51
|
Zhang L, Jin N, Yang Y, Miao XY, Wang H, Luo J, Han L. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review. NANO-MICRO LETTERS 2023; 15:228. [PMID: 37831204 PMCID: PMC10575848 DOI: 10.1007/s40820-023-01196-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 10/14/2023]
Abstract
Single-atom catalysts (SACs) have garnered increasingly growing attention in renewable energy scenarios, especially in electrocatalysis due to their unique high efficiency of atom utilization and flexible electronic structure adjustability. The intensive efforts towards the rational design and synthesis of SACs with versatile local configurations have significantly accelerated the development of efficient and sustainable electrocatalysts for a wide range of electrochemical applications. As an emergent coordination avenue, intentionally breaking the planar symmetry of SACs by adding ligands in the axial direction of metal single atoms offers a novel approach for the tuning of both geometric and electronic structures, thereby enhancing electrocatalytic performance at active sites. In this review, we briefly outline the burgeoning research topic of axially coordinated SACs and provide a comprehensive summary of the recent advances in their synthetic strategies and electrocatalytic applications. Besides, the challenges and outlooks in this research field have also been emphasized. The present review provides an in-depth and comprehensive understanding of the axial coordination design of SACs, which could bring new perspectives and solutions for fine regulation of the electronic structures of SACs catering to high-performing energy electrocatalysis.
Collapse
Affiliation(s)
- Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Na Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, People's Republic of China
| | - Yibing Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Xiao-Yong Miao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Wang
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, People's Republic of China.
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
52
|
Ye K, Zhang Y, Mourdikoudis S, Zuo Y, Liang J, Wang M. Application of Oxygen-Group-Based Amorphous Nanomaterials in Electrocatalytic Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302341. [PMID: 37337384 DOI: 10.1002/smll.202302341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Indexed: 06/21/2023]
Abstract
Environmentally friendly energy sources (e.g., hydrogen) require an urgent development targeting to address the problem of energy scarcity. Electrocatalytic water splitting is being explored as a convenient catalytic reaction in this context, and promising amorphous nanomaterials (ANMs) are receiving increasing attention due to their excellent catalytic properties.Oxygen group-based amorphous nanomaterials (O-ANMs) are an important component of the broad family of ANMs due to their unique amorphous structure, large number of defects, and abundant randomly oriented bonds, O-ANMs induce the generation of a larger number of active sites, which favors a better catalytic activity. Meanwhile, amorphous materials can disrupt the inherent features of conventional crystalline materials regarding electron transfer paths, resulting in higher flexibility. O-ANMs mainly include VIA elements such as oxygen, sulfur, selenium, tellurium, and other transition metals, most of which are reported to be free of noble metals and have comparable performance to commercial catalysts Pt/C or IrO2 and RuO2 in electrocatalysis. This review covers the features and reaction mechanism of O-ANMs, the synthesis strategies to prepare O-ANMs, as well as the application of O-ANMs in electrocatalytic water splitting. Last, the challenges and prospective remarks for future development in O-ANMs for electrocatalytic water splitting are concluded.
Collapse
Affiliation(s)
- Kang Ye
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqi Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Stefanos Mourdikoudis
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Yunpeng Zuo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengye Wang
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
53
|
Cai X, Liu R, Yan H, Jiao L, Sha M, Chen Y, Rong S, Liu Z, Deng L, Shen L, Zhu C. Cascaded Nanozyme with In Situ Enhanced Photothermal Capacity for Tumor-Specific and Self-Replenishing Cancer Therapy. Adv Healthc Mater 2023; 12:e2300516. [PMID: 37285596 DOI: 10.1002/adhm.202300516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Reactive oxygen species (ROS)-involved tumor therapeutic strategy, chemodynamic therapy (CDT), has attracted extensive research interest in the scientific community. However, the therapeutic effect of CDT is insufficient and unsustainable owing to the limited endogenous H2 O2 level in the tumor microenvironment. Here, peroxidase (POD)-like RuTe2 nanozyme with the immobilization of glucose oxidase (GOx) and allochroic 3,3',5,5'-tetramethylbenzidine (TMB) molecule have been synthesized to construct RuTe2 -GOx-TMB nanoreactors (RGT NRs) as cascade reaction systems for tumor-specific and self-replenishing cancer therapy. GOx in sequential nanocatalysts can effectively deplete glucose in tumor cells. Meanwhile, a sustainable supply of H2 O2 for subsequent Fenton-like reactions catalyzed by RuTe2 nanozyme is achieved in response to the mild acidic tumor microenvironment. Through this cascade reaction, highly toxic hydroxyl radicals (·OH) are produced, which can further oxidize TMB to trigger tumor-specific "turn-on" photothermal therapy (PTT). In addition, PTT and massive ROS can stimulate the tumor immune microenvironment and activate the systematic anti-tumor immune responses, exerting a notable effect on hindering tumor recurrence and metastasis. This study paves a promising paradigm for synergistic starvation therapy, PTT, and CDT cancer therapy with high efficiency.
Collapse
Affiliation(s)
- Xiaoli Cai
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Renyu Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hongye Yan
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lei Jiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Meng Sha
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yifeng Chen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhengzheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Liu Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
54
|
Bai X, Zhang X, Sun Y, Huang M, Fan J, Xu S, Li H. Low Ruthenium Content Confined on Boron Carbon Nitride as an Efficient and Stable Electrocatalyst for Acidic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202308704. [PMID: 37489759 DOI: 10.1002/anie.202308704] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
To date, only a few noble metal oxides exhibit the required efficiency and stability as oxygen evolution reaction (OER) catalysts under the acidic, high-voltage conditions that exist during proton exchange membrane water electrolysis (PEMWE). The high cost and scarcity of these catalysts hinder the large-scale application of PEMWE. Here, we report a novel OER electrocatalyst for OER comprised of uniformly dispersed Ru clusters confined on boron carbon nitride (BCN) support. Compared to RuO2 , our BCN-supported catalyst shows enhanced charge transfer. It displays a low overpotential of 164 mV at a current density of 10 mA cm-2 , suggesting its excellent OER catalytic activity. This catalyst was able to operate continuously for over 12 h under acidic conditions, whereas RuO2 without any support fails in 1 h. Density functional theory (DFT) calculations confirm that the interaction between the N on BCN support and Ru clusters changes the adsorption capacity and reduces the OER energy barrier, which increases the electrocatalytic activity of Ru.
Collapse
Affiliation(s)
- Xiaofang Bai
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Xiuping Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Yujiao Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Mingcheng Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Jiantao Fan
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Shaoyi Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Hui Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| |
Collapse
|
55
|
Hu C, Yue K, Han J, Liu X, Liu L, Liu Q, Kong Q, Pao CW, Hu Z, Suenaga K, Su D, Zhang Q, Wang X, Tan Y, Huang X. Misoriented high-entropy iridium ruthenium oxide for acidic water splitting. SCIENCE ADVANCES 2023; 9:eadf9144. [PMID: 37713495 PMCID: PMC10881077 DOI: 10.1126/sciadv.adf9144] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
Designing an efficient catalyst for acidic oxygen evolution reaction (OER) is of critical importance in manipulating proton exchange membrane water electrolyzer (PEMWE) for hydrogen production. Here, we report a fast, nonequilibrium strategy to synthesize quinary high-entropy ruthenium iridium-based oxide (M-RuIrFeCoNiO2) with abundant grain boundaries (GB), which exhibits a low overpotential of 189 millivolts at 10 milliamperes per square centimeter for OER in 0.5 M H2SO4. Microstructural analyses, density functional calculations, and isotope-labeled differential electrochemical mass spectroscopy measurements collectively reveal that the integration of foreign metal elements and GB is responsible for the enhancement of activity and stability of RuO2 toward OER. A PEMWE using M-RuIrFeCoNiO2 catalyst can steadily operate at a large current density of 1 ampere per square centimeter for over 500 hours. This work demonstrates a pathway to design high-performance OER electrocatalysts by integrating the advantages of various components and GB, which breaks the limits of thermodynamic solubility for different metal elements.
Collapse
Affiliation(s)
- Chun Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kaihang Yue
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Jiajia Han
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijia Liu
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Qiunan Liu
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Qingyu Kong
- Synchrotron Soleil, L'Orme des Merisiers, St-Aubin, 91192 Gif-sur-Yvette CEDEX, France
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | - Kazu Suenaga
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiaobao Zhang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xianying Wang
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yuanzhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
56
|
Guo W, Yang T, Zhang H, Zhou H, He M, Wei W, Liang W, Zhou Y, Yu T, Zhao H. Fe and Mo Co-Modulated Coral-like Nickel Pyrophosphate in situ Derived from Nickel-Foam for Oxygen Evolution. CHEMSUSCHEM 2023; 16:e202300633. [PMID: 37255481 DOI: 10.1002/cssc.202300633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
A highly active catalyst for the oxygen evolution reaction (OER) is critical to achieve high efficiency in hydrogen generation from water splitting. Direct conversion of nickel foam (NF) into nickel-based catalysts has attracted intensive interest due to the tight interaction of the catalysts to the substrate surface. However, the catalytic performances are still far below expectation because of the problems of low catalyst amount, thin catalyst layer, and small active area caused by the limitations of the synthesis method. Herein, we develop a Fe3+ -induced synthesis strategy to transform the NF surface into a thicker catalyst layer. In addition to the excellent conductivity and high stability, the as-prepared FeMo-Ni2 P2 O7 /NF catalysts expose more active sites and facilitate mass transfer due to their thicker catalyst layer and highly dense coral-like micro-nano structure. Furthermore, the Mo, Fe co-modulation optimizes the adsorption free energies of the OER intermediates, boosting catalytic activities. Its catalytic activity is among the highest, and it exhibits a small Tafel slope of 34.71 mV dec-1 and a low overpotential of 161 mV for delivering a current density of 100 mA cm-2 compared to reported Ni-based catalysts. The present strategy can be further used in the design of other catalysts for energy storage and conversion.
