51
|
Penner RC. Mutagenic Distinction between the Receptor-Binding and Fusion Subunits of the SARS-CoV-2 Spike Glycoprotein and Its Upshot. Vaccines (Basel) 2021; 9:1509. [PMID: 34960255 PMCID: PMC8708592 DOI: 10.3390/vaccines9121509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 01/02/2023] Open
Abstract
We observe that a residue R of the spike glycoprotein of SARS-CoV-2 that has mutated in one or more of the current variants of concern or interest, or under monitoring, rarely participates in a backbone hydrogen bond if R lies in the S1 subunit and usually participates in one if R lies in the S2 subunit. A partial explanation for this based upon free energy is explored as a potentially general principle in the mutagenesis of viral glycoproteins. This observation could help target future vaccine cargos for the evolving coronavirus as well as more generally. A related study of the Delta and Omicron variants suggests that Delta was an energetically necessary intermediary in the evolution from Wuhan-Hu-1 to Omicron.
Collapse
Affiliation(s)
- Robert Clark Penner
- Institut des Hautes Etudes Scientifiques, 35 Route des Chartres, 91440 Bures-sur-Yvette, France;
- Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
52
|
Murano K, Guo Y, Siomi H. The emergence of SARS-CoV-2 variants threatens to decrease the efficacy of neutralizing antibodies and vaccines. Biochem Soc Trans 2021; 49:2879-2890. [PMID: 34854887 PMCID: PMC8786300 DOI: 10.1042/bst20210859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the coronavirus disease (COVID-19) pandemic. As of August 2021, more than 200 million people have been infected with the virus and 4.3 million have lost their lives. Various monoclonal antibodies of human origin that neutralize the SARS-CoV-2 infection have been isolated from convalescent patients for therapeutic and prophylactic purposes. Several vaccines have been developed to restrict the spread of the virus and have been rapidly administered. However, the rollout of vaccines has coincided with the spread of variants of concern. Emerging variants of SARS-CoV-2 present new challenges for therapeutic antibodies and threaten the efficacy of current vaccines. Here, we review the problems faced by neutralizing antibodies and vaccines in the midst of the increasing spread of mutant viruses.
Collapse
Affiliation(s)
- Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
53
|
Javanmardi K, Chou CW, Terrace CI, Annapareddy A, Kaoud TS, Guo Q, Lutgens J, Zorkic H, Horton AP, Gardner EC, Nguyen G, Boutz DR, Goike J, Voss WN, Kuo HC, Dalby KN, Gollihar JD, Finkelstein IJ. Rapid characterization of spike variants via mammalian cell surface display. Mol Cell 2021; 81:5099-5111.e8. [PMID: 34919820 PMCID: PMC8675084 DOI: 10.1016/j.molcel.2021.11.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022]
Abstract
The SARS-CoV-2 spike protein is a critical component of vaccines and a target for neutralizing monoclonal antibodies (nAbs). Spike is also undergoing immunogenic selection with variants that increase infectivity and partially escape convalescent plasma. Here, we describe Spike Display, a high-throughput platform to rapidly characterize glycosylated spike ectodomains across multiple coronavirus-family proteins. We assayed ∼200 variant SARS-CoV-2 spikes for their expression, ACE2 binding, and recognition by 13 nAbs. An alanine scan of all five N-terminal domain (NTD) loops highlights a public epitope in the N1, N3, and N5 loops recognized by most NTD-binding nAbs. NTD mutations in variants of concern B.1.1.7 (alpha), B.1.351 (beta), B.1.1.28 (gamma), B.1.427/B.1.429 (epsilon), and B.1.617.2 (delta) impact spike expression and escape most NTD-targeting nAbs. Finally, B.1.351 and B.1.1.28 completely escape a potent ACE2 mimic. We anticipate that Spike Display will accelerate antigen design, deep scanning mutagenesis, and antibody epitope mapping for SARS-CoV-2 and other emerging viral threats.
Collapse
Affiliation(s)
- Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Chia-Wei Chou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Ankur Annapareddy
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Qingqing Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Josh Lutgens
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hayley Zorkic
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew P Horton
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Elizabeth C Gardner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Giaochau Nguyen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Jule Goike
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - William N Voss
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hung-Che Kuo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Jimmy D Gollihar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; CCDC Army Research Laboratory-South, Austin, TX, USA; Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
54
|
Taylor SC. A practical approach to SARS-CoV-2 testing in a pre and post-vaccination era. JOURNAL OF CLINICAL VIROLOGY PLUS 2021; 1:100044. [PMID: 35262025 PMCID: PMC8500693 DOI: 10.1016/j.jcvp.2021.100044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 11/26/2022] Open
Abstract
As countries globally are in the process of planning, introducing or implementing mass vaccination strategies while continuing to deal with the ongoing SARS-CoV-2 pandemic, an evolution in testing strategies may be required to minimize spread in mixed vaccinated and non-vaccinated populations. This mini-review explores the key public health questions associated with the widely varying efficacy of commercially available vaccines and their persistence of protection in the context of a growing number of variant virus strains. A new strategy for SARS-CoV-2 testing that accommodates the current and evolving pandemic paradigm is proposed.
