51
|
Yu X, Han N, Dong Z, Dang Y, Zhang Q, Hu W, Wang C, Du S, Lu Y. Combined Chemo-Immuno-Photothermal Therapy for Effective Cancer Treatment via an All-in-One and One-for-All Nanoplatform. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42988-43009. [PMID: 36109853 DOI: 10.1021/acsami.2c12969] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor metastasis and recurrence are recognized to be the main causes of failure in cancer treatment. To address these issues, an "all in one" and "one for all" nanoplatform was established for combined "chemo-immuno-photothermal" therapy with the expectation to improve the antitumor efficacy. Herein, Docetaxel (DTX, a chemo-agent) and cynomorium songaricum polysaccharide (CSP, an immunomodulator) were loaded into zein nanoparticles coated by a green tea polyphenols/iron coordination complex (GTP/FeIII, a photothermal agent). From the result, the obtained nanoplatform denoted as DTX-loaded Zein/CSP-GTP/FeIII NPs was spherical in morphology with an average particle size of 274 nm, and achieved pH-responsive drug release. Moreover, the nanoplatform exhibited excellent photothermal effect both in vitro and in vivo. It was also observed that the nanoparticles could be effectively up take by tumor cells and inhibited their migration. From the results of the in vivo experiment, this nanoplatform could completely eliminate the primary tumors, prevent tumor relapses on LLC (Lewis lung cancer) tumor models, and significantly inhibit metastasis on 4T1 (murine breast cancer) tumor models. The underlying mechanism was also explored. It was discovered that this nanoplatform could induce a strong ICD effect and promote the release of damage-associated molecular patterns (DAMPs) including CRT, ATP, and HMGB1 by the dying tumor cells. And the CSP could assist the DAMPs in inducing the maturation of dendritic cells (DCs) and facilitate the intratumoral infiltration of T lymphocytes to clear up the residual or disseminated tumor cells. In summary, this study demonstrated that the DTX-loaded Zein/CSP-GTP/FeIII is a promising nanoplatform to completely inhibit tumor metastasis and recurrence.
Collapse
Affiliation(s)
- Xianglong Yu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Ning Han
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Ziyi Dong
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Yunni Dang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Qing Zhang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Wenjun Hu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Changhai Wang
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Shouying Du
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| | - Yang Lu
- Beijing University of Chinese Medicine, Number 11 east Section of the North Third Ring Road, Beijing 100029, China
| |
Collapse
|
52
|
Mukherjee AG, Wanjari UR, Namachivayam A, Murali R, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Ramanathan G, Doss C. GP, Gopalakrishnan AV. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach. Vaccines (Basel) 2022; 10:1493. [PMID: 36146572 PMCID: PMC9502517 DOI: 10.3390/vaccines10091493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/07/2022] Open
Abstract
Cancer immunotherapy moderates the immune system's ability to fight cancer. Due to its extreme complexity, scientists are working to put together all the puzzle pieces to get a clearer picture of the immune system. Shreds of available evidence show the connection between cancer and the immune system. Immune responses to tumors and lymphoid malignancies are influenced by B cells, γδT cells, NK cells, and dendritic cells (DCs). Cancer immunotherapy, which encompasses adoptive cancer therapy, monoclonal antibodies (mAbs), immune checkpoint therapy, and CART cells, has revolutionized contemporary cancer treatment. This article reviews recent developments in immune cell regulation and cancer immunotherapy. Various options are available to treat many diseases, particularly cancer, due to the progress in various immunotherapies, such as monoclonal antibodies, recombinant proteins, vaccinations (both preventative and curative), cellular immunotherapies, and cytokines.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
53
|
Liu H, Xie Z, Zheng M. Unprecedented Chiral Nanovaccines for Significantly Enhanced Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39858-39865. [PMID: 36007113 DOI: 10.1021/acsami.2c11596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a representative strategy for cancer immunotherapy, cancer nanovaccines have aroused enormous interest. Although various nanovaccines have been developed to promote immunogenicity and improve the therapeutic efficacy, chiral nanovaccines have been less explored as of yet. Chiral carbon dots (CDs) have similar size to proteins, abundant functional groups, and nanoscale chirality, which can not only carry and deliver antigens but also induce cellular and humoral immune responses and can play dual roles of nanovehicles and immune adjuvants. Herein, we demonstrate that the chiral nanovaccines (l/d-OVA) could be conveniently fabricated by utilizing chiral CDs as carriers and immune adjuvants and ovalbumin (OVA) as an antigen model. l/d-OVA nanovaccines could be effectively internalized by mouse bone-marrow-derived dendritic cells (BMDCs), boost BMDC maturation, efficiently cross-present to T cells, and suppress the growth of B16-OVA melanoma. This work illustrates the hopeful potential of chiral CDs as effective vectors for loading protein cargos and delivering them into cancer cells.
Collapse
Affiliation(s)
- Hongxin Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, P. R. China
| |
Collapse
|
54
|
Wang X, Li C, Wang Y, Chen H, Zhang X, Luo C, Zhou W, Li L, Teng L, Yu H, Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharm Sin B 2022; 12:4098-4121. [DOI: 10.1016/j.apsb.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
|
55
|
Li Z, Lai X, Fu S, Ren L, Cai H, Zhang H, Gu Z, Ma X, Luo K. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201734. [PMID: 35652198 PMCID: PMC9353475 DOI: 10.1002/advs.202201734] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Indexed: 02/05/2023]
Abstract
Tumor immunotherapy is only effective in a fraction of patients due to a low response rate and severe side effects, and these challenges of immunotherapy in clinics can be addressed through induction of immunogenic cell death (ICD). ICD is elicited from many antitumor therapies to release danger associated molecular patterns (DAMPs) and tumor-associated antigens to facilitate maturation of dendritic cells (DCs) and infiltration of cytotoxic T lymphocytes (CTLs). The process can reverse the tumor immunosuppressive microenvironment to improve the sensitivity of immunotherapy. Nanostructure-based drug delivery systems (NDDSs) are explored to induce ICD by incorporating therapeutic molecules for chemotherapy, photosensitizers (PSs) for photodynamic therapy (PDT), photothermal conversion agents for photothermal therapy (PTT), and radiosensitizers for radiotherapy (RT). These NDDSs can release loaded agents at a right dose in the right place at the right time, resulting in greater effectiveness and lower toxicity. Immunotherapeutic agents can also be combined with these NDDSs to achieve the synergic antitumor effect in a multi-modality therapeutic approach. In this review, NDDSs are harnessed to load multiple agents to induce ICD by chemotherapy, PDT, PTT, and RT in combination of immunotherapy to promote the therapeutic effect and reduce side effects associated with cancer treatment.
Collapse
Affiliation(s)
- Zhilin Li
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaoqin Lai
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Shiqin Fu
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Long Ren
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hao Cai
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Hu Zhang
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Amgen Bioprocessing CentreKeck Graduate InstituteClaremontCA91711USA
| | - Zhongwei Gu
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Xuelei Ma
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - Kui Luo
- Department of BiotherapyHuaxi MR Research Center (HMRRC)Day Surgery CenterDepartment of RadiologyCancer CenterResearch Core Facilities of West China HospitalNational Clinical Research Center for GeriatricsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
- Functional and Molecular Imaging Key Laboratory of Sichuan Provinceand Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengdu610041China
| |
Collapse
|
56
|
Wang S, Cheng K, Chen K, Xu C, Ma P, Dang G, Yang Y, Lei Q, Huang H, Yu Y, Fang Y, Tang Q, Jiang N, Miao H, Liu F, Zhao X, Li N. Nanoparticle-based medicines in clinical cancer therapy. NANO TODAY 2022; 45:101512. [DOI: 10.1016/j.nantod.2022.101512] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
|
57
|
Liu Y, Wang W, Zhang D, Sun Y, Li F, Zheng M, Lovejoy DB, Zou Y, Shi B. Brain co-delivery of first-line chemotherapy drug and epigenetic bromodomain inhibitor for multidimensional enhanced synergistic glioblastoma therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210274. [PMID: 37325609 PMCID: PMC10190947 DOI: 10.1002/exp.20210274] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) is a central nervous system tumor with poor prognosis due to the rapid development of resistance to mono chemotherapy and poor brain targeted delivery. Chemoimmunotherapy (CIT) combines chemotherapy drugs with activators of innate immunity that hold great promise for GBM synergistic therapy. Herein, we chose temozolomide, TMZ, and the epigenetic bromodomain inhibitor, OTX015, and further co-encapsulated them within our well-established erythrocyte membrane camouflaged nanoparticle to yield ApoE peptide decorated biomimetic nanomedicine (ABNM@TMZ/OTX). Our nanoplatform successfully addressed the limitations in brain-targeted drug co-delivery, and simultaneously achieved multidimensional enhanced GBM synergistic CIT. In mice bearing orthotopic GL261 GBM, treatment with ABNM@TMZ/OTX resulted in marked tumor inhibition and greatly extended survival time with little side effects. The pronounced GBM treatment efficacy can be ascribed to three key factors: (i) improved nanoparticle-mediated GBM targeting delivery of therapeutic agents by greatly enhanced blood circulation time and blood-brain barrier penetration; (ii) inhibited cellular DNA repair and enhanced TMZ sensitivity to tumor cells; (iii) enhanced anti-tumor immune responses by inducing immunogenic cell death and inhibiting PD-1/PD-L1 conjugation leading to enhanced expression of CD4+ and CD8+ T cells. The study validated a biomimetic nanomedicine to yield a potential new treatment for GBM.
