51
|
Maji D, Glasser E, Henderson S, Galardi J, Pulvino MJ, Jenkins JL, Kielkopf CL. Representative cancer-associated U2AF2 mutations alter RNA interactions and splicing. J Biol Chem 2020; 295:17148-17157. [PMID: 33020180 PMCID: PMC7863893 DOI: 10.1074/jbc.ra120.015339] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
High-throughput sequencing of hematologic malignancies and other cancers has revealed recurrent mis-sense mutations of genes encoding pre-mRNA splicing factors. The essential splicing factor U2AF2 recognizes a polypyrimidine-tract splice-site signal and initiates spliceosome assembly. Here, we investigate representative, acquired U2AF2 mutations, namely N196K or G301D amino acid substitutions associated with leukemia or solid tumors, respectively. We determined crystal structures of the wild-type (WT) compared with N196K- or G301D-substituted U2AF2 proteins, each bound to a prototypical AdML polypyrimidine tract, at 1.5, 1.4, or 1.7 Å resolutions. The N196K residue appears to stabilize the open conformation of U2AF2 with an inter-RNA recognition motif hydrogen bond, in agreement with an increased apparent RNA-binding affinity of the N196K-substituted protein. The G301D residue remains in a similar position as the WT residue, where unfavorable proximity to the RNA phosphodiester could explain the decreased RNA-binding affinity of the G301D-substituted protein. We found that expression of the G301D-substituted U2AF2 protein reduces splicing of a minigene transcript carrying prototypical splice sites. We further show that expression of either N196K- or G301D-substituted U2AF2 can subtly alter splicing of representative endogenous transcripts, despite the presence of endogenous, WT U2AF2 such as would be present in cancer cells. Altogether, our results demonstrate that acquired U2AF2 mutations such as N196K and G301D are capable of dysregulating gene expression for neoplastic transformation.
Collapse
Affiliation(s)
- Debanjana Maji
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Eliezra Glasser
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Steven Henderson
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Justin Galardi
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Mary J Pulvino
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jermaine L Jenkins
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Clara L Kielkopf
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
52
|
Kováčová T, Souček P, Hujová P, Freiberger T, Grodecká L. Splicing Enhancers at Intron-Exon Borders Participate in Acceptor Splice Sites Recognition. Int J Mol Sci 2020; 21:ijms21186553. [PMID: 32911621 PMCID: PMC7554774 DOI: 10.3390/ijms21186553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023] Open
Abstract
Acceptor splice site recognition (3′ splice site: 3′ss) is a fundamental step in precursor messenger RNA (pre-mRNA) splicing. Generally, the U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF) heterodimer recognizes the 3′ss, of which U2AF35 has a dual function: (i) It binds to the intron–exon border of some 3′ss and (ii) mediates enhancer-binding splicing activators’ interactions with the spliceosome. Alternative mechanisms for 3′ss recognition have been suggested, yet they are still not thoroughly understood. Here, we analyzed 3′ss recognition where the intron–exon border is bound by a ubiquitous splicing regulator SRSF1. Using the minigene analysis of two model exons and their mutants, BRCA2 exon 12 and VARS2 exon 17, we showed that the exon inclusion correlated much better with the predicted SRSF1 affinity than 3′ss quality, which were assessed using the Catalog of Inferred Sequence Binding Preferences of RNA binding proteins (CISBP-RNA) database and maximum entropy algorithm (MaxEnt) predictor and the U2AF35 consensus matrix, respectively. RNA affinity purification proved SRSF1 binding to the model 3′ss. On the other hand, knockdown experiments revealed that U2AF35 also plays a role in these exons’ inclusion. Most probably, both factors stochastically bind the 3′ss, supporting exon recognition, more apparently in VARS2 exon 17. Identifying splicing activators as 3′ss recognition factors is crucial for both a basic understanding of splicing regulation and human genetic diagnostics when assessing variants’ effects on splicing.
Collapse
Affiliation(s)
- Tatiana Kováčová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Přemysl Souček
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavla Hujová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Tomáš Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Lucie Grodecká
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic; (T.K.); (P.S.); (P.H.); (T.F.)
- Correspondence:
| |
Collapse
|
53
|
Warnasooriya C, Feeney CF, Laird KM, Ermolenko DN, Kielkopf CL. A splice site-sensing conformational switch in U2AF2 is modulated by U2AF1 and its recurrent myelodysplasia-associated mutation. Nucleic Acids Res 2020; 48:5695-5709. [PMID: 32343311 PMCID: PMC7261175 DOI: 10.1093/nar/gkaa293] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/09/2020] [Accepted: 04/17/2020] [Indexed: 02/02/2023] Open
Abstract
An essential heterodimer of the U2AF1 and U2AF2 pre-mRNA splicing factors nucleates spliceosome assembly at polypyrimidine (Py) signals preceding the major class of 3′ splice sites. U2AF1 frequently acquires an S34F-encoding mutation among patients with myelodysplastic syndromes (MDS). The influence of the U2AF1 subunit and its S34F mutation on the U2AF2 conformations remains unknown. Here, we employ single molecule Förster resonance energy transfer (FRET) to determine the influence of wild-type or S34F-substituted U2AF1 on the conformational dynamics of U2AF2 and its splice site RNA complexes. In the absence of RNA, the U2AF1 subunit stabilizes a high FRET value, which by structure-guided mutagenesis corresponds to a closed conformation of the tandem U2AF2 RNA recognition motifs (RRMs). When the U2AF heterodimer is bound to a strong, uridine-rich splice site, U2AF2 switches to a lower FRET value characteristic of an open, side-by-side arrangement of the RRMs. Remarkably, the U2AF heterodimer binds weak, uridine-poor Py tracts as a mixture of closed and open U2AF2 conformations, which are modulated by the S34F mutation. Shifts between open and closed U2AF2 may underlie U2AF1-dependent splicing of degenerate Py tracts and contribute to a subset of S34F-dysregulated splicing events in MDS patients.
Collapse
Affiliation(s)
- Chandani Warnasooriya
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Callen F Feeney
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Kholiswa M Laird
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Clara L Kielkopf
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
54
|
Hershberger CE, Moyer DC, Adema V, Kerr CM, Walter W, Hutter S, Meggendorfer M, Baer C, Kern W, Nadarajah N, Twardziok S, Sekeres MA, Haferlach C, Haferlach T, Maciejewski JP, Padgett RA. Complex landscape of alternative splicing in myeloid neoplasms. Leukemia 2020; 35:1108-1120. [PMID: 32753690 PMCID: PMC8101081 DOI: 10.1038/s41375-020-1002-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022]
Abstract
Myeloid neoplasms are characterized by frequent mutations in at least seven components of the spliceosome that have distinct roles in the process of pre-mRNA splicing. Hotspot mutations in SF3B1, SRSF2, U2AF1 and loss of function mutations in ZRSR2 have revealed widely different aberrant splicing signatures with little overlap. However, previous studies lacked the power necessary to identify commonly mis-spliced transcripts in heterogeneous patient cohorts. By performing RNA-Seq on bone marrow samples from 1,258 myeloid neoplasm patients and 63 healthy bone marrow donors, we identified transcripts frequently mis-spliced by mutated splicing factors (SF), rare SF mutations with common alternative splicing (AS) signatures, and SF-dependent neojunctions. We characterized 17,300 dysregulated AS events using a pipeline designed to predict the impact of mis-splicing on protein function. Meta-splicing analysis revealed a pattern of reduced levels of retained introns among disease samples that was exacerbated in patients with splicing factor mutations. These introns share characteristics with “detained introns,” a class of introns that have been shown to promote differentiation by detaining pro-proliferative transcripts in the nucleus. In this study, we have functionally characterized 17,300 targets of mis-splicing by the SF mutations, identifying a common pathway by which AS may promote maintenance of a proliferative state.
Collapse
Affiliation(s)
- Courtney E Hershberger
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Devlin C Moyer
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Vera Adema
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Cassandra M Kerr
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | | | | | | | | | | | - Mikkael A Sekeres
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Richard A Padgett
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
55
|
Spliceosomal factor mutations and mis-splicing in MDS. Best Pract Res Clin Haematol 2020; 33:101199. [PMID: 33038983 DOI: 10.1016/j.beha.2020.101199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Somatic, heterozygous missense and nonsense mutations in at least seven proteins that function in the spliceosome are found at high frequency in MDS patients. These proteins act at various steps in the process of splicing by the spliceosome and lead to characteristic alterations in the alternative splicing of a subset of genes. Several studies have investigated the effects of these mutations and have attempted to identify a commonly affected gene or pathway. Here, we summarize what is known about the normal function of these proteins and how the mutations alter the splicing landscape of the genome. We also summarize the commonly mis-spliced gene targets and discuss the state of mechanistic unification that has been achieved. Finally, we discuss alternative mechanisms by which these mutations may lead to disease.
Collapse
|
56
|
Kralovicova J, Borovska I, Kubickova M, Lukavsky PJ, Vorechovsky I. Cancer-Associated Substitutions in RNA Recognition Motifs of PUF60 and U2AF65 Reveal Residues Required for Correct Folding and 3' Splice-Site Selection. Cancers (Basel) 2020; 12:cancers12071865. [PMID: 32664474 PMCID: PMC7408900 DOI: 10.3390/cancers12071865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
U2AF65 (U2AF2) and PUF60 (PUF60) are splicing factors important for recruitment of the U2 small nuclear ribonucleoprotein to lariat branch points and selection of 3′ splice sites (3′ss). Both proteins preferentially bind uridine-rich sequences upstream of 3′ss via their RNA recognition motifs (RRMs). Here, we examined 36 RRM substitutions reported in cancer patients to identify variants that alter 3′ss selection, RNA binding and protein properties. Employing PUF60- and U2AF65-dependent 3′ss previously identified by RNA-seq of depleted cells, we found that 43% (10/23) and 15% (2/13) of independent RRM mutations in U2AF65 and PUF60, respectively, conferred splicing defects. At least three RRM mutations increased skipping of internal U2AF2 (~9%, 2/23) or PUF60 (~8%, 1/13) exons, indicating that cancer-associated RRM mutations can have both cis- and trans-acting effects on splicing. We also report residues required for correct folding/stability of each protein and map functional RRM substitutions on to existing high-resolution structures of U2AF65 and PUF60. These results identify new RRM residues critical for 3′ss selection and provide relatively simple tools to detect clonal RRM mutations that enhance the mRNA isoform diversity.
