51
|
Pook H, Pauklin S. Mechanisms of Cancer Cell Death: Therapeutic Implications for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:4834. [PMID: 34638318 PMCID: PMC8508208 DOI: 10.3390/cancers13194834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a type of cancer that is strongly associated with poor prognosis and short median survival times. In stark contrast to the progress seen in other cancer types in recent decades, discoveries of new treatments in PDAC have been few and far between and there has been little improvement in overall survival (OS). The difficulty in treating this disease is multifactorial, contributed to by late presentation, difficult access to primary tumour sites, an 'immunologically cold' phenotype, and a strong tendency of recurrence likely driven by cancer stem cell (CSC) populations. Furthermore, apparently contrasting roles of tumour components (such as fibrotic stroma) and intracellular pathways (such as autophagy and TGFβ) have made it difficult to distinguish beneficial from detrimental drug targets. Despite this, progress has been made in the field, including the determination of mFOLFIRINOX as the standard-of-care adjuvant therapy and the discovery of KRASG12C mutant inhibitors. Moreover, new research, as outlined in this review, has highlighted promising new approaches including the targeting of the tumour microenvironment, enhancement of immunotherapies, epigenetic modulation, and destruction of CSCs.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
52
|
Kwok M, Agathanggelou A, Davies N, Stankovic T. Targeting the p53 Pathway in CLL: State of the Art and Future Perspectives. Cancers (Basel) 2021; 13:4681. [PMID: 34572908 PMCID: PMC8468925 DOI: 10.3390/cancers13184681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
The p53 pathway is a desirable therapeutic target, owing to its critical role in the maintenance of genome integrity. This is exemplified in chronic lymphocytic leukemia (CLL), one of the most common adult hematologic malignancies, in which functional loss of p53 arising from genomic aberrations are frequently associated with clonal evolution, disease progression, and therapeutic resistance, even in the contemporary era of CLL targeted therapy and immunotherapy. Targeting the 'undruggable' p53 pathway therefore arguably represents the holy grail of cancer research. In recent years, several strategies have been proposed to exploit p53 pathway defects for cancer treatment. Such strategies include upregulating wild-type p53, restoring tumor suppressive function in mutant p53, inducing synthetic lethality by targeting collateral genome maintenance pathways, and harnessing the immunogenicity of p53 pathway aberrations. In this review, we will examine the biological and clinical implications of p53 pathway defects, as well as our progress towards development of therapeutic approaches targeting the p53 pathway, specifically within the context of CLL. We will appraise the opportunities and pitfalls associated with these therapeutic strategies, and evaluate their place amongst the array of new biological therapies for CLL.
Collapse
Affiliation(s)
- Marwan Kwok
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
- Centre for Clinical Haematology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2SY, UK
| | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| | - Nicholas Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK; (A.A.); (N.D.)
| |
Collapse
|
53
|
Chen CC, Chen CY, Cheng SF, Shieh TM, Leu YL, Chuang WY, Liu KT, Ueng SH, Shih YH, Chou LF, Wang TH. Hydroxygenkwanin Increases the Sensitivity of Liver Cancer Cells to Chemotherapy by Inhibiting DNA Damage Response in Mouse Xenograft Models. Int J Mol Sci 2021; 22:ijms22189766. [PMID: 34575923 PMCID: PMC8471855 DOI: 10.3390/ijms22189766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Molecules involved in DNA damage response (DDR) are often overexpressed in cancer cells, resulting in poor responses to chemotherapy and radiotherapy. Although treatment efficacy can be improved with the concomitant use of DNA repair inhibitors, the accompanying side effects can compromise the quality of life of patients. Therefore, in this study, we identified a natural compound that could inhibit DDR, using the single-strand annealing yeast-cell analysis system, and explored its mechanisms of action and potential as a chemotherapy adjuvant in hepatocellular carcinoma (HCC) cell lines using comet assay, flow cytometry, Western blotting, immunofluorescence staining, and functional analyses. We developed a mouse model to verify the in vitro findings. We found that hydroxygenkwanin (HGK) inhibited the expression of RAD51 and progression of homologous recombination, thereby suppressing the ability of the HCC cell lines to repair DNA damage and enhancing their sensitivity to doxorubicin. HGK inhibited the phosphorylation of DNA damage checkpoint proteins, leading to apoptosis in the HCC cell lines. In the mouse xenograft model, HGK enhanced the sensitivity of liver cancer cells to doxorubicin without any physiological toxicity. Thus, HGK can inhibit DDR in liver cancer cells and mouse models, making it suitable for use as a chemotherapy adjuvant.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Shu-Fang Cheng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan;
| | - Yann-Lii Leu
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (W.-Y.C.); (S.-H.U.)
- College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| | - Kuang-Ting Liu
- Department of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Pathology & Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 32551, Taiwan
| | - Shir-Hwa Ueng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (W.-Y.C.); (S.-H.U.)
- College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan;
| | - Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (L.-F.C.); (T.-H.W.)
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (L.-F.C.); (T.-H.W.)
| |
Collapse
|
54
|
Xie J, Kong X, Wang W, Li Y, Lin M, Li H, Chen J, Zhou W, He J, Wu H. Vasculogenic Mimicry Formation Predicts Tumor Progression in Oligodendroglioma. Pathol Oncol Res 2021; 27:1609844. [PMID: 34483751 PMCID: PMC8408314 DOI: 10.3389/pore.2021.1609844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022]
Abstract
Vasculogenic mimicry (VM) has been identified as an important vasculogenic mechanism in malignant tumors, but little is known about its clinical meanings and mechanisms in oligodendroglioma. In this study, VM-positive cases were detected in 28 (20.6%) out of 136 oligodendroglioma samples, significantly associated with higher WHO grade, lower Karnofsky performance status (KPS) scores, and recurrent tumor (p < 0.001, p = 0.040, and p = 0.020 respectively). Patients with VM-positive oligodendroglioma had a shorter progress-free survival (PFS) compared with those with VM-negative tumor (p < 0.001), whereas no significant difference was detected in overall survival (OS) between these patients. High levels of phosphorylate serine/threonine kinases Ataxia-telangiectasia mutated (pATM) and phosphorylate Ataxia-telangiectasia and Rad3-Related (pATR) were detected in 31 (22.8%) and 34 (25.0%), respectively out of 136 oligodendroglioma samples. Higher expressions of pATM and pATR were both associated with a shorter PFS (p < 0.001 and p < 0.001). VM-positive oligodendroglioma specimens tended to exhibit higher pATM and pATR staining than VM-negative specimens (rs = 0.435, p < 0.001 and rs = 0.317, p < 0.001). Besides, Hypoxia-inducible factor-1α (HIF1α) expression was detected in 14(10.3%) samples, correlated with higher WHO grade and non-frontal lobe (p = 0.010 and p = 0.029). However, no obvious connection was detected between HIF1α expression and VM formation (p = 0.537). Finally, either univariate or multivariate analysis suggested that VM was an independent unfavorable predictor for oligodendroglioma patients (p < 0.001, HR = 7.928, 95%CI: 3.382-18.584, and p = 0.007, HR = 4.534, 95%CI: 1.504-13.675, respectively). VM is a potential prognosticator for tumor progression in oligodendroglioma patients. Phosphorylation of ATM and ATR linked to treatment-resistance may be associated with VM formation. The role of VM in tumor progression and the implication of pATM/pATR in VM formation may provide potential therapeutic targets for oligodendroglioma treatment.
Collapse
Affiliation(s)
- Jing Xie
- School of Medicine, Shandong University, Jinan, China.,Department of Pathology, Anhui Provincial Hospital, Shandong University, Hefei, China.,Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xue Kong
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuan Li
- Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengyu Lin
- Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Heng Li
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jingjing Chen
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenchao Zhou
- Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jie He
- School of Medicine, Shandong University, Jinan, China.,Department of Pathology, Anhui Provincial Hospital, Shandong University, Hefei, China.,Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haibo Wu
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
55
|
Singh AN, Sharma N. In-silico identification of frequently mutated genes and their co-enriched metabolic pathways associated with Prostate cancer progression. Andrologia 2021; 53:e14236. [PMID: 34468989 DOI: 10.1111/and.14236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/04/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022] Open
Abstract
Prostate cancer (PCa) has emerged as a significant health burden in men globally. Several genetic anomalies such as mutations and also epigenetic aberrations are responsible for the heterogeneity of this disease. This study identified the 20 most frequently mutated genes reported in PCa based on literature and database survey. Further gene ontology and functional enrichment analysis were conducted to determine their co-modulated molecular and biological pathways. A protein-protein interaction network was used for the identification of hub genes. These hub genes identified were then subjected to survival analysis. The prognostic values of these identified genes were investigated using GEPIA and HPA. Gene Ontology analysis of the identified genes depicted that these genes significantly contributed to the cell cycle, apoptosis, angiogenesis and TGF-β receptor signalling. Further, the research showed that high expressions of identified mutated genes led to a reduction in the long-term survival of PCa patients, which was supported by immunohistochemical and mRNA expression level data. Our results suggest that identified panel of mutated genes viz., CTNNB1, TP53, ATM, AR and KMT2D play crucial roles in the onset and progression of PCa, thereby providing candidate diagnostic markers for PCa for individualised treatment in the future.
Collapse
Affiliation(s)
- Anshika N Singh
- School of Engineering, Ajeenkya DY Patil University (ADYPU), Pune, India
| | - Neeti Sharma
- School of Engineering, Ajeenkya DY Patil University (ADYPU), Pune, India
| |
Collapse
|
56
|
Trunk A, Miotke L, Nevala-Plagemann C, Verdaguer H, Macarulla T, Garrido-Laguna I. Emerging Treatment Strategies in Pancreatic Cancer. Pancreas 2021; 50:773-787. [PMID: 34398070 DOI: 10.1097/mpa.0000000000001845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) is one of the main causes of cancer death in well-developed countries. Therapeutic advances in PDAC to date have been modest. Recent progress to understand the molecular landscape of the disease has opened new treatment opportunities for a small subset of patients, frequently those with KRAS wild-type disease. Novel treatment strategies in PDAC include, among others, the use of nanotechnology and metabolic reprogramming. In addition, new strategies are being investigated, which are designed to overcome the resistance to checkpoint inhibitors, targeting DNA repair pathways including mismatch repair, increasing antigen presentation through the use of vaccines, targeting various signaling pathways, and reprogramming the tumor microenvironment. Here, we review the landscape of PDAC treatment strategies and some of these new agents.
Collapse
Affiliation(s)
- Andrew Trunk
- From the Department of Internal Medicine, University of Utah
| | - Laura Miotke
- From the Department of Internal Medicine, University of Utah
| | | | - Helena Verdaguer
- Division of Medical Oncology, Vall d'Hebrón University Hospital, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | - Teresa Macarulla
- Division of Medical Oncology, Vall d'Hebrón University Hospital, Vall d'Hebrón Institute of Oncology, Barcelona, Spain
| | - Ignacio Garrido-Laguna
- Division of Oncology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
57
|
Phan LM, Rezaeian AH. ATM: Main Features, Signaling Pathways, and Its Diverse Roles in DNA Damage Response, Tumor Suppression, and Cancer Development. Genes (Basel) 2021; 12:845. [PMID: 34070860 PMCID: PMC8228802 DOI: 10.3390/genes12060845] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022] Open
Abstract
ATM is among of the most critical initiators and coordinators of the DNA-damage response. ATM canonical and non-canonical signaling pathways involve hundreds of downstream targets that control many important cellular processes such as DNA damage repair, apoptosis, cell cycle arrest, metabolism, proliferation, oxidative sensing, among others. Of note, ATM is often considered a major tumor suppressor because of its ability to induce apoptosis and cell cycle arrest. However, in some advanced stage tumor cells, ATM signaling is increased and confers remarkable advantages for cancer cell survival, resistance to radiation and chemotherapy, biosynthesis, proliferation, and metastasis. This review focuses on addressing major characteristics, signaling pathways and especially the diverse roles of ATM in cellular homeostasis and cancer development.