Collapse
Affiliation(s)
- Yanjie Liu
- Henan–Macquarie University Joint Centre for Biomedical InnovationAcademy for Advanced Interdisciplinary StudiesHenan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life SciencesHenan UniversityKaifengHenanChina
| | - Wendie Wang
- Henan–Macquarie University Joint Centre for Biomedical InnovationAcademy for Advanced Interdisciplinary StudiesHenan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life SciencesHenan UniversityKaifengHenanChina
| | - Dongya Zhang
- Henan–Macquarie University Joint Centre for Biomedical InnovationAcademy for Advanced Interdisciplinary StudiesHenan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life SciencesHenan UniversityKaifengHenanChina
| | - Yajing Sun
- Henan–Macquarie University Joint Centre for Biomedical InnovationAcademy for Advanced Interdisciplinary StudiesHenan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life SciencesHenan UniversityKaifengHenanChina
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijingChina
| | - Meng Zheng
- Henan–Macquarie University Joint Centre for Biomedical InnovationAcademy for Advanced Interdisciplinary StudiesHenan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life SciencesHenan UniversityKaifengHenanChina
| | - David B. Lovejoy
- Centre for Motor Neuron Disease ResearchMacquarie Medical SchoolFaculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Yan Zou
- Henan–Macquarie University Joint Centre for Biomedical InnovationAcademy for Advanced Interdisciplinary StudiesHenan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life SciencesHenan UniversityKaifengHenanChina
- Centre for Motor Neuron Disease ResearchMacquarie Medical SchoolFaculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Bingyang Shi
- Henan–Macquarie University Joint Centre for Biomedical InnovationAcademy for Advanced Interdisciplinary StudiesHenan Key Laboratory of Brain Targeted Bio‐nanomedicineSchool of Life SciencesHenan UniversityKaifengHenanChina
- Centre for Motor Neuron Disease ResearchMacquarie Medical SchoolFaculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
58
|
Gunay G, Hamsici S, Lang GA, Lang ML, Kovats S, Acar H. Peptide Aggregation Induced Immunogenic Rupture (PAIIR). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105868. [PMID: 35599386 PMCID: PMC9313945 DOI: 10.1002/advs.202105868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Indexed: 05/11/2023]
Abstract
Immunogenic cell death (ICD) arises when cells are under stress, and their membranes are damaged. They release damage-associated molecular patterns (DAMPs) that stimulate and drive the type and magnitude of the immune response. In the presence of an antigen, DAMPs ride the longevity and efficacy of antigen-specific immunity. Yet, no tool can induce the controlled ICD with predictable results. A peptide-based tool, [II], is designed that aggregates in the cell and causes cell membrane damage, generates ICD and DAMPs release on various cell types, and hence can act as an adjuvant. An influenza vaccine is prepared by combining [II] with influenza hemagglutinin (HA) subunit antigens. The results show that [II] induced significantly higher HA-specific immunoglobulin G1 (IgG1) and IgG2a antibodies than HA-only immunized mice, while the peptide itself did not elicit antibodies. This paper demonstrates the first peptide-aggregation induced immunogenic rupture (PAIIR) approach as a vaccine adjuvant. PAIIR is a promising adjuvant with a high potential to promote universal protection upon influenza HA vaccination.
Collapse
Affiliation(s)
- Gokhan Gunay
- Stephenson School of Biomedical EngineeringUniversity of OklahomaNormanOK73069USA
| | - Seren Hamsici
- Stephenson School of Biomedical EngineeringUniversity of OklahomaNormanOK73069USA
| | - Gillian A. Lang
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOK73104USA
| | - Mark L. Lang
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOK73104USA
| | - Susan Kovats
- Department of Microbiology and ImmunologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOK73104USA
- Arthritis & Clinical Immunology ProgramOklahoma Medical Research FoundationOklahoma CityOK73104USA
| | - Handan Acar
- Stephenson School of Biomedical EngineeringUniversity of OklahomaNormanOK73069USA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOK73104USA
| |
Collapse
|
59
|
Chen C, Wu C, Yu J, Zhu X, Wu Y, Liu J, Zhang Y. Photodynamic-based combinatorial cancer therapy strategies: Tuning the properties of nanoplatform according to oncotherapy needs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
60
|
Ye J, Hou B, Chen F, Zhang S, Xiong M, Li T, Xu Y, Xu Z, Yu H. Bispecific prodrug nanoparticles circumventing multiple immune resistance mechanisms for promoting cancer immunotherapy. Acta Pharm Sin B 2022; 12:2695-2709. [PMID: 35755274 PMCID: PMC9214055 DOI: 10.1016/j.apsb.2021.09.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy is impaired by the intrinsic and adaptive immune resistance. Herein, a bispecific prodrug nanoparticle was engineered for circumventing immune evasion of the tumor cells by targeting multiple immune resistance mechanisms. A disulfide bond-linked bispecific prodrug of NLG919 and JQ1 (namely NJ) was synthesized and self-assembled into a prodrug nanoparticle, which was subsequently coated with a photosensitizer-modified and tumor acidity-activatable diblock copolymer PHP for tumor-specific delivery of NJ. Upon tumor accumulation via passive tumor targeting, the polymeric shell was detached for facilitating intracellular uptake of the bispecific prodrug. NJ was then activated inside the tumor cells for releasing JQ1 and NLG919 via glutathione-mediated cleavage of the disulfide bond. JQ1 is a bromodomain-containing protein 4 inhibitor for abolishing interferon gamma-triggered expression of programmed death ligand 1. In contrast, NLG919 suppresses indoleamine-2,3-dioxygenase 1-mediated tryptophan consumption in the tumor microenvironment, which thus restores robust antitumor immune responses. Photodynamic therapy (PDT) was performed to elicit antitumor immunogenicity by triggering immunogenic cell death of the tumor cells. The combination of PDT and the bispecific prodrug nanoparticle might represent a novel strategy for blockading multiple immune evasion pathways and improving cancer immunotherapy.
Collapse
|
61
|
Zhu X, Su T, Wang S, Zhou H, Shi W. New Advances in Nano-Drug Delivery Systems: Helicobacter pylori and Gastric Cancer. Front Oncol 2022; 12:834934. [PMID: 35619913 PMCID: PMC9127958 DOI: 10.3389/fonc.2022.834934] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 01/07/2023] Open
Abstract
With the development of materials science and biomedicine, the application of nanomaterials in the medical field is further promoted. In the process of the diagnosis and treatment of diseases, a variety of drugs need to be used. It is an ideal state to make these drugs arrive at a specific location at a specific time and release at a specific speed, which can improve the bioavailability of drugs and reduce the adverse effects of drugs on normal tissues. Traditional drug delivery methods such as tablets, capsules, syrups, and ointments have certain limitations. The emergence of a new nano-drug delivery system further improves the accuracy of drug delivery and the efficacy of drugs. It is well known that the development of the cancer of the stomach is the most serious consequence for the infection of Helicobacter pylori. For the patients who are suffering from gastric cancer, the treatments are mainly surgery, chemotherapy, targeted and immune therapy, and other comprehensive treatments. Although great progress has been made, the diagnosis and prognosis of gastric cancer are still poor with patients usually diagnosed with cancer at an advanced stage. Current treatments are of limited benefits for patients, resulting in a poor 5-year survival rate. Nanomaterials may play a critical role in early diagnosis. A nano-drug delivery system can significantly improve the chemotherapy, targeted therapy, and immunotherapy of advanced gastric cancer, reduce the side effects of the original treatment plan and provide patients with better benefits. It is a promising treatment for gastric cancer. This article introduces the application of nanomaterials in the diagnosis and treatment of H. pylori and gastric cancer.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Su
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shouhua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiqing Zhou
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weibin Shi
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
62
|
Li F, Lai Y, Ye J, Saeed M, Dang Y, Zou Z, Chen F, Zhang W, Xu Z. Dual-targeting prodrug nanotheranostics for NIR-Ⅱ fluorescence imaging-guided photo-immunotherapy of glioblastoma. Acta Pharm Sin B 2022; 12:3486-3497. [PMID: 36176914 PMCID: PMC9513488 DOI: 10.1016/j.apsb.2022.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 12/07/2022] Open
Abstract
Glioblastoma (GBM) therapy is severely impaired by the blood–brain barrier (BBB) and invasive tumor growth in the central nervous system. To improve GBM therapy, we herein presented a dual-targeting nanotheranostic for second near-infrared (NIR-II) fluorescence imaging-guided photo-immunotherapy. Firstly, a NIR-Ⅱ fluorophore MRP bearing donor-acceptor-donor (D-A-D) backbone was synthesized. Then, the prodrug nanotheranostics were prepared by self-assembling MRP with a prodrug of JQ1 (JPC) and T7 ligand-modified PEG5k-DSPE. T7 can cross the BBB for tumor-targeted delivery of JPC and MRP. JQ1 could be restored from JPC at the tumor site for suppressing interferon gamma-inducible programmed death ligand 1 expression in the tumor cells. MRP could generate NIR-II fluorescence to navigate 808 nm laser, induce a photothermal effect to trigger in-situ antigen release at the tumor site, and ultimately elicit antitumor immunogenicity. Photo-immunotherapy with JPC and MRP dual-loaded nanoparticles remarkably inhibited GBM tumor growth in vivo. The dual-targeting nanotheranostic might represent a novel nanoplatform for precise photo-immunotherapy of GBM.
