51
|
Veglia AJ, Bistolas KSI, Voolstra CR, Hume BCC, Ruscheweyh HJ, Planes S, Allemand D, Boissin E, Wincker P, Poulain J, Moulin C, Bourdin G, Iwankow G, Romac S, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Galand PE, Gilson E, Lombard F, Pesant S, Reynaud S, Sunagawa S, Thomas OP, Troublé R, Zoccola D, Correa AMS, Vega Thurber RL. Endogenous viral elements reveal associations between a non-retroviral RNA virus and symbiotic dinoflagellate genomes. Commun Biol 2023; 6:566. [PMID: 37264063 DOI: 10.1038/s42003-023-04917-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.
Collapse
Affiliation(s)
- Alex J Veglia
- BioSciences Department, Rice University, Houston, TX, USA
| | | | | | | | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Clémentine Moulin
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur mer, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Department of Medical Genetics, CHU of Nice, Nice, France
| | - Fabien Lombard
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, F-06230, Villefranche-sur-Mer, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road H91 TK33, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | | | | |
Collapse
|
52
|
Galand PE, Ruscheweyh HJ, Salazar G, Hochart C, Henry N, Hume BCC, Oliveira PH, Perdereau A, Labadie K, Belser C, Boissin E, Romac S, Poulain J, Bourdin G, Iwankow G, Moulin C, Armstrong EJ, Paz-García DA, Ziegler M, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Gilson E, Lombard F, Pesant S, Reynaud S, Thomas OP, Troublé R, Zoccola D, Voolstra CR, Thurber RV, Sunagawa S, Wincker P, Allemand D, Planes S. Diversity of the Pacific Ocean coral reef microbiome. Nat Commun 2023; 14:3039. [PMID: 37264002 DOI: 10.1038/s41467-023-38500-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.
Collapse
Affiliation(s)
- Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France.
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Corentin Hochart
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Nicolas Henry
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | | | - Pedro H Oliveira
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Aude Perdereau
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Karine Labadie
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Julie Poulain
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| | | | - Eric J Armstrong
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, BCS, México
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, USA
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Department of Medical Genetics, CHU of Nice, Nice, France
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
- Institut Universitaire de France, Paris, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Romain Troublé
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Fondation Tara Océan, Paris, France
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | | | | | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Patrick Wincker
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Serge Planes
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| |
Collapse
|
53
|
Noel B, Denoeud F, Rouan A, Buitrago-López C, Capasso L, Poulain J, Boissin E, Pousse M, Da Silva C, Couloux A, Armstrong E, Carradec Q, Cruaud C, Labadie K, Lê-Hoang J, Tambutté S, Barbe V, Moulin C, Bourdin G, Iwankow G, Romac S, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores JM, Forcioli D, Furla P, Galand PE, Lombard F, Pesant S, Reynaud S, Sullivan MB, Sunagawa S, Thomas OP, Troublé R, Thurber RV, Allemand D, Planes S, Gilson E, Zoccola D, Wincker P, Voolstra CR, Aury JM. Pervasive tandem duplications and convergent evolution shape coral genomes. Genome Biol 2023; 24:123. [PMID: 37264421 DOI: 10.1186/s13059-023-02960-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Over the last decade, several coral genomes have been sequenced allowing a better understanding of these symbiotic organisms threatened by climate change. Scleractinian corals are reef builders and are central to coral reef ecosystems, providing habitat to a great diversity of species. RESULTS In the frame of the Tara Pacific expedition, we assemble two coral genomes, Porites lobata and Pocillopora cf. effusa, with vastly improved contiguity that allows us to study the functional organization of these genomes. We annotate their gene catalog and report a relatively higher gene number than that found in other public coral genome sequences, 43,000 and 32,000 genes, respectively. This finding is explained by a high number of tandemly duplicated genes, accounting for almost a third of the predicted genes. We show that these duplicated genes originate from multiple and distinct duplication events throughout the coral lineage. They contribute to the amplification of gene families, mostly related to the immune system and disease resistance, which we suggest to be functionally linked to coral host resilience. CONCLUSIONS At large, we show the importance of duplicated genes to inform the biology of reef-building corals and provide novel avenues to understand and screen for differences in stress resilience.