Collapse
Affiliation(s)
- Sean C Taylor
- GENSCRIPT USA INC. 860 Centennial Ave., Piscataway 08854, NJ, United States
| |
Collapse
|
55
|
Schepens B, van Schie L, Nerinckx W, Roose K, Van Breedam W, Fijalkowska D, Devos S, Weyts W, De Cae S, Vanmarcke S, Lonigro C, Eeckhaut H, Van Herpe D, Borloo J, Oliveira AF, Catani JPP, Creytens S, De Vlieger D, Michielsen G, Marchan JCZ, Moschonas GD, Rossey I, Sedeyn K, Van Hecke A, Zhang X, Langendries L, Jacobs S, Ter Horst S, Seldeslachts L, Liesenborghs L, Boudewijns R, Thibaut HJ, Dallmeier K, Velde GV, Weynand B, Beer J, Schnepf D, Ohnemus A, Remory I, Foo CS, Abdelnabi R, Maes P, Kaptein SJF, Rocha-Pereira J, Jochmans D, Delang L, Peelman F, Staeheli P, Schwemmle M, Devoogdt N, Tersago D, Germani M, Heads J, Henry A, Popplewell A, Ellis M, Brady K, Turner A, Dombrecht B, Stortelers C, Neyts J, Callewaert N, Saelens X. An affinity-enhanced, broadly neutralizing heavy chain-only antibody protects against SARS-CoV-2 infection in animal models. Sci Transl Med 2021; 13:eabi7826. [PMID: 34609205 PMCID: PMC9924070 DOI: 10.1126/scitranslmed.abi7826] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2–neutralizing antibody-like therapeutics. Here, we identified VHHs that neutralize both SARS-CoV-1 and SARS-CoV-2, including now circulating variants. We observed that the VHHs bound to a highly conserved epitope in the receptor binding domain of the viral spike protein that is difficult to access for human antibodies. Structure-guided molecular modeling, combined with rapid yeast-based prototyping, resulted in an affinity enhanced VHH-human immunoglobulin G1 Fc fusion molecule with subnanomolar neutralizing activity. This VHH-Fc fusion protein, produced in and purified from cultured Chinese hamster ovary cells, controlled SARS-CoV-2 replication in prophylactic and therapeutic settings in mice expressing human angiotensin converting enzyme 2 and in hamsters infected with SARS-CoV-2. These data led to affinity-enhanced selection of the VHH, XVR011, a stable anti–COVID-19 biologic that is now being evaluated in the clinic.
Collapse
Affiliation(s)
- Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Loes van Schie
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Wim Nerinckx
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Kenny Roose
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Wander Van Breedam
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Daria Fijalkowska
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Simon Devos
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Wannes Weyts
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sieglinde De Cae
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sandrine Vanmarcke
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Chiara Lonigro
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Hannah Eeckhaut
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Dries Van Herpe
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Jimmy Borloo
- VIB Discovery Sciences, Technologiepark-Zwijnaarde 104B, 9052 Ghent, Belgium
| | - Ana Filipa Oliveira
- VIB Discovery Sciences, Technologiepark-Zwijnaarde 104B, 9052 Ghent, Belgium
| | - João Paulo Portela Catani
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sarah Creytens
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Dorien De Vlieger
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Gitte Michielsen
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Jackeline Cecilia Zavala Marchan
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - George D Moschonas
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Iebe Rossey
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Annelies Van Hecke
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Xin Zhang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,GVN, Global Virus Network, Baltimore, MD 21201, USA
| | - Lana Langendries
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,GVN, Global Virus Network, Baltimore, MD 21201, USA
| | - Sofie Jacobs
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,GVN, Global Virus Network, Baltimore, MD 21201, USA
| | - Sebastiaan Ter Horst
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,GVN, Global Virus Network, Baltimore, MD 21201, USA
| | - Laura Seldeslachts
- KU Leuven Department of Imaging and Pathology, Biomedical MRI and MoSAIC, 3000 Leuven, Belgium
| | - Laurens Liesenborghs
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,GVN, Global Virus Network, Baltimore, MD 21201, USA
| | - Robbert Boudewijns
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,GVN, Global Virus Network, Baltimore, MD 21201, USA.,KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Group, 3000 Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Group, 3000 Leuven, Belgium.,KU Leuven Department of Microbiology, Immunology and Transplantation, Translational Platform Virology and Chemotherapy (TPVC), Rega Institute, 3000 Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,GVN, Global Virus Network, Baltimore, MD 21201, USA.,KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Group, 3000 Leuven, Belgium
| | - Greetje Vande Velde
- KU Leuven Department of Imaging and Pathology, Biomedical MRI and MoSAIC, 3000 Leuven, Belgium
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Division of Translational Cell and Tissue Research, Translational Cell and Tissue Research, 3000 Leuven, Belgium
| | - Julius Beer
- Institute of Virology, Medical Center University Freiburg, 79104 Freiburg, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University Freiburg, 79104 Freiburg, Germany
| | - Annette Ohnemus
- Institute of Virology, Medical Center University Freiburg, 79104 Freiburg, Germany
| | - Isabel Remory
- Department of Medical Imaging, In vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Caroline S Foo
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,GVN, Global Virus Network, Baltimore, MD 21201, USA
| | - Piet Maes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, 3000 Leuven, Belgium
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,GVN, Global Virus Network, Baltimore, MD 21201, USA
| | - Joana Rocha-Pereira
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,GVN, Global Virus Network, Baltimore, MD 21201, USA
| | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,GVN, Global Virus Network, Baltimore, MD 21201, USA
| | - Leen Delang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,GVN, Global Virus Network, Baltimore, MD 21201, USA
| | - Frank Peelman
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Peter Staeheli
- Institute of Virology, Medical Center University Freiburg, 79104 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center University Freiburg, 79104 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Nick Devoogdt
- Department of Medical Imaging, In vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | | | | | | | | | | | | - Bruno Dombrecht
- VIB Discovery Sciences, Technologiepark-Zwijnaarde 104B, 9052 Ghent, Belgium
| | | | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, 3000 Leuven, Belgium.,GVN, Global Virus Network, Baltimore, MD 21201, USA.,KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Molecular Vaccinology and Vaccine Discovery Group, 3000 Leuven, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| |
Collapse
|
56
|
Escobedo RA, Singh DK, Kaushal D. Understanding COVID-19: From Dysregulated Immunity to Vaccination Status Quo. Front Immunol 2021; 12:765349. [PMID: 34858417 PMCID: PMC8632224 DOI: 10.3389/fimmu.2021.765349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
The development of vaccines against infectious diseases has helped us battle the greatest threat to public health. With the emergence of novel viruses, targeted immunotherapeutics ranging from informed vaccine development to personalized medicine may be the very thing that separates us between life and death. Late in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), made a remarkable entrance to human civilization, being one of many to cross the species barrier. This review discusses the important aspects of COVID-19, providing a brief overview of our current understanding of dysregulated immune responses developed using various experimental models, a brief outline of experimental models of COVID-19 and more importantly, the rapid development of vaccines against COVID-19.