Collapse
Affiliation(s)
- Liem Minh Phan
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abdol-Hossein Rezaeian
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, The University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
58
|
Mohammadi C, Mahdavinezhad A, Saidijam M, Bahreini F, Sedighi Pashaki A, Gholami MH, Najafi R. DCLK1 Inhibition Sensitizes Colorectal Cancer Cells to Radiation Treatment. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:23-33. [PMID: 34268251 PMCID: PMC8256833 DOI: 10.22088/ijmcm.bums.10.1.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent diagnosed cancers and a common cause of cancer-related mortality. Despite effective clinical responses, a large proportion of patients undergo resistance to radiation therapy. Therefore, the identification of efficient targeted therapy strategies would be beneficial to overcome cancer radioresistance. Doublecortin-like kinase 1 (DCLK1) is an intestinal and pancreatic stem cell marker that showed overexpression in a variety of cancers. The transfection of DCLK1 siRNA to normal HCT-116 cells was performed, and then cells were irradiated with X-rays. The effects of DCLK1 inhibition on cell survival, apoptosis, cell cycle, DNA damage response (ATM and γH2AX proteins), epithelial-mesenchymal transition (EMT) related genes (vimentin, N-cadherin, and E-cadherin), cancer stem cells markers (CD44, CD133, ALDH1, and BMI1), and β-catenin signaling pathway (β-catenin) were evaluated. DCLK1 siRNA downregulated DCLK1 expression in HCT-116 cells at both mRNA and protein levels (P <0.01). Colony formation assay showed a significantly reduced cell survival in the DCLK1 siRNA transfected group in comparison with the control group following exposure to 4 and 6 Gy doses of irradiation (P <0.01). Moreover, the expression of cancer stem cells markers (P <0.01), EMT related genes (P <0.01), and DNA repair proteins including pATM (P <0.01) and γH2AX (P <0.001) were significantly decreased in the transfected cells in comparison with the nontransfected group after radiation. Finally, the cell apoptosis rate (P <0.01) and the number of cells in the G0/G1 phase in the silencing DCLK1 group was increased (P <0.01). These findings suggest that DCLK1 can be considered a promising therapeutic target for the treatment of radioresistant human CRC.
Collapse
Affiliation(s)
- Chiman Mohammadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ali Mahdavinezhad
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fatemeh Bahreini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | | | | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
59
|
Stucci LS, Internò V, Tucci M, Perrone M, Mannavola F, Palmirotta R, Porta C. The ATM Gene in Breast Cancer: Its Relevance in Clinical Practice. Genes (Basel) 2021; 12:727. [PMID: 34068084 PMCID: PMC8152746 DOI: 10.3390/genes12050727] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Molecular alterations of the Ataxia-telangiectasia (AT) gene are frequently detected in breast cancer (BC), with an incidence ranging up to 40%. The mutated form, the Ataxia-telangiectasia mutated (ATM) gene, is involved in cell cycle control, apoptosis, oxidative stress, and telomere maintenance, and its role as a risk factor for cancer development is well established. Recent studies have confirmed that some variants of ATM are associated with an increased risk of BC development and a worse prognosis. Thus, many patients harboring ATM mutations develop intermediate- and high-grade disease, and there is a higher rate of lymph node metastatic involvement. The evidence concerning a correlation of ATM gene mutations and the efficacy of therapeutic strategies in BC management are controversial. In fact, ATM mutations may sensitize cancer cells to platinum-derived drugs, as BRCA1/2 mutations do, whereas their implications in objective responses to hormonal therapy or target-based agents are not well defined. Herein, we conducted a review of the role of ATM gene mutations in BC development, prognosis, and different treatment strategies.
Collapse
Affiliation(s)
- Luigia Stefania Stucci
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| | - Valeria Internò
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| | - Marco Tucci
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
- National Cancer Research Center, Tumori Institute IRCCS Giovanni Paolo II, 70121 Bari, Italy
| | - Martina Perrone
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| | - Francesco Mannavola
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Sciences and Technologies of Laboratory Medicine, University of Bari, 70121 Bari, Italy;
| | - Camillo Porta
- Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; (V.I.); (M.T.); (M.P.); (F.M.); (C.P.)
| |
Collapse
|
60
|
Wang Q, Chen Y, Chang H, Hu T, Wang J, Xie Y, Cheng J. The Role and Mechanism of ATM-Mediated Autophagy in the Transition From Hyper-Radiosensitivity to Induced Radioresistance in Lung Cancer Under Low-Dose Radiation. Front Cell Dev Biol 2021; 9:650819. [PMID: 34055781 PMCID: PMC8149741 DOI: 10.3389/fcell.2021.650819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
Objective: This study aimed to investigate the effect of ataxia telangiectasia mutated (ATM)–mediated autophagy on the radiosensitivity of lung cancer cells under low-dose radiation and to further investigate the role of ATM and its specific mechanism in the transition from hyper-radiosensitivity (HRS) to induced radioresistance (IRR). Methods: The changes in the HRS/IRR phenomenon in A549 and H460 cells were verified by colony formation assay. Changes to ATM phosphorylation and cell autophagy in A549 and H460 cells under different low doses of radiation were examined by western blot, polymerase chain reaction (PCR), and electron microscopy. ATM expression was knocked down by short interfering RNA (siRNA) transfection, and ATM-regulated molecules related to autophagy pathways were screened by transcriptome sequencing analysis. The detection results were verified by PCR and western blot. The differential metabolites were screened by transcriptome sequencing and verified by colony formation assay and western blot. The nude mouse xenograft model was used to verify the results of the cell experiments. Results: (1) A549 cells with high expression of ATM showed positive HRS/IRR, whereas H460 cells with low expression of ATM showed negative HRS/IRR. After the expression of ATM decreased, the HRS phenomenon in A549 cells increased, and the radiosensitivity of H460 cells also increased. This phenomenon was associated with the increase in the autophagy-related molecules phosphorylated c-Jun N-terminal kinase (p-JNK) and autophagy/Beclin 1 regulator 1 (AMBRA1). (2) DL-Norvaline, a product of carbon metabolism in cells, inhibited autophagy in A549 cells under low-dose radiation. DL-Norvaline increased the expression levels of ATM, JNK, and AMBRA1 in A549 cells. (3) Mouse experiments confirmed the regulatory role of ATM in autophagy and metabolism and its function in HRS/IRR. Conclusion: ATM may influence autophagy through p-JNK and AMBRA1 to participate in the regulation of the HRS/IRR phenomenon. Autophagy interacts with the cellular carbon metabolite DL-Norvaline to participate in regulating the low-dose radiosensitivity of cells.
Collapse
Affiliation(s)
- Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Chang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jue Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxiu Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
61
|
Distinct mutational backgrounds and clonal architectures implicated prognostic discrepancies in small-cell carcinomas of the esophagus and lung. Cell Death Dis 2021; 12:472. [PMID: 33980813 PMCID: PMC8115141 DOI: 10.1038/s41419-021-03754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/08/2022]
Abstract
Small-cell carcinoma of the esophagus (SCCE) is a rare and aggressive cancer. Although several consistent genomic changes were observed previously between SCCE and small-cell lung cancer (SCLC), detailed mutational landscapes revealing discrepancies in genetic underpinnings of tumorigenesis between these two cancers are scarce, and little attention has been paid to answer whether these genetic alterations were related to the prognosis. Herein by performing whole-exome sequencing of 48 SCCE and 64 SCLC tumor samples, respectively we have shown that the number of driver mutations in SCCE was significantly lower than in SCLC (p = 0.0042). In SCCE, 46% of recurrent driver mutations were clonal, which occurred at an early stage during tumorigenesis, while 16 driver mutations were found clonal in SCLC. NOTCH1/3, PIK3CA, and ATM were specifically clonal in SCCE, while TP53 was clonal in SCLC. The total number of clonal mutations differed between two cancers and presented lower in SCCE compared to SCLC (p = 0.0036). Moreover, overall survival (OS) was shorter in patients with higher numbers of clonal mutations for both cancers. In summary, SCCE showed distinct mutational background and clonal architecture compared with SCLC. Organ-specific clonal events revealed different molecular mechanisms underlying tumorigenesis, tumor development, patients’ prognosis, and possible variations in therapeutic outcomes to candidate treatments.
Collapse
|
62
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
63
|
Yang Z, Wu XS, Wei Y, Polyanskaya SA, Iyer SV, Jung M, Lach FP, Adelman ER, Klingbeil O, Milazzo JP, Kramer M, Demerdash OE, Chang K, Goodwin S, Hodges E, McCombie WR, Figueroa ME, Smogorzewska A, Vakoc CR. Transcriptional Silencing of ALDH2 Confers a Dependency on Fanconi Anemia Proteins in Acute Myeloid Leukemia. Cancer Discov 2021; 11:2300-2315. [PMID: 33893150 DOI: 10.1158/2159-8290.cd-20-1542] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/23/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Hundreds of genes become aberrantly silenced in acute myeloid leukemia (AML), with most of these epigenetic changes being of unknown functional consequence. Here, we demonstrate how gene silencing can lead to an acquired dependency on the DNA repair machinery in AML. We make this observation by profiling the essentiality of the ubiquitination machinery in cancer cell lines using domain-focused CRISPR screening, which revealed Fanconi anemia (FA) proteins UBE2T and FANCL as unique dependencies in AML. We demonstrate that these dependencies are due to a synthetic lethal interaction between FA proteins and aldehyde dehydrogenase 2 (ALDH2), which function in parallel pathways to counteract the genotoxicity of endogenous aldehydes. We show DNA hypermethylation and silencing of ALDH2 occur in a recurrent manner in human AML, which is sufficient to confer FA pathway dependency. Our study suggests that targeting of the ubiquitination reaction catalyzed by FA proteins can eliminate ALDH2-deficient AML. SIGNIFICANCE: Aberrant gene silencing is an epigenetic hallmark of human cancer, but the functional consequences of this process are largely unknown. In this study, we show how an epigenetic alteration leads to an actionable dependency on a DNA repair pathway through the disabling of genetic redundancy.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Zhaolin Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Genetics Program, Stony Brook University, Stony Brook, New York
| | - Yiliang Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Shruti V Iyer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Genetics Program, Stony Brook University, Stony Brook, New York
| | - Moonjung Jung
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | - Emmalee R Adelman
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Emily Hodges
- Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | | |
Collapse
|
64
|
Kim J, Lee S, Kim H, Lee H, Seong KM, Youn H, Youn B. Autophagic Organelles in DNA Damage Response. Front Cell Dev Biol 2021; 9:668735. [PMID: 33912571 PMCID: PMC8072393 DOI: 10.3389/fcell.2021.668735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an important subcellular event engaged in the maintenance of cellular homeostasis via the degradation of cargo proteins and malfunctioning organelles. In response to cellular stresses, like nutrient deprivation, infection, and DNA damaging agents, autophagy is activated to reduce the damage and restore cellular homeostasis. One of the responses to cellular stresses is the DNA damage response (DDR), the intracellular pathway that senses and repairs damaged DNA. Proper regulation of these pathways is crucial for preventing diseases. The involvement of autophagy in the repair and elimination of DNA aberrations is essential for cell survival and recovery to normal conditions, highlighting the importance of autophagy in the resolution of cell fate. In this review, we summarized the latest information about autophagic recycling of mitochondria, endoplasmic reticulum (ER), and ribosomes (called mitophagy, ER-phagy, and ribophagy, respectively) in response to DNA damage. In addition, we have described the key events necessary for a comprehensive understanding of autophagy signaling networks. Finally, we have highlighted the importance of the autophagy activated by DDR and appropriate regulation of autophagic organelles, suggesting insights for future studies. Especially, DDR from DNA damaging agents including ionizing radiation (IR) or anti-cancer drugs, induces damage to subcellular organelles and autophagy is the key mechanism for removing impaired organelles.