Collapse
Affiliation(s)
- Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - France Denoeud
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Alice Rouan
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | | | - Laura Capasso
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
- Sorbonne Université, Collège Doctoral, 75005, Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Emilie Boissin
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Mélanie Pousse
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Arnaud Couloux
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Eric Armstrong
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Corinne Cruaud
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Karine Labadie
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Julie Lê-Hoang
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Sylvie Tambutté
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | - Clémentine Moulin
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Fondation Tara Océan, Base Tara, 8 Rue de Prague, 75 012, Paris, France
| | | | - Guillaume Iwankow
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Sarah Romac
- AD2M, UMR 7144, Sorbonne Université, CNRS, Station Biologique de Roscoff, ECOMAP, Roscoff, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, USA
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- AD2M, UMR 7144, Sorbonne Université, CNRS, Station Biologique de Roscoff, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire Des Sciences du Climat Et de L'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-Sur-Yvette, 91191, France
| | - J Michel Flores
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | - Paola Furla
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
| | - Pierre E Galand
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls Sur Mer, France
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Institut de La Mer de Villefranche Sur Mer, Sorbonne Université, Laboratoire d'Océanographie de Villefranche, Villefranche-Sur-Mer, 06230, France
- Institut Universitaire de France, Paris, 75231, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road H91 TK33, Galway, Ireland
| | - Romain Troublé
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Fondation Tara Océan, Base Tara, 8 Rue de Prague, 75 012, Paris, France
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, 97331, USA
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Serge Planes
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
- Laboratoire d'Excellence CORAIL, PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Cedex, Perpignan, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Department of Human Genetics, CHU Nice, Nice, France
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé, Université Côte d'Azur - Centre Scientifique de Monaco, France
- Centre Scientifique de Monaco, Marine Biology Department, Monaco City, 98000, Monaco
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France
| | | | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, R2022/Tara Oceans GO-SEE, 3 Rue Michel-Ange, 75016, Paris, France.
| |
Collapse
|
54
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
55
|
Engelberts JP, Robbins SJ, Herbold CW, Moeller FU, Jehmlich N, Laffy PW, Wagner M, Webster NS. Metabolic reconstruction of the near complete microbiome of the model sponge Ianthella basta. Environ Microbiol 2023; 25:646-660. [PMID: 36480164 PMCID: PMC10947273 DOI: 10.1111/1462-2920.16302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Many marine sponges host highly diverse microbiomes that contribute to various aspects of host health. Although the putative function of individual groups of sponge symbionts has been increasingly described, the extreme diversity has generally precluded in-depth characterization of entire microbiomes, including identification of syntrophic partnerships. The Indo-Pacific sponge Ianthella basta is emerging as a model organism for symbiosis research, hosting only three dominant symbionts: a Thaumarchaeotum, a Gammaproteobacterium, and an Alphaproteobacterium and a range of other low abundance or transitory taxa. Here, we retrieved metagenome assembled genomes (MAGs) representing >90% of I. basta's microbial community, facilitating the metabolic reconstruction of the sponge's near complete microbiome. Through this analysis, we identified metabolic complementarity between microbes, including vitamin sharing, described the importance of low abundance symbionts, and characterized a novel microbe-host attachment mechanism in the Alphaproteobacterium. We further identified putative viral sequences, highlighting the role viruses can play in maintaining symbioses in I. basta through the horizontal transfer of eukaryotic-like proteins, and complemented this data with metaproteomics to identify active metabolic pathways in bacteria, archaea, and viruses. This data provide the framework to adopt I. basta as a model organism for studying host-microbe interactions and provide a basis for in-depth physiological experiments.