Collapse
Affiliation(s)
- Ruby A. Escobedo
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
- The Integrated Biomedical Sciences (IBMS) Graduate Program, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, United States
| | - Dhiraj K. Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
57
|
Hastie KM, Li H, Bedinger D, Schendel SL, Dennison SM, Li K, Rayaprolu V, Yu X, Mann C, Zandonatti M, Diaz Avalos R, Zyla D, Buck T, Hui S, Shaffer K, Hariharan C, Yin J, Olmedillas E, Enriquez A, Parekh D, Abraha M, Feeney E, Horn GQ, CoVIC-DB team 1, Aldon Y, Ali H, Aracic S, Cobb RR, Federman RS, Fernandez JM, Glanville J, Green R, Grigoryan G, Lujan Hernandez AG, Ho DD, Huang KYA, Ingraham J, Jiang W, Kellam P, Kim C, Kim M, Kim HM, Kong C, Krebs SJ, Lan F, Lang G, Lee S, Leung CL, Liu J, Lu Y, MacCamy A, McGuire AT, Palser AL, Rabbitts TH, Rikhtegaran Tehrani Z, Sajadi MM, Sanders RW, Sato AK, Schweizer L, Seo J, Shen B, Snitselaar JL, Stamatatos L, Tan Y, Tomic MT, van Gils MJ, Youssef S, Yu J, Yuan TZ, Zhang Q, Peters B, Tomaras GD, Germann T, Saphire EO. Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science 2021; 374:472-478. [PMID: 34554826 PMCID: PMC9302186 DOI: 10.1126/science.abh2315] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022]
Abstract
Antibody-based therapeutics and vaccines are essential to combat COVID-19 morbidity and mortality after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple mutations in SARS-CoV-2 that could impair antibody defenses propagated in human-to-human transmission and spillover or spillback events between humans and animals. To develop prevention and therapeutic strategies, we formed an international consortium to map the epitope landscape on the SARS-CoV-2 spike protein, defining and structurally illustrating seven receptor binding domain (RBD)–directed antibody communities with distinct footprints and competition profiles. Pseudovirion-based neutralization assays reveal spike mutations, individually and clustered together in variants, that affect antibody function among the communities. Key classes of RBD-targeted antibodies maintain neutralization activity against these emerging SARS-CoV-2 variants. These results provide a framework for selecting antibody treatment cocktails and understanding how viral variants might affect antibody therapeutic efficacy.
Collapse
Affiliation(s)
- Kathryn M. Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Haoyang Li
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Daniel Bedinger
- Carterra, 825 N. 300 W. Ste C309, Salt Lake City, UT 84103, USA
| | - Sharon L. Schendel
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - S. Moses Dennison
- Center for Human Systems Immunology, Departments of Surgery, Immunology, and Molecular Genetics and Microbiology and Duke Human Vaccine Institute, Duke University, Durham, NC 27701, USA
| | - Kan Li
- Center for Human Systems Immunology, Departments of Surgery, Immunology, and Molecular Genetics and Microbiology and Duke Human Vaccine Institute, Duke University, Durham, NC 27701, USA
| | - Vamseedhar Rayaprolu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Xiaoying Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Colin Mann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Michelle Zandonatti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Ruben Diaz Avalos
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Dawid Zyla
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Tierra Buck
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Sean Hui
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Kelly Shaffer
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Chitra Hariharan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Jieyun Yin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Eduardo Olmedillas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Adrian Enriquez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Diptiben Parekh
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Milite Abraha
- Center for Human Systems Immunology, Departments of Surgery, Immunology, and Molecular Genetics and Microbiology and Duke Human Vaccine Institute, Duke University, Durham, NC 27701, USA
| | - Elizabeth Feeney
- Center for Human Systems Immunology, Departments of Surgery, Immunology, and Molecular Genetics and Microbiology and Duke Human Vaccine Institute, Duke University, Durham, NC 27701, USA
| | - Gillian Q. Horn
- Center for Human Systems Immunology, Departments of Surgery, Immunology, and Molecular Genetics and Microbiology and Duke Human Vaccine Institute, Duke University, Durham, NC 27701, USA
| | - CoVIC-DB team1
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Carterra, 825 N. 300 W. Ste C309, Salt Lake City, UT 84103, USA
- Center for Human Systems Immunology, Departments of Surgery, Immunology, and Molecular Genetics and Microbiology and Duke Human Vaccine Institute, Duke University, Durham, NC 27701, USA
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, Netherlands
- Quadrucept Bio, Ltd., Cambridge CB23 6DW, UK
- Myrio Therapeutics Pty, Ltd., 1 Dalmore Drive, Scoresby, VIC 3179, Australia
- National Resilience, Inc., 13200 NW Nano Ct., Alachua, FL 32615, USA
- Generate Biomedicines, Inc., 26 Landsdowne Street, Cambridge, MA 02139, USA
- Activemotif, Inc., 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
- Centivax, Inc., 201 Gateway Blvd., Floor 1, South San Francisco, CA 94080, USA
- Twist Bioscience, 681 Gateway Blvd., South San Francisco, CA 94080, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th St., HHSC 1102, New York, NY 10032, USA
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital and Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Shanghai Henlius Biotech, Inc., 9/F, Innov Tower, Zone A, no. 1801 Hongmei Road, Xuhui District, Shanghai, China
- Kymab, Ltd., The Bennet Building, Babraham Research Campus, Cambridge CB22 3AT, UK
- Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
- Celltrion, Inc., Department of Research and Development, 23 Academy-ro Yeonsu-gu Incheon, Republic of Korea
- Sanyou Biopharmaceuticals Co., Ltd., no. 188 Xinjunhuan Road, Building 6B-C, 3rd Floor, Minhang District, Shanghai 201114, China
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- AbCipher Biotechnology, 188 Xinjun Ring Road, Building 2, 4th Floor, Minhang District, Shanghai 201114, China
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
- Institute of Cancer Research, Centre for Cancer Drug Discovery, London SM2 5NG, UK
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