Collapse
Affiliation(s)
- Wen Guo
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Tao Yang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Hongyan Zhang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Hao Zhou
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Maoshuai He
- Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042, Qingdao, P. R. China
| | - Wenxian Wei
- Testing Center, Yangzhou University, 225009, Yangzhou, P. R. China
| | - Wenjie Liang
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Yilin Zhou
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Tingting Yu
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| | - Hong Zhao
- School of Environmental and Chemical Engineering, Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, 222005, Lianyungang, P. R. China
| |
Collapse
|
57
|
Zhu W, Song X, Liao F, Huang H, Shao Q, Feng K, Zhou Y, Ma M, Wu J, Yang H, Yang H, Wang M, Shi J, Zhong J, Cheng T, Shao M, Liu Y, Kang Z. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide. Nat Commun 2023; 14:5365. [PMID: 37666815 PMCID: PMC10477217 DOI: 10.1038/s41467-023-41036-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
The oxygen evolution reactions in acid play an important role in multiple energy storage devices. The practical promising Ru-Ir based catalysts need both the stable high oxidation state of the Ru centers and the high stability of these Ru species. Here, we report stable and oxidative charged Ru in two-dimensional ruthenium-iridium oxide enhances the activity. The Ru0.5Ir0.5O2 catalyst shows high activity in acid with a low overpotential of 151 mV at 10 mA cm-2, a high turnover frequency of 6.84 s-1 at 1.44 V versus reversible hydrogen electrode and good stability (618.3 h operation). Ru0.5Ir0.5O2 catalysts can form more Ru active sites with high oxidation states at lower applied voltages after Ir incorporation, which is confirmed by the pulse voltage induced current method. Also, The X-ray absorption spectroscopy data shows that the Ru-O-Ir local structure in two-dimensional Ru0.5Ir0.5O2 solid solution improved the stability of these Ru centers.
Collapse
Affiliation(s)
- Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiangcong Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Kun Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yunjie Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Mengjie Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Haiwei Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Meng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jie Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Jun Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| |
Collapse
|
58
|
Liu L, Ji Y, You W, Liu S, Shao Q, Kong Q, Hu Z, Tao H, Bu L, Huang X. Trace Lattice S Inserted RuO 2 Flexible Nanosheets for Efficient and Long-Term Acidic Oxygen Evolution Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208202. [PMID: 37222629 DOI: 10.1002/smll.202208202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/29/2023] [Indexed: 05/25/2023]
Abstract
Pursuing highly active and long-term stable ruthenium (Ru) based oxygen evolution reaction (OER) catalyst for water electrolysis under acidic conditions is of great significance yet a tremendous challenge to date. To solve the problem of serious Ru corrosion in an acid medium, the trace lattice sulfur (S) inserted RuO2 catalyst is prepared. The optimized catalyst (Ru/S NSs-400) has shown a record stability of 600 h for the solely containing Ru (iridium-free) nanomaterials. In the practical proton exchange membrane device, the Ru/S NSs-400 can even sustain more than 300 h without obvious decay at the high current density of 250 mA cm-2 . The detailed investigations reveal that S doping not only changes the electronic structure of Ru via forming RuS coordination for high adsorption of reaction intermediates but also stabilizes Ru from over-oxidation. This strategy is also effective for improving the stability of commercial Ru/C and homemade Ru-based nanoparticles. This work offers a highly effective strategy to design high-performance OER catalysts for water splitting and beyond.
Collapse
Affiliation(s)
- Liangbin Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Wentao You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Qingyu Kong
- Synchrotron Soleil, L'Orme des Merisiers, St-Aubin, Gif-sur-Yvette, CEDEX, 91192, France
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Huabing Tao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lingzheng Bu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
59
|
Wang C, Liu K, Jin Y, Huang S, Chun-Ho Lam J. Amorphous RuO 2 Catalyst for Medium Size Carboxylic Acid to Alkane Dimer Selective Kolbe Electrolysis in an Aqueous Environment. CHEMSUSCHEM 2023; 16:e202300222. [PMID: 37431196 DOI: 10.1002/cssc.202300222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/24/2023] [Indexed: 07/12/2023]
Abstract
The catalytic transformation of biomass-derived volatile carboxylic acids in an aqueous environment is crucial to developing a sustainable biorefinery. To date, Kolbe electrolysis remains arguably the most effective means to convert energy-diluted aliphatic carboxylic acids (carboxylate) to alkane for biofuel production. This paper reports the use of a structurally disordered amorphous RuO2 (a-RuO2 ) that is synthesized facilely in a hydrothermal method. The a-RuO2 is highly effective towards electrocatalytic oxidative decarboxylation of hexanoic acid and is able to produce the Kolbe product, decane, with a yield 5.4 times greater than that of commercial RuO2 . A systematic study of the reaction temperature, current intensity, and electrolyte concentration reveals the enhanced Kolbe product yield is attributable to the more efficient oxidation of the carboxylate anions for the alkane dimer formation. Our work showcases a new design idea for establishing an efficient electrocatalysts for decarboxylation coupling reaction, providing a new electrocatalyst candidate for Kolbe electrolysis.
Collapse
Affiliation(s)
- Chong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kaixin Liu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yangxin Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Shuquan Huang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650000, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Shenzhen Research Institute of City University of Hong Kong, Nanshan District, Shenzhen, China
| |
Collapse
|
60
|
Wang C, Yang F, Feng L. An efficient bi-functional Ir-based catalyst for the acidic overall water splitting reaction. Chem Commun (Camb) 2023; 59:9984-9987. [PMID: 37503926 DOI: 10.1039/d3cc02454g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Bi-functional catalytic ability of an Ir-based catalyst for the acidic overall water splitting reaction was realized using tellurium nanorods as a support resulting from the special electronic coupling and synergism of the Ir and Te elements.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
61
|
Yao Q, Yu Z, Li L, Huang X. Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chem Rev 2023; 123:9676-9717. [PMID: 37428987 DOI: 10.1021/acs.chemrev.3c00252] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Multicomponent metallic nanomaterials with unconventional phases show great prospects in electrochemical energy storage and conversion, owing to unique crystal structures and abundant structural effects. In this review, we emphasize the progress in the strain and surface engineering of these novel nanomaterials. We start with a brief introduction of the structural configurations of these materials, based on the interaction types between the components. Next, the fundamentals of strain, strain effect in relevant metallic nanomaterials with unconventional phases, and their formation mechanisms are discussed. Then the progress in surface engineering of these multicomponent metallic nanomaterials is demonstrated from the aspects of morphology control, crystallinity control, surface modification, and surface reconstruction. Moreover, the applications of the strain- and surface-engineered unconventional nanomaterials mainly in electrocatalysis are also introduced, where in addition to the catalytic performance, the structure-performance correlations are highlighted. Finally, the challenges and opportunities in this promising field are prospected.
Collapse
Affiliation(s)
- Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhiyong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
62
|
Rong C, Dastafkan K, Wang Y, Zhao C. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211884. [PMID: 37549889 DOI: 10.1002/adma.202211884] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/28/2023] [Indexed: 08/09/2023]
Abstract
Oxygen evolution reaction (OER) is a cornerstone reaction for a variety of electrochemical energy conversion and storage systems such as water splitting, CO2 /N2 reduction, reversible fuel cells, and metal-air batteries. However, OER catalysis in acids suffers from extra sluggish kinetics due to the additional step of water dissociation along with its multiple electron transfer processes. Furthermore, OER catalysts often suffer from poor stability in harsh acidic electrolytes due to the severe dissolution/corrosion processes. The development of active and stable OER catalysts in acids is highly demanded. Here, the recent advances in OER electrocatalysis in acids are reviewed and the key strategies are summarized to overcome the bottlenecks of activity and stability for both noble-metal-based and noble metal-free catalysts, including i) morphology engineering, ii) composition engineering, and iii) defect engineering. Recent achievements in operando characterization and theoretical calculations are summarized which provide an unprecedented understanding of the OER mechanisms regarding active site identification, surface reconstruction, and degradation/dissolution pathways. Finally, views are offered on the current challenges and opportunities to break the activity-stability relationships for acidic OER in mechanism understanding, catalyst design, as well as standardized stability and activity evaluation for industrial applications such as proton exchange membrane water electrolyzers and beyond.