Collapse
Affiliation(s)
- Joan Pamela Engelberts
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Steven J. Robbins
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Craig W. Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Florian U. Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Nico Jehmlich
- Department of Molecular Systems BiologyHelmholtz‐Centre for Environmental Research – UFZLeipzigGermany
| | - Patrick W. Laffy
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Nicole S. Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- Australian Antarctic DivisionKingstonTasmaniaAustralia
| |
Collapse
|
56
|
Zhou Z, Tang J, Cao X, Wu C, Cai W, Lin S. High Heterotrophic Plasticity of Massive Coral Porites pukoensis Contributes to Its Tolerance to Bioaccumulated Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3391-3401. [PMID: 36800204 DOI: 10.1021/acs.est.2c08188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Scleractinian corals have been observed to be capable of accumulating microplastics from reef environments; however, the tolerant mechanism is poorly known. Here, we examined the response of Porites pukoensis to microplastic pollution by analyzing algal symbiont density, energetic metabolism, and caspase3 activities (representing the apoptosis level) in the coral-Symbiodiniaceae association. The environments of three fringing reef regions along the south coast of Sanya City, Hainan Province of China, were polluted by microplastics (for example, microplastic concentrations in the seawater ranged from 3.3 to 46.6 particles L-1), resulting in microplastic accumulation in P. pukoensis (0.4-2.4 particles cm-2). The accumulation of microplastics was negatively correlated to algal symbiont density in the corals but not to caspase3 activities in the two symbiotic partners, demonstrating that P. pukoensis could tolerate accumulated microplastics despite the decrease of algal symbiont density. Furthermore, results from the carbon stable isotope and cellular energy allocation assay indicated that P. pukoensis obtained energy availability (mainly as lipid reserves) using the switch between heterotrophy and autotrophy to maintain energy balance and cope with accumulated microplastics. Collectively, P. pukoensis achieved tolerance to microplastic pollution by maintaining energy availability, which was largely attributed to its high heterotrophic plasticity.
Collapse
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiaocong Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chuanliang Wu
- Sanya Institute of Coral Reef Ecosystem, Sanya 572000, China
| | - Wenqi Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| |
Collapse
|
57
|
Abstract
Common culturing techniques and priorities bias our discovery towards specific traits that may not be representative of microbial diversity in nature. So far, these biases have not been systematically examined. To address this gap, here we use 116,884 publicly available metagenome-assembled genomes (MAGs, completeness ≥80%) from 203 surveys worldwide as a culture-independent sample of bacterial and archaeal diversity, and compare these MAGs to the popular RefSeq genome database, which heavily relies on cultures. We compare the distribution of 12,454 KEGG gene orthologs (used as trait proxies) in the MAGs and RefSeq genomes, while controlling for environment type (ocean, soil, lake, bioreactor, human, and other animals). Using statistical modeling, we then determine the conditional probabilities that a species is represented in RefSeq depending on its genetic repertoire. We find that the majority of examined genes are significantly biased for or against in RefSeq. Our systematic estimates of gene prevalences across bacteria and archaea in nature and gene-specific biases in reference genomes constitutes a resource for addressing these issues in the future.
Collapse
Affiliation(s)
- Sage Albright
- Department of Biology, University of Oregon, Eugene, USA
| | - Stilianos Louca
- Department of Biology, University of Oregon, Eugene, USA.
- Institute of Ecology and Evolution, University of Oregon, Eugene, USA.
| |
Collapse
|
58
|
Dong X, Lan H, Huang L, Zhang H, Lin X, Weng S, Peng Y, Lin J, Wang JH, Peng J, Yang Y. Metagenomic Views of Microbial Communities in Sand Sediments Associated with Coral Reefs. MICROBIAL ECOLOGY 2023; 85:465-477. [PMID: 35113183 DOI: 10.1007/s00248-021-01957-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Reef sediments, the home for microbes with high abundances, provide an important source of carbonates and nutrients for the growth and maintenance of coral reefs. However, there is a lack of systematic research on the composition of microbial community in sediments of different geographic sites and their potential effect on nutrient recycling and health of the coral reef ecosystem. In combination of biogeochemical measurements with gene- and genome-centric metagenomics, we assessed microbial community compositions and functional diversity, as well as profiles of antibiotic resistance genes in surface sediments of 16 coral reef sites at different depths from the Xisha islands in the South China Sea. Reef sediment microbiomes are diverse and novel at lower taxonomic ranks, dominated by Proteobacteria and Planctomycetota. Most reef sediment bacteria potentially participate in biogeochemical cycling via oxidizing various organic and inorganic compounds as energy sources. High abundances of Proteobacteria (mostly Rhizobiales and Woeseiales) are metabolically flexible and contain rhodopsin genes. Various classes of antibiotic resistance genes, hosted by diverse bacterial lineages, were identified to confer resistance to multidrug, aminoglycoside, and other antibiotics. Overall, our findings expanded the understanding of reef sediment microbial ecology and provided insights for their link to the coral reef ecosystem health.