- HiFiBiO, Inc., 237 Putnam Avenue, Cambridge, MA 02139, USA
- National Resilience, Inc., 2061 Challenger Dr., Alameda, CA 94501, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Yoann Aldon
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, Netherlands
| | - Hanif Ali
- Quadrucept Bio, Ltd., Cambridge CB23 6DW, UK
| | - Sanja Aracic
- Myrio Therapeutics Pty, Ltd., 1 Dalmore Drive, Scoresby, VIC 3179, Australia
| | - Ronald R. Cobb
- National Resilience, Inc., 13200 NW Nano Ct., Alachua, FL 32615, USA
| | - Ross S. Federman
- Generate Biomedicines, Inc., 26 Landsdowne Street, Cambridge, MA 02139, USA
| | - Joseph M. Fernandez
- Activemotif, Inc., 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
| | - Jacob Glanville
- Centivax, Inc., 201 Gateway Blvd., Floor 1, South San Francisco, CA 94080, USA
| | - Robin Green
- Generate Biomedicines, Inc., 26 Landsdowne Street, Cambridge, MA 02139, USA
| | - Gevorg Grigoryan
- Generate Biomedicines, Inc., 26 Landsdowne Street, Cambridge, MA 02139, USA
| | | | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th St., HHSC 1102, New York, NY 10032, USA
| | - Kuan-Ying A. Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital and Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - John Ingraham
- Generate Biomedicines, Inc., 26 Landsdowne Street, Cambridge, MA 02139, USA
| | - Weidong Jiang
- Shanghai Henlius Biotech, Inc., 9/F, Innov Tower, Zone A, no. 1801 Hongmei Road, Xuhui District, Shanghai, China
| | - Paul Kellam
- Kymab, Ltd., The Bennet Building, Babraham Research Campus, Cambridge CB22 3AT, UK
- Department of Infectious Disease, Imperial College, London SW7 2AZ, UK
| | - Cheolmin Kim
- Celltrion, Inc., Department of Research and Development, 23 Academy-ro Yeonsu-gu Incheon, Republic of Korea
| | - Minsoo Kim
- Celltrion, Inc., Department of Research and Development, 23 Academy-ro Yeonsu-gu Incheon, Republic of Korea
| | - Hyeong Mi Kim
- Celltrion, Inc., Department of Research and Development, 23 Academy-ro Yeonsu-gu Incheon, Republic of Korea
| | - Chao Kong
- Sanyou Biopharmaceuticals Co., Ltd., no. 188 Xinjunhuan Road, Building 6B-C, 3rd Floor, Minhang District, Shanghai 201114, China
| | - Shelly J. Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Fei Lan
- Activemotif, Inc., 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guojun Lang
- Sanyou Biopharmaceuticals Co., Ltd., no. 188 Xinjunhuan Road, Building 6B-C, 3rd Floor, Minhang District, Shanghai 201114, China
| | - Sooyoung Lee
- Celltrion, Inc., Department of Research and Development, 23 Academy-ro Yeonsu-gu Incheon, Republic of Korea
| | - Cheuk Lun Leung
- Generate Biomedicines, Inc., 26 Landsdowne Street, Cambridge, MA 02139, USA
| | - Junli Liu
- Shanghai Henlius Biotech, Inc., 9/F, Innov Tower, Zone A, no. 1801 Hongmei Road, Xuhui District, Shanghai, China
| | - Yanan Lu
- Activemotif, Inc., 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
- AbCipher Biotechnology, 188 Xinjun Ring Road, Building 2, 4th Floor, Minhang District, Shanghai 201114, China
| | - Anna MacCamy
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Andrew T. McGuire
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Anne L. Palser
- Kymab, Ltd., The Bennet Building, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Terence H. Rabbitts
- Quadrucept Bio, Ltd., Cambridge CB23 6DW, UK
- Institute of Cancer Research, Centre for Cancer Drug Discovery, London SM2 5NG, UK
| | - Zahra Rikhtegaran Tehrani
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
| | - Mohammad M. Sajadi
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, Netherlands
| | - Aaron K. Sato
- Twist Bioscience, 681 Gateway Blvd., South San Francisco, CA 94080, USA
| | | | - Jimin Seo
- Celltrion, Inc., Department of Research and Development, 23 Academy-ro Yeonsu-gu Incheon, Republic of Korea
| | - Bingqing Shen
- HiFiBiO, Inc., 237 Putnam Avenue, Cambridge, MA 02139, USA
| | - Jonne L. Snitselaar
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, Netherlands
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccines and Infectious Diseases Division, Seattle, WA, USA
| | - Yongcong Tan
- Sanyou Biopharmaceuticals Co., Ltd., no. 188 Xinjunhuan Road, Building 6B-C, 3rd Floor, Minhang District, Shanghai 201114, China
| | - Milan T. Tomic
- National Resilience, Inc., 2061 Challenger Dr., Alameda, CA 94501, USA
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, Netherlands
| | - Sawsan Youssef
- Centivax, Inc., 201 Gateway Blvd., Floor 1, South San Francisco, CA 94080, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, 701 West 168th St., HHSC 1102, New York, NY 10032, USA
| | - Tom Z. Yuan
- Twist Bioscience, 681 Gateway Blvd., South San Francisco, CA 94080, USA
| | - Qian Zhang
- HiFiBiO, Inc., 237 Putnam Avenue, Cambridge, MA 02139, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Departments of Surgery, Immunology, and Molecular Genetics and Microbiology and Duke Human Vaccine Institute, Duke University, Durham, NC 27701, USA
| | - Timothy Germann
- Carterra, 825 N. 300 W. Ste C309, Salt Lake City, UT 84103, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
58
|
Identification of Human Norovirus GII.3 Blockade Antibody Epitopes. Viruses 2021; 13:v13102058. [PMID: 34696487 PMCID: PMC8539815 DOI: 10.3390/v13102058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/06/2023] Open
Abstract
Human noroviruses are a common pathogen causing acute gastroenteritis worldwide. Among all norovirus genotypes, GII.3 is particularly prevalent in the pediatric population. Here we report the identification of two distinct blockade antibody epitopes on the GII.3 capsid. We generated a panel of monoclonal antibodies (mAbs) from mice immunized with virus-like particle (VLP) of a GII.3 cluster 3 strain. Two of these mAbs, namely 8C7 and 8D1, specifically bound the parental GII.3 VLP but not VLPs of GII.4, GII.17, or GI.1. In addition, 8C7 and 8D1 efficiently blocked GII.3 VLP binding with its ligand, histo-blood group antigens (HBGA). These data demonstrate that 8C7 and 8D1 are GII.3-specific blockade antibodies. By using a series of chimeric VLPs, we mapped the epitopes of 8C7 and 8D1 to residues 385-400 and 401-420 of the VP1 capsid protein, respectively. These two blockade antibody epitopes are highly conserved among GII.3 cluster 3 strains. Structural modeling shows that the 8C7 epitope partially overlaps with the HBGA binding site (HBS) while the 8D1 epitope is spatially adjacent to HBS. These findings may enhance our understanding of the immunology and evolution of GII.3 noroviruses.