Collapse
Affiliation(s)
- Chengli Rong
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yuan Wang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
63
|
Luo N, Cai H, Lu B, Xue Z, Xu J. Pt-functionalized Amorphous RuO x as Excellent Stability and High-activity Catalysts for Low Temperature MEMS Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300006. [PMID: 37086145 DOI: 10.1002/smll.202300006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
The unsaturated coordination and abundant active sites endow amorphous metals with tremendous potential in improving metal oxide semiconductors' gas-sensing properties. However, the amorphous materials maintain the metastable status and easily transfer into the lower-active crystals during the gas-sensing process at high working temperatures, significantly limiting their further applications. Here, a bimetal amorphous PtRu catalyst is developed by accurately regulating the introduction of Pt species into amorphous RuOx supports to realize the highly active and stable H2 S gas-sensing detection. It is found that incorporation of low-concentration Pt species can effectively maintain the amorphous state of initial RuOx and delay the crystallization temperature as high as 100 °C. Further, ex situ XPS and in situ Raman spectroscopy analysis confirm that active Pt species can facilitate H2 S adsorption by strong Pt-S coordination and dissociate the sulfur species to the surrounding support, which contribute to the chemisorption and sensitization of H2 S. Meanwhile, electron transport at the interface between Pt, RuOx and ZnO further activates the reaction process at the surface of the gas-sensitive material. The final PtRu-modified ZnO (PtRu/ZnO) sensor enables the detection of H2 S in the ultra-low concentration range of 15-2000 ppb with remarkable stability.
Collapse
Affiliation(s)
- Na Luo
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - HaiJie Cai
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Bo Lu
- Instrumental Analysis & Research Center of Shanghai University, Shanghai, 200444, P. R. China
| | - Zhenggang Xue
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiaqiang Xu
- NEST lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
64
|
Hao X, Cai T, Ma J, She G, Zhang H, Wang W, Yu J, Mu L, Shi W. Amorphous Ni-Mo-B-O Bifunctional Electrocatalyst for Simultaneous Production of Hydrogen and Value-added Chemicals. Chempluschem 2023; 88:e202300285. [PMID: 37485790 DOI: 10.1002/cplu.202300285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
Hydrogen evolution reaction (HER) coupled with biomass conversion is a sustainable route to produce clean energy H2 and value-added chemicals simultaneously. Herein, an amorphous Ni-Mo-B-O bifunctional electrocatalyst was synthesized through a facile electrodeposition method and employed as a cathode for HER to produce H2 and as an anode for the conversion of hydroxymethylfurfural (HMF) to furandicarboxylic acid (FDCA). Besides leading to the formation of amorphous structures, the introduction of Mo and B can increase the electron density and optimize the electronic structure of the electrocatalyst, thus substantially increasing the catalytic activity of the catalyst. After continuous reaction at a constant potential of 0.58 V vs. Hg/HgO for 8 hours, the conversion of HMF reached 98.86 %, and the selectivity of the target product FDCA was as high as 92.97 %. Finally, a two-electrolyzer system was constructed using the amorphous Ni-Mo-B-O as both cathode and anode to achieve simultaneous H2 production in the cathode chamber and FDCA production in the anode chamber at a low voltage. This work presents a promising strategy for the design and synthesis of high-performance non-noble metal electrocatalysts for efficient and cost-effective H2 production.
Collapse
Affiliation(s)
- Xue Hao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tong Cai
- Power China Jiangxi Electric Power Construction CO.LTD., Nanchang, 330001, P. R. China
| | - Jingxuan Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guangwei She
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haoyue Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiacheng Yu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lixuan Mu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wensheng Shi
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
65
|
Ji M, Yaseen W, Mao H, Xia C, Xu Y, Meng S, Xie J, Xie M. Synergistically Coupled Ni/CeO x@C Electrocatalysts for the Hydrogen Evolution Reaction: Remarkable Performance to Pt/C at High Current Density. Inorg Chem 2023. [PMID: 37498974 DOI: 10.1021/acs.inorgchem.3c01587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Incredibly active electrocatalysts comprising earth-abundant materials that operate as effectively as noble metal catalysts are essential for the sustainable generation of hydrogen through water splitting. However, the vast majority of active catalysts are produced via complicated synthetic processes, making scale-up considerably tricky. In this work, a facile strategy is developed to synthesize superhydrophilic Ni/CeOx nanoparticles (NPs) integrated into porous carbon (Ni/CeOx@C) by a simple two-step synthesis strategy as efficient hydrogen evolution reaction (HER) electrocatalysts in 1.0 M KOH. Benefiting from the electron transport induced by the heterogeneous interface between Ni and CeOx NPs and the superhydrophilic structure of the catalyst, the resultant Ni2Ce1@C/500 catalysts exhibit a low overpotential of 26 and 184 mV at a current density of 10 and 300 mA cm-2, respectively, for HER with a small Tafel slope of 62.03 mV dec-1 and robust durability over 300 h, and its overpotential at a high current density is much better than the benchmark commercial Pt/C. Results revealed that the electronic rearrangement between Ni and CeOx integrated into porous carbon could effectively regulate the local conductivity and charge density. In addition, the oxygen vacancies and Ni/CeOx heterointerface promote water adsorption and hydrogen intermediate dissociation into H2 molecules, which ultimately accelerate the HER reaction kinetics. Notably, the electrochemical results demonstrate that structural optimization by regulating synthesis temperature and metal concentration could improve the surface features contributing to high electrical conductivity and increase the number of electrochemically active sites on the Ni/CeOx@C heterointerface, high crystal purity, and better electrical conductivity, resulting in its exceptional electrocatalytic performance toward the HER. These results indicated that the Ni/CeOx@C electrocatalyst has the potential for practical water-splitting applications because of its controlled production strategy and outstanding Pt-like HER performance.
Collapse
Affiliation(s)
- Mengyi Ji
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Waleed Yaseen
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Huiping Mao
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Changkun Xia
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Suci Meng
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jimin Xie
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Meng Xie
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
66
|
Wu Y, Yao R, Zhao Q, Li J, Liu G. RuO 2 nanoparticles anchored on g-C 3N 4 as an efficient bifunctional electrocatalyst for water splitting in acidic media. Dalton Trans 2023. [PMID: 37449381 DOI: 10.1039/d3dt01676e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The electrolysis of water, particularly proton exchange membrane (PEM) water electrolysis, holds great promise for hydrogen production in industry. However, the catalyst used in this process is prone to dissolution in acidic environments, making it imperative to develop cost-effective, highly efficient, and acid-stable electrocatalytic materials to overcome this challenge and enable large-scale application of PEM water electrolysis technology. Herein, we prepared ruthenium oxide (RuO2)/graphitic carbon nitride (g-C3N4) composites (RuO2/C3N4) via a combination of sol-gel and annealing methods. The g-C3N4 provides a large surface area, while RuO2 is uniformly deposited on the g-C3N4 surface. The interaction between g-C3N4 and RuO2 stabilizes the RuO2 nanoparticles and enhances long-term water oxidation stability. This unique structure and the combined advantages of RuO2 and g-C3N4 yield exceptional electrocatalytic activity toward both the oxygen evolution reaction (OER, 240 mV@10 mA cm-2) and the hydrogen evolution reaction (HER, 109 mV@10 mA cm-2), with excellent durability (over 28 h), and a cell voltage of 1.607 V at 10 mA cm-2 when used in an RuO2/C3N4||RuO2/C3N4 electrolyzer. This study highlights the efficacy of the g-C3N4 support method in designing highly stable Ru-based OER electrocatalysts for efficient acidic water splitting.
Collapse
Affiliation(s)
- Yun Wu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Rui Yao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Qiang Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Guang Liu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| |
Collapse
|
67
|
Luo N, Guo M, Cai H, Li X, Wang X, Cheng Z, Xue Z, Xu J. Engineering a Heterophase Interface by Tailoring the Pt Coverage Density on an Amorphous Ru Surface for Ultrasensitive H 2S Detection. ACS Sens 2023; 8:2237-2246. [PMID: 37208810 DOI: 10.1021/acssensors.3c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Amorphous/crystalline heterophase engineering is emerging as an attractive strategy to adjust the properties and functions of nanomaterials. Here, we reveal a heterophase interface role by precisely tailoring the crystalline Pt coverage density on an amorphous Ru surface (cPt/aRu) for ultrasensitive H2S detection. We found that when the atomic ratio of Pt/Ru increased from 10 to 50%, the loading modes of Pt changed from island coverage (1cPt/aRu) to cross-linkable coverage (3cPt/aRu) and further to dense coverage (5cPt/aRu). The differences in coverage models further regulate the chemical adsorption of H2S on Pt and the electronic transformation process on Ru, which can be proved by ex situ X-ray photoelectron spectroscopy experiments. Notably, a special cross-linkable coverage 3cPt/aRu on ZnO shows the best gas-sensitive performance, in which the operating temperature reduces from 240 to 160 °C compared with pristine ZnO and the selectivity coefficient for H2S gas improves from ∼1.2 to ∼4.6. This is mainly benefit from the maximized exposure of the amorphous/crystalline heterophase interface. Our work thus provides a new platform for future applications of amorphous/crystalline heterogeneous nanostructures in gas sensors and catalysis.