Collapse
Affiliation(s)
- Fenglin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yi Lai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiayi Ye
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Madiha Saeed
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhifeng Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Corresponding author. Tel./fax: +86 21 54340053.
| |
Collapse
|
63
|
Nel AE, Mei KC, Liao YP, Lu X. Multifunctional Lipid Bilayer Nanocarriers for Cancer Immunotherapy in Heterogeneous Tumor Microenvironments, Combining Immunogenic Cell Death Stimuli with Immune Modulatory Drugs. ACS NANO 2022; 16:5184-5232. [PMID: 35348320 PMCID: PMC9519818 DOI: 10.1021/acsnano.2c01252] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In addition to the contribution of cancer cells, the solid tumor microenvironment (TME) has a critical role in determining tumor expansion, antitumor immunity, and the response to immunotherapy. Understanding the details of the complex interplay between cancer cells and components of the TME provides an unprecedented opportunity to explore combination therapy for intervening in the immune landscape to improve immunotherapy outcome. One approach is the introduction of multifunctional nanocarriers, capable of delivering drug combinations that provide immunogenic stimuli for improvement of tumor antigen presentation, contemporaneous with the delivery of coformulated drug or synthetic molecules that provide immune danger signals or interfere in immune-escape, immune-suppressive, and T-cell exclusion pathways. This forward-looking review will discuss the use of lipid-bilayer-encapsulated liposomes and mesoporous silica nanoparticles for combination immunotherapy of the heterogeneous immune landscapes in pancreatic ductal adenocarcinoma and triple-negative breast cancer. We describe how the combination of remote drug loading and lipid bilayer encapsulation is used for the synthesis of synergistic drug combinations that induce immunogenic cell death, interfere in the PD-1/PD-L1 axis, inhibit the indoleamine-pyrrole 2,3-dioxygenase (IDO-1) immune metabolic pathway, restore spatial access to activated T-cells to the cancer site, or reduce the impact of immunosuppressive stromal components. We show how an integration of current knowledge and future discovery can be used for a rational approach to nanoenabled cancer immunotherapy.
Collapse
Affiliation(s)
- André E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Kuo-Ching Mei
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangsheng Lu
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
64
|
Yun WS, Park JH, Lim DK, Ahn CH, Sun IC, Kim K. How Did Conventional Nanoparticle-Mediated Photothermal Therapy Become "Hot" in Combination with Cancer Immunotherapy? Cancers (Basel) 2022; 14:cancers14082044. [PMID: 35454950 PMCID: PMC9029053 DOI: 10.3390/cancers14082044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Photothermal therapy (PTT) has become effective through the development of nanoparticle-based photoabsorbers with various functions, such as targeting properties, high light-to-heat conversion, and photostability. Conventional nanoparticle-mediated PTT has attained localized efficiency in cancer treatment by heat-induced apoptosis or necrosis of cancer cells. Currently, such treatment methods evolve into cancer immunotherapy through the induction of immunogenic cell death (ICD). Damage-associated molecular patterns from dead cells by nanoparticle-mediated PTT activate immune cells for systemic anti-cancer effect. In this review, we investigate various nanoparticle-based PTT and compare its methodology to clarify how it undergoes a transition from thermotherapy to immunotherapy. Abstract One of the promising cancer treatment methods is photothermal therapy (PTT), which has achieved good therapeutic efficiency through nanoparticle-based photoabsorbers. Because of the various functions of nanoparticles, such as targeting properties, high light-to-heat conversion, and photostability, nanoparticle-mediated PTT successfully induces photothermal damage in tumor tissues with minimal side effects on surrounding healthy tissues. The therapeutic efficacy of PTT originates from cell membrane disruption, protein denaturation, and DNA damage by light-induced heat, but these biological impacts only influence localized tumor areas. This conventional nanoparticle-mediated PTT still attracts attention as a novel cancer immunotherapy, because PTT causes immune responses against cancer. PTT-induced immunogenic cell death activates immune cells for systemic anti-cancer effect. Additionally, the excellent compatibility of PTT with other treatment methods (e.g., chemotherapy and immune checkpoint blockade therapy) reinforces the therapeutic efficacy of PTT as combined immunotherapy. In this review, we investigate various PTT agents of nanoparticles and compare their applications to reveal how nanoparticle-mediated PTT undergoes a transition from thermotherapy to immunotherapy.
Collapse
Affiliation(s)
- Wan Su Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seoul 02841, Korea; (W.S.Y.); (D.-K.L.)
| | - Ji-Ho Park
- NanoBio Materials Laboratory, Department of Materials Science and Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea; (J.-H.P.); (C.-H.A.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seoul 02841, Korea; (W.S.Y.); (D.-K.L.)
| | - Cheol-Hee Ahn
- NanoBio Materials Laboratory, Department of Materials Science and Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Seoul 08826, Korea; (J.-H.P.); (C.-H.A.)
| | - In-Cheol Sun
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Seoul 02792, Korea
- Correspondence: (I.-C.S.); (K.K.)
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seoul 02841, Korea; (W.S.Y.); (D.-K.L.)
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Seoul 02792, Korea
- Correspondence: (I.-C.S.); (K.K.)
| |
Collapse
|
65
|
Vincent MP, Navidzadeh JO, Bobbala S, Scott EA. Leveraging self-assembled nanobiomaterials for improved cancer immunotherapy. Cancer Cell 2022; 40:255-276. [PMID: 35148814 PMCID: PMC8930620 DOI: 10.1016/j.ccell.2022.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Nanomaterials and targeted drug delivery vehicles improve the therapeutic index of drugs and permit greater control over their pharmacokinetics, biodistribution, and bioavailability. Here, nanotechnologies applied to cancer immunotherapy are discussed with a focus on current and next generation self-assembling drug delivery systems composed of lipids and/or polymers. Topics covered include the fundamental design, suitability, and inherent properties of nanomaterials that induce anti-tumor immune responses and support anti-cancer vaccination. Established active and passive targeting strategies as well as newer "indirect" methods are presented together with insights into how nanocarrier structure and surface chemistry can be leveraged for controlled delivery to the tumor microenvironment while minimizing off-target effects.
Collapse
Affiliation(s)
- Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Justin O Navidzadeh
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA; Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
66
|
Kim J, Choi Y, Yang S, Lee J, Choi J, Moon Y, Kim J, Shim N, Cho H, Shim MK, Jeon S, Lim DK, Yoon HY, Kim K. Sustained and Long-Term Release of Doxorubicin from PLGA Nanoparticles for Eliciting Anti-Tumor Immune Responses. Pharmaceutics 2022; 14:pharmaceutics14030474. [PMID: 35335852 PMCID: PMC8954063 DOI: 10.3390/pharmaceutics14030474] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Immunogenic cell death (ICD) is a powerful trigger eliciting strong immune responses against tumors. However, traditional chemoimmunotherapy (CIT) does not last long enough to induce sufficient ICD, and also does not guarantee the safety of chemotherapeutics. To overcome the disadvantages of the conventional approach, we used doxorubicin (DOX) as an ICD inducer, and poly(lactic-co-glycolic acid) (PLGA)-based nanomedicine platform for controlled release of DOX. The diameter of 138.7 nm of DOX-loaded PLGA nanoparticles (DP-NPs) were stable for 14 days in phosphate-buffered saline (PBS, pH 7.4) at 37 °C. Furthermore, DOX was continuously released for 14 days, successfully inducing ICD and reducing cell viability in vitro. Directly injected DP-NPs enabled the remaining of DOX in the tumor site for 14 days. In addition, repeated local treatment of DP-NPs actually lasted long enough to maintain the enhanced antitumor immunity, leading to increased tumor growth inhibition with minimal toxicities. Notably, DP-NPs treated tumor tissues showed significantly increased maturated dendritic cells (DCs) and cytotoxic T lymphocytes (CTLs) population, showing enhanced antitumor immune responses. Finally, the therapeutic efficacy of DP-NPs was maximized in combination with an anti-programmed death-ligand 1 (PD-L1) antibody (Ab). Therefore, we expect therapeutic efficacies of cancer CIT can be maximized by the combination of DP-NPs with immune checkpoint blockade (ICB) by achieving proper therapeutic window and continuously inducing ICD, with minimal toxicities.
