51
|
Marinović S, Škrtić A, Catela Ivković T, Poljak M, Kapitanović S. Regulation of KRAS protein expression by miR-544a and KRAS-LCS6 polymorphism in wild-type KRAS sporadic colon adenocarcinoma. Hum Cell 2021; 34:1455-1465. [PMID: 34235620 DOI: 10.1007/s13577-021-00576-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
Colorectal carcinoma (CRC) results from the accumulation of genetic mutations and alterations in signaling pathways. KRAS is mutated in 40% of CRC cases and is involved in increased tumor cells proliferation and survival. Although KRAS mutations are a dominant event in CRC tumorigenesis, increased wild-type KRAS expression has a similar effect on accelerated tumor growth. In this study, we investigated the KRAS status in correlation with clinicopathological features in sporadic CRC and more importantly the role of let-7a-5p and miR-544a-3p in the regulation of wild-type KRAS protein expression in the tumor center (T1) and invasive tumor front (T2). Analysis showed that 39.1% of tumor samples had KRAS mutations. In wild-type KRAS tumors, 62.0% were positive for KRAS protein expression and there was a higher percentage of KRAS-positive tumor cells and a higher intensity of immunohistochemical reaction in T2 than in T1 samples. This could not be attributed to differences in KRAS mRNA levels, suggesting regulation via miR-544a-3p expression which was significantly decreased in T2 samples. Furthermore, we demonstrated that tumor samples carrying the KRAS-LCS6 variant allele had significantly higher protein expression of the wild-type KRAS. Our results suggest the role of the KRAS-LCS6 polymorphism and miR-544a-3p expression in the regulation of wild-type KRAS protein expression in sporadic CRC.
Collapse
Affiliation(s)
- Sonja Marinović
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Anita Škrtić
- Department of Pathology, Clinical Hospital Merkur, Zagreb, Croatia
| | - Tina Catela Ivković
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mirko Poljak
- Department of Surgery, Clinical Hospital Merkur, Zagreb, Croatia
| | - Sanja Kapitanović
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
52
|
Khan MT, Irlam-Jones JJ, Pereira RR, Lane B, Valentine HR, Aragaki K, Dyrskjøt L, McConkey DJ, Hoskin PJ, Choudhury A, West CML. A miRNA signature predicts benefit from addition of hypoxia-modifying therapy to radiation treatment in invasive bladder cancer. Br J Cancer 2021; 125:85-93. [PMID: 33846523 PMCID: PMC8257670 DOI: 10.1038/s41416-021-01326-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND miRNAs are promising biomarkers in oncology as their small size makes them less susceptible to degradation than mRNA in FFPE tissue. We aimed to derive a hypoxia-associated miRNA signature for bladder cancer. METHODS Taqman miRNA array cards identified miRNA seed genes induced under hypoxia in bladder cancer cell lines. A signature was derived using feature selection methods in a TCGA BLCA training data set. miRNA expression data were generated for 190 tumours from the BCON Phase 3 trial and used for independent validation. RESULTS A 14-miRNA hypoxia signature was derived, which was prognostic for poorer overall survival in the TCGA BLCA cohort (n = 403, p = 0.001). Univariable analysis showed that the miRNA signature predicted an overall survival benefit from having carbogen-nicotinamide with radiotherapy (HR = 0.30, 95% CI 0.094-0.95, p = 0.030) and performed similarly to a 24-gene mRNA signature (HR = 0.47, 95% CI 0.24-0.92, p = 0.025). Combining the signatures improved performance (HR = 0.26, 95% CI 0.08-0.82, p = 0.014) with borderline significance for an interaction test (p = 0.065). The interaction test was significant for local relapse-free survival LRFS (p = 0.033). CONCLUSION A 14-miRNA hypoxia signature can be used with an mRNA hypoxia signature to identify bladder cancer patients benefitting most from having carbogen and nicotinamide with radiotherapy.
Collapse
Affiliation(s)
- Mairah T. Khan
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Joely J. Irlam-Jones
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Ronnie Rodrigues Pereira
- grid.5379.80000000121662407Translational Oncogenomics, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, University of Manchester, Manchester, UK
| | - Brian Lane
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Helen R. Valentine
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Kai Aragaki
- grid.21107.350000 0001 2171 9311Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD USA
| | - Lars Dyrskjøt
- grid.154185.c0000 0004 0512 597XDepartment of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David J. McConkey
- grid.21107.350000 0001 2171 9311Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD USA
| | - Peter J. Hoskin
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Ananya Choudhury
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Catharine M. L. West
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| |
Collapse
|
53
|
Mueller S, Dennison G, Liu S. An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6930. [PMID: 34203568 PMCID: PMC8297295 DOI: 10.3390/ijerph18136930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 12/23/2022]
Abstract
Although cancer is traditionally considered a genetic disease, the epigenetic abnormalities, including DNA hypermethylation, histone deacetylation, and/or microRNA dysregulation, have been demonstrated as a hallmark of cancer. Compared with gene mutations, aberrant epigenetic changes occur more frequently, and cellular epigenome is more susceptible to change by environmental factors. Excess cancer risks are positively associated with exposure to occupational and environmental chemical carcinogens, including those from gasoline combustion exhausted in vehicles. Of note, previous studies proposed particulate matter index (PMI) as a measure for gasoline sooting tendency, and showed that, compared with the other molecules in gasoline, 1,2,4-Trimethylbenzene, 2-methylnaphthalene and toluene significantly contribute to PMI of the gasoline blends. Mechanistically, both epigenome and genome are important in carcinogenicity, and the genotoxicity of chemical agents has been thoroughly studied. However, less effort has been put into studying the epigenotoxicity. Moreover, as the blending of ethanol into gasoline substitutes for carcinogens, like benzene, toluene, xylene, butadiene, and polycyclic aromatic hydrocarbons, etc., a reduction of secondary aromatics has been achieved in the atmosphere. This may lead to diminished cancer initiation and progression through altered cellular epigenetic landscape. The present review summarizes the most important findings in the literature on the association between exposures to carcinogens from gasoline combustion, cancer epigenetics and the potential epigenetic impacts of biofuels.
Collapse
Affiliation(s)
- Steffen Mueller
- Energy Resources Center, The University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gail Dennison
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| |
Collapse
|
54
|
Forbes TA, Brown BD, Lai C. Therapeutic RNA interference: A novel approach to the treatment of primary hyperoxaluria. Br J Clin Pharmacol 2021; 88:2525-2538. [PMID: 34022071 PMCID: PMC9291495 DOI: 10.1111/bcp.14925] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/19/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
RNA interference (RNAi) is a natural biological pathway that inhibits gene expression by targeted degradation or translational inhibition of cytoplasmic mRNA by the RNA induced silencing complex. RNAi has long been exploited in laboratory research to study the biological consequences of the reduced expression of a gene of interest. More recently RNAi has been demonstrated as a therapeutic avenue for rare metabolic diseases. This review presents an overview of the cellular RNAi machinery as well as therapeutic RNAi design and delivery. As a clinical example we present primary hyperoxaluria, an ultrarare inherited disease of increased hepatic oxalate production which leads to recurrent calcium oxalate kidney stones. In the most common form of the disease (Type 1), end‐stage kidney disease occurs in childhood or young adulthood, often necessitating combined kidney and liver transplantation. In this context we discuss nedosiran (Dicerna Pharmaceuticals, Inc.) and lumasiran (Alnylam Pharmaceuticals), which are both novel RNAi therapies for primary hyperoxaluria that selectively reduce hepatic expression of lactate dehydrogenase and glycolate oxidase respectively, reducing hepatic oxalate production and urinary oxalate levels. Finally, we consider future optimizations advances in RNAi therapies.
Collapse
Affiliation(s)
- Thomas A Forbes
- Royal Children's Hospital, Parkville, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia.,University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
55
|
Kvokačková B, Remšík J, Jolly MK, Souček K. Phenotypic Heterogeneity of Triple-Negative Breast Cancer Mediated by Epithelial-Mesenchymal Plasticity. Cancers (Basel) 2021; 13:2188. [PMID: 34063254 PMCID: PMC8125677 DOI: 10.3390/cancers13092188] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast carcinoma known for its unusually aggressive behavior and poor clinical outcome. Besides the lack of molecular targets for therapy and profound intratumoral heterogeneity, the relatively quick overt metastatic spread remains a major obstacle in effective clinical management. The metastatic colonization of distant sites by primary tumor cells is affected by the microenvironment, epigenetic state of particular subclones, and numerous other factors. One of the most prominent processes contributing to the intratumoral heterogeneity is an epithelial-mesenchymal transition (EMT), an evolutionarily conserved developmental program frequently hijacked by tumor cells, strengthening their motile and invasive features. In response to various intrinsic and extrinsic stimuli, malignant cells can revert the EMT state through the mesenchymal-epithelial transition (MET), a process that is believed to be critical for the establishment of macrometastasis at secondary sites. Notably, cancer cells rarely undergo complete EMT and rather exist in a continuum of E/M intermediate states, preserving high levels of plasticity, as demonstrated in primary tumors and, ultimately, in circulating tumor cells, representing a simplified element of the metastatic cascade. In this review, we focus on cellular drivers underlying EMT/MET phenotypic plasticity and its detrimental consequences in the context of TNBC cancer.