Collapse
Affiliation(s)
- Na Luo
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Mengmeng Guo
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Haijie Cai
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaojie Li
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaohong Wang
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Zhixuan Cheng
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Zhenggang Xue
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
68
|
Zhang S, Yin L, Li Q, Wang S, Wang W, Du Y. Laves phase Ir 2Sm intermetallic nanoparticles as a highly active electrocatalyst for acidic oxygen evolution reaction. Chem Sci 2023; 14:5887-5893. [PMID: 37293647 PMCID: PMC10246678 DOI: 10.1039/d3sc01052j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/15/2023] [Indexed: 06/10/2023] Open
Abstract
Rare earth (RE) intermetallic nanoparticles (NPs) are significant for fundamental explorations and promising for practical applications in electrocatalysis. However, they are difficult to synthesize because of the unusually low reduction potential and extremely high oxygen affinity of RE metal-oxygen bonds. Herein, intermetallic Ir2Sm NPs were firstly synthesized on graphene as a superior acidic oxygen evolution reaction (OER) catalyst. It was verified that intermetallic Ir2Sm is a new phase belonging to the C15 cubic MgCu2 type in the Laves phase family. Meanwhile, intermetallic Ir2Sm NPs achieved a mass activity of 1.24 A mgIr-1 at 1.53 V and stability of 120 h at 10 mA cm-2 in 0.5 M H2SO4 electrolyte, which corresponds to a 5.6-fold and 12-fold enhancement relative to Ir NPs. Experimental results together with density functional theory (DFT) calculations show that in the structurally ordered intermetallic Ir2Sm NPs, the alloying of Sm with Ir atoms modulates the electronic nature of Ir, thereby reducing the binding energy of the oxygen-based intermediate, resulting in faster kinetics and enhanced OER activity. This study provides a new perspective for the rational design and practical application of high-performance RE alloy catalysts.
Collapse
Affiliation(s)
- Shuai Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| | - Leilei Yin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| | - Qingqing Li
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| | - Siyuan Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| | - Weihua Wang
- College of Electronic Information and Optical Engineering, Nankai University Tianjin 300350 China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University Tianjin 300350 China
| |
Collapse
|
69
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
70
|
Wang Z, Li G, Hou W, Guo H, Wang L, Wu M. Insights into the Use of Te-O Pairs as Active Centers of Carbon Nanosheets for Efficient Electrochemical Oxygen Reduction. ACS NANO 2023; 17:8671-8679. [PMID: 37067477 DOI: 10.1021/acsnano.3c01662] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Previous theoretical calculations have predicted that the incorporation of tellurium (Te) into carbon materials can significantly enhance their catalytic activity. Nevertheless, the experimental realization of efficient Te-doped carbon materials remains challenging. Here, we employed theoretical calculations to deduce the possible structure of Te-doped carbon materials. Our findings unveil that the formation of Te-O pairs in carbon materials with a relatively low oxygen coordination microenvironment can impart strong electron-donating capabilities, thereby boosting the electrocatalytic activity of oxygen reduction reaction (ORR). To verify our theoretical predictions, we synthesized Te-O pair-doped carbon materials using a tandem hydrothermal dehydration-pyrolysis strategy. This approach enabled efficient infiltration of Te into carbon materials. Our unconventional Te-O pair-doped carbon materials exhibit expanded interlayer distances and graphene-like nanosheet architectures, which provide enlarged active areas. These structural features contribute to the enhanced ORR catalytic performance of the as-prepared carbon catalyst. Our findings provide molecular-level insights into the design of various carbon-based electrocatalysts with binary-heteroatom-doped active sites.
Collapse
Affiliation(s)
- Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Gao Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Weidong Hou
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Minghong Wu
- Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
71
|
Li T, Deng Y, Xing Z, Xiao S, Mu S, Wang T, Gao Y, Ma L, Cheng C, Zhao C. Amorphization-Modulated Metal Sulfides with Boosted Active Sites and Kinetics for Efficient Enzymatic Colorimetric Biodetection. SMALL METHODS 2023:e2300011. [PMID: 37147780 DOI: 10.1002/smtd.202300011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/22/2023] [Indexed: 05/07/2023]
Abstract
Colorimetric biosensing has become a popular sensing method for the portable detection of a variety of biomarkers. Artificial biocatalysts can replace traditional natural enzymes in the fields of enzymatic colorimetric biodetection; however, the exploration of new biocatalysts with efficient, stable, and specific biosensing reactions has remained challenging so far. Here, to enhance the active sites and overcome the sluggish kinetics of metal sulfides, the creation of an amorphous RuS2 (a-RuS2 ) biocatalytic system is reported, which can dramatically boost the peroxidase-mimetic activity of RuS2 for the enzymatic detection of diverse biomolecules. Due to the existence of abundant accessible active sites and mildly surface oxidation, the a-RuS2 biocatalyst displays a twofold Vmax value and much higher reaction kinetics/turnover number (1.63 × 10-2 s-1 ) compared to that of the crystallized RuS2 . Noticeably, the a-RuS2 -based biosensor shows an extremely low detection limit of H2 O2 (3.25 × 10-6 m), l-cysteine (3.39 × 10-6 m), and glucose (9.84 × 10-6 m), respectively, thus showing superior detection sensitivity to many currently reported peroxidase-mimetic nanomaterials. This work offers a new path to create highly sensitive and specific colorimetric biosensors in detecting biomolecules and also provides valuable insights for engineering robust enzyme-like biocatalysts via amorphization-modulated design.
Collapse
Affiliation(s)
- Tiantian Li
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuting Deng
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Sutong Xiao
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shengdong Mu
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, Med-X Center for Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
72
|
Cheng Z, Tan Z, Zhou L, Li L, Xu X, Yuen MF, Li L, Pang Y, Debecker DP, Ma R, Wang C. Engineering Amorphous/Crystalline Ru(OH) 3/CoFe-Layered Double Hydroxide for Hydrogen Evolution at 1000 mA cm -2. Inorg Chem 2023; 62:7424-7433. [PMID: 37141089 DOI: 10.1021/acs.inorgchem.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For large-scale industrial applications, it is highly desirable to create effective, economical electrocatalysts with long-term stability for the hydrogen evolution reaction (HER) at a large current density. Herein, we report a unique motif with crystalline CoFe-layered hydroxide (CoFe-LDH) nanosheets enclosed by amorphous ruthenium hydroxide (a-Ru(OH)3/CoFe-LDH) to realize the efficient hydrogen production at 1000 mA cm-2, with a low overpotential of 178 mV in alkaline media. During the continuous HER process for 40 h at such a large current density, the potential remains almost constant with only slight fluctuations, indicating good long-term stability. The remarkable HER performance can be attributed to the charge redistribution caused by abundant oxygen vacancies in a-Ru(OH)3/CoFe-LDH. The increased electron density of states lowers the charge-transfer resistance and promotes the formation and release of H2 molecules. The water-splitting electrolyzer with a-Ru(OH)3/CoFe-LDH as both an anode and a cathode in 1.0 M KOH demonstrates stable hydrogen production and a 100% faradic efficiency. The design strategy of interface engineering in this work will inspire the design of practical electrocatalysts for water splitting on an industrial scale.
Collapse
Affiliation(s)
- Zhuoer Cheng
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, P. R. China
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhanming Tan
- College of Horticulture and Forestry, Tarim University, Alar 843300, P. R. China
| | - Li Zhou
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, P. R. China
| | - Linfeng Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xuefei Xu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Muk Fung Yuen
- The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| | - Ligui Li
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R. China
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Damien P Debecker
- Institute of Condensed Matter and Nanoscience (IMCN), UCLouvain, Louvain-La-Neuve 1348, Belgium
| | - Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
73
|
Wang H, Guo Y, Mao Q, Yu H, Deng K, Wang Z, Li X, Xu Y, Wang L. Sulfur and phosphorus co-doping optimized electronic structure and modulated intermediate affinity on PdSP metallene for ethanol-assisted energy-saving H 2 production. NANOSCALE 2023; 15:7765-7771. [PMID: 37067453 DOI: 10.1039/d3nr01112g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Coupling cathodic hydrogen evolution reaction (HER) and anodic electrochemical oxidation of organic small molecules in a co-electrolysis system could simultaneously realize high-value chemical generation and energy-saving hydrogen production, which, however, require high-performance electrocatalysts. In this work, we developed a one-step solvothermal method to synthesize S, P-co-doped Pd metallene (PdSP metallene) and employed it as a bifunctional electrocatalyst for both the HER and ethanol oxidation reaction (EOR). The co-doping of S and P atoms into Pd metallene could introduce multiple active sites and increase the electrochemically-active surface area. Moreover, the electronic interactions between Pd, S, and P atoms could regulate the electronic structure of the active sites and modulate the intermediate affinity on the resultant PdSP metallene, thus boosting the electrocatalytic HER and EOR performance. In the HER-EOR co-electrolysis system with bifunctional PdSP metallene electrocatalysts, only a 0.88 V of electrolysis voltage was required to fulfill 10 mA cm-2 current density, much lower than that of pure water electrolysis (1.41 V) using the same electrocatalysts.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yanan Guo
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
74
|
Pei C, Chen S, Zhou M, Chen X, Sun B, Lan S, Hahn H, Feng T. Direct Urea/H 2O 2 Fuel Cell with a Hierarchical Porous Nanoglass Anode for High-Efficiency Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24319-24328. [PMID: 37096959 DOI: 10.1021/acsami.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Direct urea/H2O2 fuel cells (DUFCs) constitute a sustainable bifunctional energy conversion technique devoted to simultaneously eliminating environmental wastewater with urea and generating clean energy. However, exploring an efficient anode material for DUFCs still remains a huge challenge. In this work, a Ni-P hierarchical porous nanoglass (HPNG) catalytic electrode was developed via a low-cost, industrially available electrodeposition technique, which exhibits one of the best performances reported so far in the urea oxidation reaction (UOR), with a potential of 1.330 V at a current density of 10 mA cm-2 and a Tafel slope of 9.77 mV dec-1. The superior UOR performance of the HPNG electrode is attributed to the excellent intrinsic catalytic activity of NG with a high-energy state and an extremely enlarged surface area from the unique 3D hierarchical porous structure. Furthermore, a DUFC system with the HPNG anode shows a performance breakthrough as indicated by the maximum power density of 38.15 mW cm-2 for 0.5 M urea, representing one of the best yet reported DUFCs. Our work demonstrates the feasibility of the scalable production of HPNG electrodes and is expected to be a great contribution to the development of the practical use of DUFCs in the near future for bifunctional energy conversion.