Collapse
|
59
|
Li T, Xue W, Zheng Q, Song S, Yang C, Xiong H, Zhang S, Hong M, Zhang Y, Yu H, Zhang Y, Sun H, Huang Y, Deng T, Chi X, Li J, Wang S, Zhou L, Chen T, Wang Y, Cheng T, Zhang T, Yuan Q, Zhao Q, Zhang J, McLellan JS, Zhou ZH, Zhang Z, Li S, Gu Y, Xia N. Cross-neutralizing antibodies bind a SARS-CoV-2 cryptic site and resist circulating variants. Nat Commun 2021; 12:5652. [PMID: 34580306 PMCID: PMC8476643 DOI: 10.1038/s41467-021-25997-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
The emergence of numerous variants of SARS-CoV-2, the causative agent of COVID-19, has presented new challenges to the global efforts to control the COVID-19 pandemic. Here, we obtain two cross-neutralizing antibodies (7D6 and 6D6) that target Sarbecoviruses' receptor-binding domain (RBD) with sub-picomolar affinities and potently neutralize authentic SARS-CoV-2. Crystal structures show that both antibodies bind a cryptic site different from that recognized by existing antibodies and highly conserved across Sarbecovirus isolates. Binding of these two antibodies to the RBD clashes with the adjacent N-terminal domain and disrupts the viral spike. Both antibodies confer good resistance to mutations in the currently circulating SARS-CoV-2 variants. Thus, our results have direct relevance to public health as options for passive antibody therapeutics and even active prophylactics. They can also inform the design of pan-sarbecovirus vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/metabolism
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Antibodies, Viral/metabolism
- Binding Sites/genetics
- Binding Sites/immunology
- Broadly Neutralizing Antibodies/administration & dosage
- Broadly Neutralizing Antibodies/immunology
- Broadly Neutralizing Antibodies/isolation & purification
- Broadly Neutralizing Antibodies/metabolism
- CHO Cells
- COVID-19/epidemiology
- COVID-19/immunology
- COVID-19/therapy
- COVID-19/virology
- Chlorocebus aethiops
- Cricetulus
- Epitopes/immunology
- HEK293 Cells
- Humans
- Immunization, Passive/methods
- Mice
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/immunology
- Neutralization Tests
- Pandemics/prevention & control
- Protein Multimerization
- Receptors, Virus/metabolism
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Sf9 Cells
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Vero Cells
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Wenhui Xue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Shuo Song
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, 518112, Shenzhen, Guangdong, China
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong, China
| | - Chuanlai Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Hualong Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Sibo Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Minqing Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yali Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yuyun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Tingting Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xin Chi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jinjin Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Shaojuan Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Lizhi Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Tingting Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 78712, TX, USA
| | - Z Hong Zhou
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, 90095, CA, USA.
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, 518112, Shenzhen, Guangdong, China.
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, Guangdong, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, 361102, Xiamen, Fujian, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, 361102, Xiamen, Fujian, China.
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, 518112, Xiamen, Fujian, China.