Collapse
Affiliation(s)
- Barbora Kvokačková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Ján Remšík
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
56
|
Marima R, Hull R, Mathabe K, Setlai B, Batra J, Sartor O, Mehrotra R, Dlamini Z. Prostate cancer racial, socioeconomic, geographic disparities: targeting the genomic landscape and splicing events in search for diagnostic, prognostic and therapeutic targets. Am J Cancer Res 2021; 11:1012-1030. [PMID: 33948343 PMCID: PMC8085879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer (PCa) is one of the leading causes of deaths in men globally. This is a heterogeneous and complex disease that urgently warrants further insight into its pathology. Developed countries have thus far the highest PCa incidence rates, with comparatively low mortality rates. Even though PCa in the Asian population seems to have high incidence and mortality rates, the African countries are emerging as the focal center for this disease. It has also been reported that the Sub-Saharan (SSA) countries have both the highest incidence and mortality rates. To date, few studies have reported the link between PCa and African populations. Adequate evidence is still missing to fully comprehend this relationship. While it has been brought to attention that racial, geographical and socioeconomic status are contributing factors, men of African descent across the globe, irrespective of their geographical position have higher PCa incidence and mortality rates compared to their white counterparts. To date, hormone therapy is the mainstay treatment of PCa, while the dysregulation of androgen receptor (AR) signaling is a hallmark of PCa. One of the emerging problems with this therapeutic approach is resistance to antiandrogens, and that AR splice isoforms implicated in the progression of PCa lack the therapeutic ligand-binding domain (LBD) target. AR splice variants targeted therapy is emerging and in clinical trials. Leveraging PCa transcriptomics is key towards PCa precision medicine. The aim of this review is to outline the PCa epidemiology globally and in Africa, PCa associated risk factors, discuss AR signaling and PCa mechanisms, the role of dysregulated splicing in PCa as novel prognostic indicators and therapeutic targets.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute (PACRI), University of PretoriaHatfield 0028, South Africa
| | - Rodney Hull
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute (PACRI), University of PretoriaHatfield 0028, South Africa
| | - Kgomotso Mathabe
- Department of Urology, Faculty of Health Sciences, University of PretoriaHatfield 0028, South Africa
| | - Botle Setlai
- Department of Surgery, Faculty of Health Sciences, University of PretoriaHatfield 0028, South Africa
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre - Queensland, Translational Research InstituteBrisbane 4102, Australia
- Cancer Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane 4102, Australia
| | - Oliver Sartor
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute (PACRI), University of PretoriaHatfield 0028, South Africa
- Tulane Cancer Center, Tulane Medical SchoolNew Orleans, LA 70112, United States
| | - Ravi Mehrotra
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute (PACRI), University of PretoriaHatfield 0028, South Africa
- India Cancer Research Consortium (ICMR-DHR) Department of Health ResearchRed Cross Road, New Delhi 110001, India
| | - Zodwa Dlamini
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute (PACRI), University of PretoriaHatfield 0028, South Africa
| |
Collapse
|
57
|
Turunen T, Hernández de Sande A, Pölönen P, Heinäniemi M. Genome-wide analysis of primary microRNA expression using H3K36me3 ChIP-seq data. Comput Struct Biotechnol J 2021; 19:1944-1955. [PMID: 33995896 PMCID: PMC8082160 DOI: 10.1016/j.csbj.2021.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 10/29/2022] Open
Abstract
MicroRNAs are key players in gene regulatory networks controlling cell homeostasis. Their altered expression has been previously linked to disease outcomes and microRNAs thus serve as biomarkers for disease diagnostics. However, their synthesis and its transcriptional regulation have been challenging to investigate. In this study, we validated the use of H3K36me3 histone modification for the quantification of microRNA transcription levels using data from the ENCODE Consortium and then applied this approach to provide new insight into the cell-type-specific regulation in tissues, cell line models and cardiac disease. In cardiomyocytes derived from patients suffering from septal defects, carrying a G296S mutation in the transcription factor GATA4, we show that microRNA gene transcription is altered in cardiomyocytes carrying this mutation and coincides with novel super-enhancers formed within regulatory domains defined using chromatin interaction profiles. The most prominently elevated primary transcript encodes for let-7a and miR-100 that may target genes in the Hippo signaling pathway. Collectively, our work presents a methodology to quantify microRNA gene expression using histone marker data and paves the way for functional studies of cell-type-specific transcriptional regulation occurring in disease pathology.
Collapse
Affiliation(s)
- Tanja Turunen
- School of Medicine, University of Eastern Finland, Kuopio FI-70200, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu FI-80101, Finland
| | | | - Petri Pölönen
- School of Medicine, University of Eastern Finland, Kuopio FI-70200, Finland
| | - Merja Heinäniemi
- School of Medicine, University of Eastern Finland, Kuopio FI-70200, Finland
| |
Collapse
|
58
|
Ku A, Fredsøe J, Sørensen KD, Borre M, Evander M, Laurell T, Lilja H, Ceder Y. High-Throughput and Automated Acoustic Trapping of Extracellular Vesicles to Identify microRNAs With Diagnostic Potential for Prostate Cancer. Front Oncol 2021; 11:631021. [PMID: 33842337 PMCID: PMC8029979 DOI: 10.3389/fonc.2021.631021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/29/2021] [Indexed: 12/21/2022] Open
Abstract
Molecular profiling of extracellular vesicles (EVs) offers novel opportunities for diagnostic applications, but the current major obstacle for clinical translation is the lack of efficient, robust, and reproducible isolation methods. To bridge that gap, we developed a microfluidic, non-contact, and low-input volume compatible acoustic trapping technology for EV isolation that enabled downstream small RNA sequencing. In the current study, we have further automated the acoustic microfluidics-based EV enrichment technique that enables us to serially process 32 clinical samples per run. We utilized the system to enrich EVs from urine collected as the first morning void from 207 men referred to 10-core prostate biopsy performed the same day. Using automated acoustic trapping, we successfully enriched EVs from 199/207 samples (96%). After RNA extraction, size selection, and library preparation, a total of 173/199 samples (87%) provided sufficient materials for next-generation sequencing that generated an average of 2 × 106 reads per sample mapping to the human reference genome. The predominant RNA species identified were fragments of long RNAs such as protein coding and retained introns, whereas small RNAs such as microRNAs (miRNA) accounted for less than 1% of the reads suggesting that partially degraded long RNAs out-competed miRNAs during sequencing. We found that the expression of six miRNAs was significantly different (Padj < 0.05) in EVs isolated from patients found to have high grade prostate cancer [ISUP 2005 Grade Group (GG) 4 or higher] compared to those with GG3 or lower, including those with no evidence of prostate cancer at biopsy. These included miR-23b-3p, miR-27a-3p, and miR-27b-3p showing higher expression in patients with GG4 or high grade prostate cancer, whereas miR-1-3p, miR-10a-5p, and miR-423-3p had lower expression in the GG4 PCa cases. Cross referencing our differentially expressed miRNAs to two large prostate cancer datasets revealed that the putative tumor suppressors miR-1, miR-23b, and miR-27a are consistently deregulated in prostate cancer. Taken together, this is the first time that our automated microfluidic EV enrichment technique has been found to be capable of enriching EVs on a large scale from 900 μl of urine for small RNA sequencing in a robust and disease discriminatory manner.
Collapse
Affiliation(s)
- Anson Ku
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark & Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark & Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michael Borre
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark & Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikael Evander
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Hans Lilja
- Department of Translational Medicine, Lund University, Malmö, Sweden.,Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Yvonne Ceder
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
59
|
Stuparević I, Novačić A, Rahmouni AR, Fernandez A, Lamb N, Primig M. Regulation of the conserved 3'-5' exoribonuclease EXOSC10/Rrp6 during cell division, development and cancer. Biol Rev Camb Philos Soc 2021; 96:1092-1113. [PMID: 33599082 DOI: 10.1111/brv.12693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
The conserved 3'-5' exoribonuclease EXOSC10/Rrp6 processes and degrades RNA, regulates gene expression and participates in DNA double-strand break repair and control of telomere maintenance via degradation of the telomerase RNA component. EXOSC10/Rrp6 is part of the multimeric nuclear RNA exosome and interacts with numerous proteins. Previous clinical, genetic, biochemical and genomic studies revealed the protein's essential functions in cell division and differentiation, its RNA substrates and its relevance to autoimmune disorders and oncology. However, little is known about the regulatory mechanisms that control the transcription, translation and stability of EXOSC10/Rrp6 during cell growth, development and disease and how these mechanisms evolved from yeast to human. Herein, we provide an overview of the RNA- and protein expression profiles of EXOSC10/Rrp6 during cell division, development and nutritional stress, and we summarize interaction networks and post-translational modifications across species. Additionally, we discuss how known and predicted protein interactions and post-translational modifications influence the stability of EXOSC10/Rrp6. Finally, we explore the idea that different EXOSC10/Rrp6 alleles, which potentially alter cellular protein levels or affect protein function, might influence human development and disease progression. In this review we interpret information from the literature together with genomic data from knowledgebases to inspire future work on the regulation of this essential protein's stability in normal and malignant cells.
Collapse
Affiliation(s)
- Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - A Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR4301 du CNRS, Orléans, 45071, France
| | - Anne Fernandez
- Institut de Génétique Humaine, UMR 9002 CNRS, Montpellier, France
| | - Ned Lamb
- Institut de Génétique Humaine, UMR 9002 CNRS, Montpellier, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, 35000, France
| |
Collapse
|
60
|
Wu X, Cheng YSL, Matthen M, Yoon A, Schwartz GK, Bala S, Taylor AM, Momen-Heravi F. Down-regulation of the tumor suppressor miR-34a contributes to head and neck cancer by up-regulating the MET oncogene and modulating tumor immune evasion. J Exp Clin Cancer Res 2021; 40:70. [PMID: 33596979 PMCID: PMC7890893 DOI: 10.1186/s13046-021-01865-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND MicroRNAs (miRs) have been shown to play an important role in tumorigenesis, including in head and neck squamous cell carcinoma (HNSCC). The miR-34 family is thought to play a role in tumor suppression, but the exact mechanism of their action in HNSCC is not well understood. Moreover, the impact of chromosomal changes and mutation status on miR-34a expression remains unknown. METHODS Differential expression of miR-34a, MET, and genomic alterations were assessed in the Cancer Genome Atlas (TCGA) datasets as well as in primary HNSCC and adjacent normal tissue. The biological functions of miR-34a in HNSCC were investigated in samples derived from primary human tumors and HNSCC cell lines. The expression of MET was evaluated using immunohistochemistry, and the molecular interaction of miR-34a and MET were demonstrated by RNA pulldown, RNA immunoprecipitation, luciferase reporter assay, and rescue experiments. Lastly, locked nucleic acid (LNA) miRs in mouse xenograft models were used to evaluate the clinical relevance of miR-34a in HNSCC tumor growth and modulation of the tumor microenvironment in vivo. RESULTS Chromosome arm 1p loss and P53 mutations are both associated with lower levels of miR-34a. In HNSCC, miR-34a acts as a tumor suppressor and physically interacts with and functionally targets the proto-oncogene MET. Our studies found that miR-34a suppresses HNSCC carcinogenesis, at least in part, by downregulating MET, consequently inhibiting HNSCC proliferation. Consistent with these findings, administration of LNA-miR-34a in an in vivo model of HNSCC leads to diminished HNSCC cell proliferation and tumor burden in vitro and in vivo, represses expression of genes involved in epithelial-mesenchymal transition, and negates the oncogenic effect of MET in mouse tumors. Consistently, LNA-miR-34a induced a decreased number of immunosuppressive PDL1-expressing tumor-associated macrophages in the tumor microenvironment. In HNSCC patient samples, higher levels of miR-34a are significantly associated with a higher frequency of Th1 cells and CD8 naïve T cells. CONCLUSIONS Our results demonstrate that miR-34a directly targets MET and maintains anti-tumor immune activity. We propose miR-34a as a potential new therapeutic approach for HNSCC.