Collapse
Affiliation(s)
- Chaoqun Pei
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Shuangqin Chen
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Zhou
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianhao Chen
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Baoan Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Si Lan
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Horst Hahn
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| | - Tao Feng
- School of Material Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
75
|
Guo ZY, Sun R, Huang Z, Han X, Wang H, Chen C, Liu YQ, Zheng X, Zhang W, Hong X, Li WW. Crystallinity engineering for overcoming the activity-stability tradeoff of spinel oxide in Fenton-like catalysis. Proc Natl Acad Sci U S A 2023; 120:e2220608120. [PMID: 37018199 PMCID: PMC10104503 DOI: 10.1073/pnas.2220608120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/27/2023] [Indexed: 04/06/2023] Open
Abstract
A precise modulation of heterogeneous catalysts in structural and surface properties promises the development of more sustainable advanced oxidation water purification technologies. However, while catalysts with superior decontamination activity and selectivity are already achievable, maintaining a long-term service life of such materials remains challenging. Here, we propose a crystallinity engineering strategy to break the activity-stability tradeoff of metal oxides in Fenton-like catalysis. The amorphous/crystalline cobalt-manganese spinel oxide (A/C-CoMnOx) provided highly active, hydroxyl group-rich surface, with moderate peroxymonosulfate (PMS)-binding affinity and charge transfer energy and strong pollutant adsorption, to trigger concerted radical and nonradical reactions for efficient pollutant mineralization, thereby alleviating the catalyst passivation by oxidation intermediate accumulation. Meanwhile, the surface-confined reactions, benefited from the enhanced adsorption of pollutants at A/C interface, rendered the A/C-CoMnOx/PMS system ultrahigh PMS utilization efficiency (82.2%) and unprecedented decontamination activity (rate constant of 1.48 min-1) surpassing almost all the state-of-the-art heterogeneous Fenton-like catalysts. The superior cyclic stability and environmental robustness of the system for real water treatment was also demonstrated. Our work unveils a critical role of material crystallinity in modulating the Fenton-like catalytic activity and pathways of metal oxides, which fundamentally improves our understanding of the structure-activity-selectivity relationships of heterogeneous catalysts and may inspire material design for more sustainable water purification application and beyond.
Collapse
Affiliation(s)
- Zhi-Yan Guo
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Rongbo Sun
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Zixiang Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Xiao Han
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Haoran Wang
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Cai Chen
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Yu-Qin Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xun Hong
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Wen-Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
76
|
Jiang Q, Dong Y, Lü L, Zheng Z, Nan ZA, Ye J, Lin H, Jiang Z, Xie Z. High Chemical Potential Driven Amorphization of Pd-based Nanoalloys. SMALL METHODS 2023; 7:e2201513. [PMID: 36908001 DOI: 10.1002/smtd.202201513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Amorphous metals and alloys are promising candidates for superior catalysts in many catalytic and electrocatalytic reactions. It is of great urgency to develop a general method to construct amorphous alloys and further clarify the growth mechanism in a wet-chemical system. Herein, inspired by the conservation of energy during the crystallization process, amorphous PdCu nanoalloys have been successfully synthesized by promoting the chemical potential of the building blocks in solution. Benefiting from the abundant active sites and enhanced corrosion resistance, the synthesized amorphous PdCu nanostructures exhibit superior catalytic activity and durability over the face-centered cubic one in formic acid decomposition reaction. More importantly, the successful fabrications of amorphous PdFe, PdCo, and PdNi further demonstrate the universality of the above strategy. This proposed strategy is promising to diversify the amorphous family.
Collapse
Affiliation(s)
- Qiaorong Jiang
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Yongdi Dong
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Linzhe Lü
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Zhiping Zheng
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Zi-Ang Nan
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Jinyu Ye
- Testing and Analysis Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Haixin Lin
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361005, P. R. China
| | - Zhiyuan Jiang
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Zhaoxiong Xie
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361005, P. R. China
| |
Collapse
|
77
|
Hu T, Shen W, Meng F, Yang S, Yu S, Li H, Zhang Q, Gu L, Tan C, Liang R. Boosting the Sonodynamic Cancer Therapy Performance of 2D Layered Double Hydroxide Nanosheet-Based Sonosensitizers Via Crystalline-to-Amorphous Phase Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209692. [PMID: 36780890 DOI: 10.1002/adma.202209692] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Indexed: 05/17/2023]
Abstract
Sonodynamic therapy (SDT) has been a promising therapeutic modality for cancer because of its superior advantages compared with other therapeutic strategies. However, the current sonosensitizers used for SDT normally exhibit low activity for ultrasound (US)-induced reactive oxygen species (ROS) generation. Herein, the crystalline-to-amorphous phase transformation is reported as a simple but powerful strategy to engineer ultrathin 2D CoW-LDH and NiW-LDH nanosheets as highly efficient sonosensitizers for SDT. The phase transformation of CoW-LDH and NiW-LDH nanosheets from polycrystalline to amorphous ones is achieved through a simple acid etching treatment. Importantly, compared with the polycrystalline one, the amorphous CoW-LDH (a-CoW-LDH) nanosheets possess higher ROS generation activity under US irradiation, which is ≈17 times of the commercial TiO2 sonosensitizer. The results suggest that the enhanced performance of ultrathin a-CoW-LDH nanosheets for US-induced ROS generation may be attributed to the phase transformation-induced defect generation and electronic structure changes. After polyethylene glycol modification, the a-CoW-LDH nanosheets can serve as a high-efficiency sonosensitizer for SDT to achieve cell death in vitro and tumor eradication in vivo under US irradiation.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weicheng Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuqing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shilong Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lin Gu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaoliang Tan
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
78
|
Liu D, Ding T, Wang L, Zhang H, Xu L, Pang B, Liu X, Wang H, Wang J, Wu K, Yao T. In situ constructing atomic interface in ruthenium-based amorphous hybrid-structure towards solar hydrogen evolution. Nat Commun 2023; 14:1720. [PMID: 36977693 PMCID: PMC10050010 DOI: 10.1038/s41467-023-37451-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The rational steering and construction of efficient and stable atomic interfaces is highly desirable but rather challenging in solar energy conversion. Here, we report an in-situ oxygen impregnation strategy to build abundant atomic interfaces composed of homogeneous Ru and RuOx amorphous hybrid-mixture with ultrafast charge transfer, for solar hydrogen evolution with sacrificial agent free. Via in-situ synchrotron X-ray absorption and photoelectron spectroscopies, we can precisely track and identify the gradual formation of atomic interfaces towards homogeneous Ru-RuOx hybrid-structure at the atomic level. Benefiting from the abundant interfaces, the amorphous RuOx sites can intrinsically trap the photoexcited hole within an ultrafast process (<100 fs), and the amorphous Ru sites enable subsequent electron transfer (~1.73 ps). Hence, this hybrid-structure triggers long-lived charge-separated states, and results in a high hydrogen evolution rate of 60.8 μmol·h-1. This design integrating the two sites fulfilled each half-reaction in a single hybrid-structure suggests potential guidelines towards efficient artificial photosynthesis.
