate in the germline to maintain germ cell identity and repress somatic differentiation programs.
Collapse
Affiliation(s)
- Valérie J Robert
- Ecole Normale Supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007, Lyon, France
| | - Steve Garvis
- Ecole Normale Supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007, Lyon, France
| | - Francesca Palladino
- Ecole Normale Supérieure de Lyon, Université de Lyon, 46 allée d'Italie, 69007, Lyon, France.
| |
Collapse
|
95
|
Murtha M, Strino F, Tokcaer-Keskin Z, Sumru Bayin N, Shalabi D, Xi X, Kluger Y, Dailey L. Comparative FAIRE-seq analysis reveals distinguishing features of the chromatin structure of ground state- and primed-pluripotent cells. Stem Cells 2015; 33:378-91. [PMID: 25335464 DOI: 10.1002/stem.1871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/02/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022]
Abstract
Both pluripotent embryonic stem cells (ESCs), established from preimplantation murine blastocysts, and epiblast stem cells (EpiSCs), established from postimplantation embryos, can self-renew in culture or differentiate into each of the primary germ layers. While the core transcription factors (TFs) OCT4, SOX2, and NANOG are expressed in both cell types, the gene expression profiles and other features suggest that ESCs and EpiSCs reflect distinct developmental maturation stages of the epiblast in vivo. Accordingly, "naïve" or "ground state" ESCs resemble cells of the inner cell mass, whereas "primed" EpiSCs resemble cells of the postimplantation egg cylinder. To gain insight into the relationship between naïve and primed pluripotent cells, and of each of these pluripotent states to that of nonpluripotent cells, we have used FAIRE-seq to generate a comparative atlas of the accessible chromatin regions within ESCs, EpiSCs, multipotent neural stem cells, and mouse embryonic fibroblasts. We find a distinction between the accessible chromatin patterns of pluripotent and somatic cells that is consistent with the highly related phenotype of ESCs and EpiSCs. However, by defining cell-specific and shared regions of open chromatin, and integrating these data with published gene expression and ChIP analyses, we also illustrate unique features of the chromatin of naïve and primed cells. Functional studies suggest that multiple stage-specific enhancers regulate ESC- or EpiSC-specific gene expression, and implicate auxiliary TFs as important modulators for stage-specific activation by the core TFs. Together these observations provide insights into the chromatin structure dynamics accompanying transitions between these pluripotent states.
Collapse
Affiliation(s)
- Matthew Murtha
- Department of Microbiology, New York University School of Medicine, New York, New York, USA; Department of Microbiology Kimmel Center for Stem Cell Biology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Kushwaha R, Jagadish N, Kustagi M, Tomishima MJ, Mendiratta G, Bansal M, Kim HR, Sumazin P, Alvarez MJ, Lefebvre C, Villagrasa-Gonzalez P, Viale A, Korkola JE, Houldsworth J, Feldman DR, Bosl GJ, Califano A, Chaganti RSK. Interrogation of a context-specific transcription factor network identifies novel regulators of pluripotency. Stem Cells 2015; 33:367-77. [PMID: 25336442 DOI: 10.1002/stem.1870] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 09/03/2014] [Accepted: 09/12/2014] [Indexed: 01/01/2023]
Abstract
The predominant view of pluripotency regulation proposes a stable ground state with coordinated expression of key transcription factors (TFs) that prohibit differentiation. Another perspective suggests a more complexly regulated state involving competition between multiple lineage-specifying TFs that define pluripotency. These contrasting views were developed from extensive analyses of TFs in pluripotent cells in vitro. An experimentally validated, genome-wide repertoire of the regulatory interactions that control pluripotency within the in vivo cellular contexts is yet to be developed. To address this limitation, we assembled a TF interactome of adult human male germ cell tumors (GCTs) using the Algorithm for the Accurate Reconstruction of Cellular Pathways (ARACNe) to analyze gene expression profiles of 141 tumors comprising pluripotent and differentiated subsets. The network (GCT(Net)) comprised 1,305 TFs, and its ingenuity pathway analysis identified pluripotency and embryonal development as the top functional pathways. We experimentally validated GCT(Net) by functional (silencing) and biochemical (ChIP-seq) analysis of the core pluripotency regulatory TFs POU5F1, NANOG, and SOX2 in relation to their targets predicted by ARACNe. To define the extent of the in vivo pluripotency network in this system, we ranked all TFs in the GCT(Net) according to sharing of ARACNe-predicted targets with those of POU5F1 and NANOG using an odds-ratio analysis method. To validate this network, we silenced the top 10 TFs in the network in H9 embryonic stem cells. Silencing of each led to downregulation of pluripotency and induction of lineage; 7 of the 10 TFs were identified as pluripotency regulators for the first time.