Collapse
Affiliation(s)
- Jeongrae Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Yongwhan Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Suah Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Jaewan Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Jiwoong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Yujeong Moon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Jinseong Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Nayeon Shim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Hanhee Cho
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Sangmin Jeon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
- Correspondence: ; Tel.: +82-2-958-5916
| |
Collapse
|
67
|
Sen S, Won M, Levine MS, Noh Y, Sedgwick AC, Kim JS, Sessler JL, Arambula JF. Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future. Chem Soc Rev 2022; 51:1212-1233. [PMID: 35099487 PMCID: PMC9398513 DOI: 10.1039/d1cs00417d] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cancer is the deadliest disease in the world behind heart disease. Sadly, this remains true even as we suffer the ravages of the Covid-19 pandemic. Whilst current chemo- and radiotherapeutic treatment strategies have significantly improved the patient survival rate, disease reoccurrence continues to pose a deadly risk for all too many patients. Incomplete removal of tumour cells from the body increases the chances of metastasis and developing resistance against current treatments. Immunotherapy represents a therapeutic modality that has helped to overcome these limitations in recent decades. However, further progress is needed. So-called immunogenic cell death (ICD) is a recently discovered and unique mode of cell death that could trigger this necessary further progress. ICD involves stimulation of a tumour-specific immune response as a downstream effect. Facilitated by certain treatment modalities, cells undergoing ICD can trigger the IFN-γ mediated immune response involving cytotoxic T cells (CTLs) and γδ T cells that eradicate residual tumour cells. In recent years, there has been a significant increase in the number of small-molecules being tested as potential ICD inducers. A large number of these ICD inducers are metal-based complexes. In fact, anticancer metal drugs based on Pt, Ru, Ir, Cu, and Au are now known to give rise to an immune response against tumour cells as the result of ICD. Advances have also been made in terms of exploiting combinatorial and delivery strategies. In favourable cases, these approaches have been shown to increase the efficacy of otherwise ICD "silent" metal complexes. Taken in concert, rationally designed novel anticancer metal complexes that can act as ICD inducers show promise as potential new immunotherapies for neoplastic disease. This Tutorial Review will allow the readers to assess the progress in this fast-evolving field thus setting the stage for future advances.
Collapse
Affiliation(s)
- Sajal Sen
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Matthew S Levine
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Yuvin Noh
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
- OncoTEX, Inc. 3800 North Lamar Blvd., Austin, Texas 78756, USA
| |
Collapse
|
68
|
Sharifi E, Bigham A, Yousefiasl S, Trovato M, Ghomi M, Esmaeili Y, Samadi P, Zarrabi A, Ashrafizadeh M, Sharifi S, Sartorius R, Dabbagh Moghaddam F, Maleki A, Song H, Agarwal T, Maiti TK, Nikfarjam N, Burvill C, Mattoli V, Raucci MG, Zheng K, Boccaccini AR, Ambrosio L, Makvandi P. Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli-Responsive, Toxicity, Immunogenicity, and Clinical Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102678. [PMID: 34796680 PMCID: PMC8805580 DOI: 10.1002/advs.202102678] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/03/2021] [Indexed: 05/10/2023]
Abstract
Cancer is one of the top life-threatening dangers to the human survival, accounting for over 10 million deaths per year. Bioactive glasses have developed dramatically since their discovery 50 years ago, with applications that include therapeutics as well as diagnostics. A new system within the bioactive glass family, mesoporous bioactive glasses (MBGs), has evolved into a multifunctional platform, thanks to MBGs easy-to-functionalize nature and tailorable textural properties-surface area, pore size, and pore volume. Although MBGs have yet to meet their potential in tumor treatment and imaging in practice, recently research has shed light on the distinguished MBGs capabilities as promising theranostic systems for cancer imaging and therapy. This review presents research progress in the field of MBG applications in cancer diagnosis and therapy, including synthesis of MBGs, mechanistic overview of MBGs application in tumor diagnosis and drug monitoring, applications of MBGs in cancer therapy ( particularly, targeted delivery and stimuli-responsive nanoplatforms), and immunological profile of MBG-based nanodevices in reference to the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Department of Tissue Engineering and BiomaterialsSchool of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadan6517838736Iran
- Institute of PolymersComposites and BiomaterialsNational Research Council (IPCB‐CNR)Naples80125Italy
| | - Ashkan Bigham
- Institute of PolymersComposites and BiomaterialsNational Research Council (IPCB‐CNR)Naples80125Italy
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadan6517838736Iran
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)Naples80131Italy
| | - Matineh Ghomi
- Chemistry DepartmentFaculty of ScienceShahid Chamran University of AhvazAhvaz61537‐53843Iran
- School of ChemistryDamghan UniversityDamghan36716‐41167Iran
| | - Yasaman Esmaeili
- Biosensor Research CenterSchool of Advanced Technologies in MedicineIsfahan University of Medical SciencesIsfahan8174673461Iran
| | - Pouria Samadi
- Research Center for Molecular MedicineHamadan University of Medical SciencesHamadan6517838736Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
- Department of Biomedical EngineeringFaculty of Engineering and Natural SciencesIstinye UniversitySariyerIstanbul34396Turkey
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci UniversityOrta Mahalle, Üniversite Caddesi No. 27, OrhanlıTuzlaIstanbul34956Turkey
| | - Shokrollah Sharifi
- Department of Mechanical EngineeringUniversity of MelbourneMelbourne3010Australia
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC)National Research Council (CNR)Naples80131Italy
| | | | - Aziz Maleki
- Department of Pharmaceutical NanotechnologySchool of PharmacyZanjan University of Medical SciencesZanjan45139‐56184Iran
| | - Hao Song
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbane4072Australia
| | - Tarun Agarwal
- Department of BiotechnologyIndian Institute of TechnologyKharagpur721302India
| | - Tapas Kumar Maiti
- Department of BiotechnologyIndian Institute of TechnologyKharagpur721302India
| | - Nasser Nikfarjam
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS)Zanjan45137‐66731Iran
| | - Colin Burvill
- Department of Mechanical EngineeringUniversity of MelbourneMelbourne3010Australia
| | - Virgilio Mattoli
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | - Maria Grazia Raucci
- Institute of PolymersComposites and BiomaterialsNational Research Council (IPCB‐CNR)Naples80125Italy
| | - Kai Zheng
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | - Aldo R. Boccaccini
- Institute of BiomaterialsUniversity of Erlangen‐NurembergErlangen91058Germany
| | - Luigi Ambrosio
- Institute of PolymersComposites and BiomaterialsNational Research Council (IPCB‐CNR)Naples80125Italy
| | - Pooyan Makvandi
- Chemistry DepartmentFaculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| |
Collapse
|
69
|
Sun D, Zou Y, Song L, Han S, Yang H, Chu D, Dai Y, Ma J, O'Driscoll CM, Yu Z, Guo J. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm Sin B 2022; 12:378-393. [PMID: 35127393 PMCID: PMC8799998 DOI: 10.1016/j.apsb.2021.06.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023] Open
Abstract
The immune checkpoint blockade therapy has profoundly revolutionized the field of cancer immunotherapy. However, despite great promise for a variety of cancers, the efficacy of immune checkpoint inhibitors is still low in colorectal cancer (CRC). This is mainly due to the immunosuppressive feature of the tumor microenvironment (TME). Emerging evidence reveals that certain chemotherapeutic drugs induce immunogenic cell death (ICD), demonstrating great potential for remodeling the immunosuppressive TME. In this study, the potential of ginsenoside Rg3 (Rg3) as an ICD inducer against CRC cells was confirmed using in vitro and in vivo experimental approaches. The ICD efficacy of Rg3 could be significantly enhanced by quercetin (QTN) that elicited reactive oxygen species (ROS). To ameliorate in vivo delivery barriers associated with chemotherapeutic drugs, a folate (FA)-targeted polyethylene glycol (PEG)-modified amphiphilic cyclodextrin nanoparticle (NP) was developed for co-encapsulation of Rg3 and QTN. The resultant nanoformulation (CD-PEG-FA.Rg3.QTN) significantly prolonged blood circulation and enhanced tumor targeting in an orthotopic CRC mouse model, resulting in the conversion of immunosuppressive TME. Furthermore, the CD-PEG-FA.Rg3.QTN achieved significantly longer survival of animals in combination with Anti-PD-L1. The study provides a promising strategy for the treatment of CRC.