Collapse
Affiliation(s)
- Dong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Tao Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Lifeng Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Huijuan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Li Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Beibei Pang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Huijuan Wang
- Experimental Center of Engineering and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
| |
Collapse
|
79
|
Fan J, Mu Y, Ge X, Zhang L, Li W, Dong H, Wang D, Zhang W, Ma J, Zheng W, Cui X. Two-Dimensional Self-assembly of Unconventional fcc Ru 3Ir Nanocrystals for Efficient and Robust Acidic Water Oxidation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Jinchang Fan
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Yajing Mu
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Xin Ge
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Lei Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Weiwei Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Dewen Wang
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Wei Zhang
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Weitao Zheng
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Xiaoqiang Cui
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| |
Collapse
|
80
|
Gong L, Zhu J, Xia F, Zhang Y, Shi W, Chen L, Yu J, Wu J, Mu S. Marriage of Ultralow Platinum and Single-Atom MnN 4 Moiety for Augmented ORR and HER Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Lei Gong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Fanjie Xia
- NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Yuhan Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Wenjie Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Lei Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jinsong Wu
- NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| |
Collapse
|
81
|
Jin Y, Zhang M, Song L, Zhang M. Research Advances in Amorphous-Crystalline Heterostructures Toward Efficient Electrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206081. [PMID: 36526597 DOI: 10.1002/smll.202206081] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Interface engineering of heterostructures has proven a promising strategy to effectively modulate their physicochemical properties and further improve the electrochemical performance for various applications. In this context related research of the newly proposed amorphous-crystalline heterostructures have lately surged since they combine the superior advantages of amorphous- and crystalline-phase structures, showing unusual atomic arrangements in heterointerfaces. Nonetheless, there has been much less efforts in systematic analysis and summary of the amorphous-crystalline heterostructures to examine their complicated interfacial interactions and elusory active sites. The critical structure-activity correlation and electrocatalytic mechanism remain rather elusive. In this review, the recent advances of amorphous-crystalline heterostructures in electrochemical energy conversion and storage fields are amply discussed and presented, along with remarks on the challenges and perspectives. Initially, the fundamental characteristics of amorphous-crystalline heterostructures are introduced to provide scientific viewpoints for structural understanding. Subsequently, the superiorities and current achievements of amorphous-crystalline heterostructures as highly efficient electrocatalysts/electrodes for hydrogen evolution reaction, oxygen evolution reaction, supercapacitor, lithium-ion battery, and lithium-sulfur battery applications are elaborated. At the end of this review, future outlooks and opportunities on amorphous-crystalline heterostructures are also put forward to promote their further development and application in the field of clean energy.
Collapse
Affiliation(s)
- Yachao Jin
- Institute of Energy Supply Technology for High-end Equipment, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Mengxian Zhang
- Institute of Energy Supply Technology for High-end Equipment, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Li Song
- Institute of Energy Supply Technology for High-end Equipment, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| | - Mingdao Zhang
- Institute of Energy Supply Technology for High-end Equipment, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, P. R. China
| |
Collapse
|
82
|
Ma S, Yang P, Chen J, Wu Z, Li X, Zhang H. NiCu alloys anchored Co3O4 nanowire arrays as efficient hydrogen evolution electrocatalysts in alkaline and neutral media. J Colloid Interface Sci 2023; 642:604-611. [PMID: 37028167 DOI: 10.1016/j.jcis.2023.03.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Robust and long-lasting non-precious metal electrocatalysts are essential to achieve sustainable hydrogen production. In this work, we synthesized Co3O4@NiCu by electrodepositing NiCu nanoclusters onto Co3O4 nanowire arrays that were formed in situ on nickel foam. The introduction of NiCu nanoclusters altered the inherent electronic structure of Co3O4, significantly increasing the exposure of active sites and enhancing endogenous electrocatalytic activity. Co3O4@NiCu exhibited overpotentials of only 20 and 73 mV, respectively, at 10 mA cm-2 current densities in alkaline and neutral media. These values were equivalent to those of commercial Pt catalysts. Finally, the electron accumulation effect at the Co3O4@NiCu, along with a negative shift in the d-band center, is finally revealed by theoretical calculations. Hydrogen adsorption on consequent electron-rich Cu sites was effectively weakened, leading to a robust catalytic activity for the hydrogen evolution reaction (HER). Overall, this study proposes a practical strategy for creating efficient HER electrocatalysts in both alkaline and neutral media.
Collapse
|
83
|
Nicole SLD, Li Y, Xie W, Wang G, Lee JM. Heterointerface and Tensile Strain Effects Synergistically Enhances Overall Water-Splitting in Ru/RuO 2 Aerogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206844. [PMID: 36642855 DOI: 10.1002/smll.202206844] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Designing robust electrocatalysts for water-splitting is essential for sustainable hydrogen generation, yet difficult to accomplish. In this study, a fast and facile two-step technique to synthesize Ru/RuO2 aerogels for catalyzing overall water-splitting under alkaline conditions is reported. Benefiting from the synergistic combination of high porosity, heterointerface, and tensile strain effects, the Ru/RuO2 aerogel exhibits low overpotential for oxygen evolution reaction (189 mV) and hydrogen evolution reaction (34 mV) at 10 mA cm-2 , surpassing RuO2 (338 mV) and Pt/C (53 mV), respectively. Notably, when the Ru/RuO2 aerogels are applied at the anode and cathode, the resultant water-splitting cell reflected a low potential of 1.47 V at 10 mA cm-2 , exceeding the commercial Pt/C||RuO2 standard (1.63 V). X-ray adsorption spectroscopy and theoretical studies demonstrate that the heterointerface of Ru/RuO2 optimizes charge redistribution, which reduces the energy barriers for hydrogen and oxygen intermediates, thereby enhancing oxygen and hydrogen evolution reaction kinetics.
Collapse
Affiliation(s)
- Sui L D Nicole
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Yinghao Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wenjie Xie
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Guangzhao Wang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
84
|
Chu X, Wang L, Li J, Xu H. Strategies for Promoting Catalytic Performance of Ru-based Electrocatalysts towards Oxygen/Hydrogen Evolution Reaction. CHEM REC 2023; 23:e202300013. [PMID: 36806446 DOI: 10.1002/tcr.202300013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Indexed: 02/22/2023]
Abstract
Ru-based materials hold great promise for substituting Pt as potential electrocatalysts toward water electrolysis. Significant progress is made in the fabrication of advanced Ru-based electrocatalysts, but an in-depth understanding of the engineering methods and induced effects is still in their early stage. Herein, we organize a review that focusing on the engineering strategies toward the substantial improvement in electrocatalytic OER and HER performance of Ru-based catalysts, including geometric structure, interface, phase, electronic structure, size, and multicomponent engineering. Subsequently, the induced enhancement in catalytic performance by these engineering strategies are also elucidated. Furthermore, some representative Ru-based electrocatalysts for the electrocatalytic HER and OER applications are also well presented. Finally, the challenges and prospects are also elaborated for the future synthesis of more effective Ru-based catalysts and boost their future application.
Collapse
Affiliation(s)
- Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Lu Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China.,Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|
85
|
Wu S, Zhang J, Pan J, Bai S, Wang Z, Chen Y, Xu D, An Y, Liu C, Chu C, Dai Q, Jiang L, Lu Z, Liu G. Integrated Nanorod-Mediated PD-L1 Downregulation in Combination with Oxidative-Stress Immunogene Therapy against Cancer. Adv Healthc Mater 2023:e2300110. [PMID: 36773310 DOI: 10.1002/adhm.202300110] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Indexed: 02/13/2023]
Abstract
It is an engaging program for tumor treatment that rationalizes the specific microenvironments, activation of suppressed immune system (immune resistance/escape reversion), and synergistic target therapy. Herein, a biomimetic nanoplatform that combines oxidative stress with genetic immunotherapy to strengthen the therapeutic efficacy is developed. Ru-TePt nanorods, small interfering RNA (PD-L1 siRNA), and biomimetic cellular membrane vesicles with the targeting ability to design a multifunctional Ru-TePt@siRNA-MVs system are rationally integrated. Notably, the Fenton-like activity significantly enhances Ru-TePt nanorods sonosensitization, thus provoking stronger oxidative stress to kill cells directly. Meanwhile, immunogenic cell death is triggered to secrete numerous cytokines and activate T cells. The effective catalase characteristics of Ru-TePt enable the in situ oxygen-producing pump to improve tumor oxygen level and coordinately strengthen the therapeutic effect of SDT followed. More importantly, anti-PD-L1-siRNA mediated immune checkpoint silence of the PD-L1 gene creates an environment conducive to activating cytotoxic T lymphocytes, synergistic with boosted reactive oxygen species-triggered antitumor immune response. The experimental results in vitro and in vivo reveal that the Ru-TePt@siRNA-MVs nanosystems can effectively activate the oxidative stress-triggered immune response and inhibit PD-1/PD-L1 axis-mediated immune resistance. Consequently, this orchestrated treatment paradigm provides valuable insights for developing potential oxidative stress and genetic immunotherapy.
Collapse
Affiliation(s)
- Shuaiying Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jie Pan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ziying Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulun Chen
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengchao Chu
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Qixuan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lai Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhixiang Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
86
|
Wen D, Li K, Deng R, Feng J, Zhang H. Defect-Rich Glassy IrTe 2 with Dual Enzyme-Mimic Activities for Sono-Photosynergistic-Enhanced Oncotherapy. J Am Chem Soc 2023; 145:3952-3960. [PMID: 36757875 DOI: 10.1021/jacs.2c09967] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The complexity, diversity, and heterogeneity of malignant tumors pose a formidable challenge for antitumor therapy. To achieve the goal of significantly enhancing the antitumor effect, nanomedicine-based synergistic therapy is one of the important strategies. Herein, we innovatively report a defect-rich glassy IrTe2 (G-IrTe2) with weak Ir-Te bond strength for synergistic sonodynamic therapy (SDT), chemodynamic therapy (CDT), and mild photothermal therapy (PTT). G-IrTe2 sonosensitizer under ultrasound (US) stimuli exhibits excellent reactive oxygen species (ROS) production performance. Besides, catalase (CAT)-like activity of G-IrTe2 can provide abundant oxygen to enhance the SDT effect. Then, the theoretical calculation verifies that US stimuli can easily make the irregular Ir-Te bond to be broken in amorphous IrTe2 and free electrons will be released to combine with the oxygen and further form singlet oxygen (1O2). Meanwhile, G-IrTe2 with peroxidase (POD)-like activity can also catalyze endogenous H2O2 to produce more ROS for chemodynamic therapy (CDT), which is conducive to better tumor ablation. Furthermore, the ROS produced by sono-/chemodynamic processes can cause mitochondrial dysfunction and further give rise to heat shock protein (HSP) downregulated expression, maximizing the efficiency of mild PTT. Therefore, such glassy IrTe2 with rich defect could be significantly involved in synergistic oncotherapy and then effectively achieve outstanding antitumor efficacy. This study provides a new research idea for expanding the application of inorganic glassy nanomaterials in promoting the therapeutic effect of tumors.