Collapse
Affiliation(s)
- Xun Wu
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA
- Department of Maxillofacial Surgery, Guangxi Medical University College of Stomatology, Nanning, Guangxi, China
| | - Yi-Shing Lisa Cheng
- Department of Diagnostic Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Mathew Matthen
- Department of Medicine Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela Yoon
- Division of Pathology, Columbia University College of Dental Medicine, New York, NY, USA
| | - Gary K Schwartz
- Department of Medicine Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Fatemeh Momen-Heravi
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
61
|
Grambozov B, Wass R, Stana M, Gerum S, Karner J, Fastner G, Studnicka M, Sedlmayer F, Zehentmayr F. Impact of reirradiation, chemotherapy, and immunotherapy on survival of patients with recurrent lung cancer: A single-center retrospective analysis. Thorac Cancer 2021; 12:1162-1170. [PMID: 33586228 PMCID: PMC8046076 DOI: 10.1111/1759-7714.13884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background Given the limited curative treatment options for recurrent lung cancer patients, the aim of our retrospective study was to investigate whether these patients would benefit in terms of overall survival (OS) by adding immunotherapy to high‐dose reirradiation. Materials and methods Between 2013 and 2019, 47 consecutive patients with in‐field tumor recurrence underwent high‐dose thoracic reirradiation at our institute. Twenty patients (43%) received high‐dose reirradiation only, while 27/47 (57%) additionally had systemic therapy (immunotherapy and/or chemotherapy). With the exception of one patent, the interval between first and second radiation was at least 9 months. All patients had an Eastern cooperative oncology group ≤2. The diagnostic work‐up included a mandatory fluorodeoxyglucose‐positron emission tomography‐computed tomography scan and histological verification. The primary endpoint was OS after completion of the second course of irradiation. Results In the whole cohort of 47 patients, the median overall survival (mOS) after reirradiation was 18.9 months (95% confidence interval [CI] 16.5–21.3 months), while in the subgroup of 27 patients who received additional systemic treatment after reirradiation, mOS amounted to 21.8 months (95% CI 17.8–25.8 months). Within this group the comparison between reirradiation combined with either immunotherapy (n = 21) or chemotherapy (n = 6) revealed a difference in OS, which was in favor of the first (log‐rank p value = 0.063). Three patients (11%) experienced acute side effects and one (4%) showed a late hemorrhage grade 3. Conclusion Patients who received immunotherapy and reirradiation lived longer than those who did not receive immunotherapy.
Collapse
Affiliation(s)
- Brane Grambozov
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria
| | - Romana Wass
- Department of Pneumology, Paracelsus Medical University, SALK, Salzburg, Austria.,Department of Pulmonology, Kepler University Hospital, Linz, Austria
| | - Markus Stana
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria
| | - Sabine Gerum
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria
| | - Josef Karner
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria
| | - Gerd Fastner
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria
| | - Michael Studnicka
- Department of Pneumology, Paracelsus Medical University, SALK, Salzburg, Austria
| | - Felix Sedlmayer
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria.,radART - Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University, Salzburg, Austria
| | - Franz Zehentmayr
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Salzburg, Austria.,radART - Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
62
|
Ballesteros S, Barguilla I, Marcos R, Hernández A. Nanoceria, alone or in combination with cigarette-smoke condensate, induce transforming and epigenetic cancer-like features in vitro. Nanomedicine (Lond) 2021; 16:293-305. [PMID: 33501851 DOI: 10.2217/nnm-2020-0367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To detect cell transformation effects of nanoceria after long-term exposure (up to 6 weeks) and to determine their potential interactions with cigarette smoke condensate, as a model of environmental carcinogenic pollutant. Materials & methods: Human bronchial epithelial BEAS-2 cells were used to determine transformation effects (invasion and tumorspheres induction), as well as changes in the expression of a battery of miRNAs related to the carcinogenesis process. Results: Nanoceria- and co-exposed cells exhibit cell transforming potential, with significantly increased invasion and tumorsphere formation abilities. Likewise, these exposures produced a high impact on the battery of miRNAs used. Conclusion: Nanoceria exposure induces cell-transformation and shows a positive interaction with the cell-transforming effects of cigarette smoke condensate. Besides, cerium dioxide nanoparticles and the co-exposure produced potential toxicity at the transcriptome level, which is related to tumorigenesis.
Collapse
Affiliation(s)
- Sandra Ballesteros
- Department of Genetics & Microbiology, Group of Mutagenesis, Universitat Autònoma de Barcelona, Spain
| | - Irene Barguilla
- Department of Genetics & Microbiology, Group of Mutagenesis, Universitat Autònoma de Barcelona, Spain
| | - Ricard Marcos
- Department of Genetics & Microbiology, Group of Mutagenesis, Universitat Autònoma de Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Alba Hernández
- Department of Genetics & Microbiology, Group of Mutagenesis, Universitat Autònoma de Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
63
|
Zhao J, Song X, Xu T, Yang Q, Liu J, Jiang B, Wu J. Identification of Potential Prognostic Competing Triplets in High-Grade Serous Ovarian Cancer. Front Genet 2021; 11:607722. [PMID: 33519912 PMCID: PMC7839966 DOI: 10.3389/fgene.2020.607722] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing lncRNA-associated competing triplets were found to play important roles in cancers. With the accumulation of high-throughput sequencing data in public databases, the size of available tumor samples is becoming larger and larger, which introduces new challenges to identify competing triplets. Here, we developed a novel method, called LncMiM, to detect the lncRNA–miRNA–mRNA competing triplets in ovarian cancer with tumor samples from the TCGA database. In LncMiM, non-linear correlation analysis is used to cover the problem of weak correlations between miRNA–target pairs, which is mainly due to the difference in the magnitude of the expression level. In addition, besides the miRNA, the impact of lncRNA and mRNA on the interactions in triplets is also considered to improve the identification sensitivity of LncMiM without reducing its accuracy. By using LncMiM, a total of 847 lncRNA-associated competing triplets were found. All the competing triplets form a miRNA–lncRNA pair centered regulatory network, in which ZFAS1, SNHG29, GAS5, AC112491.1, and AC099850.4 are the top five lncRNAs with most connections. The results of biological process and KEGG pathway enrichment analysis indicates that the competing triplets are mainly associated with cell division, cell proliferation, cell cycle, oocyte meiosis, oxidative phosphorylation, ribosome, and p53 signaling pathway. Through survival analysis, 107 potential prognostic biomarkers are found in the competing triplets, including FGD5-AS1, HCP5, HMGN4, TACC3, and so on. LncMiM is available at https://github.com/xiaofengsong/LncMiM.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Tianyi Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qichang Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Bin Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
64
|
Li K, Chen J, Lou X, Li Y, Qian B, Xu D, Wu Y, Ma S, Zhang D, Cui W. HNRNPA2B1 Affects the Prognosis of Esophageal Cancer by Regulating the miR-17-92 Cluster. Front Cell Dev Biol 2021; 9:658642. [PMID: 34277606 PMCID: PMC8278577 DOI: 10.3389/fcell.2021.658642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification in eukaryotes. Accumulating evidence suggests that dysregulation of m6A modification significantly correlates with tumorigenesis and progression. In this study, we observed an increased expression and positive correlations of all 25 m6A regulators in esophageal cancer (ESCA) data obtained from the TCGA database. Through expression profiling of these regulators, a prognostic score model containing HNRNPA2B1, ALKBH5, and HNRNPG was established, and the high-risk subgroup exhibited strong positive correlations with ESCA progression and outcome. The risk score obtained from this model may represent an independent predictor of ESCA prognosis. Notably, the gene most frequently associated with increased risk was HNRNPA2B1; in ESCA, the increased expression of this gene alone predicted poor prognosis by affecting tumor-promoting signaling pathways through miR-17-92 cluster. An experimental study demonstrated that elevated HNRNPA2B1 expression was positively associated with distant metastasis and lymph node stage, and predicted the poor outcomes of ESCA patients. Knockdown of HNRNPA2B1 significantly decreased the expression of miR-17, miR-18a, miR-20a, miR-93, and miR-106b and inhibited the proliferation of ESCA cells. Therefore, our study indicated that the dynamic changes in 25 m6A regulators were associated with the clinical features and prognosis of patients with ESCA. Importantly, HNRNPA2B1 alone may affect the prognosis of patients with ESCA by regulating the miR-17-92 cluster.
Collapse
Affiliation(s)
- Kexin Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiongyu Chen
- Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoying Lou
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiling Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Benheng Qian
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danfei Xu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Wu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaohui Ma
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Donghong Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wei Cui,
| | - Wei Cui
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Donghong Zhang,
| |
Collapse
|
65
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
66
|
Molecular characterization of chromophobe renal cell carcinoma reveals mTOR pathway alterations in patients with poor outcome. Mod Pathol 2020; 33:2580-2590. [PMID: 32616874 DOI: 10.1038/s41379-020-0607-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023]
Abstract
Chromophobe renal cell carcinoma (chRCC) is a histologically and molecularly distinct class of rare renal tumor. TCGA studies revealed low mutational burden, with only TP53 and PTEN recurrently mutated, and discovered alterations in TERT promoter and in the electron transport chain Complex I genes. However, knowledge on drug targetable genes is limited and treatments at metastatic stage do not follow a molecular rationale. In a large series of 92 chRCC enriched with metastatic cases, we performed an in-depth characterization of mTOR pathway alterations through targeted NGS and immunohistochemistry (IHC) of phospho-S6, tuberin, and PTEN. Mutations in mitochondria, telomere maintenance and other renal cancer related genes and p53 IHC, were also assessed. The impact on metastasis development and disease specific survival was determined, using TCGA-KICH series (n = 65) for validation. mTOR pathway mutations (MTOR, TSC1, TSC2) were present in 17% of primary tumors, most of them being classified as pathogenic. Mutations were associated with positive IHC staining of phospho-S6 and PTEN (P = 0.009 and P = 0.001, respectively) and with chRCC eosinophilic variant (P = 0.039), supporting a biological relevance of the pathway. mTOR pathway mutations were associated with worse clinical outcomes. Survival analysis gave a hazard ratio of 5.5 (P = 0.027), and this association was confirmed in TCGA-KICH (HR = 10.3, P = 0.006). TP53 mutations were enriched in metastatic cases (P = 0.018), and mutations in telomere maintenance genes showed a trend in the same direction. p53 IHC staining pattern was associated with the underlying TP53 defect, and negative PTEN IHC staining (82% of cases) suggested PTEN loss as a chRCC hallmark. In conclusion, our study provides with novel genomic knowledge in chRCC and identifies novel markers of poor survival. Furthermore, this is the first study showing that mTOR pathway mutations correlate with poor prognosis, and may help to identify patients with increased sensitivity to mTOR inhibitors.