Collapse
Affiliation(s)
- Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Haoyu Lan
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Liangtian Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Haikun Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xianbiao Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Shengze Weng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yongyi Peng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jia Lin
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Jiang-Hai Wang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Juan Peng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Ying Yang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
59
|
Nie Z, Tang K, Wang W, Wang P, Guo Y, Wang Y, Kao SJ, Yin J, Wang X. Comparative genomic insights into habitat adaptation of coral-associated Prosthecochloris. Front Microbiol 2023; 14:1138751. [PMID: 37152757 PMCID: PMC10158934 DOI: 10.3389/fmicb.2023.1138751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Green sulfur bacteria (GSB) are a distinct group of anoxygenic phototrophic bacteria that are found in many ecological niches. Prosthecochloris, a marine representative genus of GSB, was found to be dominant in some coral skeletons. However, how coral-associated Prosthecochloris (CAP) adapts to diurnal changing microenvironments in coral skeletons is still poorly understood. In this study, three Prosthecochloris genomes were obtained through enrichment culture from the skeleton of the stony coral Galaxea fascicularis. These divergent three genomes belonged to Prosthecochloris marina and two genomes were circular. Comparative genomic analysis showed that between the CAP and non-CAP clades, CAP genomes possess specialized metabolic capacities (CO oxidation, CO2 hydration and sulfur oxidation), gas vesicles (vertical migration in coral skeletons), and cbb 3-type cytochrome c oxidases (oxygen tolerance and gene regulation) to adapt to the microenvironments of coral skeletons. Within the CAP clade, variable polysaccharide synthesis gene clusters and phage defense systems may endow bacteria with differential cell surface structures and phage susceptibility, driving strain-level evolution. Furthermore, mobile genetic elements (MGEs) or evidence of horizontal gene transfer (HGT) were found in most of the genomic loci containing the above genes, suggesting that MGEs play an important role in the evolutionary diversification between CAP and non-CAP strains and within CAP clade strains. Our results provide insight into the adaptive strategy and population evolution of endolithic Prosthecochloris strains in coral skeletons.
Collapse
Affiliation(s)
- Zhaolong Nie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Kaihao Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Kaihao Tang,
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Jianping Yin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
60
|
Bove CB, Ingersoll MV, Davies SW. Help Me, Symbionts, You're My Only Hope: Approaches to Accelerate our Understanding of Coral Holobiont Interactions. Integr Comp Biol 2022; 62:1756-1769. [PMID: 36099871 DOI: 10.1093/icb/icac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023] Open
Abstract
Tropical corals construct the three-dimensional framework for one of the most diverse ecosystems on the planet, providing habitat to a plethora of species across taxa. However, these ecosystem engineers are facing unprecedented challenges, such as increasing disease prevalence and marine heatwaves associated with anthropogenic global change. As a result, major declines in coral cover and health are being observed across the world's oceans, often due to the breakdown of coral-associated symbioses. Here, we review the interactions between the major symbiotic partners of the coral holobiont-the cnidarian host, algae in the family Symbiodiniaceae, and the microbiome-that influence trait variation, including the molecular mechanisms that underlie symbiosis and the resulting physiological benefits of different microbial partnerships. In doing so, we highlight the current framework for the formation and maintenance of cnidarian-Symbiodiniaceae symbiosis, and the role that immunity pathways play in this relationship. We emphasize that understanding these complex interactions is challenging when you consider the vast genetic variation of the cnidarian host and algal symbiont, as well as their highly diverse microbiome, which is also an important player in coral holobiont health. Given the complex interactions between and among symbiotic partners, we propose several research directions and approaches focused on symbiosis model systems and emerging technologies that will broaden our understanding of how these partner interactions may facilitate the prediction of coral holobiont phenotype, especially under rapid environmental change.