Collapse
Affiliation(s)
- Ding Wen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
87
|
Wang Y, Li X, Huang Z, Wang H, Chen Z, Zhang J, Zheng X, Deng Y, Hu W. Amorphous Mo-doped NiS 0.5 Se 0.5 Nanosheets@Crystalline NiS 0.5 Se 0.5 Nanorods for High Current-density Electrocatalytic Water Splitting in Neutral Media. Angew Chem Int Ed Engl 2023; 62:e202215256. [PMID: 36461715 DOI: 10.1002/anie.202215256] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
It is vitally important to develop highly active, robust and low-cost transition metal-based electrocatalysts for overall water splitting in neutral solution especially at large current density. In this work, amorphous Mo-doped NiS0.5 Se0.5 nanosheets@crystalline NiS0.5 Se0.5 nanorods (Am-Mo-NiS0.5 Se0.5 ) was synthesized using a facil one-step strategy. In phosphate buffer saline solution, the Am-Mo-NiS0.5 Se0.5 shows tiny overpotentials of 48 and 209 mV for hydrogen evolution reaction (HER), 238 and 514 mV for oxygen evolution reaction (OER) at 10 and 1000 mA cm-2 , respectively. Moreover, Am-Mo-NiS0.5 Se0.5 delivers excellent stability for at least 300 h without obvious degradation. Theoretical calculations revealed that the Ni sites in the defect-rich amorphous structure of Am-Mo-NiS0.5 Se0.5 owns higher electron state density and strengthened the binding energy of H2 O, which will optimize H adsorption/desorption energy barriers and reduce the adsorption energy of OER determining step.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Xiaopeng Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin, 300384, China
| | - Zhong Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Information and Communication Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Zelin Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Xuerong Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China.,School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
88
|
Tian L, Liu Y, He C, Tang S, Li J, Li Z. Hollow Heterostructured Nanocatalysts for Boosting Electrocatalytic Water Splitting. CHEM REC 2023; 23:e202200213. [PMID: 36193962 DOI: 10.1002/tcr.202200213] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Indexed: 11/07/2022]
Abstract
The implementation of electrochemical water splitting demands the development and application of electrocatalysts to overcome sluggish reaction kinetics of hydrogen/oxygen evolution reaction (HER/OER). Hollow nanostructures, particularly for hollow heterostructured nanomaterials can provide multiple solutions to accelerate the HER/OER kinetics owing to their advantageous merit. Herein, the recent advances of hollow heterostructured nanocatalysts and their excellent performance for water splitting are systematically summarized. Starting by illustrating the intrinsically advantageous features of hollow heterostructures, achievements in engineering hollow heterostructured electrocatalysts are also highlighted with the focus on structural design, interfacial engineering, composition regulation, and catalytic evaluation. Finally, some perspective insights and future challenges of hollow heterostructured nanocatalysts for electrocatalytic water splitting are also discussed.
Collapse
Affiliation(s)
- Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Yuanyuan Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Changchun He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Shirong Tang
- School of Food Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Jing Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| |
Collapse
|
89
|
Hu C, Xu J, Tan Y, Huang X. Recent advances of ruthenium-based electrocatalysts for hydrogen energy. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
90
|
Zhang Q, Cui C, Wang Z, Deng F, Qiu S, Zhu Y, Jing B. Mott Schottky CoS x-MoO x@NF heterojunctions electrode for H 2 production and urea-rich wastewater purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160170. [PMID: 36379335 DOI: 10.1016/j.scitotenv.2022.160170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The sluggish kinetics of oxygen evolution reaction (OER) is the bottleneck of alkaline water electrolysis. The urea oxidation reaction (UOR) with much faster kinetics was to replace OER. To further promote UOR, a heterojunction structure assembled of CoSx and MoOx was established, and then its superior catalytic activity was predicted by DFT calculation. After that, an ultra-thin CoSx-MoOx@nickel foam (CoSx-MoOx@NF) electrode with a Mott-Schottky structure was prepared via a facile hydrothermal method, followed by a low-temperature vulcanization. Results highlighted CoSx-MoOx@NF electrode presented a superior performance toward UOR, OER, and H2 evolution reaction (HER). Notably, it exhibited excellent electrocatalytic performance for OER (1.32 V vs. RHE, 10 mA cm-2), UOR (1.305 V vs. RHE, 10 mA cm-2), and urea-assisted overall water splitting with a low voltage (1.38 V, 10 mA cm-2) when CoSx-MoOx@NF electrode served as both anode and cathode. It is promising to use CoSx-MoOx@NF in an electrochemical system integrated with H2 generation and urea-rich wastewater purification.
Collapse
Affiliation(s)
- Qiwei Zhang
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chongwei Cui
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhuowen Wang
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fengxia Deng
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shan Qiu
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yingshi Zhu
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Baojian Jing
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
91
|
Chu X, Wang K, Qian W, Xu H. Surface and interfacial engineering of 1D Pt-group nanostructures for catalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
92
|
Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution. Nat Commun 2023; 14:354. [PMID: 36681684 PMCID: PMC9867741 DOI: 10.1038/s41467-023-35913-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Heteroatom-doping is a practical means to boost RuO2 for acidic oxygen evolution reaction (OER). However, a major drawback is conventional dopants have static electron redistribution. Here, we report that Re dopants in Re0.06Ru0.94O2 undergo a dynamic electron accepting-donating that adaptively boosts activity and stability, which is different from conventional dopants with static dopant electron redistribution. We show Re dopants during OER, (1) accept electrons at the on-site potential to activate Ru site, and (2) donate electrons back at large overpotential and prevent Ru dissolution. We confirm via in situ characterizations and first-principle computation that the dynamic electron-interaction between Re and Ru facilitates the adsorbate evolution mechanism and lowers adsorption energies for oxygen intermediates to boost activity and stability of Re0.06Ru0.94O2. We demonstrate a high mass activity of 500 A gcata.-1 (7811 A gRe-Ru-1) and a high stability number of S-number = 4.0 × 106 noxygen nRu-1 to outperform most electrocatalysts. We conclude that dynamic dopants can be used to boost activity and stability of active sites and therefore guide the design of adaptive electrocatalysts for clean energy conversions.
Collapse
|
93
|
Fu ZY, Xu HM, Li WH, Jin GP, Han SK. Phase Transformation from Amorphous RuS x to Ru-RuS 2 Hybrid Nanostructure for Efficient Water Splitting in Alkaline Media. Inorg Chem 2023; 62:583-590. [PMID: 36563110 DOI: 10.1021/acs.inorgchem.2c03882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ruthenium (Ru)-based materials, as a class of efficient hydrogen evolution reaction (HER) catalysts, play an important role in hydrogen generation by electrolysis of water in an alkaline solution for clean hydrogen energy. Hybrid nanostructure (HN) materials, which include two or more components with distinct functionality, show better performance than their individual materials, since HN materials can potentially integrate their advantages and overcome the weaknesses. However, it remains a challenge to construct Ru-based HN materials with desired crystal phases for enhanced HER performances. Herein, a series of new Ru-based HN materials (t-Ru-RuS2, S-Ru-RuS2, and T-Ru-RuS2) through phase engineering of nanomaterials (PEN) and chemical transformation are designed to achieve highly efficient HER properties. Owing to the plentiful formation of heterojunctions and amorphous/crystalline interfaces, the t-Ru-RuS2 HN delivers the most outstanding overpotential of 16 mV and owns a small Tafel slope of 29 mV dec-1 at a current density of 10 mA cm-2, which exceeds commercial Pt/C catalysts (34 mV, 38 mV dec-1). This work shows a new insight for HN and provides alternative opportunities in designing advanced electrocatalysts with low cost for HER in the hydrogen economy.
Collapse
Affiliation(s)
- Zi-Yu Fu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hou-Ming Xu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Wan-Hong Li
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Guan-Ping Jin
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shi-Kui Han
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
94
|
Chu X, Li J, Xu H, Qian W. Introducing Te for boosting electrocatalytic reactions. Dalton Trans 2023; 52:245-259. [PMID: 36519384 DOI: 10.1039/d2dt03253h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The deployment of robust catalysts for electrochemical reactions is a critical topic for energy conversion techniques. Te-based nanomaterials have attracted increasing attention for their application in electrochemical reactions due to their positive influence on the electrocatalytic performance induced by their distinctive electronic and physicochemical properties. Herein, we have summarized the recent progress on Te-based nanocatalysts for electrocatalytic reactions by primarily focusing on the positive influence of Te on electrocatalysts. Firstly, Te-based nanomaterials can serve as an ideal template for the construction of well-defined nanostructures. Secondly, Te doping can significantly modify the electronic structure of the host catalyst, thereby, leading to the optimization of binding strength with intermediates. Furthermore, the Te etching strategy can also create a high density of surface defects, thereby leading to substantial improvement in the electrocatalytic performance. Additionally, many representative Te-based nanocatalysts for electrocatalytic reactions are also summarized and systematically discussed. Finally, a conclusive and perspective discussion is also provided to provide guidance for the future development of more efficient electrocatalysts.