Collapse
Affiliation(s)
- Jana Kralovicova
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Ivana Borovska
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Monika Kubickova
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (P.J.L.)
| | - Peter J. Lukavsky
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (P.J.L.)
| | - Igor Vorechovsky
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- Correspondence: ; Tel.: +44-2381-206425; Fax: +44-2381-204264
| |
Collapse
|
57
|
An autoinhibitory intramolecular interaction proof-reads RNA recognition by the essential splicing factor U2AF2. Proc Natl Acad Sci U S A 2020; 117:7140-7149. [PMID: 32188783 DOI: 10.1073/pnas.1913483117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The recognition of cis-regulatory RNA motifs in human transcripts by RNA binding proteins (RBPs) is essential for gene regulation. The molecular features that determine RBP specificity are often poorly understood. Here, we combined NMR structural biology with high-throughput iCLIP approaches to identify a regulatory mechanism for U2AF2 RNA recognition. We found that the intrinsically disordered linker region connecting the two RNA recognition motif (RRM) domains of U2AF2 mediates autoinhibitory intramolecular interactions to reduce nonproductive binding to weak Py-tract RNAs. This proofreading favors binding of U2AF2 at stronger Py-tracts, as required to define 3' splice sites at early stages of spliceosome assembly. Mutations that impair the linker autoinhibition enhance the affinity for weak Py-tracts result in promiscuous binding of U2AF2 along mRNAs and impact on splicing fidelity. Our findings highlight an important role of intrinsically disordered linkers to modulate RNA interactions of multidomain RBPs.
Collapse
|
58
|
Herdt O, Reich S, Medenbach J, Timmermann B, Olofsson D, Preußner M, Heyd F. The zinc finger domains in U2AF26 and U2AF35 have diverse functionalities including a role in controlling translation. RNA Biol 2020; 17:843-856. [PMID: 32116123 DOI: 10.1080/15476286.2020.1732701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent work has associated point mutations in both zinc fingers (ZnF) of the spliceosome component U2AF35 with malignant transformation. However, surprisingly little is known about the functionality of the U2AF35 ZnF domains in general. Here we have analysed key functionalities of the ZnF domains of mammalian U2AF35 and its paralog U2AF26. Both ZnFs are required for splicing regulation, whereas only ZnF2 controls protein stability and contributes to the interaction with U2AF65. These features are confirmed in a naturally occurring splice variant of U2AF26 lacking ZnF2, that is strongly induced upon activation of primary mouse T cells and localized in the cytoplasm. Using Ribo-Seq in a model T cell line we provide evidence for a role of U2AF26 in activating cytoplasmic steps in gene expression, notably translation. Consistently, an MS2 tethering assay shows that cytoplasmic U2AF26/35 increase translation when localized to the 5'UTR of a model mRNA. This regulation is partially dependent on ZnF1 thus providing a connection between a core splicing factor, the ZnF domains and the regulation of translation. Altogether, our work reveals unexpected functions of U2AF26/35 and their ZnF domains, thereby contributing to a better understanding of their role and regulation in mammalian cells.
Collapse
Affiliation(s)
- Olga Herdt
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin , Berlin, Germany
| | - Stefan Reich
- Institute of Biochemistry I, University of Regensburg , Regensburg, Germany
| | - Jan Medenbach
- Institute of Biochemistry I, University of Regensburg , Regensburg, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck-Institute for Molecular Genetics , Berlin, Germany
| | - Didrik Olofsson
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin , Berlin, Germany
| | - Marco Preußner
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin , Berlin, Germany
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin , Berlin, Germany
| |
Collapse
|
59
|
Abstract
High-throughput sequencing-based methods and their applications in the study of transcriptomes have revolutionized our understanding of alternative splicing. Networks of functionally coordinated and biologically important alternative splicing events continue to be discovered in an ever-increasing diversity of cell types in the context of physiologically normal and disease states. These studies have been complemented by efforts directed at defining sequence codes governing splicing and their cognate trans-acting factors, which have illuminated important combinatorial principles of regulation. Additional studies have revealed critical roles of position-dependent, multivalent protein-RNA interactions that direct splicing outcomes. Investigations of evolutionary changes in RNA binding proteins, splice variants, and associated cis elements have further shed light on the emergence, mechanisms, and functions of splicing networks. Progress in these areas has emphasized the need for a coordinated, community-based effort to systematically address the functions of individual splice variants associated with normal and disease biology.
Collapse
|
60
|
Wang YY, Xiong F, Ren QP, Wang XL. Regulation of flowering transition by alternative splicing: the role of the U2 auxiliary factor. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:751-758. [PMID: 31605606 DOI: 10.1093/jxb/erz416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/06/2019] [Indexed: 05/03/2023]
Abstract
Flowering transition is regulated by complex genetic networks in response to endogenous and environmental signals. Pre-mRNA splicing is an essential step for the post-transcriptional regulation of gene expression. Alternative splicing of key flowering genes has been investigated in detail over the past decade. However, few splicing factors have been identified as being involved in flowering transition. Human heterodimeric splicing factor U2 snRNP auxiliary factor (U2AF) consists of two subunits, U2AF35 and U2AF65, and functions in 3' splice site recognition in mRNA splicing. Recent studies reveal that Arabidopsis U2AF65a/b and U2AF35a/b play important roles in the splicing of key flowering genes. We summarize recent advances in research on splicing-regulated flowering transition by focusing on the role of Arabidopsis U2AF in the splicing of key flowering-related genes at ambient temperature and in the abscisic acid signaling pathways.
Collapse
Affiliation(s)
- Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Feng Xiong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Qiu-Ping Ren
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| |
Collapse
|
61
|
OGAWA S. Genetic basis of myelodysplastic syndromes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:107-121. [PMID: 32161209 PMCID: PMC7167367 DOI: 10.2183/pjab.96.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/15/2020] [Indexed: 05/06/2023]
Abstract
During the past decade, substantial progress has been made in the field of the genetics of myelodysplastic syndromes (MDS). These comprise a group of chronic myeloid neoplasms with abnormal cell morphology and progression to acute myeloid leukemia (AML), where revolutionary sequencing technologies have played a major role. Through extensive sequencing of a large number of MDS genomes, a comprehensive registry of driver mutations involved in the pathogenesis of MDS has been revealed, along with their impacts on clinical phenotype and prognosis. The most frequently affected molecules are involved in DNA methylations, chromatin modification, RNA splicing, transcription, signal transduction, cohesin regulation, and DNA repair. These mutations show strong positive and negative correlations with each other, suggesting the presence of functional interactions between mutations, which dictate disease progression. Because these mutations are associated with disease phenotype, drug response, and clinical outcomes, it is essential to be familiar with MDS genetics not only for better understanding of MDS pathogenesis but also for management of patients.
Collapse
Affiliation(s)
- Seishi OGAWA
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
62
|
Esfahani MS, Lee LJ, Jeon YJ, Flynn RA, Stehr H, Hui AB, Ishisoko N, Kildebeck E, Newman AM, Bratman SV, Porteus MH, Chang HY, Alizadeh AA, Diehn M. Functional significance of U2AF1 S34F mutations in lung adenocarcinomas. Nat Commun 2019; 10:5712. [PMID: 31836708 PMCID: PMC6911043 DOI: 10.1038/s41467-019-13392-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/07/2019] [Indexed: 12/23/2022] Open
Abstract
The functional role of U2AF1 mutations in lung adenocarcinomas (LUADs) remains incompletely understood. Here, we report a significant co-occurrence of U2AF1 S34F mutations with ROS1 translocations in LUADs. To characterize this interaction, we profiled effects of S34F on the transcriptome-wide distribution of RNA binding and alternative splicing in cells harboring the ROS1 translocation. Compared to its wild-type counterpart, U2AF1 S34F preferentially binds and modulates splicing of introns containing CAG trinucleotides at their 3' splice junctions. The presence of S34F caused a shift in cross-linking at 3' splice sites, which was significantly associated with alternative splicing of skipped exons. U2AF1 S34F induced expression of genes involved in the epithelial-mesenchymal transition (EMT) and increased tumor cell invasion. Finally, S34F increased splicing of the long over the short SLC34A2-ROS1 isoform, which was also associated with enhanced invasiveness. Taken together, our results suggest a mechanistic interaction between mutant U2AF1 and ROS1 in LUAD.
Collapse
Affiliation(s)
- Mohammad S Esfahani
- Stanford Cancer Institute, Stanford University, Stanford, USA
- Division of Oncology, Department of Medicine, Stanford University, Stanford, USA
- Department of Radiation Oncology, Stanford University, Stanford, USA
| | - Luke J Lee
- Stanford Cancer Institute, Stanford University, Stanford, USA
| | - Young-Jun Jeon
- Stanford Cancer Institute, Stanford University, Stanford, USA
- Department of Radiation Oncology, Stanford University, Stanford, USA
| | - Ryan A Flynn
- Department of Chemistry, Stanford University, Stanford, USA
| | - Henning Stehr
- Stanford Cancer Institute, Stanford University, Stanford, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Angela B Hui
- Stanford Cancer Institute, Stanford University, Stanford, USA
- Department of Radiation Oncology, Stanford University, Stanford, USA
| | - Noriko Ishisoko
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Eric Kildebeck
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, USA
- Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Scott V Bratman
- Department of Radiation Oncology, Stanford University, Stanford, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, USA
- Department of Radiation Oncology, University of Toronto, Toronto, CA, USA
| | | | - Howard Y Chang
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Division of Hematology, Department of Medicine, Stanford University, Stanford, USA
| | - Ash A Alizadeh
- Stanford Cancer Institute, Stanford University, Stanford, USA.
- Division of Oncology, Department of Medicine, Stanford University, Stanford, USA.
- Division of Hematology, Department of Medicine, Stanford University, Stanford, USA.
| | - Maximilian Diehn
- Stanford Cancer Institute, Stanford University, Stanford, USA.