Collapse
Affiliation(s)
- Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
61
|
Tandon K, Ricci F, Costa J, Medina M, Kühl M, Blackall LL, Verbruggen H. Genomic view of the diversity and functional role of archaea and bacteria in the skeleton of the reef-building corals Porites lutea and Isopora palifera. Gigascience 2022; 12:giac127. [PMID: 36683362 PMCID: PMC9868349 DOI: 10.1093/gigascience/giac127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/17/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023] Open
Abstract
At present, our knowledge on the compartmentalization of coral holobiont microbiomes is highly skewed toward the millimeter-thin coral tissue, leaving the diverse coral skeleton microbiome underexplored. Here, we present a genome-centric view of the skeleton of the reef-building corals Porites lutea and Isopora palifera, through a compendium of ∼400 high-quality bacterial and archaeal metagenome-assembled genomes (MAGs), spanning 34 phyla and 57 classes. Skeletal microbiomes harbored a diverse array of stress response genes, including dimethylsulfoniopropionate synthesis (dsyB) and metabolism (DMSP lyase). Furthermore, skeletal MAGs encoded an average of 22 ± 15 genes in P. lutea and 28 ± 23 in I. palifera with eukaryotic-like motifs thought to be involved in maintaining host association. We provide comprehensive insights into the putative functional role of the skeletal microbiome on key metabolic processes such as nitrogen fixation, dissimilatory and assimilatory nitrate, and sulfate reduction. Our study provides critical genomic resources for a better understanding of the coral skeletal microbiome and its role in holobiont functioning.
Collapse
Affiliation(s)
- Kshitij Tandon
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| | - Francesco Ricci
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
- Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Joana Costa
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, DK-3000 Helsingør, Denmark
| | - Linda L Blackall
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
62
|
Puntin G, Sweet M, Fraune S, Medina M, Sharp K, Weis VM, Ziegler M. Harnessing the Power of Model Organisms To Unravel Microbial Functions in the Coral Holobiont. Microbiol Mol Biol Rev 2022; 86:e0005322. [PMID: 36287022 PMCID: PMC9769930 DOI: 10.1128/mmbr.00053-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stony corals build the framework of coral reefs, ecosystems of immense ecological and economic importance. The existence of these ecosystems is threatened by climate change and other anthropogenic stressors that manifest in microbial dysbiosis such as coral bleaching and disease, often leading to coral mortality. Despite a significant amount of research, the mechanisms ultimately underlying these destructive phenomena, and what could prevent or mitigate them, remain to be resolved. This is mostly due to practical challenges in experimentation on corals and the highly complex nature of the coral holobiont that also includes bacteria, archaea, protists, and viruses. While the overall importance of these partners is well recognized, their specific contributions to holobiont functioning and their interspecific dynamics remain largely unexplored. Here, we review the potential of adopting model organisms as more tractable systems to address these knowledge gaps. We draw on parallels from the broader biological and biomedical fields to guide the establishment, implementation, and integration of new and emerging model organisms with the aim of addressing the specific needs of coral research. We evaluate the cnidarian models Hydra, Aiptasia, Cassiopea, and Astrangia poculata; review the fast-evolving field of coral tissue and cell cultures; and propose a framework for the establishment of "true" tropical reef-building coral models. Based on this assessment, we also suggest future research to address key aspects limiting our ability to understand and hence improve the response of reef-building corals to future ocean conditions.