Collapse
|
67
|
Zellinger B, Bodenhofer U, Engländer IA, Kronberger C, Strasser P, Grambozov B, Fastner G, Stana M, Reitsamer R, Sotlar K, Sedlmayer F, Zehentmayr F. Hsa-miR-375/RASD1 Signaling May Predict Local Control in Early Breast Cancer. Genes (Basel) 2020; 11:genes11121404. [PMID: 33255991 PMCID: PMC7759924 DOI: 10.3390/genes11121404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Background: In order to characterize the various subtypes of breast cancer more precisely and improve patients selection for breast conserving therapy (BCT), molecular profiling has gained importance over the past two decades. MicroRNAs, which are small non-coding RNAs, can potentially regulate numerous downstream target molecules and thereby interfere in carcinogenesis and treatment response via multiple pathways. The aim of the current two-phase study was to investigate whether hsa-miR-375-signaling through RASD1 could predict local control (LC) in early breast cancer. Results: The patient and treatment characteristics of 81 individuals were similarly distributed between relapse (n = 27) and control groups (n = 54). In the pilot phase, the primary tumors of 28 patients were analyzed with microarray technology. Of the more than 70,000 genes on the chip, 104 potential hsa-miR-375 target molecules were found to have a lower expression level in relapse patients compared to controls (p-value < 0.2). For RASD1, a hsa-miR-375 binding site was predicted by an in silico search in five mRNA-miRNA databases and mechanistically proven in previous pre-clinical studies. Its expression levels were markedly lower in relapse patients than in controls (p-value of 0.058). In a second phase, this finding could be validated in an independent set of 53 patients using ddPCR. Patients with enhanced levels of hsa-miR-375 compared to RASD1 had a higher probability of local relapse than those with the inverse expression pattern of the two markers (log-rank test, p-value = 0.069). Conclusion: This two-phase study demonstrates that hsa-miR-375/RASD1 signaling is able to predict local control in early breast cancer patients, which—to our knowledge—is the first clinical report on a miR combined with one of its downstream target proteins predicting LC in breast cancer.
Collapse
Affiliation(s)
- Barbara Zellinger
- radART—Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.Z.); (I.A.E.); (F.S.)
- Department of Pathology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (C.K.); (K.S.)
| | - Ulrich Bodenhofer
- School of Informatics, Communications and Media, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria;
- Institute for Machine Learning, Campus Science Park 3, Johannes Kepler University, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Immanuela A. Engländer
- radART—Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.Z.); (I.A.E.); (F.S.)
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.G.); (G.F.); (M.S.)
| | - Cornelia Kronberger
- Department of Pathology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (C.K.); (K.S.)
| | - Peter Strasser
- Department of Laboratory Medicine, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria;
| | - Brane Grambozov
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.G.); (G.F.); (M.S.)
| | - Gerd Fastner
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.G.); (G.F.); (M.S.)
| | - Markus Stana
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.G.); (G.F.); (M.S.)
| | - Roland Reitsamer
- Department of Gynecology and Obstetrics, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria;
| | - Karl Sotlar
- Department of Pathology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (C.K.); (K.S.)
| | - Felix Sedlmayer
- radART—Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.Z.); (I.A.E.); (F.S.)
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.G.); (G.F.); (M.S.)
| | - Franz Zehentmayr
- radART—Institute for Research and Development on Advanced Radiation Technologies, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.Z.); (I.A.E.); (F.S.)
- Department of Radiation Oncology, Paracelsus Medical University, SALK, Müllner Hauptstrasse 48, 5020 Salzburg, Austria; (B.G.); (G.F.); (M.S.)
- Correspondence: ; Tel.: +43-57255-58915
| |
Collapse
|
68
|
A "Lymphocyte MicroRNA Signature" as Predictive Biomarker of Immunotherapy Response and Plasma PD-1/PD-L1 Expression Levels in Patients with Metastatic Renal Cell Carcinoma: Pointing towards Epigenetic Reprogramming. Cancers (Basel) 2020; 12:cancers12113396. [PMID: 33207823 PMCID: PMC7697734 DOI: 10.3390/cancers12113396] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary MicroRNAs are small molecules of non-coding RNAs which regulate gene expression at the post-transcriptional level. Normal miRNA expression and function can be deregulated in cancer. The comprehensive molecular characterization of Renal Cell Carcinoma shows several genes silenced and signaling pathways deregulated by epigenetic modifications, such as the abnormal expression of miRNAs. They can be secreted from malignant cells in whole-blood, plasma, serum, and urine samples, making miRNAs potential non-invasive tumor biomarkers. However, if a single miRNA can show low discriminatory power, the combination of miRNAs in a “miRNA signature”, identified in the peripheral lymphocytes of patients, could function better with much higher probability to predict the response to immunotherapy and to discriminate responders from non-responders patients already at therapy baseline. Abstract Introduction of checkpoint inhibitors resulted in durable responses and improvements in overall survival in advanced RCC patients, but the treatment efficacy is widely variable, and a considerable number of patients are resistant to PD-1/PD-L1 inhibition. This variability of clinical response makes necessary the discovery of predictive biomarkers for patient selection. Previous findings showed that the epigenetic modifications, including an extensive microRNA-mediated regulation of tumor suppressor genes, are key features of RCC. Based on this biological background, we hypothesized that a miRNA expression profile directly identified in the peripheral lymphocytes of the patients before and after the nivolumab administration could represent a step toward a real-time monitoring of the dynamic changes during cancer evolution and treatment. Interestingly, we found a specific subset of miRNAs, called “lymphocyte miRNA signature”, specifically induced in long-responder patients (CR, PR, or SD to nivolumab >18 months). Focusing on the clinical translational potential of miRNAs in controlling the expression of immune checkpoints, we identified the association between the plasma levels of soluble PD-1/PD-L1 and expression of some lymphocyte miRNAs. These findings could help the development of novel dynamic predictive biomarkers urgently needed to predict the potential response to immunotherapy and to guide clinical decision-making in RCC patients.
Collapse
|
69
|
Levy-Jurgenson A, Tekpli X, Kristensen VN, Yakhini Z. Spatial transcriptomics inferred from pathology whole-slide images links tumor heterogeneity to survival in breast and lung cancer. Sci Rep 2020; 10:18802. [PMID: 33139755 PMCID: PMC7606448 DOI: 10.1038/s41598-020-75708-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Digital analysis of pathology whole-slide images is fast becoming a game changer in cancer diagnosis and treatment. Specifically, deep learning methods have shown great potential to support pathology analysis, with recent studies identifying molecular traits that were not previously recognized in pathology H&E whole-slide images. Simultaneous to these developments, it is becoming increasingly evident that tumor heterogeneity is an important determinant of cancer prognosis and susceptibility to treatment, and should therefore play a role in the evolving practices of matching treatment protocols to patients. State of the art diagnostic procedures, however, do not provide automated methods for characterizing and/or quantifying tumor heterogeneity, certainly not in a spatial context. Further, existing methods for analyzing pathology whole-slide images from bulk measurements require many training samples and complex pipelines. Our work addresses these two challenges. First, we train deep learning models to spatially resolve bulk mRNA and miRNA expression levels on pathology whole-slide images (WSIs). Our models reach up to 0.95 AUC on held-out test sets from two cancer cohorts using a simple training pipeline and a small number of training samples. Using the inferred gene expression levels, we further develop a method to spatially characterize tumor heterogeneity. Specifically, we produce tumor molecular cartographies and heterogeneity maps of WSIs and formulate a heterogeneity index (HTI) that quantifies the level of heterogeneity within these maps. Applying our methods to breast and lung cancer slides, we show a significant statistical link between heterogeneity and survival. Our methods potentially open a new and accessible approach to investigating tumor heterogeneity and other spatial molecular properties and their link to clinical characteristics, including treatment susceptibility and survival.
Collapse
Affiliation(s)
- Alona Levy-Jurgenson
- Department of Computer Science, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Xavier Tekpli
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310, Oslo, Norway
- Division of Medicine, Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Zohar Yakhini
- Department of Computer Science, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
- Interdisciplinary Center, Arazi School of Computer Science, Herzliya, 4610101, Israel.
| |
Collapse
|
70
|
Angenent-Mari NM, Garruss AS, Soenksen LR, Church G, Collins JJ. A deep learning approach to programmable RNA switches. Nat Commun 2020; 11:5057. [PMID: 33028812 PMCID: PMC7541447 DOI: 10.1038/s41467-020-18677-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/31/2020] [Indexed: 12/21/2022] Open
Abstract
Engineered RNA elements are programmable tools capable of detecting small molecules, proteins, and nucleic acids. Predicting the behavior of these synthetic biology components remains a challenge, a situation that could be addressed through enhanced pattern recognition from deep learning. Here, we investigate Deep Neural Networks (DNN) to predict toehold switch function as a canonical riboswitch model in synthetic biology. To facilitate DNN training, we synthesize and characterize in vivo a dataset of 91,534 toehold switches spanning 23 viral genomes and 906 human transcription factors. DNNs trained on nucleotide sequences outperform (R2 = 0.43-0.70) previous state-of-the-art thermodynamic and kinetic models (R2 = 0.04-0.15) and allow for human-understandable attention-visualizations (VIS4Map) to identify success and failure modes. This work shows that deep learning approaches can be used for functionality predictions and insight generation in RNA synthetic biology.