Collapse
Key Words
- ATF6, activating transcription factor 6
- ATP, adenosine triphosphate
- CI, combination index
- CRC, colorectal cancer
- CRT, calreticulin
- CTLA-4, cytotoxic T lymphocyte antigen 4
- CXCL10, C-X-C motif chemokine 10
- CXCL9, C-X-C motif chemokine 9
- Chemotherapy
- Colorectal cancer
- Combination therapy
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- ECL, enhanced chemiluminescence
- EE, encapsulation efficiency
- ER, endoplasmic reticulum
- FA, folate
- HMGB1, high-mobility group box 1
- ICD, immunogenic cell death
- IFN-γ, interferon-gamma
- IL-10, interleukin-10
- IL-12, interleukin-12
- IL-4, interleukin-4
- IL-6, interleukin-6
- IRE1, inositol-requiring enzyme 1
- Immunogenic cell death
- Immunotherapy
- LC, loading capacity
- MDSCs, myeloid derived suppressor cells
- MMR, mismatch repair
- MR, molar ratio
- NAC, N-acetyl-l-cysteine
- NP, nanoparticle
- Nano drug delivery system
- PD-L1, programmed death-ligand 1
- PEG, polyethylene glycol
- PERK, PKR-like ER kinase
- PFA, paraformaldehyde
- PVDF, polyvinylidene fluoride
- QTN, quercetin
- ROS, reactive oxygen species
- Reactive oxygen species
- TAAs, tumor-associated antigens
- TME, tumor microenvironment
- Tumor microenvironment
- UPR, unfolded protein response
- p-IRE1, phosphorylation of IRE1
- p-PERK, phosphorylation of PERK
Collapse
Affiliation(s)
- Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hao Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Di Chu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | | | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
70
|
Zhang Y, Gao X, Yan B, Wen N, Lee WSV, Liang XJ, Liu X. Enhancement of CD8 + T-Cell-Mediated Tumor Immunotherapy via Magnetic Hyperthermia. ChemMedChem 2021; 17:e202100656. [PMID: 34806311 DOI: 10.1002/cmdc.202100656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Magnetic hyperthermia (MHT) uses magnetic iron oxide nanoparticles (MIONs) to irradiate heat when subjected to an alternating magnetic field (AMF), which then trigger a series of biological effects to realize rapid tumor-killing effects. With the deepening in research, MHT has also shown significant potential in achieving antitumor immunity. On the other hand, immunotherapy in cancer treatment has gained increasing attention over recent years and excellent results have generally been reported. Using MHT to activate antitumor immunity and clarifying its synergistic mechanism, i. e., immunogenic cell death (ICD) and immunosuppressive tumor microenvironment (TME) reversal, can achieve a synergistically enhanced therapeutic effect on primary tumors and metastatic lesions, and this can prevent cancer recurrence and metastasis, which thus prolong survival. In this review, we discussed the role of MHT when utilized alone and combining MHT with other treatments (such as radiotherapy, photodynamic therapy, and immune checkpoint blockers) in the process of tumor immunotherapy, including antigen release, dendritic cells (DCs) maturation, and activation of CD8+ cytotoxic T lymphocytes. Finally, the challenges and future development of current MHT and immunotherapy are discussed.
Collapse
Affiliation(s)
- Yihan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Xiao Gao
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Bin Yan
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Nana Wen
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wee Siang Vincent Lee
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology of China, China
| | - Xiaoli Liu
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China.,CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology of China, China
| |
Collapse
|
71
|
Jo S, Sun IC, Yun WS, Kim J, Lim DK, Ahn CH, Kim K. Thiol-Responsive Gold Nanodot Swarm with Glycol Chitosan for Photothermal Cancer Therapy. Molecules 2021; 26:5980. [PMID: 34641524 PMCID: PMC8512322 DOI: 10.3390/molecules26195980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Photothermal therapy (PTT) is one of the most promising cancer treatment methods because hyperthermal effects and immunogenic cell death via PTT are destructive to cancer. However, PTT requires photoabsorbers that absorb near-infrared (NIR) light with deeper penetration depth in the body and effectively convert light into heat. Gold nanoparticles have various unique properties which are suitable for photoabsorbers, e.g., controllable optical properties and easy surface modification. We developed gold nanodot swarms (AuNSw) by creating small gold nanoparticles (sGNPs) in the presence of hydrophobically-modified glycol chitosan. The sGNPs assembled with each other through their interaction with amine groups of glycol chitosan. AuNSw absorbed 808-nm laser and increased temperature to 55 °C. In contrast, AuNSw lost its particle structure upon exposure to thiolated molecules and did not convert NIR light into heat. In vitro studies demonstrated the photothermal effect and immunogenic cell death after PTT with AuNSW. After intratumoral injection of AuNSw with laser irradiation, tumor growth of xenograft mouse models was depressed. We found hyperthermal damage and immunogenic cell death in tumor tissues through histological and biochemical analyses. Thiol-responsive AuNSw showed feasibility for PTT, with advanced functionality in the tumor microenvironment.
Collapse
Affiliation(s)
- SeongHoon Jo
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Korea; (S.J.); (I.-C.S.)
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Korea; (S.J.); (I.-C.S.)
| | - Wan Su Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (W.S.Y.); (J.K.); (D.-K.L.)
| | - Jinseong Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (W.S.Y.); (J.K.); (D.-K.L.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (W.S.Y.); (J.K.); (D.-K.L.)
| | - Cheol-Hee Ahn
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Korea; (S.J.); (I.-C.S.)
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (W.S.Y.); (J.K.); (D.-K.L.)
| |
Collapse
|
72
|
Zhou F, Gao J, Tang Y, Zou Z, Jiao S, Zhou Z, Xu H, Xu ZP, Yu H, Xu Z. Engineering Chameleon Prodrug Nanovesicles to Increase Antigen Presentation and Inhibit PD-L1 Expression for Circumventing Immune Resistance of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102668. [PMID: 34463392 DOI: 10.1002/adma.202102668] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Indexed: 01/07/2023]
Abstract
Immune evasion is the major obstacle for T-cell-based cancer immunotherapy. The insufficient expression of the tumor-rejection antigen causes the intrinsic immune resistance and high expression of programmed death ligand 1 (PD-L1) induced by interferon gamma (IFN-γ), which accounts for the inducible immune resistance. To deal with both the intrinsic and inducible immune resistance of cancer, a multifunctional prodrug nanovesicle is sequentially developed. It is first sorted out that doxycycline (Doxy) efficiently inhibits autophagy of the tumor cells, and increases the surface level of major histocompatibility complex class I (MHC-I). Then, chameleon-inspired prodrug nanovesicles are engineered for tumor-targeted delivery of Doxy. The prodrug nanovesicles integrating a sheddable poly(ethylene glycol) shell and CRGDK ligand are kept stable during blood circulation, while exposing the targeting ligand in the tumor, which significantly inhibits autophagy, elicits MHC-I expression, increases tumor antigen presentation, recruits more tumor-infiltrating T lymphocytes, and suppresses FN-γ-induced intratumoral PD-L1 expression. After a proof of concept for overcoming intrinsic and inducible immune evasion, the prodrug nanovesicles are applied to validate the efficacy of cancer immunotherapy in two tumor-bearing mouse models. This research thus provides a novel targeting strategy for reducing tumor immune resistance and potentiating tumor immunotherapy.
Collapse
Affiliation(s)
- Fengqi Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Tongji University Cancer Center, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yang Tang
- Tongji University Cancer Center, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhifeng Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huixiong Xu
- Tongji University Cancer Center, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
73
|
Jiang M, Chen W, Yu W, Xu Z, Liu X, Jia Q, Guan X, Zhang W. Sequentially pH-Responsive Drug-Delivery Nanosystem for Tumor Immunogenic Cell Death and Cooperating with Immune Checkpoint Blockade for Efficient Cancer Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43963-43974. [PMID: 34506118 DOI: 10.1021/acsami.1c10643] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemoimmunotherapy has anchored a new blueprint for cancer management. As a burgeoning approach, immunotherapy has shifted the paradigm of traditional chemotherapy and opened up new prospects for cancer treatment. Here, a sequentially pH-responsive doxorubicin (DOX) delivery nanosystem is designed for simultaneous chemotherapy and tumor immunogenic cell death (ICD). DOX is modified into pH-sensitive cis-aconityl-doxorubicin (CAD) for being easily adsorbed by polycationic polyethylenimine (PEI), and the PEI/CAD complexes are in situ-shielded by aldehyde-modified polyethylene glycol (PEG). The PEG/PEI/CAD nanoparticles (NPs) can keep stable in neutral physiological pH during systemic circulation but will detach PEG shielding once in slightly acidic tumor extracellular pH. The exposed positive PEI/CAD complexes are endocytosed effortlessly, and CAD is then converted back to DOX by endosomal-acidity-triggered cis-aconityl cleavage. The released DOX further elicits ICD, and the moribund tumor cells will release antigens and damage-associated molecular patterns to recruit dendritic cells and activate antitumor immunity. An excellent therapeutic effect is achieved when the immune checkpoint PD-1 antibody (aPD-1) is utilized to cooperate with the PEG/PEI/CAD NPs for blocking tumor immune escape and maintaining antitumor activity of the ICD-instigated T cells. The sequentially pH-responsive DOX delivery nanosystem cooperating with immune checkpoint blockade will provide a potential strategy for cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wenqiang Chen
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wenjing Yu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Zhiwei Xu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xinyue Liu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Qingmiao Jia
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
74
|
Zhu M, Yang M, Zhang J, Yin Y, Fan X, Zhang Y, Qin S, Zhang H, Yu F. Immunogenic Cell Death Induction by Ionizing Radiation. Front Immunol 2021; 12:705361. [PMID: 34489957 PMCID: PMC8417736 DOI: 10.3389/fimmu.2021.705361] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Immunogenic cell death (ICD) is a form of regulated cell death (RCD) induced by various stresses and produces antitumor immunity via damage-associated molecular patterns (DAMPs) release or exposure, mainly including high mobility group box 1 (HMGB1), calreticulin (CRT), adenosine triphosphate (ATP), and heat shock proteins (HSPs). Emerging evidence has suggested that ionizing radiation (IR) can induce ICD, and the dose, type, and fractionation of irradiation influence the induction of ICD. At present, IR-induced ICD is mainly verified in vitro in mice and there is few clinical evidence about it. To boost the induction of ICD by IR, some strategies have shown synergy with IR to enhance antitumor immune response, such as hyperthermia, nanoparticles, and chemotherapy. In this review, we focus on the molecular mechanisms of ICD, ICD-promoting factors associated with irradiation, the clinical evidence of ICD, and immunogenic forms of cell death. Finally, we summarize various methods of improving ICD induced by IR.