| |
Collapse
|
60
|
Wu Y, Qian R, Yang Y, Sheng Y, Li W, Wang W. Activation Pathways and Free Energy Landscapes of the SARS-CoV-2 Spike Protein. ACS OMEGA 2021; 6:23432-23441. [PMID: 34514271 PMCID: PMC8424691 DOI: 10.1021/acsomega.1c03384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/24/2021] [Indexed: 05/09/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses a spike protein (S-protein) to recognize the receptor protein ACE2 of human cells and initiate infection, during which the conformational transition of the S-protein from inactive (down) state to active (up) state is one of the key molecular events determining the infectivity but the underlying mechanism remains poorly understood. In this work, we investigated the activation pathways and free energy landscape of the S-protein of SARS-CoV-2 and compared with those of the closely related counterpart SARS-CoV using molecular dynamics simulations. Our results revealed a large difference between the activation pathways of the two S-proteins. The transition from inactive to an active state for the S-protein of SARS-CoV-2 is more cooperative, involving simultaneous disruptions of several key interfacial hydrogen bonds, and the transition encounters a much higher free energy barrier. In addition, the conformational equilibrium of the SARS-CoV-2 S-protein is more biased to the inactive state compared to that of the SARS-CoV S-protein, suggesting the transient feature of the active state before binding to the receptor protein of the host cell. The key interactions contributing to the difference of the activation pathways and free energy landscapes were discussed. The results provide insights into the molecular mechanism involved in the initial stage of the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yichao Wu
- Department of Physics, National
Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Ruixin Qian
- Department of Physics, National
Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Yan Yang
- Department of Physics, National
Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Yuebiao Sheng
- Department of Physics, National
Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- Department of Physics, National
Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Department of Physics, National
Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
61
|
Drugs repurposing against SARS-CoV2 and the new variant B.1.1.7 (alpha strain) targeting the spike protein: molecular docking and simulation studies. Heliyon 2021; 7:e07803. [PMID: 34423145 PMCID: PMC8367657 DOI: 10.1016/j.heliyon.2021.e07803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) is responsible for the global COVID-19 pandemic and millions of deaths worldwide. In December 2020, a new alpha strain of SARS-CoV2 was identified in the United Kingdom. It was referred to as VUI 202012/01 (Alpha strain modelled under investigation, 2020, month 12, number 01). The interaction between spike protein and ACE2 receptor is a prerequisite for entering virion into the host cell. The present study is focussed on the spike protein of the SARS-COV 2, involving the comparison of binding affinity of new alpha strain modelled spike with previous strain spike (PDB ID:7DDN) using in silico molecular docking, dynamics and simulation studies. The molecular docking studies of the alpha strain modelled spike protein confirmed its higher affinity for the ACE2 receptor than the spike protein of the dominant strain. Similar computational approaches have also been used to investigate the potency of FDA approved drugs from the ZINC Database against the spike protein of new alpha strain modelled and old ones. The drug molecules which showed strong affinity for both the spike proteins are then subjected to ADME analysis. The overall binding energy of Conivaptan (-107.503 kJ/mol) and Trosec (-94.029 kJ/mol) is indicative of their strong binding affinities, well supported by interactions with critical residues. We investigated the potential FDA drugs for repurposing against the spike protein of alpha strain modelled of SARS-CoV-2. Spike protein of alpha strain modelled of SARS-CoV-2 has more affinity for the ACE2 receptor of host cell than previous strains and, therefore, is more contagious. Conivaptan, Ecamsule and Trosec are common drugs that bind strongly with spike protein of both the strains . Molecular Docking and simulation studies show that Conivaptan and Trosec emerged as potential inhibitors of the alpha strain modelled spike protein.
Collapse
|
62
|
Yeast-produced RBD-based recombinant protein vaccines elicit broadly neutralizing antibodies and durable protective immunity against SARS-CoV-2 infection. Cell Discov 2021; 7:71. [PMID: 34408130 PMCID: PMC8372230 DOI: 10.1038/s41421-021-00315-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Massive production of efficacious SARS-CoV-2 vaccines is essential for controlling the ongoing COVID-19 pandemic. We report here the preclinical development of yeast-produced receptor-binding domain (RBD)-based recombinant protein SARS-CoV-2 vaccines. We found that monomeric RBD of SARS-CoV-2 could be efficiently produced as a secreted protein from transformed Pichia pastoris (P. pastoris) yeast. Yeast-derived RBD-monomer possessed functional conformation and was able to elicit protective level of neutralizing antibodies in mice. We further designed and expressed a genetically linked dimeric RBD protein in yeast. The engineered dimeric RBD was more potent than the monomeric RBD in inducing long-lasting neutralizing antibodies. Mice immunized with either monomeric RBD or dimeric RBD were effectively protected from live SARS-CoV-2 virus challenge even at 18 weeks after the last vaccine dose. Importantly, we found that the antisera raised against the RBD of a single SARS-CoV-2 prototype strain could effectively neutralize the two predominant circulating variants B.1.1.7 and B.1.351, implying broad-spectrum protective potential of the RBD-based vaccines. Our data demonstrate that yeast-derived RBD-based recombinant SARS-CoV-2 vaccines are feasible and efficacious, opening up a new avenue for rapid and cost-effective production of SARS-CoV-2 vaccines to achieve global immunization.
Collapse
|
63
|
Yang Y, Zang J, Xu S, Zhang X, Yuan S, Wang H, Lavillette D, Zhang C, Huang Z. Elicitation of Broadly Neutralizing Antibodies against B.1.1.7, B.1.351, and B.1.617.1 SARS-CoV-2 Variants by Three Prototype Strain-Derived Recombinant Protein Vaccines. Viruses 2021; 13:v13081421. [PMID: 34452287 PMCID: PMC8402859 DOI: 10.3390/v13081421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Most of the currently approved SARS-CoV-2 vaccines use the prototype strain-derived spike (S) protein or its receptor-binding domain (RBD) as the vaccine antigen. The emergence of several novel SARS-CoV-2 variants has raised concerns about potential immune escape. In this study, we performed an immunogenicity comparison of prototype strain-derived RBD, S1, and S ectodomain trimer (S-trimer) antigens and evaluated their induction of neutralizing antibodies against three circulating SARS-CoV-2 variants, including B.1.1.7, B.1.351, and B.1.617.1. We found that, at the same antigen dose, the RBD and S-trimer vaccines were more potent than the S1 vaccine in eliciting long-lasting, high-titer broadly neutralizing antibodies in mice. The RBD immune sera remained highly effective against the B.1.1.7, B.1.351, and B.1.617.1 variants despite the corresponding neutralizing titers decreasing by 1.2-, 2.8-, and 3.5-fold relative to that against the wild-type strain. Significantly, the S-trimer immune sera exhibited comparable neutralization potency (less than twofold variation in neutralizing GMTs) towards the prototype strain and all three variants tested. These findings provide valuable information for further development of recombinant protein-based SARS-CoV-2 vaccines and support the continued use of currently approved SARS-CoV-2 vaccines in the regions/countries where variant viruses circulate.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chao Zhang
- Correspondence: (C.Z.); (Z.H.); Tel.: +86-21-54923066 (C.Z.); +86-21-54923067 (Z.H.)
| | - Zhong Huang
- Correspondence: (C.Z.); (Z.H.); Tel.: +86-21-54923066 (C.Z.); +86-21-54923067 (Z.H.)