Collapse
Affiliation(s)
- Ritu Kushwaha
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Martínez-Arroyo AM, Míguez-Forján JM, Remohí J, Pellicer A, Medrano JV. Understanding Mammalian Germ Line Development with In Vitro Models. Stem Cells Dev 2015; 24:2101-13. [DOI: 10.1089/scd.2015.0060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ana M. Martínez-Arroyo
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Jose M. Míguez-Forján
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Jose Remohí
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
| | - Antonio Pellicer
- Fundación Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Jose V. Medrano
- Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia University, INCLIVA, Valencia, Spain
- Fundación Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
98
|
Wamaitha SE, del Valle I, Cho LTY, Wei Y, Fogarty NME, Blakeley P, Sherwood RI, Ji H, Niakan KK. Gata6 potently initiates reprograming of pluripotent and differentiated cells to extraembryonic endoderm stem cells. Genes Dev 2015; 29:1239-55. [PMID: 26109048 PMCID: PMC4495396 DOI: 10.1101/gad.257071.114] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Wamaitha et al. demonstrate that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm cells. Profiling transcriptional changes following Gata6 induction in mES cells reveals step-wise pluripotency factor disengagement, with initial repression of Nanog and Esrrb, then Sox2, and finally Oct4, alongside step-wise activation of extraembryonic endoderm genes. Transcription factor-mediated reprograming is a powerful method to study cell fate changes. In this study, we demonstrate that the transcription factor Gata6 can initiate reprograming of multiple cell types to induced extraembryonic endoderm stem (iXEN) cells. Intriguingly, Gata6 is sufficient to drive iXEN cells from mouse pluripotent cells and differentiated neural cells. Furthermore, GATA6 induction in human embryonic stem (hES) cells also down-regulates pluripotency gene expression and up-regulates extraembryonic endoderm (ExEn) genes, revealing a conserved function in mediating this cell fate switch. Profiling transcriptional changes following Gata6 induction in mES cells reveals step-wise pluripotency factor disengagement, with initial repression of Nanog and Esrrb, then Sox2, and finally Oct4, alongside step-wise activation of ExEn genes. Chromatin immunoprecipitation and subsequent high-throughput sequencing analysis shows Gata6 enrichment near pluripotency and endoderm genes, suggesting that Gata6 functions as both a direct repressor and activator. Together, this demonstrates that Gata6 is a versatile and potent reprograming factor that can act alone to drive a cell fate switch from diverse cell types.