Collapse
Affiliation(s)
- Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
75
|
Sun Y, Cao J, Wang X, Zhang C, Luo J, Zeng Y, Zhang C, Li Q, Zhang Y, Xu W, Zhang T, Huang P. Hypoxia-Adapted Sono-chemodynamic Treatment of Orthotopic Pancreatic Carcinoma Using Copper Metal-Organic Frameworks Loaded with an Ultrasound-Induced Free Radical Initiator. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38114-38126. [PMID: 34357760 DOI: 10.1021/acsami.1c11017] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The efficacy of sonodynamic therapy (SDT) is largely dependent upon oxygen availability to generate deleterious reactive oxygen species, and as such, hypoxic microenvironments greatly constrain the efficacy of SDT. Development of free radical generators that are not dependent on oxygen and related combination treatment strategies thus have the potential to enhance the antitumor potential of SDT. Combined treatment strategies are expected to improve the efficacy of sonodynamic antitumor therapy. As metal-organic framework (MOF) platforms are highly amenable to integration with other therapeutic approaches, we herein report the development of tumor microenvironment (TME)-responsive nanoparticles constructed by embedding the azo initiator 2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (AIPH) into hypoxia-triggered copper metal-organic framework (Cu-MOF) nanovectors to achieve synergistic sono-chemodynamic therapy in an orthotopic murine pancreatic carcinoma model system. When exposed to hypoxic conditions within the TME, this Cu-MOF structure underwent degradation, leading to the release of Cu2+ and AIPH. Cu2+ was then able to deplete local glutathione stores, resulting in the reduction of Cu2+ to Cu+, which then reacts with endogenous H2O2 in a Fenton-like reaction to yield cytotoxic hydroxyl radicals (•OH) for chemodynamic therapy. When exposed to ultrasound irradiation, AIPH further degraded in an oxygen-independent manner to yield nitrogen bubbles and alkyl radicals, the former of which enhanced the ability of these nanoparticles to penetrate deeply into the tumor. The resultant radicals induced substantial DNA damage and apoptotic cell death within target tumors under different levels of oxygen availability. As such, this hypoxic TME-responsive synergistic sono-chemodynamic approach offers an ideal means of achieving oxygen-independent free radical generation and enhanced treatment efficacy.
Collapse
Affiliation(s)
- Yu Sun
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Jing Cao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Xue Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Cong Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Jiali Luo
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Yiqing Zeng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Chao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Qunying Li
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Ying Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Wen Xu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Tao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 310009, P.R. China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| |
Collapse
|
76
|
Yang S, Sun IC, Hwang HS, Shim MK, Yoon HY, Kim K. Rediscovery of nanoparticle-based therapeutics: boosting immunogenic cell death for potential application in cancer immunotherapy. J Mater Chem B 2021; 9:3983-4001. [PMID: 33909000 DOI: 10.1039/d1tb00397f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunogenic cell death (ICD) occurring by chemical and physical stimuli has shown the potential to activate an adaptive immune response in the immune-competent living body through the release of danger-associated molecular patterns (DAMPs) into the tumor microenvironment (TME). However, limitations to the long-term immune responses and systemic toxicity of conventional ICD inducers have led to unsatisfactory therapeutic efficacy in ICD-based cancer immunotherapy. Until now, various nanoparticle-based ICD-inducers have been developed to induce an antitumor immune response without severe toxicity, and to efficiently elicit an anticancer immune response against target cancer cells. In this review, we introduce a recent advance in the designs and applications of nanoparticle-based therapeutics to elicit ICD for effective cancer immunotherapy. In particular, combination strategies of nanoparticle-based ICD inducers with typical theranostic modalities are introduced intensively. Subsequently, we discuss the expected challenges and future direction of nanoparticle-based ICD inducers to provide strategies for boosting ICD in cancer immunotherapy. These versatile designs and applications of nanoparticle-based therapeutics for ICD can provide advantages to improve the therapeutic efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Suah Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. and Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. and Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
77
|
Wang J, Zhou M, Chen F, Liu X, Gao J, Wang W, Wang H, Yu H. Stimuli-Sheddable Nanomedicine Overcoming Pathophysiological Barriers for Potentiating Immunotherapy of Cancer. J Biomed Nanotechnol 2021; 17:1486-1509. [PMID: 34544528 DOI: 10.1166/jbn.2021.3134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Immunotherapy displays potent potential for clinical cancer management by activating the protective immune response; however, the microenvironment of the immunosuppressive tumor restricts the efficiency of immunotherapies. Along with the complex pathophysiological barrier of the solid tumors, successful immunotherapeutic delivery remains a formidable challenge for conventional nanomedicine. Stimuli-sheddable nano vectors may facilitate the delivery of cargoes to tumors with minimal premature cargo leakage in blood circulation while enhancing the tumor penetration of nanomedicines by deshielding the polyethylene glycol (PEG) corona upon endogenous activity such as acidity, enzymes and glutathione, or external stimuli, such as laser irradiation. Throughout this study, researchers overviewed the recent advances of nanomedicine-based cancer immunotherapy using the stimuli-responsive deshielding nano vectors, which allowed researchers to integrate multiple therapeutic regimens for inducing immunogenic cell death. This aided in blocking the immune checkpoints, repolarizing the macrophages, and regulating the kynurenine metabolism. Furthermore, researchers discussed the critical issues in the development of stimuli-sheddable nanoimmunodulators, primarily aimed at speeding up their clinical translation. Finally, researchers provided novel perspectives for improving cancer management with the stimuli-sheddable nanomedicine.
Collapse
Affiliation(s)
- Jiaxin Wang
- College of Chemistry and Chemical Engineering, Inner Magnolia University, Huhhot, 010021, China
| | - Mengxue Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Jin Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Hui Wang
- College of Chemistry and Chemical Engineering, Inner Magnolia University, Huhhot, 010021, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
78
|
Banstola A, Poudel K, Kim JO, Jeong JH, Yook S. Recent progress in stimuli-responsive nanosystems for inducing immunogenic cell death. J Control Release 2021; 337:505-520. [PMID: 34314800 DOI: 10.1016/j.jconrel.2021.07.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/10/2023]
Abstract
Low immunogenicity and immunosuppressive tumor microenvironments are major hurdles in the application of cancer immunotherapy. To date, several immunogenic cell death (ICD) inducers have been reported to boost cancer immunotherapy by triggering ICD. ICD is characterized by the release of proinflammatory cytokines, danger-associated molecular patterns (DAMPs) and tumor associated antigens which will generate anticancer immunity by triggering adaptive immune cells. However, application of ICD inducers is limited due to severe toxicity issues and inefficient localization in the tumor microenvironment. To circumvent these challenges, stimuli-responsive nanoparticles have been exploited for improving cancer immunotherapy by limiting its toxicity. The combination of stimuli-responsive nanoparticles with an ICD inducer serves as a promising strategy for increasing the clinical applications of ICD induction in cancer immunotherapy. Here, we outline recent advances in ICD mediated by stimuli-responsive nanoparticles that may be near-infrared (NIR)-responsive, pH-responsive, redox responsive, pH and enzyme responsive, or pH and redox responsive, and evaluate their significant potential for successful clinical translation in cancer immunotherapy.
Collapse
Affiliation(s)
- Asmita Banstola
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
79
|
Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 signal for combined photothermal therapy and cancer immunotherapy. Biomaterials 2021; 275:120964. [PMID: 34147721 DOI: 10.1016/j.biomaterials.2021.120964] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/16/2022]
Abstract
CD47, overexpressed on kinds of tumor cells, activates a "don't eat me" signal through binding to signal regulatory protein α (SIRPα), leading to immune escape from the mononuclear phagocyte system (MPS). It is also a huge challenge to deliver therapeutic drugs to the tumor sites due to the short retention time in blood, poor targeting of tumor cells and accelerated clearance by MPS. Herein, we designed a hybrid therapeutic nanovesicles, named as hGLV, by fusing gene-engineered exosomes with drug-loaded thermosensitive liposomes. We demonstrated that the CD47-overexpressed hGLV exhibited the long blood circulation and improved the macrophages-mediated the phagocytosis of tumor cells by blocking CD47 signal. Moreover, the resulted hGLV could remarkably target the homologous tumor in mice, achieving the preferential accumulation at the tumor sites. Importantly, hGLV loading the photothermal agent could achieve the excellent photothermal therapy (PTT) under laser irradiation after the intravenous injection, completely eliminating the tumors, leading to immunogenic cell death and generating substantial tumor-associated antigens, which could promote the maturation of immature dendritic cells with the help of the co-encapsulated immune adjuvant to trigger strong immune responses. Generally, the hybrid nanovesicles based on CD47 immune check point blockade can be a promising platform for the drug delivery in cancer treatment.