Collapse
Affiliation(s)
- Nicolaas M Angenent-Mari
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Alexander S Garruss
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Program in Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA, 02138, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Luis R Soenksen
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Mechanical Engineering, MIT, Cambridge, MA, 02139, USA
| | - George Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - James J Collins
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
- Institute for Medical Engineering and Science (IMES), MIT, Cambridge, MA, 02139, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Department of Mechanical Engineering, MIT, Cambridge, MA, 02139, USA.
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
71
|
Zhang H, Xue L, Lv Y, Yu X, Zheng Y, Miao Z, Ding H. Integrated microarray analysis of key genes and a miRNA‑mRNA regulatory network of early‑onset preeclampsia. Mol Med Rep 2020; 22:4772-4782. [PMID: 33173953 PMCID: PMC7646902 DOI: 10.3892/mmr.2020.11551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/18/2020] [Indexed: 11/05/2022] Open
Abstract
Early‑onset preeclampsia (EOPE) is a serious threat to maternal and foetal health. The present study aimed to identify potential biomarkers and targets for the treatment of EOPE. Expression profiles of placenta from patients with EOPE and healthy controls (GSE103542, GSE74341 and GSE44711) were downloaded from the Gene Expression Omnibus database. Integrated analysis revealed 246 genes and 28 microRNAs (miRNAs) that were differentially expressed between patients with EOPE and healthy controls. Differentially expressed genes (DEGs) were primarily enriched in 'biological processes', such as 'cell adhesion', 'female pregnancy', 'extracellular matrix organization' and 'response to hypoxia'. Significant pathways associated with DEGs primarily included 'focal adhesion', 'ECM‑receptor interaction', 'PI3K‑Akt signaling' and 'ovarian steroidogenesis'. A Protein‑Protein Interaction network of DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins online database, and epidermal growth factor receptor, collagen α‑1(I) chain, secreted phosphoprotein 1, leptin (LEP), collagen α‑2(I) chain (COL1A2), plasminogen activator inhibitor 1 (SERPINE1), Thy‑1 membrane glycoprotein, bone morphogenetic protein 4, vascular cell adhesion protein 1 and matrix metallopeptidase 1 were identified as hub genes. The alterations of hsa‑miR‑937, hsa‑miR‑148b*, hsa‑miR‑3907, hsa‑miR‑367*, COL1A2, LEP and SERPINE1 in placenta were validated using our local samples. Our research showed that the expression of hsa‑miR‑937, hsa‑miR‑1486*, hsa‑miR‑3907, hsa‑miR‑367* and hub genes in the placenta were closely associated with the pathophysiology of EOPE. hsa‑miR‑937, hsa‑miR‑1486*, hsa‑miR‑3907, hsa‑miR‑367* and hub genes could serve as biomarkers for diagnosis and as potential targets for the treatment of EOPE.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Internal Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Lu Xue
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Yan Lv
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Xiang Yu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Yiwei Zheng
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Zhijing Miao
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Hongjuan Ding
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| |
Collapse
|
72
|
Comprehensive Analysis of Long Non-coding RNA-Associated Competing Endogenous RNA Network in Duchenne Muscular Dystrophy. Interdiscip Sci 2020; 12:447-460. [PMID: 32876881 DOI: 10.1007/s12539-020-00388-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is one of the most severe neuromuscular disorders. Long non-coding RNAs (lncRNAs) are a group of non-coding transcripts, which could regulate messenger RNA (mRNA) by binding the mutual miRNAs, thus acting as competing endogenous RNAs (ceRNAs). So far, the role of lncRNA in DMD pathogenesis remains unclear. In the current study, expression profile from a total of 33 DMD patients and 12 healthy people were downloaded from Gene Expression Omnibus (GEO) database (GSE38417 and GSE109178). Differentially expressed (DE) lncRNAs were discovered and targeted mRNAs were predicted. The ceRNA network of lncRNAs-miRNAs-mRNAs was then constructed. Genome Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the putative mRNAs in the ceRNA network were performed through Database for Annotation, Visualization and Integration Discovery (DAVID) website. Topological property of the network was analyzed using Cytoscape to disclose the hub lncRNAs. According to our assessments, 19 common DElncRNAs and 846 common DEmRNAs were identified in DMD compared to controls. The created ceRNA network contained 6 lncRNA nodes, 69 mRNA nodes, 27 miRNA nodes and 102 edges, while four hub lncRNAs (XIST, AL132709, LINC00310, ALDH1L1-AS2) were uncovered. In conclusion, our latest bioinformatic analysis demonstrated that lncRNA is likely involved in DMD. This work highlights the importance of lncRNA and provides new insights for exploring the molecular mechanism of DMD. The created ceRNA network contained 6 lncRNA nodes, 69 mRNA nodes, 27 miRNA nodes and 102 edges, while four hub lncRNAs (XIST, AL132709, LINC00310, ALDH1L1-AS2) were uncovered. Remarkably, KEGG analysis indicated that targeted mRNAs in the network were mainly enriched in "microRNAs in cancer" and "proteoglycans in cancer". Our study may offer novel perspectives on the pathogenesis of DMD from the point of lncRNAs. This work might be also conducive for exploring the molecular mechanism of increased incidence of tumorigenesis reported in DMD patients and experimental models.
Collapse
|
73
|
Zhu M, Dang Y, Yang Z, Liu Y, Zhang L, Xu Y, Zhou W, Ji G. Comprehensive RNA Sequencing in Adenoma-Cancer Transition Identified Predictive Biomarkers and Therapeutic Targets of Human CRC. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:25-33. [PMID: 32145677 PMCID: PMC7057163 DOI: 10.1016/j.omtn.2020.01.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/13/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
Specific molecular biomarkers for predicting the transition from colorectal adenoma to cancer have been identified, however, circular RNA (circRNA)-related signatures remain to be clarified. We carried out high-throughput RNA sequencing to determine the expression profiles of circRNAs, microRNAs (miRNAs), and mRNAs in human colorectal cancer (CRC), adenoma, and adjacent normal tissues. We identified 84 circRNAs, 41 miRNAs, and 398 mRNAs that were commonly differentially expressed in CRC and adenoma tissues compared with normal tissues. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) analyses identified numerous cancer-related hub genes that might serve as potential therapeutic targets in CRC. Competing endogenous RNA (ceRNA) networks, including three circRNAs, three miRNAs, and 28 mRNAs were constructed, suggesting their potential role in cancer progression. Representative differentially expressed RNAs were validated by the Cancer Genome Atlas (TCGA) database and real-time PCR experiments. Receiver operating characteristic (ROC) curve analysis identified three circRNAs (hsa_circ_0049487, hsa_circ_0066875, and hsa_circ_0007444) as possible novel biomarkers predicting the transition from colonic adenoma to cancer. Overall, our findings may provide novel perspectives to clarify the mechanisms of the transition from premalignant adenoma to cancer and identify specific circRNA-related signatures with possible applications for the early diagnosis of and as potential therapeutic targets in CRC.
Collapse
Affiliation(s)
- Mingzhe Zhu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhenhua Yang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Digestive Endoscopy Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yang Liu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yangxian Xu
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
74
|
Wang P, Li W, Zhai B, Jiang X, Jiang H, Zhang C, Sun X. Integrating high-throughput microRNA and mRNA expression data to identify risk mRNA signature for pancreatic cancer prognosis. J Cell Biochem 2020; 121:3090-3098. [PMID: 31886578 DOI: 10.1002/jcb.29576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is a malignancy of the digestive system characterized by poor prognosis. A number of prognostic messenger RNA (mRNA) signatures have been identified by using the high-throughput expression profiles. MicroRNAs (miRNA) play a critical role in regulating multiple cellular functions. However, no such integrated analysis of miRNAs and mRNAs for studying the prognostic mechanisms of pancreatic cancer has been reported. In this study, we first identified prognostic mRNAs and miRNAs based on The Cancer Genome Atlas datasets, and then performed an enrichment analysis to explore the underlying biological mechanisms involved in pancreatic cancer prognosis at the mRNA level. Furthermore, we performed an integrated analysis of mRNAs and miRNAs to identify prognostic subpathways, which were closely associated with pancreatic cancer genes and tumor hallmarks and involved in hypoxia, oxidative phosphyorylation and xenobiotic metabolisms. Meanwhile, we performed a random walk algorithm based on global network, prognostic mRNAs and miRNAs, and identified top risk mRNAs as the prognostic signature. Finally, an independent testing set was used to confirm the predictive power of the top mRNA signature, and most of these genes involved were known oncogenes. In conclusion, we performed a series of integrated analyses by comprehensively exploring pancreatic cancer prognosis and systematically optimized the prognostic signature for clinical use.
Collapse
Affiliation(s)
- Ping Wang
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Interventional Radiology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weidong Li
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Zhai
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xian Jiang
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunlong Zhang
- Division of Computer and Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
75
|
Tan H, Kim P, Sun P, Zhou X. miRactDB characterizes miRNA-gene relation switch between normal and cancer tissues across pan-cancer. Brief Bioinform 2020; 22:5840023. [PMID: 32436932 DOI: 10.1093/bib/bbaa089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/05/2020] [Accepted: 04/26/2020] [Indexed: 12/26/2022] Open
Abstract
It has been increasingly accepted that microRNA (miRNA) can both activate and suppress gene expression, directly or indirectly, under particular circumstances. Yet, a systematic study on the switch in their interaction pattern between activation and suppression and between normal and cancer conditions based on multi-omics evidences is not available. We built miRactDB, a database for miRNA-gene interaction, at https://ccsm.uth.edu/miRactDB, to provide a versatile resource and platform for annotation and interpretation of miRNA-gene relations. We conducted a comprehensive investigation on miRNA-gene interactions and their biological implications across tissue types in both tumour and normal conditions, based on TCGA, CCLE and GTEx databases. We particularly explored the genetic and epigenetic mechanisms potentially contributing to the positive correlation, including identification of miRNA binding sites in the gene coding sequence (CDS) and promoter regions of partner genes. Integrative analysis based on this resource revealed that top-ranked genes derived from TCGA tumour and adjacent normal samples share an overwhelming part of biological processes, which are quite different than those from CCLE and GTEx. The most active miRNAs predicted to target CDS and promoter regions are largely overlapped. These findings corroborate that adjacent normal tissues might have undergone significant molecular transformations towards oncogenesis before phenotypic and histological change; and there probably exists a small yet critical set of miRNAs that profoundly influence various cancer hallmark processes. miRactDB provides a unique resource for the cancer and genomics communities to screen, prioritize and rationalize their candidates of miRNA-gene interactions, in both normal and cancer scenarios.