Collapse
Affiliation(s)
- Jeongha Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea.,Department of Biological Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
65
|
Molecular Docking and Molecular Dynamics Simulation Studies of Quinoline-3-Carboxamide Derivatives with DDR Kinases–Selectivity Studies towards ATM Kinase. CHEMISTRY 2021. [DOI: 10.3390/chemistry3020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Quinoline-3-carboxamides are an essential class of drug-like small molecules that are known to inhibit the phosphatidylinositol 3-kinase-related kinases (PIKK) family kinases. The quinoline nitrogen is shown to bind to the hinge region of the kinases, making them competitive inhibitors of adenosine triphosphate (ATP). We have previously designed and synthesized quinoline-3-carboxamides as potential ataxia telangiectasia mutated (ATM) kinase inhibitors to function as an adjuvant treatment with DNA damaging agents. This article discusses the molecular docking studies performed with these derivatives with the DNA damage and response (DDR) kinases-ATM, ataxia telangiectasia and rad3 related (ATR), and DNA dependent protein kinase catalytic subunit (DNA-PKcs) and highlights their selectivity towards ATM kinase. Docking studies were also performed with mTOR and PI3Kγ, which are close homologs of the DDR kinases. Molecular dynamics simulations were performed for one of the inhibitors against all the enzymes to establish the stability of the interactions involved. Finally, the absorption, distribution, metabolism, and excretion (ADME) properties of the inhibitors were predicted using the QikProp manual in Maestro. In conclusion, the molecules synthesized showed high selectivity towards the ATM kinase in comparison with the other kinases, though the sequence similarity between them was relatively high.
Collapse
|
66
|
Suehiro Y, Yoshina S, Motohashi T, Iwata S, Dejima K, Mitani S. Efficient collection of a large number of mutations by mutagenesis of DNA damage response defective animals. Sci Rep 2021; 11:7630. [PMID: 33828169 PMCID: PMC8027614 DOI: 10.1038/s41598-021-87226-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
With the development of massive parallel sequencing technology, it has become easier to establish new model organisms that are ideally suited to the specific biological phenomena of interest. Considering the history of research using classical model organisms, we believe that the efficient construction and sharing of gene mutation libraries will facilitate the progress of studies using these new model organisms. Using C. elegans, we applied the TMP/UV mutagenesis method to animals lacking function in the DNA damage response genes atm-1 and xpc-1. This method produces genetic mutations three times more efficiently than mutagenesis of wild-type animals. Furthermore, we confirmed that the use of next-generation sequencing and the elimination of false positives through machine learning could automate the process of mutation identification with an accuracy of over 95%. Eventually, we sequenced the whole genomes of 488 strains and isolated 981 novel mutations generated by the present method; these strains have been made available to anyone who wants to use them. Since the targeted DNA damage response genes are well conserved and the mutagens used in this study are also effective in a variety of species, we believe that our method is generally applicable to a wide range of animal species.
Collapse
Affiliation(s)
- Yuji Suehiro
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Tomoko Motohashi
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Satoru Iwata
- Chubu University Center for Education in Laboratory Animal Research, Kasugai, Aichi, Japan
| | - Katsufumi Dejima
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Shinjuku, Tokyo, Japan.
| |
Collapse
|
67
|
Lee JH, Ryu SW, Ender NA, Paull TT. Poly-ADP-ribosylation drives loss of protein homeostasis in ATM and Mre11 deficiency. Mol Cell 2021; 81:1515-1533.e5. [PMID: 33571423 PMCID: PMC8026623 DOI: 10.1016/j.molcel.2021.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Loss of the ataxia-telangiectasia mutated (ATM) kinase causes cerebellum-specific neurodegeneration in humans. We previously demonstrated that deficiency in ATM activation via oxidative stress generates insoluble protein aggregates in human cells, reminiscent of protein dysfunction in common neurodegenerative disorders. Here, we show that this process is driven by poly-ADP-ribose polymerases (PARPs) and that the insoluble protein species arise from intrinsically disordered proteins associating with PAR-associated genomic sites in ATM-deficient cells. The lesions implicated in this process are single-strand DNA breaks dependent on reactive oxygen species, transcription, and R-loops. Human cells expressing Mre11 A-T-like disorder mutants also show PARP-dependent aggregation identical to ATM deficiency. Lastly, analysis of A-T patient cerebellum samples shows widespread protein aggregation as well as loss of proteins known to be critical in human spinocerebellar ataxias that is not observed in neocortex tissues. These results provide a hypothesis accounting for loss of protein integrity and cerebellum function in A-T.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Seung W Ryu
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Nicolette A Ender
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Tanya T Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA.
| |
Collapse
|
68
|
Zhang JQJ, Saravanabavan S, Chandra AN, Munt A, Wong ATY, Harris PC, Harris DCH, McKenzie P, Wang Y, Rangan GK. Up-Regulation of DNA Damage Response Signaling in Autosomal Dominant Polycystic Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:902-920. [PMID: 33549515 DOI: 10.1016/j.ajpath.2021.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022]
Abstract
DNA damage and alterations in DNA damage response (DDR) signaling could be one of the molecular mechanisms mediating focal kidney cyst formation in autosomal dominant polycystic kidney disease (ADPKD). The aim of this study was to test the hypothesis that markers of DNA damage and DDR signaling are increased in human and experimental ADPKD. In the human ADPKD transcriptome, the number of up-regulated DDR-related genes was increased by 16.6-fold compared with that in normal kidney, and by 2.5-fold in cystic compared with that in minimally cystic tissue (P < 0.0001). In end-stage human ADPKD tissue, γ-H2A histone family member X (H2AX), phosphorylated ataxia telangiectasia and radiation-sensitive mutant 3 (Rad3)-related (pATR), and phosphorylated ataxia telangiectasia mutated (pATM) localized to cystic kidney epithelial cells. In vitro, pATR and pATM were also constitutively increased in human ADPKD tubular cells (WT 9-7 and 9-12) compared with control (HK-2). In addition, extrinsic oxidative DNA damage by hydrogen peroxide augmented γ-H2AX and cell survival in human ADPKD cells, and exacerbated cyst growth in the three-dimensional Madin-Darby canine kidney cyst model. In contrast, DDR-related gene expression was only transiently increased on postnatal day 0 in Pkd1RC/RC mice, and not altered at later time points up to 12 months of age. In conclusion, DDR signaling is dysregulated in human ADPKD and during the early phases of murine ADPKD. The constitutive expression of the DDR pathway in ADPKD may promote survival of PKD1-mutated cells and contribute to kidney cyst growth.
Collapse
Affiliation(s)
- Jennifer Q J Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Ashley N Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Annette T Y Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Peter C Harris
- Mayo Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, Minnesota
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Paul McKenzie
- Department of Tissue Pathology, NSW Health Pathology, Royal Prince Alfred Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Gopala K Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia.
| |
Collapse
|
69
|
Cooperative Blockade of CK2 and ATM Kinases Drives Apoptosis in VHL-Deficient Renal Carcinoma Cells through ROS Overproduction. Cancers (Basel) 2021; 13:cancers13030576. [PMID: 33540838 PMCID: PMC7867364 DOI: 10.3390/cancers13030576] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Renal cell carcinoma (RCC) is the eighth leading malignancy in the world, accounting for 4% of all cancers with poor outcome when metastatic. Protein kinases are highly druggable proteins, which are often aberrantly activated in cancers. The aim of our study was to identify candidate targets for metastatic clear cell renal cell carcinoma therapy, using chemo-genomic-based high-throughput screening. We found that the combined inhibition of the CK2 and ATM kinases in renal tumor cells and patient-derived tumor samples induces synthetic lethality. Mechanistic investigations unveil that this drug combination triggers apoptosis through HIF-2α-(Hypoxic inducible factor HIF-2α) dependent reactive oxygen species (ROS) overproduction, giving a new option for patient care in metastatic RCC. Abstract Kinase-targeted agents demonstrate antitumor activity in advanced metastatic clear cell renal cell carcinoma (ccRCC), which remains largely incurable. Integration of genomic approaches through small-molecules and genetically based high-throughput screening holds the promise of improved discovery of candidate targets for cancer therapy. The 786-O cell line represents a model for most ccRCC that have a loss of functional pVHL (von Hippel-Lindau). A multiplexed assay was used to study the cellular fitness of a panel of engineered ccRCC isogenic 786-O VHL− cell lines in response to a collection of targeted cancer therapeutics including kinase inhibitors, allowing the interrogation of over 2880 drug–gene pairs. Among diverse patterns of drug sensitivities, investigation of the mechanistic effect of one selected drug combination on tumor spheroids and ex vivo renal tumor slice cultures showed that VHL-defective ccRCC cells were more vulnerable to the combined inhibition of the CK2 and ATM kinases than wild-type VHL cells. Importantly, we found that HIF-2α acts as a key mediator that potentiates the response to combined CK2/ATM inhibition by triggering ROS-dependent apoptosis. Importantly, our findings reveal a selective killing of VHL-deficient renal carcinoma cells and provide a rationale for a mechanism-based use of combined CK2/ATM inhibitors for improved patient care in metastatic VHL-ccRCC.
Collapse
|
70
|
Xiao M, Fried JS, Ma J, Su Y, Boohaker RJ, Zeng Q, Mo Y, Meng F, Xiang R, Xu B. A disease-relevant mutation of SPOP highlights functional significance of ATM-mediated DNA damage response. Signal Transduct Target Ther 2021; 6:17. [PMID: 33446628 PMCID: PMC7809020 DOI: 10.1038/s41392-020-00381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mingming Xiao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Joshua S Fried
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA.,Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Jinlu Ma
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA.,Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA.,Department of Radiation Oncology, First Affiliated Hospital, Xian Jiaotong University, Xi'an, China
| | - Yang Su
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Rebecca J Boohaker
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA.,Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Qinghua Zeng
- Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA.,Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Yaqi Mo
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Fanbiao Meng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Rong Xiang
- Department of Biochemistry and Molecular Biology, Nankai University School of Medicine, Tianjin, China.