Collapse
Affiliation(s)
- Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China.
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan Province, PR China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Weiyu Qian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China
| |
Collapse
|
95
|
Gong R, Liu B, Wang X, Du S, Xie Y, Jia W, Bian X, Chen Z, Ren Z. Electronic Structure Modulation Induced by Cobalt-doping and Lattice-Contracting on Armor-Like Ruthenium Oxide Drives pH-Universal Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204889. [PMID: 36420939 DOI: 10.1002/smll.202204889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Exquisite design of RuO2 -based catalysts to simultaneously improve activity and stability under harsh conditions and reduce the Ru dosage is crucial for advancing energy conversion involving oxygen evolution reaction (OER). Herein, a distinctive cobalt-doped RuOx framework is constructed on Co3 O4 nanocones (Co3 O4 @CoRuOx ) as a promising strategy to realize above urgent desires. Extensive experimental characterization and theoretical analysis demonstrate that cobalt doped in RuOx lattice brings the oxygen vacancies and lattice contraction, which jointly redistribute the electron configuration of RuOx . The optimized d-band center balances the adsorption energies of oxygenated intermediates, lowing the thermodynamical barrier of the rate-determining step; and meanwhile, the over-oxidation and dissolution of Ru species are restrained because of the p-band down-shifting of the lattice oxygen. Co3 O4 @CoRuOx with 3.7 wt.% Ru delivers the extremely low OER overpotentials at 10 mA cm-2 in alkaline (167 mV), neutral (229 mV), and acidic electrolytes (161 mV), and super operating stability over dozens of hours. The unprecedented activity ranks first in all pH-universal OER catalysts reported so far. These findings provide a route to produce robust low-loading Ru catalysts and an engineering approach for regulating the central active metal through synergy of co-existing defects to improve the catalytic performance and stability.
Collapse
Affiliation(s)
- Rui Gong
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Bowen Liu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Xiaolei Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Shichao Du
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Wanqi Jia
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Xinxin Bian
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Zhimin Chen
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| | - Zhiyu Ren
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
96
|
Zhang X, Zhao K, Li H, Li Y, Yang W, Liu J, Li D. Plasma-assisted synthesis of hierarchical defect N-doped iron–cobalt sulfide@Co foam as an efficient bifunctional electrocatalyst for overall water splitting. NEW J CHEM 2023. [DOI: 10.1039/d3nj00675a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
N-doped CoFeS was synthesized via an ion exchange method to prepare a precursor, followed by sulphidation and plasma-assisted engraving in nitrogen gas.
Collapse
|
97
|
Fan C, Wan Z, Pan M, Hou J, Shi Y, Guo W, Wang G, Peng S, Jing Q, Chen L. Photoassisted Electrochemical Hydrogen Evolution Reaction of MFe 2O 4@Ultrathin Black Phosphorus Amorphous-Crystalline Interface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54748-54757. [PMID: 36458335 DOI: 10.1021/acsami.2c16543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring highly active, stable, and low-cost catalysts for photoelectrochemical hydrogen evolution reaction (PE-HER) is vital in the field of energy conversion. Herein, we construct a new amorphous crystalline interface that amorphous iron-based spinel oxide (A-MFe2O4 (M = Ni, Co, Zn)) is uniformly anchored on the crystalline exfoliated black phosphorus (C-EBP) nanosheets via electrochemical and solvothermal strategies. Among these A-MFe2O4@C-EBP catalysts, more oxygen defects of A-NiFe2O4@C-EBP interface provide a larger effective electrochemical active area of 32.33 mF cm-2 as well as a turnover frequency of 0.44 s-1 and allow for an optimum equilibrium of the hydrogen-containing adsorption intermediates. Furthermore, A-NiFe2O4@C-EBP exhibits significant PE-HER performance with an overpotential of 42 mV at 10 mA cm-2 under visible-light irradiation. Density functional theory (DFT) calculations show that the amorphous-crystalline composite structure causes a large number of oxygen defects enhancing the intrinsic activity of A-NiFe2O4@C-EBP, which A-NiFe2O4@C-EBP significantly improves its adsorption capacity for H* for HER and has the lowest Gibbs free energy change for HER. This study not only provides a superior multifunctional amorphous-crystalline interface catalysts but also helps to understand the catalytic mechanism of PE-HER.
Collapse
Affiliation(s)
- Changchun Fan
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zhenzhen Wan
- School of Physical Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi 830046, P. R. China
| | - Meiling Pan
- School of Physical Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi 830046, P. R. China
| | - Juan Hou
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Yulin Shi
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Wen Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Gang Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Shanglong Peng
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qun Jing
- School of Physical Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi 830046, P. R. China
| | - Long Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
98
|
Wang N, Yuan B, Tang C, Du L, Zhu R, Aoki Y, Wang W, Xing L, Ye S. Machine-Learning-Accelerated Development of Efficient Mixed Protonic-Electronic Conducting Oxides as the Air Electrodes for Protonic Ceramic Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203446. [PMID: 36177694 DOI: 10.1002/adma.202203446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Currently, the development of high-performance protonic ceramic cells (PCCs) is limited by the scarcity of efficient mixed protonic-electronic conducting oxides that can act as air electrodes to satisfy the high protonic conductivity of electrolytes. Despite the extensive research efforts in the past decades, the development of mixed protonic-electronic conducting oxides still remains in a trial-and-error process, which is extremely time consuming and high cost. Herein, based on the data acquired from the published literature, the machine-learning (ML) method is introduced to accelerate the discovery of efficient mixed protonic-electronic conducting oxides. Accordingly, the hydrated proton concentration (HPC) of 3200 oxides is predicted to evaluate the proton conduction that is essential for enhancing the electrochemical performances of PCCs. Subsequently, feature importance for HPC is evaluated to establish a guideline for rapid and accurate design and development of high-efficiency mixed protonic-electronic conducting oxides. Thereafter, screened (La0.7 Ca0.3 )(Co0.8 Ni0.2 )O3 (LCCN7382) is prepared, and the experimental HPC adequately corresponds with the predicted results. Moreover, the PCC with LCCN7382 exhibits satisfactory electrochemical performances in electrolysis and fuel cell modes. In addition to the development of a promising air electrode for PCC, this study establishes a new avenue for ML-based development of mixed protonic-electronic conducting oxides.
Collapse
Affiliation(s)
- Ning Wang
- Huangpu Hydrogen Energy Innovation Centre, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Baoyin Yuan
- School of Mathematics, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chunmei Tang
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Lei Du
- Huangpu Hydrogen Energy Innovation Centre, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Ruijie Zhu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Yoshitaka Aoki
- Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo, 060-8628, Japan
| | - Weibo Wang
- College of Information Science and Engineering, Ocean University of China, Qingdao, 262100, P. R. China
| | - Lixin Xing
- Huangpu Hydrogen Energy Innovation Centre, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Siyu Ye
- Huangpu Hydrogen Energy Innovation Centre, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
99
|
Recent Trends in Electrochemical Catalyst Design for Hydrogen Evolution, Oxygen Evolution, and Overall Water Splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
100
|
Lin HY, Lou ZX, Ding Y, Li X, Mao F, Yuan HY, Liu PF, Yang HG. Oxygen Evolution Electrocatalysts for the Proton Exchange Membrane Electrolyzer: Challenges on Stability. SMALL METHODS 2022; 6:e2201130. [PMID: 36333185 DOI: 10.1002/smtd.202201130] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen generated by proton exchange membrane (PEM) electrolyzer holds a promising potential to complement the traditional energy structure and achieve the global target of carbon neutrality for its efficient, clean, and sustainable nature. The acidic oxygen evolution reaction (OER), owing to its sluggish kinetic process, remains a bottleneck that dominates the efficiency of overall water splitting. Over the past few decades, tremendous efforts have been devoted to exploring OER activity, whereas most show unsatisfying stability to meet the demand for industrial application of PEM electrolyzer. In this review, systematic considerations of the origin and strategies based on OER stability challenges are focused on. Intrinsic deactivation of the material and the extrinsic balance of plant-induced destabilization are summarized. Accordingly, rational strategies for catalyst design including doping and leaching, support effect, coordination effect, strain engineering, phase and facet engineering are discussed for their contribution to the promoted OER stability. Moreover, advanced in situ/operando characterization techniques are put forward to shed light on the OER pathways as well as the structural evolution of the OER catalyst, giving insight into the deactivation mechanisms. Finally, outlooks toward future efforts on the development of long-term and practical electrocatalysts for the PEM electrolyzer are provided.
Collapse
Affiliation(s)
- Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yeliang Ding
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Xiaoxia Li
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|