Collapse
|
76
|
Ghosh RD, Pattatheyil A, Roychoudhury S. Functional Landscape of Dysregulated MicroRNAs in Oral Squamous Cell Carcinoma: Clinical Implications. Front Oncol 2020; 10:619. [PMID: 32547936 PMCID: PMC7274490 DOI: 10.3389/fonc.2020.00619] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNA (miRNA) dysregulation is associated with the pathogenesis of oral squamous cell carcinoma (OSCC), and its elucidation could potentially provide information on patient outcome. A growing body of translational research on miRNA biology is focusing on precision oncology, aiming to decode the miRNA regulatory network in the development and progression of cancer. Tissue-specific expression and stable presence in all body fluids are unique features of miRNAs, which could be potentially exploited in the clinical setting. Recent understanding of miRNA properties has led them to be useful, attractive, and potential tools either as biomarkers (distinct miRNA expression signature) for diagnosis and prognostic outcomes or as targets for novel therapeutic entities, enabling personalized treatment for OSCC. In this review, we discuss recent research on different aspects of alterations in miRNA profiles along with their clinical significance and strive to identify probable potential miRNA biomarkers for diagnosis and prognosis of OSCC. We also discuss the current understanding and scope of development of miRNA-based therapeutics against OSCC.
Collapse
Affiliation(s)
- Ruma Dey Ghosh
- Tata Translational Cancer Research Center, Tata Medical Center, Kolkata, India
| | - Arun Pattatheyil
- Department of Head and Neck Surgical Oncology, Tata Medical Center, Kolkata, India
| | | |
Collapse
|
77
|
Li J, Li Z, Zhao S, Song Y, Si L, Wang X. Identification key genes, key miRNAs and key transcription factors of lung adenocarcinoma. J Thorac Dis 2020; 12:1917-1933. [PMID: 32642095 PMCID: PMC7330310 DOI: 10.21037/jtd-19-4168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most common cancers worldwide. The etiology and pathophysiology of LUAD remain unclear. The aim of the present study was to identify the key genes, miRNAs and transcription factors (TFs) associated with the pathogenesis and prognosis of LUAD. Methods Three gene expression profiles (GSE43458, GSE32863, GSE74706) of LUAD were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified by GEO2R.The Gene Ontology (GO) terms, pathways, and protein-protein interactions (PPIs) of these DEGs were analyzed. Bases on DEGs, the miRNAs and TFs were predicted. Furthermore, TF-gene-miRNA co-expression network was constructed to identify key genes, miRNAs and TFs by bioinformatic methods. The expressions and prognostic values of key genes, miRNAs and TFs were carried out through The Cancer Genome Atlas (TCGA) database and Kaplan Meier-plotter (KM) online dataset. Results A total of 337 overlapped DEGs (75 upregulated and 262 downregulated) of LUAD were identified from the three GSE datasets. Moreover, 851 miRNAs and 29 TFs were identified to be associated with these DEGs. In total, 10 hub genes, 10 key miRNAs and 10 key TFs were located in the central hub of the TF-gene-miRNA co-expression network, and validated using The Cancer Genome Atlas (TCGA) database. Specifically, seven genes (PHACTR2, MSRB3, GHR, PLSCR4, EPB41L2, NPNT, FBXO32), two miRNAs (hsa-let-7e-5p, hsa-miR-17-5p) and four TFs (STAT6, E2F1, ETS1, JUN) were identified to be associated with prognosis of LUAD, which have significantly different expressions between LUAD and normal lung tissue. Additionally, the miRNA/gene co-expression analysis also revealed that hsa-miR-17-5p and PLSCR4 have a significant negative co-expression relationship (r=−0.33, P=1.67e-14) in LUAD. Conclusions Our study constructed a regulatory network of TF-gene-miRNA in LUAD, which may provide new insights about the interaction between genes, miRNAs and TFs in the pathogenesis of LUAD, and identify potential biomarkers or therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Jinghang Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhi Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sheng Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuanyuan Song
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Linjie Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
78
|
Zhang H, Huang X, Liu J, Liu B. Simultaneous and ultrasensitive detection of multiple microRNAs by single-molecule fluorescence imaging. Chem Sci 2020; 11:3812-3819. [PMID: 34122849 PMCID: PMC8152581 DOI: 10.1039/d0sc00580k] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/23/2020] [Indexed: 11/24/2022] Open
Abstract
Cell status changes are typically accompanied by the simultaneous changes of multiple microRNA (miRNA) levels. Thus, simultaneous and ultrasensitive detection of multiple miRNA biomarkers shows great promise in early cancer diagnosis. Herein, a facile single-molecule fluorescence imaging assay was proposed for the simultaneous and ultrasensitive detection of multiple miRNAs using only one capture anti-DNA/RNA antibody (S9.6 antibody). Two complementary DNAs (cDNAs) designed to hybridize with miRNA-21 and miRNA-122 were labelled with Cy3 (cDNA1) and Cy5 (cDNA2) dyes at their 5'-ends, respectively. After hybridization, both miRNA-21/cDNA1 and miRNA-122/cDNA2 complexes were captured by S9.6 antibodies pre-modified on a coverslip surface. Subsequently, the Cy3 and Cy5 dyes on the coverslip surface were imaged by the single-molecule fluorescence setup. The amount of miRNA-21 and miRNA-122 was quantified by counting the image spots from the Cy3 and Cy5 dye molecules in the green and red channels, respectively. The proposed assay displayed high specificity and sensitivity for singlet miRNA detection both with a detection limit of 5 fM and for multiple miRNA detection both with a detection limit of 20 fM. Moreover, it was also demonstrated that the assay could be used to detect multiple miRNAs simultaneously in human hepatocellular cancer cells (HepG2 cells). The proposed assay provides a novel biosensing platform for the ultrasensitive and simple detection of multiple miRNA expressions and shows great prospects for early cancer diagnosis.
Collapse
Affiliation(s)
- Hongding Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University Shanghai 200438 P. R. China
- College of Chemistry and Chemical Engineering, Xinyang Normal University Xinyang 464000 P. R. China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University Shanghai 200438 P. R. China
| | - Jianwei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University Shanghai 200438 P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedical Sciences, Fudan University Shanghai 200438 P. R. China
| |
Collapse
|
79
|
Model-Based Integration Analysis Revealed Presence of Novel Prognostic miRNA Targets and Important Cancer Driver Genes in Triple-Negative Breast Cancers. Cancers (Basel) 2020; 12:cancers12030632. [PMID: 32182819 PMCID: PMC7139587 DOI: 10.3390/cancers12030632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background: miRNAs (microRNAs) play a key role in triple-negative breast cancer (TNBC) progression, and its heterogeneity at the expression, pathological and clinical levels. Stratification of breast cancer subtypes on the basis of genomics and transcriptomics profiling, along with the known biomarkers’ receptor status, has revealed the existence of subgroups known to have diverse clinical outcomes. Recently, several studies have analysed expression profiles of matched mRNA and miRNA to investigate the underlying heterogeneity of TNBC and the potential role of miRNA as a biomarker within cancers. However, the miRNA-mRNA regulatory network within TNBC has yet to be understood. Results and Findings: We performed model-based integrated analysis of miRNA and mRNA expression profiles on breast cancer, primarily focusing on triple-negative, to identify subtype-specific signatures involved in oncogenic pathways and their potential role in patient survival outcome. Using univariate and multivariate Cox analysis, we identified 25 unique miRNAs associated with the prognosis of overall survival (OS) and distant metastases-free survival (DMFS) with “risky” and “protective” outcomes. The association of these prognostic miRNAs with subtype-specific mRNA genes was established to investigate their potential regulatory role in the canonical pathways using anti-correlation analysis. The analysis showed that miRNAs contribute to the positive regulation of known breast cancer driver genes as well as the activation of respective oncogenic pathway during disease formation. Further analysis on the “risk associated” miRNAs group revealed significant regulation of critical pathways such as cell growth, voltage-gated ion channel function, ion transport and cell-to-cell signalling. Conclusion: The study findings provide new insights into the potential role of miRNAs in TNBC disease progression through the activation of key oncogenic pathways. The results showed previously unreported subtype-specific prognostic miRNAs associated with clinical outcome that may be used for further clinical evaluation.