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China. .,Department of Oncology, Southern Research Institute, Birmingham, AL, 35205, USA. .,Cell Biology Program, University of Alabama at Birmingham, Birmingham, AL, 35205, USA. .,Center for Intelligent Oncology, Chongqing University Cancer Hospital, Chongqing University School of Medicine, Chongqing, 400030, China.
| |
Collapse
|
71
|
Vitiello PP, Martini G, Mele L, Giunta EF, De Falco V, Ciardiello D, Belli V, Cardone C, Matrone N, Poliero L, Tirino V, Napolitano S, Della Corte C, Selvaggi F, Papaccio G, Troiani T, Morgillo F, Desiderio V, Ciardiello F, Martinelli E. Vulnerability to low-dose combination of irinotecan and niraparib in ATM-mutated colorectal cancer. J Exp Clin Cancer Res 2021; 40:15. [PMID: 33407715 PMCID: PMC7789007 DOI: 10.1186/s13046-020-01811-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/11/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Despite the advancements in new therapies for colorectal cancer (CRC), chemotherapy still constitutes the mainstay of the medical treatment. For this reason, new strategies to increase the efficacy of chemotherapy are desirable. Poly-ADP-Ribose Polymerase inhibitors (PARPi) have shown to increase the activity of DNA damaging chemotherapeutics used in the treatment of CRC, however previous clinical trials failed to validate these results and pointed out dose-limiting toxicities that hamper the use of such combinations in unselected CRC patients. Nevertheless, in these studies little attention was paid to the mutational status of homologous recombination repair (HRR) genes. METHODS We tested the combination of the PARPi niraparib with either 5-fluorouracil, oxaliplatin or irinotecan (SN38) in a panel of 12 molecularly annotated CRC cell lines, encompassing the 4 consensus molecular subtypes (CMSs). Synergism was calculated using the Chou-Talalay method for drug interaction. A correlation between synergism and genetic alterations in genes involved in homologous recombination (HR) repair was performed. We used clonogenic assays, mice xenograft models and patient-derived 3D spheroids to validate the results. The induction of DNA damage was studied by immunofluorescence. RESULTS We showed that human CRC cell lines, as well as patient-derived 3D spheroids, harboring pathogenic ATM mutations are significantly vulnerable to PARPi/chemotherapy combination at low doses, regardless of consensus molecular subtypes (CMS) and microsatellite status. The strongest synergism was shown for the combination of niraparib with irinotecan, and the presence of ATM mutations was associated to a delay in the resolution of double strand breaks (DSBs) through HRR and DNA damage persistence. CONCLUSIONS This work demonstrates that a numerically relevant subset of CRCs carrying heterozygous ATM mutations may benefit from the combination treatment with low doses of niraparib and irinotecan, suggesting a new potential approach in the treatment of ATM-mutated CRC, that deserves to be prospectively validated in clinical trials.
Collapse
Affiliation(s)
- Pietro Paolo Vitiello
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Giulia Martini
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Luigi Mele
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Emilio Francesco Giunta
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Vincenzo De Falco
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Davide Ciardiello
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Valentina Belli
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Claudia Cardone
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Nunzia Matrone
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Luca Poliero
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Virginia Tirino
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Stefania Napolitano
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Carminia Della Corte
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Francesco Selvaggi
- Department of Medical, Surgical, General and oncology surgery, Neurologic, Metabolic and Ageing Sciences, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Teresa Troiani
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Floriana Morgillo
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| | - Erika Martinelli
- Department of Precision Medicine, Medical Oncology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Campania Italy
| |
Collapse
|
72
|
Sze SGK, Lederman HM, Crawford TO, Wangler MF, Lewis AM, Kastan MB, Dibra HK, Taylor AMR, Wechsler DS. Retrospective Diagnosis of Ataxia-Telangiectasia in an Adolescent Patient With a Remote History of T-Cell Leukemia. J Pediatr Hematol Oncol 2021; 43:e138-e140. [PMID: 31743320 DOI: 10.1097/mph.0000000000001672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ataxia-telangiectasia (A-T) is a rare autosomal recessive disorder characterized by progressive cerebellar degeneration that is typically diagnosed in early childhood. A-T is associated with a predisposition to malignancies, particularly lymphoid tumors in childhood and early adulthood. An adolescent girl with minimal neurologic symptoms was diagnosed with A-T 8 years after completing therapy for T-cell acute lymphoblastic leukemia, following a diagnosis of ATM-mutated breast cancer in her mother. We highlight the importance of recognizing ATM mutations in T-cell acute lymphoblastic leukemia, appreciating the phenotypic heterogeneity of A-T, and defining optimal cancer screening in A-T patients.
Collapse
Affiliation(s)
- Sei-Gyung K Sze
- Maine Children's Cancer Program, Maine Medical Center, Scarborough, ME
| | | | - Thomas O Crawford
- Department of Pediatrics, Division of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Andrea M Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Michael B Kastan
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Harpreet K Dibra
- Institute of Cancer and Genomic Sciences, The Medical School, University of Birmingham, UK
| | - Alexander M R Taylor
- Institute of Cancer and Genomic Sciences, The Medical School, University of Birmingham, UK
| | - Daniel S Wechsler
- Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
73
|
Filippou PS, Outeiro TF. Cancer and Parkinson's Disease: Common Targets, Emerging Hopes. Mov Disord 2020; 36:340-346. [PMID: 33346940 DOI: 10.1002/mds.28425] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer and neurodegeneration are two major leading causes of morbidity and death worldwide. At first sight, the two fields do not seem to share much in common and, if anything, might be placed on opposite ends of a spectrum. Although neurodegeneration results in excessive neuronal cell death, cancer emerges from increased proliferation and resistance to cell death. Therefore, one might expect significant differences in the underlying pathophysiological mechanisms. However, the more we deepen our understanding of these two types of diseases, the more we appreciate the unexpected overlap between them. Although most epidemiological studies support an inverse association between the risk for development of neurodegenerative diseases and cancer, increasing evidence points to a positive correlation between specific types of cancer, like melanoma, and neurodegenerative diseases, like Parkinson's disease (PD). We believe that deciphering the molecular processes and pathways underlying one of these diseases may significantly increase our understanding about the other. Therefore, the identification of novel biomarkers and therapeutic approaches in cancer, may lead to improved diagnosis and treatment of neurodegeneration, and vice versa. In this Viewpoint, we summarize recent findings connecting both diseases and speculate that insights from one disease may inform on mechanisms, and help identify novel biomarkers and targets for intervention, possibly leading to improved management of both diseases. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Panagiota S Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom.,National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
74
|
Yi R, Lin A, Cao M, Xu A, Luo P, Zhang J. ATM Mutations Benefit Bladder Cancer Patients Treated With Immune Checkpoint Inhibitors by Acting on the Tumor Immune Microenvironment. Front Genet 2020; 11:933. [PMID: 32922441 PMCID: PMC7456912 DOI: 10.3389/fgene.2020.00933] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 01/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown promising results in bladder cancer (BC). However, only some patients respond to ICIs. DNA repair defects (DDR) play an important role in the therapeutic response of bladder cancer. Therefore, we aimed to elucidate the association between ICIs in bladder cancer and ataxia telangiectasia mutated (ATM), a core component of the DNA repair system. From a collected immunotherapy cohort (n = 210) and The Cancer Genome Atlas (TCGA)-Bladder cancer cohort, which were both retrieved from publicly available resources, we performed a series of analyses to evaluate the prognostic value and potential mechanism of ATM in bladder cancer immunotherapy. We found that ATM-mutant (ATM-MT) bladder cancer patients derived greater benefit from ICIs [overall survival (OS), hazard ratio (HR) = 0.28, [95% confidence interval (CI), 0.16 to 0.51], P = 0.007] and showed a higher mutation load (P < 0.05) and immunogenicity (P < 0.05) than ATM-wild-type (ATM-WT) patients. The immune inflammatory response to antigenic stimulation, the regulation of the IFN pathway and the macrophage activation pathway were significantly enriched in the ATM-MT group (NES > 1, P < 0.05), while insulin-like growth factor receptor signaling pathways and vasculogenesis were significantly downregulated (NES < −1, P < 0.05). ATM mutation significantly upregulated the number of DNA damage repair pathway gene mutations (P < 0.05). ATM mutations resulted in increased bladder cancer sensitivity to 29 drugs (P < 0.05), including cisplatin and BMS-536924, an IGF-1R inhibitor. Our results demonstrate the importance of ATM as a prognostic signature in bladder cancer and reveal that ATM may impact the effects of ICIs by acting on the tumor immune microenvironment.
Collapse
Affiliation(s)
- Ruibin Yi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Manming Cao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
75
|
Ravi S, Barui S, Kirubakaran S, Duhan P, Bhowmik K. Synthesis and Characterization of Quinoline-3-Carboxamide Derivatives as Inhibitors of the ATM Kinase. Curr Top Med Chem 2020; 20:2070-2079. [PMID: 32735523 DOI: 10.2174/1568026620666200731174216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The importance of inhibiting the kinases of the DDR pathway for radiosensitizing cancer cells is well established. Cancer cells exploit these kinases for their survival, which leads to the development of resistance towards DNA damaging therapeutics. OBJECTIVE In this article, the focus is on targeting the key mediator of the DDR pathway, the ATM kinase. A new set of quinoline-3-carboxamides, as potential inhibitors of ATM, is reported. METHODS Quinoline-3-carboxamide derivatives were synthesized and cytotoxicity assay was performed to analyze the effect of molecules on different cancer cell lines like HCT116, MDA-MB-468, and MDA-MB-231. RESULTS Three of the synthesized compounds showed promising cytotoxicity towards a selected set of cancer cell lines. Western Blot analysis was also performed by pre-treating the cells with quercetin, a known ATM upregulator, by causing DNA double-strand breaks. SAR studies suggested the importance of the electron-donating nature of the R group for the molecule to be toxic. Finally, Western-Blot analysis confirmed the down-regulation of ATM in the cells. Additionally, the PTEN negative cell line, MDA-MB-468, was more sensitive towards the compounds in comparison with the PTEN positive cell line, MDA-MB-231. Cytotoxicity studies against 293T cells showed that the compounds were at least three times less toxic when compared with HCT116. CONCLUSION In conclusion, these experiments will lay the groundwork for the evolution of potent and selective ATM inhibitors for the radio- and chemo-sensitization of cancer cells.
Collapse
Affiliation(s)
- Srimadhavi Ravi
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Sugata Barui
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | | | - Parul Duhan
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Kaushik Bhowmik
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| |
Collapse
|
76
|
Pillonel V, Juskevicius D, Bihl M, Stenner F, Halter JP, Dirnhofer S, Tzankov A. Routine next generation sequencing of lymphoid malignancies: clinical utility and challenges from a 3-Year practical experience. Leuk Lymphoma 2020; 61:2568-2583. [PMID: 32623938 DOI: 10.1080/10428194.2020.1786560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since 2016, a next-generation sequencing (NGS) panel targeting 68 genes frequently mutated in lymphoid malignancies is an accredited part of routine diagnostics at the Institute of Pathology in Basel, Switzerland. Here, we retrospectively evaluate the feasibility and utility of integrating this NGS platform into routine practice on 80 diagnostic cases of lymphoid proliferations. NGS analysis was useful in most instances, yielding a diagnostically, predictively and/or prognostically meaningful result. In 35 out of the 50 cases, in which conventional histopathological evaluation remained indecisive, molecular subtyping with the NGS panel was helpful to either confirm or support the favored diagnosis, enable a differential diagnosis, or seriously question a suspected diagnosis. A total of 61 actionable or potentially actionable mutations in 34 out of 80 cases that might have enabled patient selection for targeted therapies was detected. NGS panel analysis had implications for prognosis in all 15 cases interrogated for risk assessment.
Collapse
Affiliation(s)
- Vincent Pillonel
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland.,Department of Medical Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Darius Juskevicius
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Michel Bihl
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Frank Stenner
- Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Jörg P Halter
- Department of Medicine, Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
77
|
Lu N, Neoh CL, Ruan Z, Zhao L, Ying L, Zhang X, Chen S, Xu L. Essential Thrombocythaemia with Concomitant Waldenström Macroglobulinaemia: Case Report and Literature Review. Onco Targets Ther 2020; 13:3431-3435. [PMID: 32425546 PMCID: PMC7186880 DOI: 10.2147/ott.s245950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 11/28/2022] Open
Abstract
Essential thrombocythaemia (ET) and Waldenström macroglobulinaemia (WM) are two distinct disorders. Studies have reported several cases of myeloproliferative neoplasms (MPNs) with concomitant plasma cell dyscrasia. However, there were no reported cases of ET with concomitant WM to date. Here, we present a 55-year-old Chinese man with thrombocytosis and raised immunoglobulin level. Further investigations led to a diagnosis of ET and coexistent WM. Next-generation sequencing (NGS) of his bone marrow identified 3 mutated genes: JAK2 V617F, MYD88 L265P, and ATM F1036L. After being treated with pegylated interferon and low-dose aspirin, his platelet count normalized and immunoglobulin M (IgM) level reduced. To the best of our knowledge, this is the first reported case of dual pathology ET with WM.