| |
Collapse
|
64
|
Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther 2021; 6:233. [PMID: 34117216 PMCID: PMC8193598 DOI: 10.1038/s41392-021-00653-w] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in an unprecedented setback for global economy and health. SARS-CoV-2 has an exceptionally high level of transmissibility and extremely broad tissue tropism. However, the underlying molecular mechanism responsible for sustaining this degree of virulence remains largely unexplored. In this article, we review the current knowledge and crucial information about how SARS-CoV-2 attaches on the surface of host cells through a variety of receptors, such as ACE2, neuropilin-1, AXL, and antibody-FcγR complexes. We further explain how its spike (S) protein undergoes conformational transition from prefusion to postfusion with the help of proteases like furin, TMPRSS2, and cathepsins. We then review the ongoing experimental studies and clinical trials of antibodies, peptides, or small-molecule compounds with anti-SARS-CoV-2 activity, and discuss how these antiviral therapies targeting host-pathogen interaction could potentially suppress viral attachment, reduce the exposure of fusion peptide to curtail membrane fusion and block the formation of six-helix bundle (6-HB) fusion core. Finally, the specter of rapidly emerging SARS-CoV-2 variants deserves a serious review of broad-spectrum drugs or vaccines for long-term prevention and control of COVID-19 in the future.
Collapse
Affiliation(s)
- Qianqian Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Rong Xiang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yunjiao Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
65
|
Cimolai N. Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clin Hematol Int 2021; 3:47-68. [PMID: 34595467 PMCID: PMC8432400 DOI: 10.2991/chi.k.210328.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In the absence of effective antiviral chemotherapy and still in the context of emerging vaccines for severe acute respiratory syndrome-CoV-2 infections, passive immunotherapy remains a key treatment and possible prevention strategy. What might initially be conceived as a simplified donor-recipient process, the intricacies of donor plasma, IV immunoglobulins, and monoclonal antibody modality applications are becoming more apparent. Key targets of such treatment have largely focused on virus neutralization and the specific viral components of the attachment Spike protein and its constituents (e.g., receptor binding domain, N-terminal domain). The cumulative laboratory and clinical experience suggests that beneficial protective and treatment outcomes are possible. Both a dose- and a time-dependency emerge. Lesser understood are the concepts of bioavailability and distribution. Apart from direct antigen binding from protective immunoglobulins, antibody effector functions have potential roles in outcome. In attempting to mimic the natural but variable response to infection or vaccination, a strong functional polyclonal approach attracts the potential benefits of attacking antigen diversity, high antibody avidity, antibody persistence, and protection against escape viral mutation. The availability and ease of administration for any passive immunotherapy product must be considered in the current climate of need. There is never a perfect product, but yet there is considerable room for improving patient outcomes. Given the variability of human genetics, immunity, and disease, and given the nuances of the virus and its potential for change, passive immunotherapy can be developed that will be effective for some but not all patients. An understanding of such patient variability and limitations is just as important as the understanding of the direct interactions between immunotherapy and virus.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Children’s and Women’s Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC, Canada V6H 3V4
| |
Collapse
|
66
|
Yi Y, Wang X, Wang S, Xiong P, Liu Q, Zhang C, Yin F, Huang Z. Identification of a blockade epitope of human norovirus GII.17. Emerg Microbes Infect 2021; 10:954-963. [PMID: 33929932 PMCID: PMC8143627 DOI: 10.1080/22221751.2021.1925162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human noroviruses are the dominant causative agent of acute viral gastroenteritis worldwide. During the winter of 2014-2015, genotype GII.17 cluster IIIb strains emerged as the leading cause of norovirus infection in Asia and later spread to other parts of the world. It is speculated that mutation at blockade epitopes may have resulted in virus escape from herd immunity, leading to the emergence of GII.17 cluster IIIb variants. Here, we identify a GII.17 cluster IIIb-specific blockade epitope by monoclonal antibody (mAb)-based epitope mapping. Four mAbs (designated as M1 to M4) were generated from mice immunized with virus-like particle (VLP) of a GII.17 cluster IIIb strain. Among them, M1 and M3 reacted specifically with the cluster IIIb VLP but not with the VLPs from clusters II or IIIa. Moreover, M1 and M3 dose-dependently blocked cluster IIIb VLP binding with its ligand, histo-blood group antigens (HBGAs). Epitope mapping revealed that M1 and M3 recognized the same highly exposed epitope consisting of residues 293-296 and 299 in the capsid protein VP1. Sequence alignment showed that the M1/M3 epitope sequence is highly variable among different GII.17 clusters whereas it is identical for cluster IIIIb strains. These data define a dominant blockade epitope of GII.17 norovirus and provide evidence that blockade epitope evolution contributes to the emergence of GII.17 cluster IIIb strains.
Collapse
Affiliation(s)
- Yufang Yi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, People's Republic of China.,Hainan Medical University - The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China
| | - Xiaoli Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shuxia Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Pei Xiong
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Qingwei Liu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Chao Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Feifei Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, People's Republic of China.,Hainan Medical University - The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China
| | - Zhong Huang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
67
|
Singh N, Villoutreix BO. Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Comput Struct Biotechnol J 2021; 19:2537-2548. [PMID: 33936562 PMCID: PMC8074526 DOI: 10.1016/j.csbj.2021.04.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to identify new therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. This pandemic has thus spurred intensive research in most scientific areas and in a short period of time, several vaccines have been developed. But, while the race to find vaccines for COVID-19 has dominated the headlines, other types of therapeutic agents are being developed. In this mini-review, we report several databases and online tools that could assist the discovery of anti-SARS-CoV-2 small chemical compounds and peptides. We then give examples of studies that combined in silico and in vitro screening, either for drug repositioning purposes or to search for novel bioactive compounds. Finally, we question the overall lack of discussion and plan observed in academic research in many countries during this crisis and suggest that there is room for improvement.