- Department of Radiation Oncology, Stanford University, Stanford, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, USA.
| |
Collapse
|
63
|
Chang JW, Yeh HS, Park M, Erber L, Sun J, Cheng S, Bui AM, Fahmi NA, Nasti R, Kuang R, Chen Y, Zhang W, Yong J. mTOR-regulated U2af1 tandem exon splicing specifies transcriptome features for translational control. Nucleic Acids Res 2019; 47:10373-10387. [PMID: 31504847 PMCID: PMC6821156 DOI: 10.1093/nar/gkz761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/23/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023] Open
Abstract
U2 auxiliary factor 1 (U2AF1) functions in 3′-splice site selection during pre-mRNA processing. Alternative usage of duplicated tandem exons in U2AF1 produces two isoforms, U2AF1a and U2AF1b, but their functional differences are unappreciated due to their homology. Through integrative approaches of genome editing, customized-transcriptome profiling and crosslinking-mediated interactome analyses, we discovered that the expression of U2AF1 isoforms is controlled by mTOR and they exhibit a distinctive molecular profile for the splice site and protein interactomes. Mechanistic dissection of mutually exclusive alternative splicing events revealed that U2AF1 isoforms’ inherent differential preferences of nucleotide sequences and their stoichiometry determine the 3′-splice site. Importantly, U2AF1a-driven transcriptomes feature alternative splicing events in the 5′-untranslated region (5′-UTR) that are favorable for translation. These findings unveil distinct roles of duplicated tandem exon-derived U2AF1 isoforms in the regulation of the transcriptome and suggest U2AF1a-driven 5′-UTR alternative splicing as a molecular mechanism of mTOR-regulated translational control.
Collapse
Affiliation(s)
- Jae-Woong Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Hsin-Sung Yeh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Meeyeon Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Sze Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Alexander M Bui
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Naima Ahmed Fahmi
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Ryan Nasti
- Department of Genetics, Cell and Developmental Biology, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Rui Kuang
- Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
64
|
Lemaire S, Fontrodona N, Aubé F, Claude JB, Polvèche H, Modolo L, Bourgeois CF, Mortreux F, Auboeuf D. Characterizing the interplay between gene nucleotide composition bias and splicing. Genome Biol 2019; 20:259. [PMID: 31783898 PMCID: PMC6883713 DOI: 10.1186/s13059-019-1869-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nucleotide composition bias plays an important role in the 1D and 3D organization of the human genome. Here, we investigate the potential interplay between nucleotide composition bias and the regulation of exon recognition during splicing. RESULTS By analyzing dozens of RNA-seq datasets, we identify two groups of splicing factors that activate either about 3200 GC-rich exons or about 4000 AT-rich exons. We show that splicing factor-dependent GC-rich exons have predicted RNA secondary structures at 5' ss and are dependent on U1 snRNP-associated proteins. In contrast, splicing factor-dependent AT-rich exons have a large number of decoy branch points, SF1- or U2AF2-binding sites and are dependent on U2 snRNP-associated proteins. Nucleotide composition bias also influences local chromatin organization, with consequences for exon recognition during splicing. Interestingly, the GC content of exons correlates with that of their hosting genes, isochores, and topologically associated domains. CONCLUSIONS We propose that regional nucleotide composition bias over several dozens of kilobase pairs leaves a local footprint at the exon level and induces constraints during splicing that can be alleviated by local chromatin organization at the DNA level and recruitment of specific splicing factors at the RNA level. Therefore, nucleotide composition bias establishes a direct link between genome organization and local regulatory processes, like alternative splicing.
Collapse
Affiliation(s)
- Sébastien Lemaire
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Nicolas Fontrodona
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Fabien Aubé
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Jean-Baptiste Claude
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | | | - Laurent Modolo
- LBMC Biocomputing Center, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Cyril F Bourgeois
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Franck Mortreux
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France.
| |
Collapse
|
65
|
Cho HM, Park SJ, Choe SH, Lee JR, Kim SU, Jin YB, Kim JS, Lee SR, Kim YH, Huh JW. Cooperative evolution of two different TEs results in lineage-specific novel transcripts in the BLOC1S2 gene. BMC Evol Biol 2019; 19:196. [PMID: 31666001 PMCID: PMC6822395 DOI: 10.1186/s12862-019-1530-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/18/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The BLOC1S2 gene encodes the multifunctional protein BLOS2, a shared subunit of two lysosomal trafficking complexes: i) biogenesis of lysosome-related organelles complex-1 and i) BLOC-1-related complex. In our previous study, we identified an intriguing unreported transcript of the BLOC1S2 gene that has a novel exon derived from two transposable elements (TEs), MIR and AluSp. To investigate the evolutionary footprint and molecular mechanism of action of this transcript, we performed PCR and RT-PCR experiments and sequencing analyses using genomic DNA and RNA samples from humans and various non-human primates. RESULTS The results showed that the MIR element had integrated into the genome of our common ancestor, specifically in the BLOC1S2 gene region, before the radiation of all primate lineages and that the AluSp element had integrated into the genome of our common ancestor, fortunately in the middle of the MIR sequences, after the divergence of Old World monkeys and New World monkeys. The combined MIR and AluSp sequences provide a 3' splice site (AG) and 5' splice site (GT), respectively, and generate the Old World monkey-specific transcripts. Moreover, branch point sequences for the intron removal process are provided by the MIR and AluSp combination. CONCLUSIONS We show for the first time that sequential integration into the same location and sequence divergence events of two different TEs generated lineage-specific transcripts through sequence collaboration during primate evolution.
Collapse
Affiliation(s)
- Hyeon-Mu Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
| | - Se-Hee Choe
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea
| | - Ja-Rang Lee
- Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56216, Korea
| | - Sun-Uk Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea.,Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
| | - Yeung-Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea
| | - Ji-Su Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea.,Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56216, Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea.
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, 28116, Korea. .,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34113, Korea.
| |
Collapse
|
66
|
Reyes-Gutierrez P, Carrasquillo-Rodríguez JW, Imbalzano AN. Promotion of adipogenesis by JMJD6 requires the AT hook-like domain and is independent of its catalytic function. PLoS One 2019; 14:e0216015. [PMID: 31430278 PMCID: PMC6701753 DOI: 10.1371/journal.pone.0216015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/03/2019] [Indexed: 12/25/2022] Open
Abstract
JMJD6 is a member of the Jumonji C domain containing enzymes that demethylate and/or hydroxylate substrate proteins. It is a multi-functional protein that has been implicated in disparate aspects of transcriptional and post-transcriptional control of gene expression, including but not limited to enhancer and promoter binding, release of paused RNA polymerase II, control of splicing, and interaction with the translation machinery. JMJD6 contributes to multiple aspects of animal development, including adipogenesis modeled in culture. We mutated proposed or characterized domains in the JMJD6 protein to better understand the requirement for JMJD6 in adipogenic differentiation. Mutation of JMJD6 amino acids that mediate binding of iron and 2-oxogluterate, which are required cofactors for enzymatic activity, had no impact on JMJD6 function, showing that catalytic activity is not required for JMJD6 contributions to adipogenic differentiation. In addition, we documented the formation of JMJD6 oligomers and showed that catalytic activity is not required for oligomerization, as has been reported previously. We also observed no effect of mutations in the sumoylation site and in the poly-serine stretch. In contrast, mutation of the AT hook-like structure, which mediates interaction with DNA and/or RNA, compromised JMJD6 function by blocking its ability to interact with chromatin at genes that express regulators of adipogenesis. The ability of JMJD6 to interact with nucleic acids may be a critical requirement for its function in adipogenic differentiation. The requirement for the AT hook-like domain and the lack of requirement for catalytic activity giving rise to the idea that co-activation of transcription by JMJD6 may be functioning as a scaffold protein that supports the interactions of other critical regulators.
Collapse
Affiliation(s)
- Pablo Reyes-Gutierrez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jake W. Carrasquillo-Rodríguez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
67
|
Kawamura N, Nimura K, Saga K, Ishibashi A, Kitamura K, Nagano H, Yoshikawa Y, Ishida K, Nonomura N, Arisawa M, Luo J, Kaneda Y. SF3B2-Mediated RNA Splicing Drives Human Prostate Cancer Progression. Cancer Res 2019; 79:5204-5217. [PMID: 31431456 DOI: 10.1158/0008-5472.can-18-3965] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/24/2019] [Accepted: 08/15/2019] [Indexed: 11/16/2022]
Abstract
Androgen receptor splice variant-7 (AR-V7) is a constitutively active AR variant implicated in castration-resistant prostate cancers. Here, we show that the RNA splicing factor SF3B2, identified by in silico and CRISPR/Cas9 analyses, is a critical determinant of AR-V7 expression and is correlated with aggressive cancer phenotypes. Transcriptome and PAR-CLIP analyses revealed that SF3B2 controls the splicing of target genes, including AR, to drive aggressive phenotypes. SF3B2-mediated aggressive phenotypes in vivo were reversed by AR-V7 knockout. Pladienolide B, an inhibitor of a splicing modulator of the SF3b complex, suppressed the growth of tumors addicted to high SF3B2 expression. These findings support the idea that alteration of the splicing pattern by high SF3B2 expression is one mechanism underlying prostate cancer progression and therapeutic resistance. This study also provides evidence supporting SF3B2 as a candidate therapeutic target for treating patients with cancer. SIGNIFICANCE: RNA splicing factor SF3B2 is essential for the generation of an androgen receptor (AR) variant that renders prostate cancer cells resistant to AR-targeting therapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5204/F1.large.jpg.
Collapse
Affiliation(s)
- Norihiko Kawamura
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keisuke Nimura
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Kotaro Saga
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Airi Ishibashi
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koji Kitamura
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiromichi Nagano
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yusuke Yoshikawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Kyoso Ishida
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Jun Luo
- James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
68
|
Tari M, Manceau V, de Matha Salone J, Kobayashi A, Pastré D, Maucuer A. U2AF 65 assemblies drive sequence-specific splice site recognition. EMBO Rep 2019; 20:e47604. [PMID: 31271494 PMCID: PMC6681011 DOI: 10.15252/embr.201847604] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
The essential splicing factor U2AF65 is known to help anchoring U2 snRNP at the branch site. Its C-terminal UHM domain interacts with ULM motifs of SF3b155, an U2 snRNP protein. Here, we report a cooperative binding of U2AF65 and the related protein CAPERα to the multi-ULM domain of SF3b155. In addition, we show that the RS domain of U2AF65 drives a liquid-liquid phase separation that is amplified by intronic RNA with repeated pyrimidine tracts. In cells, knockdown of either U2AF65 or CAPERα improves the inclusion of cassette exons that are preceded by such repeated pyrimidine-rich motifs. These results support a model in which liquid-like assemblies of U2AF65 and CAPERα on repetitive pyrimidine-rich RNA sequences are driven by their RS domains, and facilitate the recruitment of the multi-ULM domain of SF3b155. We anticipate that posttranslational modifications and proteins recruited in dynamical U2AF65 and CAPERα condensates may further contribute to the complex mechanisms leading to specific splice site choice that occurs in cells.