Collapse
Affiliation(s)
- Nina Lu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| | - Chin Loon Neoh
- Department of Hematology, Royal Marsden Hospital, London SW3 6JJ, UK
| | - Zhengying Ruan
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| | - Lei Zhao
- Department of Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| | - Limei Ying
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| | - Xiaochang Zhang
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| | - Sai Chen
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| |
Collapse
|
78
|
Whole-Organ Genomic Characterization of Mucosal Field Effects Initiating Bladder Carcinogenesis. Cell Rep 2020; 26:2241-2256.e4. [PMID: 30784602 DOI: 10.1016/j.celrep.2019.01.095] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 12/12/2018] [Accepted: 01/25/2019] [Indexed: 12/13/2022] Open
Abstract
We used whole-organ mapping to study the locoregional molecular changes in a human bladder containing multifocal cancer. Widespread DNA methylation changes were identified in the entire mucosa, representing the initial field effect. The field effect was associated with subclonal low-allele frequency mutations and a small number of DNA copy alterations. A founder mutation in the RNA splicing gene, ACIN1, was identified in normal mucosa and expanded clonally with an additional 21 mutations in progression to carcinoma. The patterns of mutations and copy number changes in carcinoma in situ and foci of carcinoma were almost identical, confirming their clonal origins. The pathways affected by the DNA copy alterations and mutations, including the Kras pathway, were preceded by the field changes in DNA methylation, suggesting that they reinforced mechanisms that had already been initiated by methylation. The results demonstrate that DNA methylation can serve as the initiator of bladder carcinogenesis.
Collapse
|
79
|
Angeli D, Salvi S, Tedaldi G. Genetic Predisposition to Breast and Ovarian Cancers: How Many and Which Genes to Test? Int J Mol Sci 2020; 21:E1128. [PMID: 32046255 PMCID: PMC7038038 DOI: 10.3390/ijms21031128] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Breast and ovarian cancers are some of the most common tumors in females, and the genetic predisposition is emerging as one of the key risk factors in the development of these two malignancies. BRCA1 and BRCA2 are the best-known genes associated with hereditary breast and ovarian cancer. However, recent advances in molecular techniques, Next-Generation Sequencing in particular, have led to the identification of many new genes involved in the predisposition to breast and/or ovarian cancer, with different penetrance estimates. TP53, PTEN, STK11, and CDH1 have been identified as high penetrance genes for the risk of breast/ovarian cancers. Besides them, PALB2, BRIP1, ATM, CHEK2, BARD1, NBN, NF1, RAD51C, RAD51D and mismatch repair genes have been recognized as moderate and low penetrance genes, along with other genes encoding proteins involved in the same pathways, possibly associated with breast/ovarian cancer risk. In this review, we summarize the past and more recent findings in the field of cancer predisposition genes, with insights into the role of the encoded proteins and the associated genetic disorders. Furthermore, we discuss the possible clinical utility of genetic testing in terms of prevention protocols and therapeutic approaches.
Collapse
Affiliation(s)
- Davide Angeli
- Biostatistics and Clinical Trials Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Samanta Salvi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Gianluca Tedaldi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| |
Collapse
|
80
|
Nevala-Plagemann C, Hidalgo M, Garrido-Laguna I. From state-of-the-art treatments to novel therapies for advanced-stage pancreatic cancer. Nat Rev Clin Oncol 2020; 17:108-123. [PMID: 31705130 DOI: 10.1038/s41571-019-0281-6] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 12/13/2022]
Abstract
Improvements in the outcomes of patients with pancreatic ductal adenocarcinoma (PDAC) have lagged behind advances made in the treatment of many other malignancies over the past few decades. For most patients with PDAC, cytotoxic chemotherapy remains the mainstay of treatment. For patients with resectable disease, modified 5-fluorouracil, leucovorin, irinotecan and oxaliplatin (mFOLFIRINOX) is the standard-of-care adjuvant therapy, although data from several randomized trials have shown improved outcomes with neoadjuvant treatment strategies. For patients with advanced-stage or metastatic disease, comprehensive genomic profiling has revealed several potentially actionable alterations in small subsets of patients and the feasibility of implementing such strategies is beginning to be confirmed. Novel therapies targeting certain aberrations, most notably BRCA1/2 mutations, mismatch repair (MMR) deficiencies or NTRK1-3 fusions, have shown considerable activity in clinical trials, and larotrectinib, entrectinib and pembrolizumab have received FDA approval for the treatment of patients with tumours harbouring NTRK fusions and MMR deficiencies, respectively, regardless of primary tumour histology. In this Review, we describe the available data on the activity of these and other agents in patients with PDAC. Our discussion is structured according to the acronym 'PRIME' to organize the various treatment strategies currently undergoing evaluation in clinical trials: Pathway inhibition, alteration of DNA Repair pathways, Immunotherapy, cancer Metabolism and targeting the Extracellular tumour microenvironment.
Collapse
Affiliation(s)
| | - Manuel Hidalgo
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Ignacio Garrido-Laguna
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Division of Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
81
|
Yu Y, Choi K, Wu J, Andreassen PR, Dexheimer PJ, Keddache M, Brems H, Spinner RJ, Cancelas JA, Martin LJ, Wallace MR, Legius E, Vogel KS, Ratner N. NF1 patient missense variants predict a role for ATM in modifying neurofibroma initiation. Acta Neuropathol 2020; 139:157-174. [PMID: 31664505 PMCID: PMC7243727 DOI: 10.1007/s00401-019-02086-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023]
Abstract
In Neurofibromatosis type 1, NF1 gene mutations in Schwann cells (SC) drive benign plexiform neurofibroma (PNF), and no additional SC changes explain patient-to-patient variability in tumor number. Evidence from twin studies suggests that variable expressivity might be caused by unidentified modifier genes. Whole exome sequencing of SC and fibroblast DNA from the same resected PNFs confirmed biallelic SC NF1 mutations; non-NF1 somatic SC variants were variable and present at low read number. We identified frequent germline variants as possible neurofibroma modifier genes. Genes harboring variants were validated in two additional cohorts of NF1 patients and by variant burden test. Genes including CUBN, CELSR2, COL14A1, ATR and ATM also showed decreased gene expression in some neurofibromas. ATM-relevant DNA repair defects were also present in a subset of neurofibromas with ATM variants, and in some neurofibroma SC. Heterozygous ATM G2023R or homozygous S707P variants reduced ATM protein expression in heterologous cells. In mice, genetic Atm heterozygosity promoted Schwann cell precursor self-renewal and increased tumor formation in vivo, suggesting that ATM variants contribute to neurofibroma initiation. We identify germline variants, rare in the general population, overrepresented in NF1 patients with neurofibromas. ATM and other identified genes are candidate modifiers of PNF pathogenesis.
Collapse
Affiliation(s)
- Yanan Yu
- Department of Experimental Hematology and Cancer Biology, Cincinati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinanti School of Medicine, Cincinnati, OH, USA
- Graduate Program in Cancer and Cell Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Kwangmin Choi
- Department of Experimental Hematology and Cancer Biology, Cincinati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinanti School of Medicine, Cincinnati, OH, USA
| | - Jianqiang Wu
- Department of Experimental Hematology and Cancer Biology, Cincinati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinanti School of Medicine, Cincinnati, OH, USA
| | - Paul R Andreassen
- Department of Experimental Hematology and Cancer Biology, Cincinati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinanti School of Medicine, Cincinnati, OH, USA
| | - Phillip J Dexheimer
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Mehdi Keddache
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Hilde Brems
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Robert J Spinner
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jose A Cancelas
- Department of Experimental Hematology and Cancer Biology, Cincinati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinanti School of Medicine, Cincinnati, OH, USA
- Hoxworth Blood Center, University of Cincinnati, Cincinnati, OH, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Margaret R Wallace
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kristine S Vogel
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Nancy Ratner
- Department of Experimental Hematology and Cancer Biology, Cincinati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinanti School of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
82
|
Anti-Tumor Effect of Inhibition of DNA Damage Response Proteins, ATM and ATR, in Endometrial Cancer Cells. Cancers (Basel) 2019; 11:cancers11121913. [PMID: 31805725 PMCID: PMC6966633 DOI: 10.3390/cancers11121913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
While the incidence of endometrial cancer continues to rise, the therapeutic options remain limited for advanced or recurrent cases, and most cases are resistant to therapy. The anti-tumor effect of many chemotherapeutic drugs and radiotherapy depends on the induction of DNA damage in cancer cells; thus, activation of DNA damage response (DDR) pathways is considered an important factor affecting resistance to therapy. When some DDR pathways are inactivated, inhibition of other DDR pathways can induce cancer-specific synthetic lethality. Therefore, DDR pathways are considered as promising candidates for molecular-targeted therapy for cancer. The crosstalking ataxia telangiectasia mutated and Rad3 related and checkpoint kinase 1 (ATR-Chk1) and ataxia telangiectasia mutated and Rad3 related and checkpoint kinase 2 (ATM-Chk2) pathways are the main pathways of DNA damage response. In this study, we investigated the anti-tumor effect of inhibitors of these pathways in vitro by assessing the effect of the combination of ATM or ATR inhibitors and conventional DNA-damaging therapy (doxorubicin (DXR), cisplatin (CDDP), and irradiation) on endometrial cancer cells. Both the inhibitors enhanced the sensitivity of cells to DXR, CDDP, and irradiation. Moreover, the combination of ATR and Chk1 inhibitors induced DNA damage in endometrial cancer cells and inhibited cell proliferation synergistically. Therefore, these molecular therapies targeting DNA damage response pathways are promising new treatment strategies for endometrial cancer.
Collapse
|
83
|
Ali R, Alabdullah M, Miligy I, Normatova M, Babaei-Jadidi R, Nateri AS, Rakha EA, Madhusudan S. ATM Regulated PTEN Degradation Is XIAP E3 Ubiquitin Ligase Mediated in p85α Deficient Cancer Cells and Influence Platinum Sensitivity. Cells 2019; 8:E1271. [PMID: 31635307 PMCID: PMC6848936 DOI: 10.3390/cells8101271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 01/22/2023] Open
Abstract
Ataxia-telegiectasia mutated (ATM), phosphatase and tensin homolog (PTEN), and p85α are key tumour suppressors. Whether ATM regulates PTEN expression and influence platinum sensitivity is unknown. We generated ATM knockdowns (KD) and CRISPR knock outs (KO) in glioblastoma (LN18, LN229) and ovarian cancer cells (OVCAR3, OVCAR4). Doxycycline inducible PTEN expression was generated in LN18 and LN229 cells. Transient KD of p85α, CK2, and XIAP was accomplished using siRNAs. Stable p85α knock-in was isolated in LN18 cells. Molecular biology assays included proteasome activity assays, PCR, flow cytometry analysis (cell cycle, double strand break accumulation, apoptosis), immunofluorescence, co-immunoprecipitation, clonogenic, invasion, migration, and 3D neurosphere assays. The clinicopathological significance of ATM, PTEN, p85α, and XIAP (X-linked inhibitor of apoptosis protein) was evaluated in 525 human ovarian cancers using immunohistochemistry. ATM regulated PTEN is p85α dependant. ATM also controls CK2α level which in turn phosphorylates and stabilizes PTEN. In addition, p85α physically interacts with CK2α and protects CK2α from ATM regulated degradation. ATM deficiency resulted in accumulation of XIAP/p-XIAP levels which ubiquitinated PTEN and CK2α thereby directing them to degradation. ATM depletion in the context of p85α deficiency impaired cancer cell migration and invasion reduced 3D-neurosphere formation and increased toxicity to cisplatin chemotherapy. Increased sensitivity to platinum was associated with DNA double strand breaks accumulation, cell cycle arrest, and induction of autophagy. In ovarian cancer patients, ATM, PTEN, p85α, and XIAP protein levels predicted better progression free survival after platinum therapy. We unravel a previously unknown function of ATM in the regulation of PTEN throμgh XIAP mediated proteasome degradation.