Collapse
Affiliation(s)
- Giulia Puntin
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Sebastian Fraune
- Institute for Zoology and Organismic Interactions, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Koty Sharp
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, Rhode Island, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
63
|
Reshuffling of the Coral Microbiome during Dormancy. Appl Environ Microbiol 2022; 88:e0139122. [PMID: 36383004 PMCID: PMC9746315 DOI: 10.1128/aem.01391-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quiescence, or dormancy, is a response to stressful conditions in which an organism slows or halts physiological functioning. Although most species that undergo dormancy maintain complex microbiomes, there is little known about how dormancy influences and is influenced by the host's microbiome, including in the temperate coral Astrangia poculata. Northern populations of A. poculata undergo winter quiescence. Here, we characterized wild A. poculata microbiomes in a high-resolution sampling time series before, during, and after quiescence using 16S rRNA gene sequencing on active (RNA) and present (DNA) microbiomes. We observed a restructuring of the coral microbiome during quiescence that persisted after reemergence. Upon entering quiescence, corals shed copiotrophic microbes, including putative pathogens, suggesting a removal of these taxa as corals cease normal functioning. During and after quiescence, bacteria and archaea associated with nitrification were enriched, suggesting that the quiescent microbiome may replace essential functions through supplying nitrate to corals and/or microbes. Overall, this study demonstrates that key microbial groups related to quiescence in A. poculata may play a role in the onset or emergence from dormancy and long-term regulation of the microbiome composition. The predictability of dormancy in A. poculata provides an ideal natural manipulation system to further identify factors that regulate host-microbial associations. IMPORTANCE Using a high-resolution sampling time series, this study is the first to demonstrate a persistent microbial community shift with quiescence (dormancy) in a marine organism, the temperate coral Astrangia poculata. Furthermore, during this period of community turnover, there is a shedding of putative pathogens and copiotrophs and an enhancement of the ammonia-oxidizing bacteria (Nitrosococcales) and archaea ("Candidatus Nitrosopumilus"). Our results suggest that quiescence represents an important period during which the coral microbiome can reset, shedding opportunistic microbes and enriching for the reestablishment of beneficial associates, including those that may contribute nitrate while the coral animal is not actively feeding. We suggest that this work provides foundational understanding of the interplay of microbes and the host's dormancy response in marine organisms.
Collapse
|
64
|
Delgadillo-Ordoñez N, Raimundo I, Barno AR, Osman EO, Villela H, Bennett-Smith M, Voolstra CR, Benzoni F, Peixoto RS. Red Sea Atlas of Coral-Associated Bacteria Highlights Common Microbiome Members and Their Distribution across Environmental Gradients-A Systematic Review. Microorganisms 2022; 10:microorganisms10122340. [PMID: 36557593 PMCID: PMC9787610 DOI: 10.3390/microorganisms10122340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The Red Sea is a suitable model for studying coral reefs under climate change due to its strong environmental gradient that provides a window into future global warming scenarios. For instance, corals in the southern Red Sea thrive at temperatures predicted to occur at the end of the century in other biogeographic regions. Corals in the Red Sea thrive under contrasting thermal and environmental regimes along their latitudinal gradient. Because microbial communities associated with corals contribute to host physiology, we conducted a systematic review of the known diversity of Red Sea coral-associated bacteria, considering geographic location and host species. Our assessment comprises 54 studies of 67 coral host species employing cultivation-dependent and cultivation-independent techniques. Most studies have been conducted in the central and northern Red Sea, while the southern and western regions remain largely unexplored. Our data also show that, despite the high diversity of corals in the Red Sea, the most studied corals were Pocillopora verrucosa, Dipsastraea spp., Pleuractis granulosa, and Stylophora pistillata. Microbial diversity was dominated by bacteria from the class Gammaproteobacteria, while the most frequently occurring bacterial families included Rhodobacteraceae and Vibrionaceae. We also identified bacterial families exclusively associated with each of the studied coral orders: Scleractinia (n = 125), Alcyonacea (n = 7), and Capitata (n = 2). This review encompasses 20 years of research in the Red Sea, providing a baseline compendium for coral-associated bacterial diversity.