Collapse
Affiliation(s)
- Manel Tari
- SABNPUniv EvryINSERM U1204Université Paris‐SaclayEvryFrance
| | - Valérie Manceau
- Institut Necker Enfants Malades (INEM)Inserm U1151 – CNRS UMR 8253Université Paris DescartesParisFrance
- Present address:
Faculty of MedicineInstitut Necker Enfants Malades (INEM)Inserm U1151–CNRS UMR 8253University Paris DescartesSorbonne Paris CitéParisFrance
| | | | | | - David Pastré
- SABNPUniv EvryINSERM U1204Université Paris‐SaclayEvryFrance
| | | |
Collapse
|
69
|
Královicová J, Ševcíková I, Stejskalová E, Obuca M, Hiller M, Stanek D, Vorechovský I. PUF60-activated exons uncover altered 3' splice-site selection by germline missense mutations in a single RRM. Nucleic Acids Res 2019; 46:6166-6187. [PMID: 29788428 PMCID: PMC6093180 DOI: 10.1093/nar/gky389] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/01/2018] [Indexed: 12/27/2022] Open
Abstract
PUF60 is a splicing factor that binds uridine (U)-rich tracts and facilitates association of the U2 small nuclear ribonucleoprotein with primary transcripts. PUF60 deficiency (PD) causes a developmental delay coupled with intellectual disability and spinal, cardiac, ocular and renal defects, but PD pathogenesis is not understood. Using RNA-Seq, we identify human PUF60-regulated exons and show that PUF60 preferentially acts as their activator. PUF60-activated internal exons are enriched for Us upstream of their 3′ splice sites (3′ss), are preceded by longer AG dinucleotide exclusion zones and more distant branch sites, with a higher probability of unpaired interactions across a typical branch site location as compared to control exons. In contrast, PUF60-repressed exons show U-depletion with lower estimates of RNA single-strandedness. We also describe PUF60-regulated, alternatively spliced isoforms encoding other U-bound splicing factors, including PUF60 partners, suggesting that they are co-regulated in the cell, and identify PUF60-regulated exons derived from transposed elements. PD-associated amino-acid substitutions, even within a single RNA recognition motif (RRM), altered selection of competing 3′ss and branch points of a PUF60-dependent exon and the 3′ss choice was also influenced by alternative splicing of PUF60. Finally, we propose that differential distribution of RNA processing steps detected in cells lacking PUF60 and the PUF60-paralog RBM39 is due to the RBM39 RS domain interactions. Together, these results provide new insights into regulation of exon usage by the 3′ss organization and reveal that germline mutation heterogeneity in RRMs can enhance phenotypic variability at the level of splice-site and branch-site selection.
Collapse
Affiliation(s)
- Jana Královicová
- University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.,Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Ivana Ševcíková
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Eva Stejskalová
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Mina Obuca
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics and Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - David Stanek
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Igor Vorechovský
- University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
70
|
Xiong F, Ren JJ, Yu Q, Wang YY, Lu CC, Kong LJ, Otegui MS, Wang XL. AtU2AF65b functions in abscisic acid mediated flowering via regulating the precursor messenger RNA splicing of ABI5 and FLC in Arabidopsis. THE NEW PHYTOLOGIST 2019; 223:277-292. [PMID: 30790290 DOI: 10.1111/nph.15756] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/11/2019] [Indexed: 05/20/2023]
Abstract
In mammalians and yeast, the splicing factor U2AF65/Mud2p functions in precursor messenger RNA (pre-mRNA) processing. Arabidopsis AtU2AF65b encodes a putative U2AF65 but its specific functions in plants are unknown. This paper examines the function of AtU2AF65b as a negative regulator of flowering time in Arabidopsis. We investigated the expression and function of AtU2AF65b in abscisic acid (ABA)-regulated flowering as well as the transcript abundance and pre-mRNA splicing of flowering-related genes in the knock-out mutants of AtU2AF65b. The atu2af65b mutants show early-flowering phenotype under both long-day and short-day conditions. The transcript accumulation of the flowering repressor gene FLOWERING LOCUS C (FLC) is reduced in the shoot apex of atu2af65b, due to both increased intron retention and reduced transcription activation. Reduced transcription of FLC results, at least partially, from the abnormal splicing and reduced transcript abundance of ABSCISIC ACID-INSENSITIVE 5 (ABI5), which encodes an activator of FLC in ABA-regulated flowering signaling. Additionally, the expression of AtU2AF65b is promoted by ABA. Transition to flowering and splicing of FLC and ABI5 in the atu2af65b mutants are compromised during ABA-induced flowering. ABA-responsive AtU2AF65b functions in the pre-mRNA splicing of FLC and ABI5 in shoot apex, whereby AtU2AF65b is involved in ABA-mediated flowering transition in Arabidopsis.
Collapse
Affiliation(s)
- Feng Xiong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jing-Jing Ren
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Qin Yu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Chong-Chong Lu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lan-Jing Kong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Marisa S Otegui
- Department of Botany and Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
71
|
Ouyang H, Zhang K, Fox-Walsh K, Yang Y, Zhang C, Huang J, Li H, Zhou Y, Fu XD. The RNA binding protein EWS is broadly involved in the regulation of pri-miRNA processing in mammalian cells. Nucleic Acids Res 2019; 45:12481-12495. [PMID: 30053258 PMCID: PMC5716145 DOI: 10.1093/nar/gkx912] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/27/2017] [Indexed: 12/13/2022] Open
Abstract
The Ewing Sarcoma protein (EWS) is a multifaceted RNA binding protein (RBP) with established roles in transcription, pre-mRNA processing and DNA damage response. By generating high quality EWS-RNA interactome, we uncovered its specific and prevalent interaction with a large subset of primary microRNAs (pri-miRNAs) in mammalian cells. Knockdown of EWS reduced, whereas overexpression enhanced, the expression of its target miRNAs. Biochemical analysis revealed that multiple elements in target pri-miRNAs, including the sequences flanking the stem-loop region, contributed to high affinity EWS binding and sequence swap experiments between target and non-target demonstrated that the flanking sequences provided the specificity for enhanced pri-miRNA processing by the Microprocessor Drosha/DGCR8. Interestingly, while repressing Drosha expression, as reported earlier, we found that EWS was able to enhance the recruitment of Drosha to chromatin. Together, these findings suggest that EWS may positively and negatively regulate miRNA biogenesis via distinct mechanisms, thus providing a new foundation to understand the function of EWS in development and disease.
Collapse
Affiliation(s)
- Huiwu Ouyang
- State Key Laboratory of Virology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kai Zhang
- State Key Laboratory of Virology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kristi Fox-Walsh
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Yang Yang
- State Key Laboratory of Virology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- State Key Laboratory of Virology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Huang
- State Key Laboratory of Virology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Yu Zhou
- State Key Laboratory of Virology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Institue of Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xiang-Dong Fu
- State Key Laboratory of Virology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.,Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| |
Collapse
|
72
|
Masaki S, Ikeda S, Hata A, Shiozawa Y, Kon A, Ogawa S, Suzuki K, Hakuno F, Takahashi SI, Kataoka N. Myelodysplastic Syndrome-Associated SRSF2 Mutations Cause Splicing Changes by Altering Binding Motif Sequences. Front Genet 2019; 10:338. [PMID: 31040863 PMCID: PMC6476956 DOI: 10.3389/fgene.2019.00338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/29/2019] [Indexed: 12/30/2022] Open
Abstract
Serine/arginine-rich splicing factor 2 (SRSF2) is a member of the SR protein family that is involved in both constitutive and alternative mRNA splicing. Mutations in SRSF2 gene are frequently reported in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). It is imperative to understand how these mutations affect SRSF2-mediated splicing and cause MDS. In this study, we characterized MDS-associated SRSF2 mutants (P95H, P95L, and P95R). We found that those mutants and wild-type SRSF2 proteins showed nuclear localization in HeLa cells. In vitro splicing reaction also revealed that mutant proteins associated with both precursor and spliced mRNAs, suggesting that the mutants directly participate in splicing. We established the human myeloid leukemia K562 cell lines that stably expressed myc-tagged wild-type or mutant SRSF2 proteins, and then performed RNA-sequence to analyze the splicing pattern of each cell line. The results revealed that both wild-type and mutants affected splicing of approximately 3,000 genes. Although splice site sequences adjacent to the affected exons showed no significant difference compared to the total exons, exonic motif analyses with both inclusion- and exclusion-enhanced exons demonstrated that wild-type and mutants have different binding sequences in exons. These results indicate that mutations of SRSF2 in MDS change binding properties of SRSF2 to exonic motifs and this causes aberrant splicing.
Collapse
Affiliation(s)
- So Masaki
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Shun Ikeda
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asuka Hata
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Suzuki
- Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Fumihiko Hakuno
- Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
73
|
Wang E, Lu SX, Pastore A, Chen X, Imig J, Chun-Wei Lee S, Hockemeyer K, Ghebrechristos YE, Yoshimi A, Inoue D, Ki M, Cho H, Bitner L, Kloetgen A, Lin KT, Uehara T, Owa T, Tibes R, Krainer AR, Abdel-Wahab O, Aifantis I. Targeting an RNA-Binding Protein Network in Acute Myeloid Leukemia. Cancer Cell 2019; 35:369-384.e7. [PMID: 30799057 PMCID: PMC6424627 DOI: 10.1016/j.ccell.2019.01.010] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/26/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs) are essential modulators of transcription and translation frequently dysregulated in cancer. We systematically interrogated RBP dependencies in human cancers using a comprehensive CRISPR/Cas9 domain-focused screen targeting RNA-binding domains of 490 classical RBPs. This uncovered a network of physically interacting RBPs upregulated in acute myeloid leukemia (AML) and crucial for maintaining RNA splicing and AML survival. Genetic or pharmacologic targeting of one key member of this network, RBM39, repressed cassette exon inclusion and promoted intron retention within mRNAs encoding HOXA9 targets as well as in other RBPs preferentially required in AML. The effects of RBM39 loss on splicing further resulted in preferential lethality of spliceosomal mutant AML, providing a strategy for treatment of AML bearing RBP splicing mutations.