Collapse
Affiliation(s)
- Reem Ali
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Muslim Alabdullah
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Islam Miligy
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Makhliyo Normatova
- Cancer Genetics and Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Roya Babaei-Jadidi
- Cancer Genetics and Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Abdolrahman S Nateri
- Cancer Genetics and Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Emad A Rakha
- Department of Pathology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Srinivasan Madhusudan
- Translational Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
- Department of Oncology, Nottingham University Hospital, Nottingham NG5 1PB, UK.
| |
Collapse
|
84
|
Affiliation(s)
- José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| |
Collapse
|
85
|
Abstract
Alterations in DNA damage response (DDR) pathways are hallmarks of cancer. Incorrect repair of DNA lesions often leads to genomic instability. Ataxia telangiectasia mutated (ATM), a core component of the DNA repair system, is activated to enhance the homologous recombination (HR) repair pathway upon DNA double-strand breaks. Although ATM signaling has been widely studied in different types of cancer, its research is still lacking compared with other DDR-involved molecules such as PARP and ATR. There is still a vast research opportunity for the development of ATM inhibitors as anticancer agents. Here, we focus on the recent findings of ATM signaling in DNA repair of cancer. Previous studies have identified several partners of ATM, some of which promote ATM signaling, while others have the opposite effect. ATM inhibitors, including KU-55933, KU-60019, KU-59403, CP-466722, AZ31, AZ32, AZD0156, and AZD1390, have been evaluated for their antitumor effects. It has been revealed that ATM inhibition increases a cancer cell's sensitivity to radiotherapy. Moreover, the combination with PARP or ATR inhibitors has synergistic lethality in some cancers. Of note, among these ATM inhibitors, AZD0156 and AZD1390 achieve potent and highly selective ATM kinase inhibition and have an excellent ability to penetrate the blood-brain barrier. Currently, AZD0156 and AZD1390 are under investigation in phase I clinical trials. Taken together, targeting ATM may be a promising strategy for cancer treatment. Hence, further development of ATM inhibitors is urgently needed in cancer research.
Collapse
Affiliation(s)
- Mei Hua Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
86
|
Zhang C, Jiang F, Su C, Xie P, Xu L. Upregulation of long noncoding RNA SNHG20 promotes cell growth and metastasis in esophageal squamous cell carcinoma via modulating ATM-JAK-PD-L1 pathway. J Cell Biochem 2019; 120:11642-11650. [PMID: 30767270 DOI: 10.1002/jcb.28444] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Increasing evidence have proved that long noncoding RNAs (lncRNAs) play significant roles in tumorigenesis and development of various cancers. However, the effect of small nucleolar RNA host gene 20 (SNHG20) on the progression of esophageal squamous cell carcinoma (ESCC) remains to be discovered. Herein, we aim to find out the function and the possible mechanism of SNHG20 in ESCC progression. In our study, we demonstrate that SNHG20 is markedly upregulated in ESCC tissues and cell lines. Besides, the level of SNHG20 is closely associated with tumor size, lymph node metastasis, TNM stage, and tumor grade. In addition, SNHG20 level is an independent predictor for clinical outcomes of ESCC patients. Then the gain- and loss-of-function assays reveal that SNHG20 overexpression promotes cell proliferation, migration, invasion, and epithelial-mesenchymal transition as well as represses apoptosis, whereas depletion of SNHG20 exhibits opposite effects. Moreover, we uncover that SNHG20 modulates the expression of ataxia telangiectasia-mutated kinase (p-ATM), p-JAK1/2, and programmed cell death 1 ligand 1 (PD-L1) in ESCC cells and ATM upregulation restores the suppressive effect of SNHG20 inhibition on ESCC progression. Therefore, we conclude that SNHG20 serves as a carcinogen in ESCC by promoting growth and metastasis via ATM-JAK-PD-L1 pathway, supplying a possibly effective therapeutic target for ESCC.
Collapse
Affiliation(s)
- Chunrong Zhang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu, China.,The Fourth Clinical College of Nanjing Medical University, Jiangsu, China.,Department of Thoracic Surgery, Nantong Tumor Hospital, Jiangsu, China
| | - Feng Jiang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu, China
| | - Chuan Su
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Jiangsu, China
| | - Pengfei Xie
- Department of Thoracic Surgery, Nantong Tumor Hospital, Jiangsu, China
| | - Lin Xu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu, China
| |
Collapse
|
87
|
Vasseur L, Lara D, Clappier E, Gillebert Q, Glaser C, Houlle-Crepin S, Ortonne N, Poullot E, Rousselot P, Besson C. Common clonal origin of an EBV-positive diffuse large B cell lymphoma and a chronic myelomonocytic leukemia. Leuk Lymphoma 2019; 60:3327-3329. [DOI: 10.1080/10428194.2019.1627539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Loïc Vasseur
- Hematology-Oncology Department, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Diane Lara
- Hematology-Oncology Department, Centre Hospitalier de Versailles, Le Chesnay, France
- Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Emmanuelle Clappier
- Hematology Laboratory, Assistance Publique-Hopitaux de Paris, Saint-Louis Hospital, Paris, France
- Université Paris 7 Diderot, Paris, France
| | | | - Claire Glaser
- Pathology Departement, André Mignot Hospital, Le Chesnay, France
| | | | - Nicolas Ortonne
- Pathology Departement, Henri Mondor Hospital, Créteil, France
- Université Paris Est Créteil, Créteil, France
| | - Elsa Poullot
- Pathology Departement, Henri Mondor Hospital, Créteil, France
| | - Philippe Rousselot
- Hematology-Oncology Department, Centre Hospitalier de Versailles, Le Chesnay, France
- Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| | - Caroline Besson
- Hematology-Oncology Department, Centre Hospitalier de Versailles, Le Chesnay, France
- Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| |
Collapse
|
88
|
Savva C, De Souza K, Ali R, Rakha EA, Green AR, Madhusudan S. Clinicopathological significance of ataxia telangiectasia-mutated (ATM) kinase and ataxia telangiectasia-mutated and Rad3-related (ATR) kinase in MYC overexpressed breast cancers. Breast Cancer Res Treat 2019; 175:105-115. [PMID: 30746633 PMCID: PMC6491658 DOI: 10.1007/s10549-018-05113-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE MYC transcription factor has critical roles in cell growth, proliferation, metabolism, differentiation, transformation and angiogenesis. MYC overexpression is seen in about 15% of breast cancers and linked to aggressive phenotypes. MYC overexpression also induces oxidative stress and replication stress in cells. ATM signalling and ATR-mediated signalling are critical for MYC-induced DNA damage response. Whether ATM and ATR expressions influence clinical outcomes in MYC overexpressed breast cancers is unknown. METHODS We investigated ATM, ATR and MYC at the transcriptional level [Molecular Taxonomy of Breast Cancer International Consortium cohort (n = 1950)] and at the protein level in the Nottingham series comprising 1650 breast tumours. We correlated ATM, ATR and MYC expressions to clinicopathological features and survival outcomes. RESULTS In MYC over expressed tumours, high ATR or low ATM levels were associated with aggressive breast cancer features such as higher tumour grade, de-differentiation, pleomorphism, high mitotic index, high-risk Nottingham Prognostic Index, triple negative and basal-like breast cancers (all adjusted p values < 0.05). Tumours with low ATM or high ATR levels in conjunction with MYC overexpression also have worse overall breast cancer-specific survival (BCSS) (p value < 0.05). CONCLUSIONS We conclude that ATR/ATM-directed stratification and personalisation of therapy may be feasible in MYC overexpressed breast cancer.
Collapse
Affiliation(s)
- Constantinos Savva
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Karen De Souza
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Reem Ali
- Translational Oncology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, Academic Unit of Oncology, School of Medicine, University of Nottingham, Nottingham, NG51 PB, UK
| | - Emad A Rakha
- Department of Pathology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG5 1PB, UK
| | - Andrew R Green
- Department of Pathology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG5 1PB, UK.
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK.
- Translational Oncology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, Academic Unit of Oncology, School of Medicine, University of Nottingham, Nottingham, NG51 PB, UK.
| |
Collapse
|
89
|
Abd Rahim MS, Cherniavskyi YK, Tieleman DP, Dames SA. NMR- and MD simulation-based structural characterization of the membrane-associating FATC domain of ataxia telangiectasia mutated. J Biol Chem 2019; 294:7098-7112. [PMID: 30867195 PMCID: PMC6497961 DOI: 10.1074/jbc.ra119.007653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/08/2019] [Indexed: 12/26/2022] Open
Abstract
The Ser/Thr protein kinase ataxia telangiectasia mutated (ATM) plays an important role in the DNA damage response, signaling in response to redox signals, the control of metabolic processes, and mitochondrial homeostasis. ATM localizes to the nucleus and at the plasma membrane, mitochondria, peroxisomes, and other cytoplasmic vesicular structures. It has been shown that the C-terminal FATC domain of human ATM (hATMfatc) can interact with a range of membrane mimetics and may thereby act as a membrane-anchoring unit. Here, NMR structural and 15N relaxation data, NMR data using spin-labeled micelles, and MD simulations of micelle-associated hATMfatc revealed that it binds the micelle by a dynamic assembly of three helices with many residues of hATMfatc located in the headgroup region. We observed that none of the three helices penetrates the micelle deeply or makes significant tertiary contacts to the other helices. NMR-monitored interaction experiments with hATMfatc variants in which two conserved aromatic residues (Phe3049 and Trp3052) were either individually or both replaced by alanine disclosed that the double substitution does not abrogate the interaction with micelles and bicelles at the high concentrations at which these aggregates are typically used, but impairs interactions with small unilamellar vesicles, usually used at much lower lipid concentrations and considered a better mimetic for natural membranes. We conclude that the observed dynamic structure of micelle-associated hATMfatc may enable it to interact with differently composed membranes or membrane-associated interaction partners and thereby regulate ATM's kinase activity. Moreover, the FATC domain of ATM may function as a membrane-anchoring unit for other biomolecules.