Collapse
|
80
|
Giustarini G, Pavesi A, Adriani G. Nanoparticle-Based Therapies for Turning Cold Tumors Hot: How to Treat an Immunosuppressive Tumor Microenvironment. Front Bioeng Biotechnol 2021; 9:689245. [PMID: 34150739 PMCID: PMC8207137 DOI: 10.3389/fbioe.2021.689245] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nanotechnologies are rapidly increasing their role in immuno-oncology in line with the need for novel therapeutic strategies to treat patients unresponsive to chemotherapies and immunotherapies. The tumor immune microenvironment (TIME) has emerged as critical for tumor classification and patient stratification to design better treatments. Notably, the tumor infiltration of effector T cells plays a crucial role in antitumor responses and has been identified as the primary parameter to define hot, immunosuppressed, excluded, and cold tumors. Organic and inorganic nanoparticles (NPs) have been applied as carriers of new targeted therapies to turn cold or altered (i.e., immunosuppressed or excluded) tumors into more therapeutically responsive hot tumors. This mini-review discusses the significant advances in NP-based approaches to turn immunologically cold tumors into hot ones.
Collapse
Affiliation(s)
- Giulio Giustarini
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
81
|
Gao J, Zhang H, Zhou F, Hou B, Chen M, Xie Z, Yu H. Acid-activatible micelleplex delivering siRNA-PD-L1 for improved cancer immunotherapy of CDK4/6 inhibition. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
82
|
Zeng L, Cao Y, He L, Ding S, Bian XW, Tian G. Metal-ligand coordination nanomaterials for radiotherapy: emerging synergistic cancer therapy. J Mater Chem B 2021; 9:208-227. [PMID: 33215626 DOI: 10.1039/d0tb02294b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiotherapy (RT) plays a central role in curing malignant tumors. However, the treatment outcome is often impeded by low radiation absorption coefficients and radiation resistance of tumors along with normal tissue radio-toxicity. With the development of nanotechnology, nanomaterials in combination with RT offer the possibility to improve the therapeutic efficacy yet reduce side-effects. Metal-ligand coordination nanomaterials, including nanoscale metal-organic frameworks (NMOFs) and nanoscale coordination polymers (NCPs), formed by coordination interactions between inorganic metal ions/clusters with organic bridging ligands, have shown great potential in the field of radiation oncology in recent years in view of their unique advantages including the porous structure, high surface area, periodic frameworks, and diverse selections of both metal ions/clusters and organic ligands. In this review, we summarize the recent advances in NMOF/NCP-mediated synergistic RT in combination with hypoxia relief, chemotherapy, photodynamic therapy, photothermal therapy, chemodynamic therapy or immunotherapy, which emerged in the last 3 years, and describe cooperative enhancement interactions among these synergistic combinations. Moreover, the potential challenges and future prospects of this rapidly growing direction were also addressed.
Collapse
Affiliation(s)
- Lijuan Zeng
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Yuhua Cao
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Shuaishuai Ding
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| | - Gan Tian
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, 400038, China.
| |
Collapse
|
83
|
Jiao X, Sun L, Zhang W, Ren J, Zhang L, Cao Y, Xu Z, Kang Y, Xue P. Engineering oxygen-deficient ZrO 2-x nanoplatform as therapy-activated "immunogenic cell death (ICD)" inducer to synergize photothermal-augmented sonodynamic tumor elimination in NIR-II biological window. Biomaterials 2021; 272:120787. [PMID: 33819815 DOI: 10.1016/j.biomaterials.2021.120787] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022]
Abstract
Nano-zirconia, as an amphoteric semiconductor, has been industrially exploited in photocatalytic reactions and as piezoelectric sensors. However, its biomedical applications, especially in antitumor therapeutics, have been seldom investigated to date. Here, oxygen-deficient zirconia (ZrO2-x)-based nanoplatform with surface PEGylation and cyclic-Arg-Gly-Asp (cRGD) peptide functionalization (ZrO2-x@PEG/cRGD, abbreviated as ZPR) was rationally designed and established for the first time, which was utilized as therapy-activated "immunogenic cell death (ICD)" inducer to boost photothermal-augmented sonodynamic tumor elimination in NIR-II biological window. As-synthesized ZPR nanoparticles (NPs) exhibited intense optical absorbance in the wavelength range of 900-1100 nm, which endowed ZPR NPs with a photothermal conversion efficiency as high as 45.8% for photothermal therapy (PTT). Moreover, owing to the abundant surface oxygen defects, ZPR NPs can serve as a category of high-performance nano-sonosensitizer based on the strengthened separation of electron (e-)/hole (h+) pairs from the energy band under external ultrasound (US) activation. More importantly, cytotoxic reactive oxygen species (ROS) generated from sonodynamic therapy (SDT) can effectively induce immunogenic cell death (ICD), which is regarded to be significant to boost systemic anti-tumor immunity for rendering a complete tumor eradication post-treatment. In vivo experiments on tumor xenografts demonstrated the high therapeutic efficacy upon photothermal-augmented sonodynamic therapy, with the aid of photoacoustic (PA) imaging navigation. Remarkably, the level of inflammatory cytokines, including type I interferon (IFN), tumor necrosis factor α (TNF-α) as well as interleukin (IL-6) were systemically upgraded after NIR-II/US irradiation, verifying the promotion of immunogenicity. Taken together, this study delivers useful insights for extending the applications of zirconia as promising translational medicine for tumor theranostics in the near future.
Collapse
Affiliation(s)
- Xiaodan Jiao
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lihong Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Wei Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Junjie Ren
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lei Zhang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Zhigang Xu
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- State Key Laboratory of Silkworm Genome Biology, School of Materials and Energy, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
84
|
Muluh TA, Chen Z, Li Y, Xiong K, Jin J, Fu S, Wu J. Enhancing Cancer Immunotherapy Treatment Goals by Using Nanoparticle Delivery System. Int J Nanomedicine 2021; 16:2389-2404. [PMID: 33790556 PMCID: PMC8007559 DOI: 10.2147/ijn.s295300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, there has been an incredible increase in research about the abnormal growth of cells (neoplasm), focusing on the management, treatment and preventing reoccurrence. It has been understood that the natural defense system, composed of a variety of immune defensive cells, does not just limit its function in eliminating neoplastic cells, but also controls the growth and spread of tumor cells of different kinds to other parts of the body. Cancer immunotherapy, is a cancer treatment plan that educates the body’s defensive system to forestall, control, and eliminate tumor cells. The effectiveness of immunotherapy is achieved, to its highest efficacy, by the use of nanoparticles (NPs) for precise and timely delivery of immunotherapies to specific targeted neoplasms, with less or no harm to the healthy cells. Immunotherapies have been affirmed in clinical trials as a cancer regimen for various types of cancers, the side effects resulting from imprecise and non-targeted conveyance is well managed with the use of nanoparticles. Nonetheless, we will concentrate on enhancing cancer immunotherapy approaches by the use of nanoparticles for the productivity of antitumor immunity. Nanoparticles will be presented and utilized as an objective immunotherapy delivery system for high exactness and are thus a promising methodology for cancer treatment.
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhuo Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Kang Xiong
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, People's Republic of China
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
85
|
Wang W, Yang X, Li C, Li Y, Wang H, Han X. Immunogenic Cell Death (ICD) of Murine H22 Cells Induced by Lentinan. Nutr Cancer 2021; 74:640-649. [PMID: 33715541 DOI: 10.1080/01635581.2021.1897632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lentinan can lead to apoptosis of tumor cells and improve immune function. However, limited research focused on the immunogenic death regulation mechanism of lentinan on mouse H22 cells. The study aimed to explore the effect of Lentinan on the expression of immunogenic death-related proteins in mice H22 cells. MTT method was used to detect and evaluate the effect of 200-1000 μg/mL lentinan on the survival rate of H22 cells after 24 h, 48 h, and 72 h, respectively. Flow cytometry was employed to collect the apoptotic rate of lentinan at different concentrations (200-800μg/mL) on H22 cells for 48 h, and obtain the apoptotic rate of 600 μg/mL lentinan at different times (12-72 h). The effect of Lentinan on the expression of H22 Immunogenic Cell Death proteins was analyzed by ELISA and HPLC-MS afterward. Results suggest that lentinan cytotoxic and pro-apoptotic have a concentration-dependent manner with the H22 cells. Moreover, the rate of apoptosis increased significantly (P < 0.05) in 24 h. Lentinan can induce the expression of Calreticulin(CRT), High mobility protein 1(HMGB1), ATP and Heat shock protein 70 (HSP70) .Therefore, the antitumor effect of lentinan may be related to the regulation of immunogenic death-related protein expression, which was beneficial to the future development of liver cancer vaccines.