Collapse
Affiliation(s)
- Eric Wang
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Sydney X Lu
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alessandro Pastore
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xufeng Chen
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Jochen Imig
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Stanley Chun-Wei Lee
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathryn Hockemeyer
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Yohana E Ghebrechristos
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Akihide Yoshimi
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daichi Inoue
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michelle Ki
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hana Cho
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lillian Bitner
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andreas Kloetgen
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Taisuke Uehara
- Tsukuba Research Laboratories, Eisai Company, Ltd, Tsukuba, Ibaraki 300-4352, Japan
| | - Takashi Owa
- Tsukuba Research Laboratories, Eisai Company, Ltd, Tsukuba, Ibaraki 300-4352, Japan
| | - Raoul Tibes
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Iannis Aifantis
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
74
|
Yu Y, Zhen Z, Qi H, Yuan X, Gao X, Zhang M. U2AF65 enhances milk synthesis and growth of bovine mammary epithelial cells by positively regulating the mTOR-SREBP-1c signalling pathway. Cell Biochem Funct 2019; 37:93-101. [PMID: 30773658 DOI: 10.1002/cbf.3378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/14/2022]
Abstract
U2 snRNP auxiliary factor 65 kDa (U2AF65) is a splicing factor that promotes prespliceosome assembly. The function of U2AF65 in alternative splicing has been identified; however, the essential physiological role of U2AF65 remains poorly understood. In this study, we investigated the regulatory role of U2AF65 in milk synthesis and growth of bovine mammary epithelial cells (BMECs). Our results showed that U2AF65 localizes in the nucleus. Treatment with amino acids (Met and Leu) and hormones (prolactin and β-estradiol) upregulated the expression of U2AF65 in these cells. U2AF65 overexpression increased the synthesis of β-casein, triglycerides, and lactose; increased cell viability; and promoted proliferation of BMECs. Furthermore, our results showed that U2AF65 positively regulated mTOR phosphorylation and expression of mature mRNA of mTOR and SREBP-1c. Collectively, our findings demonstrate that U2AF65 regulates the mRNA expression of signalling molecules (mTOR and SREBP-1c) involved in milk synthesis and growth of BMECs, possibly via controlling the splicing and maturation of these mRNAs. U2 snRNP auxiliary factor 65 kDa (U2AF65) is a splicing factor that promotes prespliceosome assembly. The essential physiological role of U2AF65 remains poorly understood. In the present study, we confirmed that U2AF65 functions as a positive regulator of milk synthesis in and proliferation of bovine mammary epithelial cells via the mTOR-SREBP-1c signalling pathway. Therefore, our study uncovers the regulatory role of U2AF65 in milk synthesis and cell proliferation.
Collapse
Affiliation(s)
- Yanbo Yu
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Zhen Zhen
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Hao Qi
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xiaohan Yuan
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xuejun Gao
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Minghui Zhang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| |
Collapse
|
75
|
Rawcliffe DFR, Österman L, Nordin A, Holmberg M. PTBP1 acts as a dominant repressor of the aberrant tissue-specific splicing of ISCU in hereditary myopathy with lactic acidosis. Mol Genet Genomic Med 2018; 6:887-897. [PMID: 30209894 PMCID: PMC6305642 DOI: 10.1002/mgg3.413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/23/2018] [Accepted: 04/17/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Hereditary myopathy with lactic acidosis (HML) is an autosomal recessive disease caused by an intron mutation in the iron-sulfur cluster assembly (ISCU) gene. The mutation results in aberrant splicing, where part of the intron is retained in the final mRNA transcript, giving rise to a truncated nonfunctional ISCU protein. Using an ISCU mini-gene system, we have previously shown that PTBP1 can act as a repressor of the mis-splicing of ISCU, where overexpression of PTBP1 resulted in a decrease of the incorrect splicing. In this study, we wanted to, in more detail, analyze the role of PTBP1 in the regulation of endogenous ISCU mis-splicing. METHODS Overexpression and knockdown of PTBP1 was performed in myoblasts from two HML patients and a healthy control. Quantification of ISCU mis-splicing was done by qRTPCR. Biotinylated ISCU RNA, representing wildtype and mutant intron sequence, was used in a pull-down assay with nuclear extracts from myoblasts. Levels of PTBP1 in human cell lines and mice tissues were analyzed by qRTPCR and western blot. RESULTS PTBP1 overexpression in HML patient myoblasts resulted in a substantial decrease of ISCU mis-splicing while knockdown of PTBP1 resulted in a drastic increase. The effect could be observed in both patient and control myoblasts. We could also show that PTBP1 interacts with both the mutant and wild-type ISCU intron sequence, but with a higher affinity to the mutant sequence. Furthermore, low levels of PTBP1 among examined mouse tissues correlated with high levels of incorrect splicing of ISCU. CONCLUSION Our results show that PTBP1 acts as a dominant repressor of ISCU mis-splicing. We also show an inverse correlation between the levels of PTBP1 and ISCU mis-splicing, suggesting that the high level of mis-splicing in the skeletal muscle is primarily due to the low levels of PTBP1.
Collapse
Affiliation(s)
- Denise F. R. Rawcliffe
- Unit for Medical and Clinical GeneticsDepartment of Medical BiosciencesUmeå UniversityUmeåSweden
| | - Lennart Österman
- Unit for Medical and Clinical GeneticsDepartment of Medical BiosciencesUmeå UniversityUmeåSweden
| | - Angelica Nordin
- Unit for Medical and Clinical GeneticsDepartment of Medical BiosciencesUmeå UniversityUmeåSweden
| | - Monica Holmberg
- Unit for Medical and Clinical GeneticsDepartment of Medical BiosciencesUmeå UniversityUmeåSweden
| |
Collapse
|
76
|
PRMT1 Deficiency in Mouse Juvenile Heart Induces Dilated Cardiomyopathy and Reveals Cryptic Alternative Splicing Products. iScience 2018; 8:200-213. [PMID: 30321814 PMCID: PMC6197527 DOI: 10.1016/j.isci.2018.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) catalyzes the asymmetric dimethylation of arginine residues in proteins and methylation of various RNA-binding proteins and is associated with alternative splicing in vitro. Although PRMT1 has essential in vivo roles in embryonic development, CNS development, and skeletal muscle regeneration, the functional importance of PRMT1 in the heart remains to be elucidated. Here, we report that juvenile cardiomyocyte-specific PRMT1-deficient mice develop severe dilated cardiomyopathy and exhibit aberrant cardiac alternative splicing. Furthermore, we identified previously undefined cardiac alternative splicing isoforms of four genes (Asb2, Fbxo40, Nrap, and Eif4a2) in PRMT1-cKO mice and revealed that eIF4A2 protein isoforms translated from alternatively spliced mRNA were differentially ubiquitinated and degraded by the ubiquitin-proteasome system. These findings highlight the essential roles of PRMT1 in cardiac homeostasis and alternative splicing regulation. PRMT1 deficiency in cardiomyocytes causes dilated cardiomyopathy in juvenile mice PRMT1-deficient heart shows abnormal alternative splicing patterns Previously undefined cardiac splicing events are revealed by transcriptome analysis eIF4A2 isoforms are differentially ubiquitinated and degraded
Collapse
|
77
|
Yuan J, Ma Y, Huang T, Chen Y, Peng Y, Li B, Li J, Zhang Y, Song B, Sun X, Ding Q, Song Y, Chang X. Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase. Mol Cell 2018; 72:380-394.e7. [DOI: 10.1016/j.molcel.2018.09.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/26/2018] [Accepted: 08/31/2018] [Indexed: 01/16/2023]
|
78
|
Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia. Nat Commun 2018; 9:3649. [PMID: 30194306 PMCID: PMC6128865 DOI: 10.1038/s41467-018-06063-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Spliceosome mutations are frequently found in myelodysplasia. Splicing alterations induced by these mutations, their precise targets, and the effect at the transcript level have not been fully elucidated. Here we report transcriptomic analyses of 265 bone marrow samples from myelodysplasia patients, followed by a validation using CRISPR/Cas9-mediated gene editing and an assessment of nonsense-mediated decay susceptibility. Small but widespread reduction of intron-retaining isoforms is the most frequent splicing alteration in SF3B1-mutated samples. SF3B1 mutation is also associated with 3′ splice site alterations, leading to the most pronounced reduction of canonical transcripts. Target genes include tumor suppressors and genes of mitochondrial iron metabolism or heme biosynthesis. Alternative exon usage is predominant in SRSF2- and U2AF1-mutated samples. Usage of an EZH2 cryptic exon harboring a premature termination codon is increased in both SRSF2- and U2AF1-mutated samples. Our study reveals a landscape of splicing alterations and precise targets of various spliceosome mutations. Mutations to the splicing machinery may have an important role in myelodysplasia. Here, the authors describe splicing factor gene mutations in myelodysplasia and report tumor suppressor, epigenetic, iron metabolism and heme biosynthesis genes as their targets.
Collapse
|
79
|
Parra M, Booth BW, Weiszmann R, Yee B, Yeo GW, Brown JB, Celniker SE, Conboy JG. An important class of intron retention events in human erythroblasts is regulated by cryptic exons proposed to function as splicing decoys. RNA (NEW YORK, N.Y.) 2018; 24:1255-1265. [PMID: 29959282 PMCID: PMC6097662 DOI: 10.1261/rna.066951.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
During terminal erythropoiesis, the splicing machinery in differentiating erythroblasts executes a robust intron retention (IR) program that impacts expression of hundreds of genes. We studied IR mechanisms in the SF3B1 splicing factor gene, which expresses ∼50% of its transcripts in late erythroblasts as a nuclear isoform that retains intron 4. RNA-seq analysis of nonsense-mediated decay (NMD)-inhibited cells revealed previously undescribed splice junctions, rare or not detected in normal cells, that connect constitutive exons 4 and 5 to highly conserved cryptic cassette exons within the intron. Minigene splicing reporter assays showed that these cassettes promote IR. Genome-wide analysis of splice junction reads demonstrated that cryptic noncoding cassettes are much more common in large (>1 kb) retained introns than they are in small retained introns or in nonretained introns. Functional assays showed that heterologous cassettes can promote retention of intron 4 in the SF3B1 splicing reporter. Although many of these cryptic exons were spliced inefficiently, they exhibited substantial binding of U2AF1 and U2AF2 adjacent to their splice acceptor sites. We propose that these exons function as decoys that engage the intron-terminal splice sites, thereby blocking cross-intron interactions required for excision. Developmental regulation of decoy function underlies a major component of the erythroblast IR program.