Collapse
Affiliation(s)
- Sissy E Wamaitha
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Ignacio del Valle
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Lily T Y Cho
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Yingying Wei
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Norah M E Fogarty
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Paul Blakeley
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Richard I Sherwood
- Brigham and Women's Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hongkai Ji
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Kathy K Niakan
- Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, United Kingdom
| |
Collapse
|
99
|
Bi HX, Shi HB, Zhang T, Cui G. PRDM14 promotes the migration of human non-small cell lung cancer through extracellular matrix degradation in vitro. Chin Med J (Engl) 2015; 128:373-7. [PMID: 25635434 PMCID: PMC4837869 DOI: 10.4103/0366-6999.150109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: As a novel molecular markerof non-small cell lung cancer (NSCLC), PRDI-BF1 and RIZ homology domain containing protein 14 (PRDM14) is over-expressed in NSCLC tumor tissues. Extracellular matrix degradation mediated by the balance between matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) is one of the most important mechanism in lung cancer metastasis. This study aimed to determine if PRDM14 promoted the migration of NSCLC cells through extracellular matrix degradation mediated by change of MMP/TIMP expression. Methods: The expression of PRDM14 was down-regulated in human cell line A 549 after transfection with lentiviral vector-mediated short-hairpin ribonucleic acids (shRNAs) which targeted the PRDM14 promoter. Cellular migration of shRNA-infected cells was detected by a scratch wound healing assay and transwell cell migration assay. Expression levels of MMP1, MMP2, TIMP1, and TIMP2 were measured by quantitative real-time polymerase chain reaction (RT-PCR). Results: Migration of PRDM14-shRNA-infected cells was significantly inhibited relative to control cells as measured by the scratch wound healing (P < 0.05) and transwell cell migration assays (P < 0.01). The expression of MMP1 in A549 cells infected by PRDM14-shRNA was down-regulated significantly (P < 0.01), whereas the expression of TIMP1 and TIMP2 was up-regulated significantly (P < 0.01). Conclusions: PRDM14 accelerates A549 cells migration in vitro through extracellular matrix degradation. PRDM14 is considered as a potential therapeutic target in metastatic NSCLC.
Collapse
Affiliation(s)
| | | | - Ting Zhang
- Department of Pathology, Program in Molecular and Translational Medicine, School of Medicine, Huzhou University, Huzhou, Zhejiang 313000, China
| | | |
Collapse
|
100
|
Inoue M, Iwai R, Yamanishi E, Yamagata K, Komabayashi-Suzuki M, Honda A, Komai T, Miyachi H, Kitano S, Watanabe C, Teshima W, Mizutani KI. Deletion of Prdm8 impairs development of upper-layer neocortical neurons. Genes Cells 2015; 20:758-70. [PMID: 26283595 DOI: 10.1111/gtc.12274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023]
Abstract
Upper-layer (UL) neocortical neurons are the most prominent distinguishing features of the mammalian neocortex compared with those of the avian dorsal cortex and are vastly expanded in primates. However, little is known about the identities of the genes that control the specification of UL neurons. Here, we found that Prdm8, a member of the PR (PRDI-BF1 and RIZ homology) domain protein family, was specifically expressed in the postnatal UL neocortex, particular those in late-born RORß-positive layer IV neurons. We generated homozygous Prdm8 knockout (Prdm8 KO) mice and found that the deletion of Prdm8 causes growth retardation and a reduced brain weight, although the brain weight-to-body weight ratio is unchanged at postnatal day 8 (P8). Immunohistochemistry showed that the relative UL thickness, but not the thickness of the deep layer (DL), was significantly reduced in Prdm8 KO mice compared with wild-type (WT) mice. In addition, we found that a number of late-born Brn2-positive UL neurons were significantly decreased in Prdm8 KO mice. To identify genes regulated by Prdm8 during neocortical development, we compared expression profiling analysis in Prdm8 KO and WT mice, and identified some candidate genes. These results suggest that the proper expression of Prdm8 is required for the normal development and construction of UL neurons in the mammalian neocortex.
Collapse
Affiliation(s)
- Mayuko Inoue
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan.,Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Ryota Iwai
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Emiko Yamanishi
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Kazuyuki Yamagata
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Mariko Komabayashi-Suzuki
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Aya Honda
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Tae Komai
- Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Hitoshi Miyachi
- Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Satsuki Kitano
- Institute for Virus Research, Kyoto University, Kyoto, 606-8507, Japan
| | - Chisato Watanabe
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Waka Teshima
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan
| | - Ken-ichi Mizutani
- Laboratory of Neural Differentiation, Graduate School of Brain Science, Doshisha University, Kyoto, 619-0225, Japan.,Japan Science and Technology Agency, PRESTO, Saitama, 332-0012, Japan
| |
Collapse
|