Collapse
Affiliation(s)
- Nathalia Delgadillo-Ordoñez
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Inês Raimundo
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Adam R. Barno
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Eslam O. Osman
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Helena Villela
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Morgan Bennett-Smith
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Christian R. Voolstra
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Francesca Benzoni
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Raquel S. Peixoto
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Correspondence:
| |
Collapse
|
65
|
Stephens TG, Lee J, Jeong Y, Yoon HS, Putnam HM, Majerová E, Bhattacharya D. High-quality genome assembles from key Hawaiian coral species. Gigascience 2022; 11:giac098. [PMID: 36352542 PMCID: PMC9646523 DOI: 10.1093/gigascience/giac098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Coral reefs house about 25% of marine biodiversity and are critical for the livelihood of many communities by providing food, tourism revenue, and protection from wave surge. These magnificent ecosystems are under existential threat from anthropogenic climate change. Whereas extensive ecological and physiological studies have addressed coral response to environmental stress, high-quality reference genome data are lacking for many of these species. The latter issue hinders efforts to understand the genetic basis of stress resistance and to design informed coral conservation strategies. RESULTS We report genome assemblies from 4 key Hawaiian coral species, Montipora capitata, Pocillopora acuta, Pocillopora meandrina, and Porites compressa. These species, or members of these genera, are distributed worldwide and therefore of broad scientific and ecological importance. For M. capitata, an initial assembly was generated from short-read Illumina and long-read PacBio data, which was then scaffolded into 14 putative chromosomes using Omni-C sequencing. For P. acuta, P. meandrina, and P. compressa, high-quality assemblies were generated using short-read Illumina and long-read PacBio data. The P. acuta assembly is from a triploid individual, making it the first reference genome of a nondiploid coral animal. CONCLUSIONS These assemblies are significant improvements over available data and provide invaluable resources for supporting multiomics studies into coral biology, not just in Hawai'i but also in other regions, where related species exist. The P. acuta assembly provides a platform for studying polyploidy in corals and its role in genome evolution and stress adaptation in these organisms.
Collapse
Affiliation(s)
- Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu, Buk-gu 41566, Korea
| | - YuJin Jeong
- Department of Oceanography, Kyungpook National University, Daegu, Buk-gu 41566, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Eva Majerová
- Hawaiʻi Institute of Marine Biology, Kāneʻohe, HI 96744, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
66
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
67
|
Goodman AZ, Papudeshi B, Doane MP, Mora M, Kerr E, Torres M, Nero Moffatt J, Lima L, Nosal AP, Dinsdale E. Epidermal Microbiomes of Leopard Sharks ( Triakis semifasciata) Are Consistent across Captive and Wild Environments. Microorganisms 2022; 10:microorganisms10102081. [PMID: 36296361 PMCID: PMC9610875 DOI: 10.3390/microorganisms10102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Characterizations of shark-microbe systems in wild environments have outlined patterns of species-specific microbiomes; however, whether captivity affects these trends has yet to be determined. We used high-throughput shotgun sequencing to assess the epidermal microbiome belonging to leopard sharks (Triakis semifasciata) in captive (Birch Aquarium, La Jolla California born and held permanently in captivity), semi-captive (held in captivity for <1 year in duration and scheduled for release; Scripps Institute of Oceanography, San Diego, CA, USA) and wild environments (Moss Landing and La Jolla, CA, USA). Here, we report captive environments do not drive epidermal microbiome compositions of T. semifasciata to significantly diverge from wild counterparts as life-long captive sharks maintain a species-specific epidermal microbiome resembling those associated with semi-captive and wild populations. Major taxonomic composition shifts observed were inverse changes of top taxonomic contributors across captive duration, specifically an increase of Pseudoalteromonadaceae and consequent decrease of Pseudomonadaceae relative abundance as T. semifasciata increased duration in captive conditions. Moreover, we show captivity did not lead to significant losses in microbial α-diversity of shark epidermal communities. Finally, we present a novel association between T. semifasciata and the Muricauda genus as Metagenomes associated genomes revealed a consistent relationship across captive, semi-captive, and wild populations. Since changes in microbial communities is often associated with poor health outcomes, our report illustrates that epidermally associated microbes belonging to T. semifasciata are not suffering detrimental impacts from long or short-term captivity. Therefore, conservation programs which house sharks in aquariums are providing a healthy environment for the organisms on display. Our findings also expand on current understanding of shark epidermal microbiomes, explore the effects of ecologically different scenarios on benthic shark microbe associations, and highlight novel associations that are consistent across captive gradients.