Collapse
Affiliation(s)
- Marilyn Parra
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ben W Booth
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Richard Weiszmann
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brian Yee
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92037, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92037, USA
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - James B Brown
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - John G Conboy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
80
|
Nguyen HD, Leong WY, Li W, Reddy PNG, Sullivan JD, Walter MJ, Zou L, Graubert TA. Spliceosome Mutations Induce R Loop-Associated Sensitivity to ATR Inhibition in Myelodysplastic Syndromes. Cancer Res 2018; 78:5363-5374. [PMID: 30054334 DOI: 10.1158/0008-5472.can-17-3970] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/01/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
Heterozygous somatic mutations in spliceosome genes (U2AF1, SF3B1, ZRSR2, or SRSF2) occur in >50% of patients with myelodysplastic syndrome (MDS). These mutations occur early in disease development, suggesting that they contribute to MDS pathogenesis and may represent a unique genetic vulnerability for targeted therapy. Here, we show that RNA splicing perturbation by expression of the U2AF1(S34F) mutant causes accumulation of R loops, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA, and elicits an ATR response. ATR inhibitors (ATRi) induced DNA damage and cell death in U2AF1(S34F)-expressing cells, and these effects of ATRi were enhanced by splicing modulating compounds. Moreover, ATRi-induced DNA damage was suppressed by overexpression of RNaseH1, an enzyme that specifically removes the RNA in RNA:DNA hybrids, suggesting that the ATRi sensitivity of U2AF1(S34F)-expressing cells arises from R loops. Taken together, our results demonstrate that ATR may represent a novel therapeutic target in patients with MDS carrying the U2AF1(S34F) mutation and potentially other malignancies harboring spliceosome mutations.Significance: This study provides preclinical evidence that patients with MDS or other myeloid malignancies driven by spliceosome mutations may benefit from ATR inhibition to exploit the R loop-associated vulnerability induced by perturbations in splicing. Cancer Res; 78(18); 5363-74. ©2018 AACR.
Collapse
Affiliation(s)
- Hai Dang Nguyen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Wan Yee Leong
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Weiling Li
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Pavankumar N G Reddy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Jack D Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts
| | - Matthew J Walter
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, Missouri
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts. .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Timothy A Graubert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts.
| |
Collapse
|
81
|
Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role. Nat Commun 2018; 9:2392. [PMID: 29921876 PMCID: PMC6008332 DOI: 10.1038/s41467-018-04760-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of pre-mRNA alternative splicing (AS) is closely associated with cancers. However, the relationships between the AS and classic oncogenes/tumor suppressors are largely unknown. Here we show that the deletion of tumor suppressor PTEN alters pre-mRNA splicing in a phosphatase-independent manner, and identify 262 PTEN-regulated AS events in 293T cells by RNA sequencing, which are associated with significant worse outcome of cancer patients. Based on these findings, we report that nuclear PTEN interacts with the splicing machinery, spliceosome, to regulate its assembly and pre-mRNA splicing. We also identify a new exon 2b in GOLGA2 transcript and the exon exclusion contributes to PTEN knockdown-induced tumorigenesis by promoting dramatic Golgi extension and secretion, and PTEN depletion significantly sensitizes cancer cells to secretion inhibitors brefeldin A and golgicide A. Our results suggest that Golgi secretion inhibitors alone or in combination with PI3K/Akt kinase inhibitors may be therapeutically useful for PTEN-deficient cancers.
Collapse
|
82
|
Howard JM, Lin H, Wallace AJ, Kim G, Draper JM, Haeussler M, Katzman S, Toloue M, Liu Y, Sanford JR. HNRNPA1 promotes recognition of splice site decoys by U2AF2 in vivo. Genome Res 2018; 28:689-698. [PMID: 29650551 PMCID: PMC5932609 DOI: 10.1101/gr.229062.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 03/22/2018] [Indexed: 12/04/2022]
Abstract
Alternative pre-mRNA splicing plays a major role in expanding the transcript output of human genes. This process is regulated, in part, by the interplay of trans-acting RNA binding proteins (RBPs) with myriad cis-regulatory elements scattered throughout pre-mRNAs. These molecular recognition events are critical for defining the protein-coding sequences (exons) within pre-mRNAs and directing spliceosome assembly on noncoding regions (introns). One of the earliest events in this process is recognition of the 3′ splice site (3′ss) by U2 small nuclear RNA auxiliary factor 2 (U2AF2). Splicing regulators, such as the heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), influence spliceosome assembly both in vitro and in vivo, but their mechanisms of action remain poorly described on a global scale. HNRNPA1 also promotes proofreading of 3′ss sequences though a direct interaction with the U2AF heterodimer. To determine how HNRNPA1 regulates U2AF–RNA interactions in vivo, we analyzed U2AF2 RNA binding specificity using individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) in control and HNRNPA1 overexpression cells. We observed changes in the distribution of U2AF2 crosslinking sites relative to the 3′ss of alternative cassette exons but not constitutive exons upon HNRNPA1 overexpression. A subset of these events shows a concomitant increase of U2AF2 crosslinking at distal intronic regions, suggesting a shift of U2AF2 to “decoy” binding sites. Of the many noncanonical U2AF2 binding sites, Alu-derived RNA sequences represented one of the most abundant classes of HNRNPA1-dependent decoys. We propose that one way HNRNPA1 regulates exon definition is to modulate the interaction of U2AF2 with decoy or bona fide 3′ss.
Collapse
Affiliation(s)
- Jonathan M Howard
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Hai Lin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Andrew J Wallace
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Garam Kim
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Jolene M Draper
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Maximilian Haeussler
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Masoud Toloue
- Bioo Scientific Corporation, Austin, Texas 78744, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Jeremy R Sanford
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
83
|
Sutandy FXR, Ebersberger S, Huang L, Busch A, Bach M, Kang HS, Fallmann J, Maticzka D, Backofen R, Stadler PF, Zarnack K, Sattler M, Legewie S, König J. In vitro iCLIP-based modeling uncovers how the splicing factor U2AF2 relies on regulation by cofactors. Genome Res 2018; 28:699-713. [PMID: 29643205 PMCID: PMC5932610 DOI: 10.1101/gr.229757.117] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/09/2018] [Indexed: 01/26/2023]
Abstract
Alternative splicing generates distinct mRNA isoforms and is crucial for proteome diversity in eukaryotes. The RNA-binding protein (RBP) U2AF2 is central to splicing decisions, as it recognizes 3′ splice sites and recruits the spliceosome. We establish “in vitro iCLIP” experiments, in which recombinant RBPs are incubated with long transcripts, to study how U2AF2 recognizes RNA sequences and how this is modulated by trans-acting RBPs. We measure U2AF2 affinities at hundreds of binding sites and compare in vitro and in vivo binding landscapes by mathematical modeling. We find that trans-acting RBPs extensively regulate U2AF2 binding in vivo, including enhanced recruitment to 3′ splice sites and clearance of introns. Using machine learning, we identify and experimentally validate novel trans-acting RBPs (including FUBP1, CELF6, and PCBP1) that modulate U2AF2 binding and affect splicing outcomes. Our study offers a blueprint for the high-throughput characterization of in vitro mRNP assembly and in vivo splicing regulation.
Collapse
Affiliation(s)
| | | | - Lu Huang
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Maximilian Bach
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Daniel Maticzka
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, 79104 Freiburg, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany.,Biomolecular NMR and Center for Integrated Protein Science Munich at Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
| | - Stefan Legewie
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| | - Julian König
- Institute of Molecular Biology (IMB) gGmbH, 55128 Mainz, Germany
| |
Collapse
|
84
|
Korbolina EE, Brusentsov II, Bryzgalov LO, Leberfarb EY, Degtyareva AO, Merkulova TI. Novel approach to functional SNPs discovery from genome-wide data reveals promising variants for colon cancer risk. Hum Mutat 2018; 39:851-859. [PMID: 29573091 DOI: 10.1002/humu.23425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
In the majority of colorectal cancer (CRC) cases, the genetic basis of predisposition remains unexplained. The goal of the study was to assess the regulatory SNPs (rSNPs) in the human genome and to reveal СRC drivers based on the available chromatin immunoprecipitation sequencing (ChIP-Seq, ChIA-PET) and transcriptional profiling (RNA-Seq) data. We combined positional (locations within genome regulatory elements) and functional (associated with allele-specific binding and expression) criteria followed by an analysis using genome-wide association studies (GWAS) and minor allele frequency (MAF) datasets. DeSeq2 analysis through 70 CRC patients reinforced the regulatory potential. rSNPs (1,476) that were associated with significant (P < 0.01) allele-specific events resulting in thirty that exhibited a link with CRC according to the MAF and 27, with a risk of malignancy in general according to GWAS. Selected rSNPs may modify the expression of genes for tumor suppressors and the regulators of signaling pathways, including noncoding RNAs. However, the rSNPs from the most represented group affect the expression of genes related to splicing. Our findings strongly suggest that the identified variants might contribute to CRC susceptibility, which indicates that aberrant splicing is one of the key mechanisms for unraveling disease etiopathogenesis and provides useful inputs for interpreting how genotypic variation corresponds to phenotypic outcome.
Collapse
Affiliation(s)
- Elena E Korbolina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, Novosibirsk, Russian Federation.,Novisibirsk State University, Novosibirsk, Russian Federation
| | - Ilja I Brusentsov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, Novosibirsk, Russian Federation
| | - Leonid O Bryzgalov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, Novosibirsk, Russian Federation
| | - Elena Yu Leberfarb
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, Novosibirsk, Russian Federation.,Novosibirsk State Medical University, Novosibirsk, Russian Federation
| | | | - Tatyana I Merkulova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, Novosibirsk, Russian Federation.,Novisibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
85
|
Singh B, Trincado JL, Tatlow PJ, Piccolo SR, Eyras E. Genome Sequencing and RNA-Motif Analysis Reveal Novel Damaging Noncoding Mutations in Human Tumors. Mol Cancer Res 2018; 16:1112-1124. [DOI: 10.1158/1541-7786.mcr-17-0601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/26/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022]
|
86
|
Ji X, Humenik J, Yang D, Liebhaber SA. PolyC-binding proteins enhance expression of the CDK2 cell cycle regulatory protein via alternative splicing. Nucleic Acids Res 2018; 46:2030-2044. [PMID: 29253178 PMCID: PMC5829739 DOI: 10.1093/nar/gkx1255] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
The PolyC binding proteins (PCBPs) impact alternative splicing of a subset of mammalian genes that are enriched in basic cellular functions. Here, we focus our analysis on PCBP-controlled cassette exon-splicing within the cell cycle control regulator cyclin-dependent kinase-2 (CDK2) transcript. We demonstrate that PCBP binding to a C-rich polypyrimidine tract (PPT) preceding exon 5 of the CDK2 transcript enhances cassette exon inclusion. This splice enhancement is U2AF65-independent and predominantly reflects actions of the PCBP1 isoform. Remarkably, PCBPs' control of CDK2 ex5 splicing has evolved subsequent to mammalian divergence via conversion of constitutive exon 5 inclusion in the mouse CDK2 transcript to PCBP-responsive exon 5 alternative splicing in humans. Importantly, exclusion of exon 5 from the hCDK2 transcript dramatically represses the expression of CDK2 protein with a corresponding perturbation in cell cycle kinetics. These data highlight a recently evolved post-transcriptional pathway in primate species with the potential to modulate cell cycle control.