Collapse
Affiliation(s)
- Natesh Singh
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| | - Bruno O. Villoutreix
- Université de Paris, Inserm UMR 1141 NeuroDiderot, Robert-Debré Hospital, 75019 Paris, France
| |
Collapse
|
68
|
Valdez-Cruz NA, García-Hernández E, Espitia C, Cobos-Marín L, Altamirano C, Bando-Campos CG, Cofas-Vargas LF, Coronado-Aceves EW, González-Hernández RA, Hernández-Peralta P, Juárez-López D, Ortega-Portilla PA, Restrepo-Pineda S, Zelada-Cordero P, Trujillo-Roldán MA. Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microb Cell Fact 2021; 20:88. [PMID: 33888152 PMCID: PMC8061467 DOI: 10.1186/s12934-021-01576-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 is a novel β-coronavirus that caused the COVID-19 pandemic disease, which spread rapidly, infecting more than 134 million people, and killing almost 2.9 million thus far. Based on the urgent need for therapeutic and prophylactic strategies, the identification and characterization of antibodies has been accelerated, since they have been fundamental in treating other viral diseases. Here, we summarized in an integrative manner the present understanding of the immune response and physiopathology caused by SARS-CoV-2, including the activation of the humoral immune response in SARS-CoV-2 infection and therefore, the synthesis of antibodies. Furthermore, we also discussed about the antibodies that can be generated in COVID-19 convalescent sera and their associated clinical studies, including a detailed characterization of a variety of human antibodies and identification of antibodies from other sources, which have powerful neutralizing capacities. Accordingly, the development of effective treatments to mitigate COVID-19 is expected. Finally, we reviewed the challenges faced in producing potential therapeutic antibodies and nanobodies by cell factories at an industrial level while ensuring their quality, efficacy, and safety.
Collapse
Affiliation(s)
- Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México.
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Laura Cobos-Marín
- Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil N° 2950, Valparaíso, Chile
| | - Carlos G Bando-Campos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Luis F Cofas-Vargas
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Enrique W Coronado-Aceves
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Ricardo A González-Hernández
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Pablo Hernández-Peralta
- Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Daniel Juárez-López
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Paola A Ortega-Portilla
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Sara Restrepo-Pineda
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Patricio Zelada-Cordero
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, México.
| |
Collapse
|
69
|
Li C, Zhao H, Cheng L, Wang B. Anti-Inflammation, Immunomodulation and Therapeutic Repair in Current Clinical Trials for the Management of COVID-19. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1345-1356. [PMID: 33824579 PMCID: PMC8018429 DOI: 10.2147/dddt.s301173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), continues to spread around the world. While prophylactic vaccines against SARS-CoV-2 are making great progress, there is still a need to explore safe and effective therapies with biological products for COVID-19. Currently clinical trial efforts are planned and ongoing using different biological agents for anti-inflammatory therapies, immunomodulation, and therapeutic repair in COVID-19. Targeting inflammatory cytokines with antibodies or inhibitors may be an urgent therapeutic strategy for COVID-19. Importantly, it is critical for an in-depth understanding of these new clinical therapeutic agents in their conditions that are probably involved in both physiological and pathological host responses. In this article, we analyze the potential implications for the current clinical trials of therapeutic biologics and address issues for the development of the COVID-19-related biological therapies.
Collapse
Affiliation(s)
- Chenghai Li
- Stem Cell Program of Clinical Research Center, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China.,Henan Provincial Engineering Research Center for Immune Cell and Stem Cell Treatment, Zhengzhou, 450003, People's Republic of China
| | - Hua Zhao
- Reproductive Medicine Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Linna Cheng
- Institute of Hematology, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| | - Bin Wang
- Department of Neurosurgery, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou, 450003, People's Republic of China
| |
Collapse
|
70
|
Mustafa Z, Zhanapiya A, Kalbacher H, Burster T. Neutrophil Elastase and Proteinase 3 Cleavage Sites Are Adjacent to the Polybasic Sequence within the Proteolytic Sensitive Activation Loop of the SARS-CoV-2 Spike Protein. ACS OMEGA 2021; 6:7181-7185. [PMID: 33748632 PMCID: PMC7970549 DOI: 10.1021/acsomega.1c00363] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 05/15/2023]
Abstract
Serine proteases neutrophil elastase (NE), protease 3 (PR3), cathepsin G (CatG), and neutrophil serine protease 4 (NSP4) are released by activated neutrophils swarming around the place of pathogen invasion to provoke an immune response. However, uncontrolled proteolytic activity of proteases results in various human diseases, including cardiovascular diseases, thrombosis, and autoimmunity. In addition, proteases can be hijacked by several viruses to prime virus-derived surface proteins and evade immune detection by entering into the host cell. Indeed, porcine elastase increases the suitability of host cells to be infected by SARS-CoV-1. We compared the cleavage sites of human NE, PR3, and CatG as well as porcine-derived trypsin within the amino acid sequence of the proteolytic sensitive activation loop at the interface of S1/S2 of the spike protein (S protein) of SARS-CoV-1 as well as SARS-CoV-2. As a result, NE and PR3, but not CatG, hydrolyze the scissile peptide bond adjacent to the polybasic amino acid sequence of the S1/S2 interface of SARS-CoV-2, which is distinctive from SARS-CoV-1. These findings suggest that neutrophil-derived NE and PR3 participate in priming of the S1/S2 interface during an immune response.
Collapse
Affiliation(s)
- Zhadyra Mustafa
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave., 53, Nur-Sultan 010000, Kazakhstan Republic
| | - Anuar Zhanapiya
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave., 53, Nur-Sultan 010000, Kazakhstan Republic
| | - Hubert Kalbacher
- Eberhard
Karls University Tübingen, Faculty of Medicine, Institute of Clinical Anatomy and Cell Analysis, Österbergstraße 3, 72074 Tübingen, Germany
| | - Timo Burster
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave., 53, Nur-Sultan 010000, Kazakhstan Republic
| |
Collapse
|