Collapse
Affiliation(s)
- Munirah S Abd Rahim
- From the Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Yevhen K Cherniavskyi
- the Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta T2N 1N4, Canada, and
| | - D Peter Tieleman
- the Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta T2N 1N4, Canada, and
| | - Sonja A Dames
- From the Chair of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany,
- the Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
90
|
Ameziane El Hassani R, Buffet C, Leboulleux S, Dupuy C. Oxidative stress in thyroid carcinomas: biological and clinical significance. Endocr Relat Cancer 2019; 26:R131-R143. [PMID: 30615595 DOI: 10.1530/erc-18-0476] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/16/2022]
Abstract
At physiological concentrations, reactive oxygen species (ROS), including superoxide anions and H2O2, are considered as second messengers that play key roles in cellular functions, such as proliferation, gene expression, host defence and hormone synthesis. However, when they are at supraphysiological levels, ROS are considered potent DNA-damaging agents. Their increase induces oxidative stress, which can initiate and maintain genomic instability. The thyroid gland represents a good model for studying the impact of oxidative stress on genomic instability. Indeed, one particularity of this organ is that follicular thyroid cells synthesise thyroid hormones through a complex mechanism that requires H2O2. Because of their detection in thyroid adenomas and in early cell transformation, both oxidative stress and DNA damage are believed to be neoplasia-preceding events in thyroid cells. Oxidative DNA damage is, in addition, detected in the advanced stages of thyroid cancer, suggesting that oxidative lesions of DNA also contribute to the maintenance of genomic instability during the subsequent phases of tumourigenesis. Finally, ionizing radiation and the mutation of oncogenes, such as RAS and BRAF, play a key role in thyroid carcinogenesis through separate and unique mechanisms: they upregulate the expression of two distinct 'professional' ROS-generating systems, the NADPH oxidases DUOX1 and NOX4, which cause DNA damage that may promote chromosomal instability, tumourigenesis and dedifferentiation.
Collapse
Affiliation(s)
- Rabii Ameziane El Hassani
- Laboratory of Biology of Human Pathologies 'BioPatH', Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco
| | - Camille Buffet
- UMR 8200 CNRS, Gustave Roussy and Paris Sud University, Villejuif, France
| | - Sophie Leboulleux
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy and Paris Sud University, Villejuif, France
| | - Corinne Dupuy
- UMR 8200 CNRS, Gustave Roussy and Paris Sud University, Villejuif, France
| |
Collapse
|
91
|
Randon G, Fucà G, Rossini D, Raimondi A, Pagani F, Perrone F, Tamborini E, Busico A, Peverelli G, Morano F, Niger M, Antista M, Corallo S, Saggio S, Borelli B, Zucchelli G, Milione M, Pruneri G, Di Bartolomeo M, Falcone A, de Braud F, Cremolini C, Pietrantonio F. Prognostic impact of ATM mutations in patients with metastatic colorectal cancer. Sci Rep 2019; 9:2858. [PMID: 30814645 PMCID: PMC6393680 DOI: 10.1038/s41598-019-39525-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Tumors bearing homologous recombination deficiency are extremely sensitive to DNA double strand breaks induced by several chemotherapeutic agents. ATM gene, encoding a protein involved in DNA damage response, is frequently mutated in colorectal cancer (CRC), but its potential role as predictive and prognostic biomarker has not been fully investigated. We carried out a multicenter effort aimed at defining the prognostic impact of ATM mutational status in metastatic CRC (mCRC) patients. Mutational profiles were obtained by means of next-generation sequencing. Overall, 35 out of 227 samples (15%) carried an ATM mutation. At a median follow-up of 56.6 months, patients with ATM mutated tumors showed a significantly longer median overall survival (OS) versus ATM wild-type ones (64.9 vs 34.8 months; HR, 0.50; 95% CI, 0.29-0.85; P = 0.01). In the multivariable model, ATM mutations confirmed the association with longer OS (HR, 0.57; 95% CI, 0.33-0.98; P = 0.04). The prognostic impact of ATM mutations was independent from TP53 mutational status and primary tumor location. High heterogeneity score for ATM mutations, possibly reflecting the loss of wild-type allele, was associated with excellent prognosis. In conclusion, we showed that ATM mutations are independently associated with longer OS in patients with mCRC.
Collapse
Affiliation(s)
- Giovanni Randon
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Giovanni Fucà
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Daniele Rossini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67 - 56126, Pisa, Italy
| | - Alessandra Raimondi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Filippo Pagani
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Federica Perrone
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Elena Tamborini
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Adele Busico
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Giorgia Peverelli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Federica Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Maria Antista
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Salvatore Corallo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Serena Saggio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Beatrice Borelli
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67 - 56126, Pisa, Italy
| | - Gemma Zucchelli
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67 - 56126, Pisa, Italy
| | - Massimo Milione
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono, 7 - 20122, Milan, Italy
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67 - 56126, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Risorgimento, 36 - 56126, Pisa, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono, 7 - 20122, Milan, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67 - 56126, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Risorgimento, 36 - 56126, Pisa, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G. Venezian, 1 - 20133, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono, 7 - 20122, Milan, Italy.
| |
Collapse
|
92
|
Al-Aamri HM, Ku H, Irving HR, Tucci J, Meehan-Andrews T, Bradley C. Time dependent response of daunorubicin on cytotoxicity, cell cycle and DNA repair in acute lymphoblastic leukaemia. BMC Cancer 2019; 19:179. [PMID: 30813936 PMCID: PMC6391779 DOI: 10.1186/s12885-019-5377-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/18/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Daunorubicin is commonly used in the treatment of acute lymphoblastic leukaemia (ALL). The aim of this study was to explore the kinetics of double strand break (DSB) formation of three ALL cell lines following exposure to daunorubicin and to investigate the effects of daunorubicin on the cell cycle and the protein kinases involved in specific checkpoints following DNA damage and recovery periods. METHODS Three ALL cell lines CCRF-CEM and MOLT-4 derived from T lymphocytes and SUP-B15 derived from B lymphocytes were examined following 4 h treatment with daunorubicin chemotherapy and 4, 12 and 24 h recovery periods. Cell viability was measured via MTT (3-(4,5-dimethylthiazol-2-yl)-2-5 diphenyltetrazolium bromide) assay, reactive oxygen species (ROS) production by flow cytometry, double stranded DNA breaks by detecting γH2AX levels while stages of the cell cycle were detected following propidium iodide staining and flow cytometry. Western blotting was used to detect specific proteins while RNA was extracted from all cell lines and converted to cDNA to sequence Ataxia-telangiectasia mutated (ATM). RESULTS Daunorubicin induced different degrees of toxicity in all cell lines and consistently generated reactive oxygen species. Daunorubicin was more potent at inducing DSB in MOLT-4 and CCRF-CEM cell lines while SUP-B15 cells showed delays in DSB repair and significantly more resistance to daunorubicin compared to the other cell lines as measured by γH2AX assay. Daunorubicin also causes cell cycle arrest in all three cell lines at different checkpoints at different times. These effects were not due to mutations in ATM as sequencing revealed none in any of the three cell lines. However, p53 was phosphorylated at serine 15 only in CCRF-CEM and MOLT-4 but not in SUP-B15 cells. The lack of active p53 may be correlated to the increase of SOD2 in SUP-B15 cells. CONCLUSIONS The delay in DSB repair and lower sensitivity to daunorubicin seen in the B lymphocyte derived SUP-B15 cells could be due to loss of function of p53 that may be correlated to increased expression of SOD2 and lower ROS production.
Collapse
Affiliation(s)
- Hussain Mubarak Al-Aamri
- Department of Pharmacy and Applied Sciences, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, Victoria, Australia
| | - Heng Ku
- Department of Pharmacy and Applied Sciences, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, Victoria, Australia
| | - Helen R Irving
- Department of Pharmacy and Applied Sciences, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, Victoria, Australia.
| | - Joseph Tucci
- Department of Pharmacy and Applied Sciences, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, Victoria, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Applied Sciences, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, Victoria, Australia
| | - Christopher Bradley
- Department of Pharmacy and Applied Sciences, La Trobe Institute for Molecular Science (LIMS), La Trobe University, P.O. Box 199, Bendigo, Victoria, Australia
| |
Collapse
|
93
|
De Silva S, Tennekoon KH, Karunanayake EH. Overview of the genetic basis toward early detection of breast cancer. BREAST CANCER-TARGETS AND THERAPY 2019; 11:71-80. [PMID: 30718964 PMCID: PMC6345186 DOI: 10.2147/bctt.s185870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer is a socioeconomical burden in any nation. Out of that, breast cancer is identified as the most common malignancy worldwide among women irrespective of age. As women are an important segment in a community, the weakening of their strength toward the development of a nation is a critical problem in each nation. In this review, it was aimed to discuss the characteristics of cancer genome, cancer genetics, and cancer epigenetics in general and then focus on discussing both genetic and nongenetic factors responsible for the predisposition of breast cancer in humans. More emphasis was placed on genes responsible for the early onset of the disease and which can be used as genetic tools in the identification of the disease at an early stage. Then the context of genetic involvement toward the breast cancer occurrence before age of 40 years was highlighted accordingly. In addition to genetic testing, the review paid adequate attention to mention novel liquid biopsy techniques and other clinical, laboratory, and radiologic assessments. These techniques can be used in early detection and recurrence as well as the surveillance of the patients after primary therapies.
Collapse
Affiliation(s)
- Sumadee De Silva
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka,
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka,
| | - Eric Hamilton Karunanayake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka,
| |
Collapse
|
94
|
Diab M, Azmi A, Mohammad R, Philip PA. Pharmacotherapeutic strategies for treating pancreatic cancer: advances and challenges. Expert Opin Pharmacother 2018; 20:535-546. [PMID: 30592647 DOI: 10.1080/14656566.2018.1561869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Despite many efforts to improve the outcome of pancreatic ductal adenocarcinoma (PDAC), its prognosis remains poor, which is mostly related to late diagnosis and drug resistance. Improving systemic therapy is considered the major challenge in improving the outcome of this disease. AREAS COVERED This review covers novel chemotherapy and targeted agents in the treatment of PDAC, with a focus on advanced stage disease. EXPERT OPINION Current frontline therapies used in the treatment of patients with PDAC with favorable performance status are gemcitabine (GEM) and nab-paclitaxel or 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX). PDAC has a number of genetic mutations that may explain its biological behavior, such as KRAS, p53 and CDK2NA, which occur in more than 90% of cases. Unfortunately, to this day, a specific targeting agent to any of those frequent gene mutations is lacking. Emerging areas of targeted therapies include the DNA repair, stroma, metabolism, and stem cells. Immunotherapy with either vaccines or immune checkpoint inhibitors has not produced any significant improvements in outcome of PDAC. Incorporating different approaches in therapy, including conventional, immunological, and others, is key in offering patients with the best possible care.
Collapse
Affiliation(s)
- Maria Diab
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA
| | - Asfar Azmi
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA
| | - Ramzi Mohammad
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA
| | - Philip A Philip
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA.,b Department of Pharmacology, School of Medicine , Wayne State University , Detroit , MI , USA
| |
Collapse
|
95
|
Galanina N, Bejar R, Choi M, Goodman A, Wieduwilt M, Mulroney C, Kim L, Yeerna H, Tamayo P, Vergilio JA, Mughal TI, Miller V, Jamieson C, Kurzrock R. Comprehensive Genomic Profiling Reveals Diverse but Actionable Molecular Portfolios across Hematologic Malignancies: Implications for Next Generation Clinical Trials. Cancers (Basel) 2018; 11:E11. [PMID: 30583461 PMCID: PMC6356731 DOI: 10.3390/cancers11010011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Background: The translation of genomic discoveries to the clinic is the cornerstone of precision medicine. However, incorporating next generation sequencing (NGS) of hematologic malignancies into clinical management remains limited. Methods: We describe 235 patients who underwent integrated NGS profiling (406 genes) and analyze the alterations and their potential actionability. Results: Overall, 227 patients (96.5%) had adequate tissue. Most common diagnoses included myelodysplastic syndrome (22.9%), chronic lymphocytic leukemia (17.2%), non-Hodgkin lymphoma (13.2%), acute myeloid leukemia (11%), myeloproliferative neoplasm (9.2%), acute lymphoblastic leukemia (8.8%), and multiple myeloma (7.5%). Most patients (N = 197/227 (87%)) harbored ≥1 genomic alteration(s); 170/227 (75%), ≥1 potentially actionable alteration(s) targetable by an FDA-approved (mostly off-label) or an investigational agent. Altogether, 546 distinct alterations were seen, most commonly involving TP53 (10.8%), TET2 (4.6%), and DNMT3A (4.2%). The median tumor mutational burden (TMB) was low (1.7 alterations/megabase); 12% of patients had intermediate or high TMB (higher TMB correlates with favorable response to anti-PD1/PDL1 inhibition in solid tumors). In conclusion, 96.5% of patients with hematologic malignancies have adequate tissue for comprehensive genomic profiling. Most patients had unique molecular signatures, and 75% had alterations that may be pharmacologically tractable with gene- or immune-targeted agents.