Collapse
Affiliation(s)
- Xinjun Ji
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Humenik
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daphne Yang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
87
|
Herdt O, Neumann A, Timmermann B, Heyd F. The cancer-associated U2AF35 470A>G (Q157R) mutation creates an in-frame alternative 5' splice site that impacts splicing regulation in Q157R patients. RNA (NEW YORK, N.Y.) 2017; 23:1796-1806. [PMID: 28893951 PMCID: PMC5689001 DOI: 10.1261/rna.061432.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Recent work has identified cancer-associated U2AF35 missense mutations in two zinc-finger (ZnF) domains, but little is known about Q157R/P substitutions within the second ZnF. Surprisingly, we find that the c.470A>G mutation not only leads to the Q157R substitution, but also creates an alternative 5' splice site (ss) resulting in the deletion of four amino acids (Q157Rdel). Q157P, Q157R, and Q157Rdel control alternative splicing of distinct groups of exons in cell culture and in human patients, suggesting that missplicing of different targets may contribute to cellular aberrations. Our data emphasize the importance to explore missense mutations beyond altered protein sequence.
Collapse
Affiliation(s)
- Olga Herdt
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck-Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| |
Collapse
|
88
|
Wang B, Lo UG, Wu K, Kapur P, Liu X, Huang J, Chen W, Hernandez E, Santoyo J, Ma SH, Pong RC, He D, Cheng YQ, Hsieh JT. Developing new targeting strategy for androgen receptor variants in castration resistant prostate cancer. Int J Cancer 2017; 141:2121-2130. [PMID: 28722220 PMCID: PMC5777133 DOI: 10.1002/ijc.30893] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/09/2017] [Accepted: 07/03/2017] [Indexed: 01/05/2023]
Abstract
The presence of androgen receptor variant 7 (AR-V7) variants becomes a significant hallmark of castration-resistant prostate cancer (CRPC) relapsed from hormonal therapy and is associated with poor survival of CRPC patients because of lacking a ligand-binding domain. Currently, it still lacks an effective agent to target AR-V7 or AR-Vs in general. Here, we showed that a novel class of agents (thailanstatins, TSTs and spliceostatin A analogs) can significantly suppress the expression of AR-V7 mRNA and protein but in a less extent on the full-length AR expression. Mechanistically, TST-D is able to inhibit AR-V7 gene splicing by interfering the interaction between U2AF65 and SAP155 and preventing them from binding to polypyrimidine tract located between the branch point and the 3' splice site. In vivo, TST-D exhibits a potent tumor inhibitory effect on human CRPC xenografts leading to cell apoptosis. The machinery associated with AR gene splicing in CRPC is a potential target for drugs. Based on their potency in the suppression of AR-V7 responsible for the growth/survival of CRPC, TSTs representing a new class of anti-AR-V agents warrant further development into clinical application.
Collapse
Affiliation(s)
- Bin Wang
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiangyang Liu
- UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Jun Huang
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John Santoyo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shi-Hong Ma
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rey-Chen Pong
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dalin He
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi-Qiang Cheng
- UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Graduate Institute of Cancer Biology, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
89
|
Zhang Z, Xing Y. CLIP-seq analysis of multi-mapped reads discovers novel functional RNA regulatory sites in the human transcriptome. Nucleic Acids Res 2017; 45:9260-9271. [PMID: 28934506 PMCID: PMC5766199 DOI: 10.1093/nar/gkx646] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/19/2017] [Indexed: 01/09/2023] Open
Abstract
Crosslinking or RNA immunoprecipitation followed by sequencing (CLIP-seq or RIP-seq) allows transcriptome-wide discovery of RNA regulatory sites. As CLIP-seq/RIP-seq reads are short, existing computational tools focus on uniquely mapped reads, while reads mapped to multiple loci are discarded. We present CLAM (CLIP-seq Analysis of Multi-mapped reads). CLAM uses an expectation–maximization algorithm to assign multi-mapped reads and calls peaks combining uniquely and multi-mapped reads. To demonstrate the utility of CLAM, we applied it to a wide range of public CLIP-seq/RIP-seq datasets involving numerous splicing factors, microRNAs and m6A RNA methylation. CLAM recovered a large number of novel RNA regulatory sites inaccessible by uniquely mapped reads. The functional significance of these sites was demonstrated by consensus motif patterns and association with alternative splicing (splicing factors), transcript abundance (AGO2) and mRNA half-life (m6A). CLAM provides a useful tool to discover novel protein–RNA interactions and RNA modification sites from CLIP-seq and RIP-seq data, and reveals the significant contribution of repetitive elements to the RNA regulatory landscape of the human transcriptome.
Collapse
Affiliation(s)
- Zijun Zhang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Xing
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
90
|
Chen L, Weinmeister R, Kralovicova J, Eperon LP, Vorechovsky I, Hudson AJ, Eperon IC. Stoichiometries of U2AF35, U2AF65 and U2 snRNP reveal new early spliceosome assembly pathways. Nucleic Acids Res 2017; 45:2051-2067. [PMID: 27683217 PMCID: PMC5389562 DOI: 10.1093/nar/gkw860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/16/2016] [Indexed: 12/24/2022] Open
Abstract
The selection of 3΄ splice sites (3΄ss) is an essential early step in mammalian RNA splicing reactions, but the processes involved are unknown. We have used single molecule methods to test whether the major components implicated in selection, the proteins U2AF35 and U2AF65 and the U2 snRNP, are able to recognize alternative candidate sites or are restricted to one pre-specified site. In the presence of adenosine triphosphate (ATP), all three components bind in a 1:1 stoichiometry with a 3΄ss. Pre-mRNA molecules with two alternative 3΄ss can be bound concurrently by two molecules of U2AF or two U2 snRNPs, so none of the components are restricted. However, concurrent occupancy inhibits splicing. Stoichiometric binding requires conditions consistent with coalescence of the 5΄ and 3΄ sites in a complex (I, initial), but if this cannot form the components show unrestricted and stochastic association. In the absence of ATP, when complex E forms, U2 snRNP association is unrestricted. However, if protein dephosphorylation is prevented, an I-like complex forms with stoichiometric association of U2 snRNPs and the U2 snRNA is base-paired to the pre-mRNA. Complex I differs from complex A in that the formation of complex A is associated with the loss of U2AF65 and 35.
Collapse
Affiliation(s)
- Li Chen
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Robert Weinmeister
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Lucy P Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Andrew J Hudson
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Chemistry, Leicester LE1 7RH, UK
| | - Ian C Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| |
Collapse
|
91
|
Kim SY, Kim K, Hwang B, Im K, Park SN, Kim JA, Hwang SM, Bang D, Lee DS. The high frequency of the U2AF1 S34Y mutation and its association with isolated trisomy 8 in myelodysplastic syndrome in Asians, but not in Caucasians. Leuk Res 2017; 61:96-103. [DOI: 10.1016/j.leukres.2017.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022]
|
92
|
Li YE, Xiao M, Shi B, Yang YCT, Wang D, Wang F, Marcia M, Lu ZJ. Identification of high-confidence RNA regulatory elements by combinatorial classification of RNA-protein binding sites. Genome Biol 2017; 18:169. [PMID: 28886744 PMCID: PMC5591525 DOI: 10.1186/s13059-017-1298-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Crosslinking immunoprecipitation sequencing (CLIP-seq) technologies have enabled researchers to characterize transcriptome-wide binding sites of RNA-binding protein (RBP) with high resolution. We apply a soft-clustering method, RBPgroup, to various CLIP-seq datasets to group together RBPs that specifically bind the same RNA sites. Such combinatorial clustering of RBPs helps interpret CLIP-seq data and suggests functional RNA regulatory elements. Furthermore, we validate two RBP–RBP interactions in cell lines. Our approach links proteins and RNA motifs known to possess similar biochemical and cellular properties and can, when used in conjunction with additional experimental data, identify high-confidence RBP groups and their associated RNA regulatory elements.
Collapse
Affiliation(s)
- Yang Eric Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mu Xiao
- Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Binbin Shi
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yu-Cheng T Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dong Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fei Wang
- Life Sciences Institute, Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Marco Marcia
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
93
|
NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing. Nat Struct Mol Biol 2017; 24:816-824. [PMID: 28846091 PMCID: PMC5766049 DOI: 10.1038/nsmb.3455] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 08/01/2017] [Indexed: 12/27/2022]
Abstract
MicroRNA biogenesis is known to be modulated by a variety of RNA binding proteins (RBPs), but in most cases, individual RBPs appear to influence the processing of a small subset of target miRNAs. We herein report that the RNA binding NONO/PSF heterodimer binds a large number of expressed pri-miRNAs in HeLa cells to globally enhance pri-miRNA processing by the Drosha/DGCR8 Microprocessor. Because NONO/PSF are key components of paraspeckles organized by the lncRNA NEAT1, we further demonstrate that NEAT1 also has a profound effect on global pri-miRNA processing. Mechanistic dissection reveals that NEAT1 broadly interacts with NONO/PSF as well as many other RBPs, and that multiple RNA segments in NEAT1, including a “pseudo pri-miRNA” near its 3′ end, help attract the Microprocessor. These findings suggest a bird nest model for a large non-coding RNA to orchestrate efficient processing of almost an entire class of small non-coding RNAs in the nucleus.
Collapse
|
94
|
Yi J, Shen HF, Qiu JS, Huang MF, Zhang WJ, Ding JC, Zhu XY, Zhou Y, Fu XD, Liu W. JMJD6 and U2AF65 co-regulate alternative splicing in both JMJD6 enzymatic activity dependent and independent manner. Nucleic Acids Res 2017; 45:3503-3518. [PMID: 27899633 PMCID: PMC5389685 DOI: 10.1093/nar/gkw1144] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
JMJD6, a jumonji C (Jmj C) domain-containing protein demethylase and hydroxylase, has been implicated in an array of biological processes. It has been shown that JMJD6 interacts with and hydroxylates multiple serine/arginine-rich (SR) proteins and SR related proteins, including U2AF65, all of which are known to function in alternative splicing regulation. However, whether JMJD6 is widely involved in alternative splicing and the molecular mechanism underlying JMJD6-regulated alternative splicing have remained incompletely understood. Here, by using RASL-Seq, we investigated the functional impact of RNA-dependent interaction between JMJD6 and U2AF65, revealing that JMJD6 and U2AF65 co-regulated a large number of alternative splicing events. We further demonstrated the JMJD6 function in alternative splicing in jmjd6 knockout mice. Mechanistically, we showed that the enzymatic activity of JMJD6 was required for a subset of JMJD6-regulated splicing, and JMJD6-mediated lysine hydroxylation of U2AF65 could account for, at least partially, their co-regulated alternative splicing events, suggesting both JMJD6 enzymatic activity-dependent and independent control of alternative splicing. These findings reveal an intimate link between JMJD6 and U2AF65 in alternative splicing regulation, which has important implications in development and disease processes.