Collapse
Affiliation(s)
- Wen Wang
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xin Yang
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Chong Li
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yandong Li
- Laboratory of Veterinary Drug Residues, Hebei Institute of Veterinary Drugs Control, Shijiazhuang, Hebei provience, PR China
| | - Haibo Wang
- Weifang Xiashan Weitai Biotechnology Co., LTD, Weifang, Shandong Province, PR China
| | - Xue Han
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| |
Collapse
|
86
|
Yang F, Shi K, Hao Y, Jia Y, Liu Q, Chen Y, Pan M, Yuan L, Yu Y, Qian Z. Cyclophosphamide loaded thermo-responsive hydrogel system synergize with a hydrogel cancer vaccine to amplify cancer immunotherapy in a prime-boost manner. Bioact Mater 2021; 6:3036-3048. [PMID: 33778186 PMCID: PMC7960683 DOI: 10.1016/j.bioactmat.2021.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Although neoantigen-based cancer vaccines show great potential in cancer immunotherapy due to their ability to induce effective and long-lasting anti-tumor immunity, their development is hindered by the limitations of neoantigens identification, low immunogenicity, and weak immune response. Cyclophosphamide (CTX) not only directly kills tumors but also causes immunogenic cell death, providing a promising source of antigens for cancer vaccines. Herein, a combined immunotherapy strategy based on temperature-sensitive PLEL hydrogel is designed. First, CTX-loaded hydrogel is injected intratumorally into CT26 bearing mice to prime anti-tumor immunity, and then 3 days later, PLEL hydrogels loaded with CpG and tumor lysates are subcutaneously injected into both groins to further promote anti-tumor immune responses. The results confirm that this combined strategy reduces the toxicity of CTX, and produces the cytotoxic T lymphocyte response to effectively inhibit tumor growth, prolong survival, and significantly improve the tumor cure rate. Moreover, a long-lasting immune memory response is observed in the mice. About 90% of the cured mice survive for at least 60 days after being re-inoculated with tumors, and the distant tumor growth is also well inhibited. Hence, this PLEL-based combination therapy may provide a promising reference for the clinical promotion of chemotherapy combined with cancer vaccines. PLEL based-CTX hydrogel system avoided the rapid clearance of CTX and reduced systemic toxicity. PLEL-assisted tumor lysate vaccine was cheap, safe, and contained all tumor antigens. This strategy promoted the maturation and activation of DCs, enhanced cancer-specific CD8+ T cell responses. PLEL-assisted combination strategy achieved a good tumor inhibition effect and generate a lasting immune memory. . This local administration strategy could kill tumors that could not be detected or removed surgically in the clinic.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yanpeng Jia
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Qingya Liu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yu Chen
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Meng Pan
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Liping Yuan
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yongyang Yu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
87
|
Polymer-based hydrogels with local drug release for cancer immunotherapy. Biomed Pharmacother 2021; 137:111333. [PMID: 33571834 DOI: 10.1016/j.biopha.2021.111333] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy that boosts the body's immune system to treat local and distant metastatic tumors has offered a new treatment option for cancer. However, cancer immunotherapy via systemic administration of immunotherapeutic agents often has two major issues of limited immune responses and potential immune-related adverse events in the clinic. Hydrogels, a class of three-dimensional network biomaterials with unique porous structures can achieve local delivery of drugs into tumors to trigger the antitumor immunity, resulting in amplified immunotherapy at lower dosages. In this review, we summarize the recent development of polymer-based hydrogels as drug release systems for local delivery of various immunotherapeutic agents for cancer immunotherapy. The constructions of polymer-based hydrogels and their local delivery of various drugs in tumors to achieve sole immunotherapy, and chemotherapy-, and phototherapy-combinational immunotherapy are introduced. Furthermore, a brief conclusion is given and existing challenges and further perspectives of polymer-based hydrogels for cancer immunotherapy are discussed.
Collapse
|
88
|
Sun F, Zhu Q, Li T, Saeed M, Xu Z, Zhong F, Song R, Huai M, Zheng M, Xie C, Xu L, Yu H. Regulating Glucose Metabolism with Prodrug Nanoparticles for Promoting Photoimmunotherapy of Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002746. [PMID: 33643795 PMCID: PMC7887571 DOI: 10.1002/advs.202002746] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/19/2020] [Indexed: 05/21/2023]
Abstract
The low immunogenicity, insufficient infiltration of T lymphocytes, and dismal response to immune checkpoint blockade therapy pose major difficulties in immunotherapy of pancreatic cancer. Photoimmunotherapy by photodynamic therapy (PDT) can induce an antitumor immune response by triggering immunogenic cell death in the tumor cells. Notwithstanding, PDT-driven oxygen consumption and microvascular damage can further aggravate hypoxia to exaggerates glycolysis, leading to lactate accumulation and immunosuppressive tumor microenvironment. Herein, a supramolecular prodrug nanoplatform codelivering a photosensitizer and a prodrug of bromodomain-containing protein 4 inhibitor (BRD4i) JQ1 for combinatory photoimmunotherapy of pancreatic cancer are demonstrated. The nanoparticles are fabricated by host-guest complexation between cyclodextrin-grafted hyaluronic acid (HA-CD) and adamantine-conjugated heterodimers of pyropheophorbide a (PPa) and JQ1, respectively. HA can achieve active tumor targeting by recognizing highly expressed CD44 on the surface of pancreatic tumors. PPa-mediated PDT can enhance the immunogenicity of the tumor cells and promote intratumoral infiltration of the cytotoxic T lymphocytes. Meanwhile, JQ1 combats PDT-mediated immune evasion through inhibiting expression of c-Myc and PD-L1, which are key regulators of tumor glycolysis and immune evasion. Collectively, this study presents a novel strategy to enhance photoimmunotherapy of the pancreatic cancer by provoking T cells activation and overcoming adaptive immune resistance.
Collapse
Affiliation(s)
- Fang Sun
- Department of GastroenterologyXinhua HospitalShanghai Jiaotong University School of MedicineShanghai2000092China
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Qiurong Zhu
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Tianliang Li
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Madiha Saeed
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghai200241China
| | - Feisheng Zhong
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Rundi Song
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Manxiu Huai
- Department of GastroenterologyXinhua HospitalShanghai Jiaotong University School of MedicineShanghai2000092China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Cen Xie
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Leiming Xu
- Department of GastroenterologyXinhua HospitalShanghai Jiaotong University School of MedicineShanghai2000092China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Yantai Key Laboratory of Nanomedicine & Advanced PreparationsYantai Institute of Materia MedicaShandong264000China
| |
Collapse
|
89
|
Nanodelivery of immunogenic cell death-inducers for cancer immunotherapy. Drug Discov Today 2020; 26:651-662. [PMID: 33278602 DOI: 10.1016/j.drudis.2020.11.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/22/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
|
90
|
Baeza A, Vallet-Regí M. Mesoporous Silica Nanoparticles as Theranostic Antitumoral Nanomedicines. Pharmaceutics 2020; 12:E957. [PMID: 33050613 PMCID: PMC7601518 DOI: 10.3390/pharmaceutics12100957] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
Nanoparticles have become a powerful tool in oncology not only as carrier of the highly toxic chemotherapeutic drugs but also as imaging contrast agents that provide valuable information about the state of the disease and its progression. The enhanced permeation and retention effect for loaded nanocarriers in tumors allow substantial improvement of selectivity and safety of anticancer nanomedicines. Additionally, the possibility to design stimuli-responsive nanocarriers able to release their payload in response to specific stimuli provide an excellent control on the administered dosage. The aim of this review is not to present a comprehensive revision of the different theranostic mesoporous silica nanoparticles (MSN) which have been published in the recent years but just to describe a few selected examples to offer a panoramic view to the reader about the suitability and effectiveness of these nanocarriers in the oncology field.
Collapse
Affiliation(s)
- Alejandro Baeza
- Dpto. Materiales y Producción Aeroespacial, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Maria Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, Instituto de Investigación Sanitaria, Universidad Complutense de Madrid, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| |
Collapse
|
91
|
Karaosmanoglu S, Zhou M, Shi B, Zhang X, Williams GR, Chen X. Carrier-free nanodrugs for safe and effective cancer treatment. J Control Release 2020; 329:805-832. [PMID: 33045313 DOI: 10.1016/j.jconrel.2020.10.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Clinical applications of many anti-cancer drugs are restricted due to their hydrophobic nature, requiring use of harmful organic solvents for administration, and poor selectivity and pharmacokinetics resulting in off-target toxicity and inefficient therapies. A wide variety of carrier-based nanoparticles have been developed to tackle these issues, but such strategies often fail to encapsulate drug efficiently and require significant amounts of inorganic and/or organic nanocarriers which may cause toxicity problems in the long term. Preparation of nano-formulations for the delivery of water insoluble drugs without using carriers is thus desired, requiring elegantly designed strategies for products with high quality, stability and performance. These strategies include simple self-assembly or involving chemical modifications via coupling drugs together or conjugating them with various functional molecules such as lipids, carbohydrates and photosensitizers. During nanodrugs synthesis, insertion of redox-responsive linkers and tumor targeting ligands endows them with additional characteristics like on-target delivery, and conjugation with immunotherapeutic reagents enhances immune response alongside therapeutic efficacy. This review aims to summarize the methods of making carrier-free nanodrugs from hydrophobic drug molecules, evaluating their performance, and discussing the advantages, challenges, and future development of these strategies.
Collapse
Affiliation(s)
- Sena Karaosmanoglu
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, PR China.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK.
| |
Collapse
|
92
|
|