Collapse
|
80
|
Zhou J, Li X, Zhang M, Gong J, Li Q, Shan B, Wang T, Zhang L, Zheng T, Li X. The aberrant expression of rhythm genes affects the genome instability and regulates the cancer immunity in pan-cancer. Cancer Med 2020; 9:1818-1829. [PMID: 31927791 PMCID: PMC7050078 DOI: 10.1002/cam4.2834] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022] Open
Abstract
Although emerging studies showed that certain rhythm genes regulate cancer progression, the expression and roles of the vast majority of rhythm genes in human cancer are largely unknown, and the hallmarks of cancer regulated by rhythm genes have not been detected. In this study, we detected the expression changes of rhythm genes in pan-cancer and found that almost all rhythm genes mutated in all cancer types, and their expression level was significantly altered partially due to abnormal methylation, and several rhythm genes regulate the expression of other rhythm genes in various cancer types. Furthermore, we revealed that rhythm genes are significantly enriched in genome instability and the expression of certain rhythm genes is correlated with the tumor mutation burden, microsatellite instability, and the expression of DNA damage repair genes in most of the detected cancer types. Moreover, rhythm genes are associated with the infiltration of immune cells and the efficiency of immune blockade therapy. This study provides a comprehensive understanding of the roles of rhythm genes in cancer immunity, which may provide a novel method for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xinhui Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
| | - Ji'nan Gong
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Qi Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Baocong Shan
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lei Zhang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
81
|
Di Z, Di M, Fu W, Tang Q, Liu Y, Lei P, Gu X, Liu T, Sun M. Integrated Analysis Identifies a Nine-microRNA Signature Biomarker for Diagnosis and Prognosis in Colorectal Cancer. Front Genet 2020; 11:192. [PMID: 32265979 PMCID: PMC7100107 DOI: 10.3389/fgene.2020.00192] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most lethal and malignant type of cancer in the world. Abnormal expression of human microRNA-200a (hsa-miRNA-200a or miR-200a) has previously been characterized as a clinically noticeable biomarker in several cancers, but its role in CRC is still unclear. METHODS Three CRC miRNA expression datasets were integratively analyzed by Least Absolute Shrinkage and Selector Operation (LASSO) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms. Nine candidate miRNAs were identified and validated for diagnostic and prognostic capability with the prediction model. The potential roles of the tumor suppressor miR-200a-3p in invasion, migration, and epithelial-mesenchymal transition of CRC cells were elaborated by in vitro studies. RESULTS Nine miRNAs (miR-492, miR-200a, miR-338, miR-29c, miR-101, miR-148a, miR-92a, miR-424, and miR-210) were identified as potentially useful diagnostic biomarkers in the clinic. The overall accuracy rate of the nine miRNAs in the diagnostic model was 0.94, 0.89, and 0.978 in the testing, validation, and independent validation dataset, respectively. CRC patients in the GSE29622 cohort were separated by the prognostic model into the low-risk score group and the high-risk score group. The area under the receiver operating characteristic curve (AUC) was 0.872 and 0.783 for predicting the 1- to 10-year survival of CRC patients. The performance of the prognostic model was validated by an independent TCGA-Colon Adenocarcinoma (COAD) dataset with AUC values between 0.911 and 0.796 in predicting 1- to 10-year survival. Nomograms comprising risk scores, tumor stage, and TNM staging were generated for predicting 1-, 3-, and 5-year overall survival (OS) in the GSE29622 and TCGA-COAD datasets. Colony formation, invasion, and migration in DLD1 and SW480 cells were suppressed by overexpression of miR-200a-3p. Inhibition of miR-200a-3p function contributed to abnormal colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT). miR-200a-3p binding sites were located within the 3'-untranslated region (3'-UTR) of the Forkhead box protein A1 (FOXA1) mRNA. CONCLUSION We developed and validated a diagnostic and prognostic prediction model for CRC. miR-200a-3p was determined to be a potential diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Ziyang Di
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Maojun Di
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Qiang Tang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yanwei Liu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peijie Lei
- The First Clinical School, Hubei University of Medicine, Shiyan, China
| | - Xinsheng Gu
- College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- *Correspondence: Tong Liu,
| | - Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Min Sun,
| |
Collapse
|
82
|
Wang CC, Chen X. A Unified Framework for the Prediction of Small Molecule–MicroRNA Association Based on Cross-Layer Dependency Inference on Multilayered Networks. J Chem Inf Model 2019; 59:5281-5293. [DOI: 10.1021/acs.jcim.9b00667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
83
|
Zhao X, Li Y, Zhou Y. MicroRNA-96-3p promotes metastasis of papillary thyroid cancer through targeting SDHB. Cancer Cell Int 2019; 19:287. [PMID: 31749660 PMCID: PMC6852711 DOI: 10.1186/s12935-019-1003-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/25/2019] [Indexed: 12/27/2022] Open
Abstract
Background MicroRNA (MiRNA) is a small non-coding RNA which is implicated in a cohort of biological function in cancer, including proliferation, metastasis, apoptosis and invasion. MiR-96 has been reported to be involved in many cancers, including papillary thyroid cancer. However, the role of miR-96-3p in papillary thyroid cancer metastasis is still unclear. Methods qRT-PCR is used to detect the level of miR-96-3p and mRNA of SDHB in PTC tissues and cell lines. Western blot assays are used to verify the protein expression of SDHB. The transwell assays are performed to identify the migration ability of PTC cell lines. Moreover, dual-luciferase 3'-UTR reporter assays are chosen to illuminate the direct target of miR-96-3p. Results The relative miR-96-3p upregulate in PTC tissues and three PTC cell lines (B-CPAP, K-1 and TPC-1 cells) while the relative SDHB is opposite. Our results revealed that the miR-96-3p promotes metastasis and invasion in PTC cell lines (K-1 and TPC-1 cells) by direct targeting SDHB and influence the downstream protein AKT. Conclusions Taken together, the miR-96-3p is involved in PTC metastasis and invasion by direct targeting SDHB and the downstream molecule AKT and mTOR.
Collapse
Affiliation(s)
- Xupeng Zhao
- 1Department of Fourth General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032 China
| | - Yingjie Li
- 2Department of Sixth General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032 China
| | - Yong Zhou
- 1Department of Fourth General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032 China
| |
Collapse
|
84
|
Manem VS, Dhawan A. RadiationGeneSigDB: a database of oxic and hypoxic radiation response gene signatures and their utility in pre-clinical research. Br J Radiol 2019; 92:20190198. [PMID: 31538514 DOI: 10.1259/bjr.20190198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Radiation therapy is among the most effective and widely used modalities of cancer therapy in current clinical practice. In this era of personalized radiation medicine, high-throughput data now provide the means to investigate novel biomarkers of radiation response. Large-scale efforts have identified several radiation response signatures, which poses two challenges, namely, their analytical validity and redundancy of gene signatures. METHODS To address these fundamental radiogenomics questions, we curated a database of gene expression signatures predictive of radiation response under oxic and hypoxic conditions. RadiationGeneSigDB has a collection of 11 oxic and 24 hypoxic signatures with the standardized gene list as a gene symbol, Entrez gene ID, and its function. We present the utility of this database by gaining an understanding of hypoxia-associated miRNA by applying a penalized multivariate model; by comparing breast cancer oxic signatures in cell line data vs patient data; and by comparing the similarity of head and neck cancer hypoxia signatures at the pathway level in clinical tumour data. RESULTS We obtained a set of miRNA highly associated both positively and negatively to the hypoxia gene signatures, across pan-cancer. In addition, we identified moderate correlations between breast cancer oxic signatures in patient data, and significant differences across molecular subtypes. Moreover, we also found that different set of pathways to be enriched using the head and neck hypoxia signatures, although, they are found to be concordant when applied on the patient data. CONCLUSION This valuable, curated repertoire of published gene expression signatures provides motivating case studies for how to search for similarities in radiation response for tumours arising from different tissues across model systems under oxic and hypoxic conditions, and how a well-curated set of gene signatures can be used to generate novel biological hypotheses about the functions of non-coding RNA. ADVANCES IN KNOWLEDGE We envision that RadiationSigDB database will help accelerate preclinical radiotherapeutic discovery pipelines in terms of analytical validity of novel biomarkers of radiation response and the need for ensemble approaches to clinical genomic biomarkers.
Collapse
Affiliation(s)
- Venkata Sk Manem
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec city, Québec, Canada
| | - Andrew Dhawan
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
85
|
Halvorsen AR, Ragle Aure M, Õjlert ÅK, Brustugun OT, Solberg S, Nebdal D, Helland Å. Identification of microRNAs involved in pathways which characterize the expression subtypes of NSCLC. Mol Oncol 2019; 13:2604-2615. [PMID: 31505091 PMCID: PMC6887593 DOI: 10.1002/1878-0261.12571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of microRNAs is a common mechanism in the development of lung cancer, but the relationship between microRNAs and expression subtypes in non‐small‐cell lung cancer (NSCLC) is poorly explored. Here, we analyzed microRNA expression from 241 NSCLC samples and correlated this with the expression subtypes of adenocarcinomas (AD) and squamous cell carcinomas (SCC) to identify microRNAs specific for each subtype. Gene set variation analysis and the hallmark gene set were utilized to calculate gene set scores specific for each sample, and these were further correlated with the expression of the subtype‐specific microRNAs. In ADs, we identified nine aberrantly regulated microRNAs in the terminal respiratory unit (TRU), three in the proximal inflammatory (PI), and nine in the proximal proliferative subtype (PP). In SCCs, 1, 5, 5, and 9 microRNAs were significantly dysregulated in the basal, primitive, classical, and secretory subtypes, respectively. The subtype‐specific microRNAs were highly correlated to specific gene sets, and a distinct pattern of biological processes with high immune activity for the AD PI and SCC secretory subtypes, and upregulation of cell cycle‐related processes in AD PP, SCC primitive, and SCC classical subtypes were found. Several in silico predicted targets within the gene sets were identified for the subtype‐specific microRNAs, underpinning the findings. The results were significantly validated in the LUAD (n = 492) and LUSC (n = 380) TCGA dataset (False discovery rates‐corrected P‐value < 0.05). Our study provides novel insight into how expression subtypes determined with discrete biological processes may be regulated by subtype‐specific microRNAs. These results may have importance for the development of combinatory therapeutic strategies for lung cancer patients.
Collapse
Affiliation(s)
- Ann Rita Halvorsen
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Norway
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway
| | - Åsa Kristina Õjlert
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway
| | - Odd Terje Brustugun
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway
| | - Steinar Solberg
- Department of Cardiothoracic Surgery, Oslo University Hospital-Rikshospitalet, Norway
| | - Daniel Nebdal
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
86
|
Ramteke P, Deb A, Shepal V, Bhat MK. Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. Cancers (Basel) 2019; 11:E1402. [PMID: 31546918 PMCID: PMC6770430 DOI: 10.3390/cancers11091402] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer and diabetes are amongst the leading causes of deaths worldwide. There is an alarming rise in cancer incidences and mortality, with approximately 18.1 million new cases and 9.6 million deaths in 2018. A major contributory but neglected factor for risk of neoplastic transformation is hyperglycemia. Epidemiologically too, lifestyle patterns resulting in high blood glucose level, with or without the role of insulin, are more often correlated with cancer risk, progression, and mortality. The two conditions recurrently exist in comorbidity, and their interplay has rendered treatment regimens more challenging by restricting the choice of drugs, affecting surgical consequences, and having associated fatal complications. Limited comprehensive literature is available on their correlation, and a lack of clarity in understanding in such comorbid conditions contributes to higher mortality rates. Hence, a critical analysis of the elements responsible for enhanced mortality due to hyperglycemia-cancer concomitance is warranted. Given the lifestyle changes in the human population, increasing metabolic disorders, and glucose addiction of cancer cells, hyperglycemia related complications in cancer underline the necessity for further in-depth investigations. This review, therefore, attempts to shed light upon hyperglycemia associated factors in the risk, progression, mortality, and treatment of cancer to highlight important mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Pranay Ramteke
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| | - Ankita Deb
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| | - Varsha Shepal
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune-411 007, India.
| |
Collapse
|
87
|
Azizi M, Rahimi N, Bahari G, Hashemi SM, Hashemi M. The Relationship between Pre-miR-3131 3-bp Insertion/Deletion Polymorphism and Susceptibility and Clinicopathological Characteristics of Patients with Breast Cancer. Microrna 2019; 9:216-223. [PMID: 31490768 PMCID: PMC7366006 DOI: 10.2174/2211536608666190906111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/02/2019] [Accepted: 08/03/2019] [Indexed: 12/24/2022]
Abstract
Aims This study aimed at examining the effect of 3-bp pre-miR-3131 insertion/deletion (ins/del) polymorphism on Breast Cancer (BC) risk. Objectives Totally 403 women including 199 BC patients and 204 women who have no cancer were included in this case-control study. Genotyping of miR-3131 3-bp ins/del polymorphism was performed by mismatch PCR-RFLP method. Methods The findings expressed that the pre-miR-3131 3-bp ins/del variant was not related to the risk of BC in all genetic tested models. While, the ins/del genotype was related to late onset BC (OR=2.53, 95%CI=1.27-4.84, p=0.008). Results Pooled results from the meta-analysis indicated to that the pre-miR-3131 ins/del is related to with an increased risk of cancer in heterozygous (OR=1.26, 95%CI=1.06-1.51, p=0.01), dominant (OR=1.33, 95%CI=1.14-1.54, p=0.0002), and allele (OR=1.24, 95%CI=1.06-1.45, p=0.006) genetics models. Conclusion It is concluded that, our findings did not support a relationship between pre-miR-3131 ins/del polymorphism and the risk of BC. While, this variant was significantly related to late onset BC. Combined results of this study with previous studies indicated that this polymorphism increased the risk of cancer. More studies in a study with larger population with variety of ethnicities are required to verify our findings.