Collapse
Affiliation(s)
- Jia Yi
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Hai-Feng Shen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jin-Song Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Ming-Feng Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Wen-Juan Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jian-Cheng Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Xiao-Yan Zhu
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Wen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
95
|
Milek M, Imami K, Mukherjee N, Bortoli FD, Zinnall U, Hazapis O, Trahan C, Oeffinger M, Heyd F, Ohler U, Selbach M, Landthaler M. DDX54 regulates transcriptome dynamics during DNA damage response. Genome Res 2017; 27:1344-1359. [PMID: 28596291 PMCID: PMC5538551 DOI: 10.1101/gr.218438.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
The cellular response to genotoxic stress is mediated by a well-characterized network of DNA surveillance pathways. The contribution of post-transcriptional gene regulatory networks to the DNA damage response (DDR) has not been extensively studied. Here, we systematically identified RNA-binding proteins differentially interacting with polyadenylated transcripts upon exposure of human breast carcinoma cells to ionizing radiation (IR). Interestingly, more than 260 proteins, including many nucleolar proteins, showed increased binding to poly(A)+ RNA in IR-exposed cells. The functional analysis of DDX54, a candidate genotoxic stress responsive RNA helicase, revealed that this protein is an immediate-to-early DDR regulator required for the splicing efficacy of its target IR-induced pre-mRNAs. Upon IR exposure, DDX54 acts by increased interaction with a well-defined class of pre-mRNAs that harbor introns with weak acceptor splice sites, as well as by protein-protein contacts within components of U2 snRNP and spliceosomal B complex, resulting in lower intron retention and higher processing rates of its target transcripts. Because DDX54 promotes survival after exposure to IR, its expression and/or mutation rate may impact DDR-related pathologies. Our work indicates the relevance of many uncharacterized RBPs potentially involved in the DDR.
Collapse
Affiliation(s)
- Miha Milek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Koshi Imami
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Neelanjan Mukherjee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Francesca De Bortoli
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Ulrike Zinnall
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Orsalia Hazapis
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Christian Trahan
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Quebec, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, H3A 1A3 Montréal, Quebec, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Quebec, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, H3A 1A3 Montréal, Quebec, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, H3T 1J4 Montréal, Quebec, Canada
| | - Florian Heyd
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Uwe Ohler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Department of Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- Charite-Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- IRI Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
96
|
Bejar R. Splicing Factor Mutations in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 907:215-28. [PMID: 27256388 DOI: 10.1007/978-3-319-29073-7_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many cancers demonstrate aberrant splicing patterns that contribute to their development and progression. Recently, recurrent somatic mutations of genes encoding core subunits of the spliceosome have been identified in several different cancer types. These mutations are most common in hematologic malignancies like the myelodysplastic syndromes (MDS), acute myeloid leukemia, and chronic lymphocytic leukemia, but also in occur in several solid tumors at lower frequency. The most frequent mutations occur in SF3B1, U2AF1, SRSF2, and ZRSR2 and are largely exclusive of each other. Mutations in SF3B1, U2AF1, and SRSF2 acquire heterozygous missense mutations in specific codons, resembling oncogenes. ZRSR2 mutations include clear loss-of-function variants, a pattern more common to tumor suppressor genes. These splicing factors are associated with distinct clinical phenotypes and patterns of mutation in different malignancies. Mutations have both diagnostic and prognostic relevance. Splicing factor mutations appear to affect only a minority of transcripts which show little overlap by mutation type. How differences in splicing caused by somatic mutations of spliceosome subunits lead to oncogenesis is not clear and may involve different targets in each disease type. However, cells with mutated splicing machinery may be particularly vulnerable to further disruption of the spliceosome suggesting a novel strategy for the targeted therapy of cancers.
Collapse
Affiliation(s)
- Rafael Bejar
- Division of Hematology and Oncology, UC San Diego Moores Cancer Center, La Jolla, CA, USA.
| |
Collapse
|
97
|
Jenkins JL, Kielkopf CL. Splicing Factor Mutations in Myelodysplasias: Insights from Spliceosome Structures. Trends Genet 2017; 33:336-348. [PMID: 28372848 PMCID: PMC5447463 DOI: 10.1016/j.tig.2017.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/08/2023]
Abstract
Somatic mutations of pre-mRNA splicing factors recur among patients with myelodysplastic syndrome (MDS) and related malignancies. Although these MDS-relevant mutations alter the splicing of a subset of transcripts, the mechanisms by which these single amino acid substitutions change gene expression remain controversial. New structures of spliceosome intermediates and associated protein complexes shed light on the molecular interactions mediated by 'hotspots' of the SF3B1 and U2AF1 pre-mRNA splicing factors. The frequently mutated SF3B1 residues contact the pre-mRNA splice site. Based on structural homology with other spliceosome subunits, and recent findings of altered RNA binding by mutant U2AF1 proteins, we suggest that affected U2AF1 residues also contact pre-mRNA. Altered pre-mRNA recognition emerges as a molecular theme among MDS-relevant mutations of pre-mRNA splicing factors.
Collapse
Affiliation(s)
- Jermaine L Jenkins
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Clara L Kielkopf
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
98
|
Abstract
Proteins and RNA are often found in ribonucleoprotein particles (RNPs), where they function in cellular processes to synthesize proteins (the ribosome), chemically modify RNAs (small nucleolar RNPs), splice pre-mRNAs (the spliceosome), and, on a larger scale, sequester RNAs, degrade them, or process them (P bodies, Cajal bodies, and nucleoli). Each RNA–protein interaction is a story in itself, as both molecules can change conformation, compete for binding sites, and regulate cellular functions. Recent studies of Xist long non-coding RNP, the U4/5/6 tri-small nuclear RNP complex, and an activated state of a spliceosome reveal new features of RNA interactions with proteins, and, although their stories are incomplete, they are already fascinating.
Collapse
Affiliation(s)
- Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
99
|
Taggart AJ, Lin CL, Shrestha B, Heintzelman C, Kim S, Fairbrother WG. Large-scale analysis of branchpoint usage across species and cell lines. Genome Res 2017; 27:639-649. [PMID: 28119336 PMCID: PMC5378181 DOI: 10.1101/gr.202820.115] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/18/2017] [Indexed: 02/03/2023]
Abstract
The coding sequence of each human pre-mRNA is interrupted, on average, by 11 introns that must be spliced out for proper gene expression. Each intron contains three obligate signals: a 5′ splice site, a branch site, and a 3′ splice site. Splice site usage has been mapped exhaustively across different species, cell types, and cellular states. In contrast, only a small fraction of branch sites have been identified even once. The few reported annotations of branch site are imprecise as reverse transcriptase skips several nucleotides while traversing a 2–5 linkage. Here, we report large-scale mapping of the branchpoints from deep sequencing data in three different species and in the SF3B1 K700E oncogenic mutant background. We have developed a novel method whereby raw lariat reads are refined by U2snRNP/pre-mRNA base-pairing models to return the largest current data set of branchpoint sequences with quality metrics. This analysis discovers novel modes of U2snRNA:pre-mRNA base-pairing conserved in yeast and provides insight into the biogenesis of intron circles. Finally, matching branch site usage with isoform selection across the extensive panel of ENCODE RNA-seq data sets offers insight into the mechanisms by which branchpoint usage drives alternative splicing.
Collapse
Affiliation(s)
- Allison J Taggart
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Chien-Ling Lin
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Barsha Shrestha
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Claire Heintzelman
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Seongwon Kim
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA.,Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912, USA.,Hassenfeld Child Health Innovation Institute of Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
100
|
Haberman N, Huppertz I, Attig J, König J, Wang Z, Hauer C, Hentze MW, Kulozik AE, Le Hir H, Curk T, Sibley CR, Zarnack K, Ule J. Insights into the design and interpretation of iCLIP experiments. Genome Biol 2017; 18:7. [PMID: 28093074 PMCID: PMC5240381 DOI: 10.1186/s13059-016-1130-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 12/08/2016] [Indexed: 01/16/2023] Open
Abstract
Background Ultraviolet (UV) crosslinking and immunoprecipitation (CLIP) identifies the sites on RNAs that are in direct contact with RNA-binding proteins (RBPs). Several variants of CLIP exist, which require different computational approaches for analysis. This variety of approaches can create challenges for a novice user and can hamper insights from multi-study comparisons. Here, we produce data with multiple variants of CLIP and evaluate the data with various computational methods to better understand their suitability. Results We perform experiments for PTBP1 and eIF4A3 using individual-nucleotide resolution CLIP (iCLIP), employing either UV-C or photoactivatable 4-thiouridine (4SU) combined with UV-A crosslinking and compare the results with published data. As previously noted, the positions of complementary DNA (cDNA)-starts depend on cDNA length in several iCLIP experiments and we now find that this is caused by constrained cDNA-ends, which can result from the sequence and structure constraints of RNA fragmentation. These constraints are overcome when fragmentation by RNase I is efficient and when a broad cDNA size range is obtained. Our study also shows that if RNase does not efficiently cut within the binding sites, the original CLIP method is less capable of identifying the longer binding sites of RBPs. In contrast, we show that a broad size range of cDNAs in iCLIP allows the cDNA-starts to efficiently delineate the complete RNA-binding sites. Conclusions We demonstrate the advantage of iCLIP and related methods that can amplify cDNAs that truncate at crosslink sites and we show that computational analyses based on cDNAs-starts are appropriate for such methods. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1130-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nejc Haberman
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,The Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ina Huppertz
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.,European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Jan Attig
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,The Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julian König
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Zhen Wang
- Institut de Biologie de l'ENS (IBENS), 46 rue d'Ulm, Paris, F-75005, France.,CNRS UMR 8197, Paris Cedex 05, 75230, France
| | - Christian Hauer
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Andreas E Kulozik
- Molecular Medicine Partnership Unit (MMPU), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Hervé Le Hir
- Institut de Biologie de l'ENS (IBENS), 46 rue d'Ulm, Paris, F-75005, France.,CNRS UMR 8197, Paris Cedex 05, 75230, France
| | - Tomaž Curk
- Faculty of Computer and Information Science, University of Ljubljana, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Christopher R Sibley
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK. .,The Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|