Collapse
Affiliation(s)
- Natalie Galanina
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
| | - Rafael Bejar
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
| | - Michael Choi
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
| | - Aaron Goodman
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA 92093, USA.
| | - Matthew Wieduwilt
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA 92093, USA.
| | - Carolyn Mulroney
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA 92093, USA.
| | - Lisa Kim
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
| | - Huwate Yeerna
- Department of Medicine, Division of Statistical Physics, University of California San Diego, La Jolla, CA 92093, USA.
| | - Pablo Tamayo
- Department of Medicine, Division of Statistical Physics, University of California San Diego, La Jolla, CA 92093, USA.
| | | | - Tariq I Mughal
- Foundation Medicine Inc., Cambridge, MA 02141, USA.
- Tufts University Medical Center, Boston, MA 02111, USA.
| | | | - Catriona Jamieson
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
| | - Razelle Kurzrock
- Department of Medicine, Division of Hematology/Oncology and Center for Personalized Cancer Therapy, University of California San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093, USA.
| |
Collapse
|
96
|
Angell HK, Lee J, Kim KM, Kim K, Kim ST, Park SH, Kang WK, Sharpe A, Ogden J, Davenport A, Hodgson DR, Barrett JC, Kilgour E. PD-L1 and immune infiltrates are differentially expressed in distinct subgroups of gastric cancer. Oncoimmunology 2018; 8:e1544442. [PMID: 30729066 PMCID: PMC6351089 DOI: 10.1080/2162402x.2018.1544442] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 01/26/2023] Open
Abstract
This study investigates the association of PD-L1 expression and immune cell infiltrates and their impact on clinical outcome, in addition to their overlap with microsatellite instability (MSI), HER2 and ATM molecular subgroups of gastric cancer (GC). PD-L1 membrane expression on tumour cells (TC) and infiltrating immune cells (IC), CD3 + T-lymphocytes, CD8+ cytotoxic T-cells, ATM and HER2 were assessed by immunohistochemistry (IHC) in the ACRG (Asian Cancer Research Group) GC cohort (N = 380). EBV status was determined using in situ hybridization and MSI status was performed using PCR and MLH1 IHC. The PD-L1 segment was associated with increased T-cell infiltrates, while the MSI-high segment was enriched for PD-L1, CD3, and CD8. Multivariate analysis confirmed PD-L1 positivity, high CD3 and high CD8 as independent prognostic factors for both disease-free survival and overall survival (all p < 0.05). Patients with MSI-high tumours had better overall survival by both univariate and multivariate analysis. The ATM-low and HER2-high subgroups differed markedly in their immune profile; the ATM-low subgroups enriched for MSI, PD-L1 positivity and CD8 + T-cells, while the HER2 segment was enriched for MSS, with no enrichment for immune markers. Hence, we demonstrate a molecular profiling approach that can divide GC into four molecular subgroups, namely ATM-low, HER2-high, PD-L1 positive and MSI-high with differing levels of immune infiltrates and prognostic significance which may help to stratify patients for response to targeted therapies.
Collapse
Affiliation(s)
- H K Angell
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - J Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - K-M Kim
- Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - K Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S-T Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S H Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - W K Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - A Sharpe
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - J Ogden
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - A Davenport
- Wythenshawe Hospital, Manchester Foundation Trust
| | - D R Hodgson
- Oncology, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| | - J C Barrett
- Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA
| | - E Kilgour
- Oncology, IMED Biotech Unit, AstraZeneca, Macclesfield, UK
| |
Collapse
|
97
|
Barros FS, Marussi VHR, Amaral LLF, da Rocha AJ, Campos CMS, Freitas LF, Huisman TAGM, Soares BP. The Rare Neurocutaneous Disorders: Update on Clinical, Molecular, and Neuroimaging Features. Top Magn Reson Imaging 2018; 27:433-462. [PMID: 30516694 DOI: 10.1097/rmr.0000000000000185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phakomatoses, also known as neurocutaneous disorders, comprise a vast number of entities that predominantly affect structures originated from the ectoderm such as the central nervous system and the skin, but also the mesoderm, particularly the vascular system. Extensive literature exists about the most common phakomatoses, namely neurofibromatosis, tuberous sclerosis, von Hippel-Lindau and Sturge-Weber syndrome. However, recent developments in the understanding of the molecular underpinnings of less common phakomatoses have sparked interest in these disorders. In this article, we review the clinical features, current pathogenesis, and modern neuroimaging findings of melanophakomatoses, vascular phakomatoses, and other rare neurocutaneous syndromes that may also include tissue overgrowth or neoplastic predisposition.
Collapse
Affiliation(s)
- Felipe S Barros
- Division of Neuroradiology, BP Medicina Diagnóstica, Hospital da Beneficência Portuguesa de São Paulo
| | - Victor Hugo R Marussi
- Division of Neuroradiology, BP Medicina Diagnóstica, Hospital da Beneficência Portuguesa de São Paulo
| | - Lázaro L F Amaral
- Division of Neuroradiology, BP Medicina Diagnóstica, Hospital da Beneficência Portuguesa de São Paulo
| | - Antônio José da Rocha
- Division of Neuroradiology, Department of Radiology, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Christiane M S Campos
- Division of Neuroradiology, BP Medicina Diagnóstica, Hospital da Beneficência Portuguesa de São Paulo
| | - Leonardo F Freitas
- Division of Neuroradiology, BP Medicina Diagnóstica, Hospital da Beneficência Portuguesa de São Paulo
| | - Thierry A G M Huisman
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bruno P Soares
- Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
98
|
Bazarsad S, Kim JY, Zhang X, Kim KY, Lee DY, Ryu MH, Kim J. Ataxia-Telangiectasia-Mutated Protein Expression as a Prognostic Marker in Adenoid Cystic Carcinoma of the Salivary Glands. Yonsei Med J 2018; 59:717-726. [PMID: 29978608 PMCID: PMC6037598 DOI: 10.3349/ymj.2018.59.6.717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Adenoid cystic carcinoma (ACC) is a high-grade malignant tumor of the salivary glands, clinically characterized by multiple recurrences and late distant metastasis. Biological markers for assessing the prognosis of ACC have remained elusive. The purpose of this study was to investigate whether the protein expressions of ataxia telangiectasia mutated (ATM), p53, and ATM-mediated phosphorylated p53 are related to patient survival in ACC. MATERIALS AND METHODS In this study, 48 surgical samples were used to assess the expressions of ATM and its downstream target p53. Fisher's exact test and Kaplan-Meier analysis were conducted to evaluate the role of ATM, p53, and phospho-p53 (S15) protein expressions in predicting patient survival and distant metastasis. RESULTS Myb expression was positive in 85.4% of ACCs, but did not reflect patient survival rate. In contrast, low expression of ATM in cancer cells was significantly correlated with poor survival rate (p=0.037). Moreover, under positive p53 expression, low expression of ATM was highly predictive of poor survival in ACC (p=0.017). CONCLUSION These data indicate that combined assessment of ATM and p53 expression can serve as a useful prognostic marker for assessing survival rate in patients with ACC of the salivary glands.
Collapse
Affiliation(s)
- Shadavlonjid Bazarsad
- Oral Cancer Research Institute, Department of Oral Pathology, Brain Korea 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
- Dental School of Mongolian National University of Medical Science, Ulaanbaatar, Mongolia
| | - Jue Young Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Brain Korea 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Xianglan Zhang
- Oral Cancer Research Institute, Department of Oral Pathology, Brain Korea 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
- Department of Pathology, Yanbian University Hospital, Yanji City, Jilin Province, China
| | - Ki Yeol Kim
- Brain Korea 21 Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Doo Young Lee
- Oral Cancer Research Institute, Department of Oral Pathology, Brain Korea 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Mi Heon Ryu
- Department of Oral Pathology, BK21 Plus Project, School of Dentistry, Pusan National University, Yangsan, Korea.
| | - Jin Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Brain Korea 21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
99
|
Härtner F, Andrade-Navarro MA, Alanis-Lobato G. Geometric characterisation of disease modules. APPLIED NETWORK SCIENCE 2018; 3:10. [PMID: 30839777 PMCID: PMC6214295 DOI: 10.1007/s41109-018-0066-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/28/2018] [Indexed: 05/07/2023]
Abstract
There is an increasing accumulation of evidence supporting the existence of a hyperbolic geometry underlying the network representation of complex systems. In particular, it has been shown that the latent geometry of the human protein network (hPIN) captures biologically relevant information, leading to a meaningful visual representation of protein-protein interactions and translating challenging systems biology problems into measuring distances between proteins. Moreover, proteins can efficiently communicate with each other, without global knowledge of the hPIN structure, via a greedy routing (GR) process in which hyperbolic distances guide biological signals from source to target proteins. It is thanks to this effective information routing throughout the hPIN that the cell operates, communicates with other cells and reacts to environmental changes. As a result, the malfunction of one or a few members of this intricate system can disturb its dynamics and derive in disease phenotypes. In fact, it is known that the proteins associated with a single disease agglomerate non-randomly in the same region of the hPIN, forming one or several connected components known as the disease module (DM). Here, we present a geometric characterisation of DMs. First, we found that DM positions on the two-dimensional hyperbolic plane reflect their fragmentation and functional heterogeneity, rendering an informative picture of the cellular processes that the disease is affecting. Second, we used a distance-based dissimilarity measure to cluster DMs with shared clinical features. Finally, we took advantage of the GR strategy to study how defective proteins affect the transduction of signals throughout the hPIN.
Collapse
Affiliation(s)
- Franziska Härtner
- Faculty for Physics, Mathematics and Computer Science, Johannes Gutenberg Universität, Institute of Computer Science, Staudingerweg 7, Mainz, 55128 Germany
| | - Miguel A. Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg Universität, Institute of Molecular Biology, Ackermannweg 4, Mainz, 55128 Germany
| | - Gregorio Alanis-Lobato
- Faculty of Biology, Johannes Gutenberg Universität, Institute of Molecular Biology, Ackermannweg 4, Mainz, 55128 Germany
| |
Collapse
|
100
|
Rajendran BK, Deng CX. Characterization of potential driver mutations involved in human breast cancer by computational approaches. Oncotarget 2018; 8:50252-50272. [PMID: 28477017 PMCID: PMC5564847 DOI: 10.18632/oncotarget.17225] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/26/2017] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second most frequently occurring form of cancer and is also the second most lethal cancer in women worldwide. A genetic mutation is one of the key factors that alter multiple cellular regulatory pathways and drive breast cancer initiation and progression yet nature of these cancer drivers remains elusive. In this article, we have reviewed various computational perspectives and algorithms for exploring breast cancer driver mutation genes. Using both frequency based and mutational exclusivity based approaches, we identified 195 driver genes and shortlisted 63 of them as candidate drivers for breast cancer using various computational approaches. Finally, we conducted network and pathway analysis to explore their functions in breast tumorigenesis including tumor initiation, progression, and metastasis.
Collapse
Affiliation(s)
- Barani Kumar Rajendran
- Cancer Research Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Research Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|