Collapse
Affiliation(s)
- Mahsa Azizi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nahid Rahimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Bahari
- Children and Adolescent Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Mehdi Hashemi
- Department of Oncology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Genetics of Non-communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
88
|
Lai X, Eberhardt M, Schmitz U, Vera J. Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res 2019; 47:7753-7766. [PMID: 31340025 PMCID: PMC6735922 DOI: 10.1093/nar/gkz638] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that regulate gene expression by suppressing mRNA translation and reducing mRNA stability. A miRNA can potentially bind many mRNAs, thereby affecting the expression of oncogenes and tumor suppressor genes as well as the activity of whole pathways. The promise of miRNA therapeutics in cancer is to harness this evolutionarily conserved mechanism for the coordinated regulation of gene expression, and thus restoring a normal cell phenotype. However, the promiscuous binding of miRNAs can provoke unwanted off-target effects, which are usually caused by high-dose single-miRNA treatments. Thus, it is desirable to develop miRNA therapeutics with increased specificity and efficacy. To achieve that, we propose the concept of miRNA cooperativity in order to exert synergistic repression on target genes, thus lowering the required total amount of miRNAs. We first review miRNA therapies in clinical application. Next, we summarize the knowledge on the molecular mechanism and biological function of miRNA cooperativity and discuss its application in cancer therapies. We then propose and discuss a systems biology approach to investigate miRNA cooperativity for the clinical setting. Altogether, we point out the potential of miRNA cooperativity to reduce off-target effects and to complement conventional, targeted, or immune-based therapies for cancer.
Collapse
Affiliation(s)
- Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ulf Schmitz
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, 2006 Camperdown, Australia
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, 2006 Camperdown, Australia
- Sydney Medical School, The University of Sydney, 2006 Camperdown, Australia
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
89
|
Dhawan A, Barberis A, Cheng WC, Domingo E, West C, Maughan T, Scott JG, Harris AL, Buffa FM. Guidelines for using sigQC for systematic evaluation of gene signatures. Nat Protoc 2019; 14:1377-1400. [PMID: 30971781 DOI: 10.1038/s41596-019-0136-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/11/2019] [Indexed: 11/09/2022]
Abstract
With the increased use of next-generation sequencing generating large amounts of genomic data, gene expression signatures are becoming critically important tools for the interpretation of these data, and are poised to have a substantial effect on diagnosis, management, and prognosis for a number of diseases. It is becoming crucial to establish whether the expression patterns and statistical properties of sets of genes, or gene signatures, are conserved across independent datasets. Conversely, it is necessary to compare established signatures on the same dataset to better understand how they capture different clinical or biological characteristics. Here we describe how to use sigQC, a tool that enables a streamlined, systematic approach for the evaluation of previously obtained gene signatures across multiple gene expression datasets. We implemented sigQC in an R package, making it accessible to users who have knowledge of file input/output and matrix manipulation in R and a moderate grasp of core statistical principles. SigQC has been adopted in basic biology and translational studies, including, but not limited to, the evaluation of multiple gene signatures for potential clinical use as cancer biomarkers. This protocol uses a previously obtained signature for breast cancer metastasis as an example to illustrate the critical quality control steps involved in evaluating its expression, variability, and structure in breast tumor RNA-sequencing data, a different dataset from that in which the signature was originally derived. We demonstrate how the outputs created from sigQC can be used for the evaluation of gene signatures on large-scale gene expression datasets.
Collapse
Affiliation(s)
- Andrew Dhawan
- Computational Biology and Integrative Genomics Lab, MRC/CRUK Oxford Institute and Department of Oncology, University of Oxford, Oxford, UK
| | - Alessandro Barberis
- Computational Biology and Integrative Genomics Lab, MRC/CRUK Oxford Institute and Department of Oncology, University of Oxford, Oxford, UK
| | - Wei-Chen Cheng
- Computational Biology and Integrative Genomics Lab, MRC/CRUK Oxford Institute and Department of Oncology, University of Oxford, Oxford, UK
| | - Enric Domingo
- Computational Biology and Integrative Genomics Lab, MRC/CRUK Oxford Institute and Department of Oncology, University of Oxford, Oxford, UK
| | - Catharine West
- Division of Cancer Studies, University of Manchester, Manchester, UK
| | - Tim Maughan
- Computational Biology and Integrative Genomics Lab, MRC/CRUK Oxford Institute and Department of Oncology, University of Oxford, Oxford, UK
| | - Jacob G Scott
- Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Adrian L Harris
- Computational Biology and Integrative Genomics Lab, MRC/CRUK Oxford Institute and Department of Oncology, University of Oxford, Oxford, UK
| | - Francesca M Buffa
- Computational Biology and Integrative Genomics Lab, MRC/CRUK Oxford Institute and Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
90
|
Prasad M, Kumar B, Bhat-Nakshatri P, Anjanappa M, Sandusky G, Miller KD, Storniolo AM, Nakshatri H. Dual TGFβ/BMP Pathway Inhibition Enables Expansion and Characterization of Multiple Epithelial Cell Types of the Normal and Cancerous Breast. Mol Cancer Res 2019; 17:1556-1570. [PMID: 30992305 DOI: 10.1158/1541-7786.mcr-19-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/18/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022]
Abstract
Functional modeling of normal breast epithelial hierarchy and stromal-epithelial cell interactions have been difficult due to inability to obtain sufficient stem-progenitor-mature epithelial and stromal cells. Recently reported epithelial reprogramming assay has partially overcome this limitation, but cross-contamination of cells from the feeder layer is a concern. The purpose of this study was to develop a feeder-layer-independent and inexpensive method to propagate multiple cell types from limited tissue resources. Cells obtained after enzymatic digestion of tissues collected at surgery or by core-needle biopsies were plated on tissue culture dishes precoated with laminin-5-rich-conditioned media from the rat bladder tumor cell line 804G and a defined growth media with inhibitors of ROCK, TGFβ, and BMP signaling. Cells were characterized by flow cytometry, mammosphere assay, 3D cultures, and xenograft studies. Cells from the healthy breasts included CD10+/EpCAM- basal/myoepithelial, CD49f+/EpCAM+ luminal progenitor, CD49f-/EpCAM+ mature luminal, CD73+/EpCAM+/CD90- rare endogenous pluripotent somatic stem, CD73+/CD90+/EpCAM-, estrogen receptor alpha-expressing ALCAM (CD166)+/EpCAM+, and ALDFLUOR+ stem/luminal progenitor subpopulations. Epithelial cells were luminal (KRT19+), basal (KRT14+), or dual-positive luminal/basal hybrid cells. While breast cells derived from BRCA1, BRCA2, and PALB2 mutation carriers did not display unique characteristics, cells from women with breast cancer-protective alleles showed enhanced differentiation. Cells could also be propagated from primary tumors and metastasis of breast, ovarian, and pancreatic cancer-neuroendocrine subtype. Xenograft studies confirmed tumorigenic properties of tumor-derived cells. IMPLICATIONS: Our method expands the scope of individualized studies of patient-derived cells and provides resources to model epithelial-stromal interactions under normal and pathologic conditions.
Collapse
Affiliation(s)
- Mayuri Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kathy D Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anna Maria Storniolo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana. .,Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
91
|
Tan H, Huang S, Zhang Z, Qian X, Sun P, Zhou X. Pan-cancer analysis on microRNA-associated gene activation. EBioMedicine 2019; 43:82-97. [PMID: 30956173 PMCID: PMC6557760 DOI: 10.1016/j.ebiom.2019.03.082] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
Background While microRNAs (miRNAs) were widely considered to repress target genes at mRNA and/or protein levels, emerging evidence from in vitro experiments has shown that miRNAs can also activate gene expression in particular contexts. However, this counterintuitive observation has rarely been reported or interpreted in in vivo conditions. Methods We systematically explored the positive correlation between miRNA and gene expressions and its potential implications in tumorigenesis, based on 8375 patient samples across 31 major human cancers from The Cancer Genome Atlas (TCGA). Findings We found that positive miRNA-gene correlations are surprisingly prevalent and consistent across cancer types, and show distinct patterns than negative correlations. The top-ranked positive correlations are significantly involved in the immune cell differentiation and cell membrane signaling related processes, and display strong power in stratifying patients in terms of survival rate. Although intragenic miRNAs generally tend to co-express with their host genes, a substantial portion of miRNAs shows no obvious correlation with their host gene plausibly due to non-conservation. A miRNA can upregulate a gene by inhibiting its upstream suppressor, or shares transcription factors with that gene, both leading to positive correlation. The miRNA/gene sites associated with the top-ranked positive correlations are more likely to form super-enhancers compared to randomly chosen pairs. Wet-lab experiments revealed that positive correlations partially remain in in vitro condition. Interpretation Our study brings new insights into the critical role of miRNA in gene regulation and the complex mechanisms underlying miRNA functions, and reveals both biological and clinical significance of miRNA-associated gene activation.
Collapse
Affiliation(s)
- Hua Tan
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Shan Huang
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Zhigang Zhang
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaohua Qian
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Xiaobo Zhou
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|