Collapse
Affiliation(s)
- Asha Z. Goodman
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
- Correspondence: (A.Z.G.); (E.D.)
| | - Bhavya Papudeshi
- College of Science and Engineering, Flinders University, Bedford Park, SA 3929, Australia
| | - Michael P. Doane
- College of Science and Engineering, Flinders University, Bedford Park, SA 3929, Australia
| | - Maria Mora
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Emma Kerr
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Melissa Torres
- Scripps Institution of Oceanography, Universtity of California, San Diego, CA 92093, USA
| | - Jennifer Nero Moffatt
- Scripps Institution of Oceanography, Universtity of California, San Diego, CA 92093, USA
| | - Lais Lima
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Andrew P. Nosal
- Department of Biology, Point Loma Nazarene University, San Diego, CA 92106, USA
| | - Elizabeth Dinsdale
- College of Science and Engineering, Flinders University, Bedford Park, SA 3929, Australia
- Correspondence: (A.Z.G.); (E.D.)
| |
Collapse
|
68
|
Kelly JB, Carlson DE, Low JS, Thacker RW. Novel trends of genome evolution in highly complex tropical sponge microbiomes. MICROBIOME 2022; 10:164. [PMID: 36195901 PMCID: PMC9531527 DOI: 10.1186/s40168-022-01359-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Tropical members of the sponge genus Ircinia possess highly complex microbiomes that perform a broad spectrum of chemical processes that influence host fitness. Despite the pervasive role of microbiomes in Ircinia biology, it is still unknown how they remain in stable association across tropical species. To address this question, we performed a comparative analysis of the microbiomes of 11 Ircinia species using whole-metagenomic shotgun sequencing data to investigate three aspects of bacterial symbiont genomes-the redundancy in metabolic pathways across taxa, the evolution of genes involved in pathogenesis, and the nature of selection acting on genes relevant to secondary metabolism. RESULTS A total of 424 new, high-quality bacterial metagenome-assembled genomes (MAGs) were produced for 10 Caribbean Ircinia species, which were evaluated alongside 113 publicly available MAGs sourced from the Pacific species Ircinia ramosa. Evidence of redundancy was discovered in that the core genes of several primary metabolic pathways could be found in the genomes of multiple bacterial taxa. Across hosts, the metagenomes were depleted in genes relevant to pathogenicity and enriched in eukaryotic-like proteins (ELPs) that likely mimic the hosts' molecular patterning. Finally, clusters of steroid biosynthesis genes (CSGs), which appear to be under purifying selection and undergo horizontal gene transfer, were found to be a defining feature of Ircinia metagenomes. CONCLUSIONS These results illustrate patterns of genome evolution within highly complex microbiomes that illuminate how associations with hosts are maintained. The metabolic redundancy within the microbiomes could help buffer the hosts from changes in the ambient chemical and physical regimes and from fluctuations in the population sizes of the individual microbial strains that make up the microbiome. Additionally, the enrichment of ELPs and depletion of LPS and cellular motility genes provide a model for how alternative strategies to virulence can evolve in microbiomes undergoing mixed-mode transmission that do not ultimately result in higher levels of damage (i.e., pathogenicity) to the host. Our last set of results provides evidence that sterol biosynthesis in Ircinia-associated bacteria is widespread and that these molecules are important for the survival of bacteria in highly complex Ircinia microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Joseph B Kelly
- Aquatic Ecology and Evolution, Limnological Institute University Konstanz, Konstanz, Germany.
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA.
| | - David E Carlson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Jun Siong Low
- Institute of Microbiology,ETH Zürich, Zürich, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Robert W Thacker
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Panama City, Republic of Panama
| |
Collapse
|
69
|
Keller-Costa T, Kozma L, Silva SG, Toscan R, Gonçalves J, Lago-Lestón A, Kyrpides NC, Nunes da Rocha U, Costa R. Metagenomics-resolved genomics provides novel insights into chitin turnover, metabolic specialization, and niche partitioning in the octocoral microbiome. MICROBIOME 2022; 10:151. [PMID: 36138466 PMCID: PMC9502895 DOI: 10.1186/s40168-022-01343-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND The role of bacterial symbionts that populate octocorals (Cnidaria, Octocorallia) is still poorly understood. To shed light on their metabolic capacities, we examined 66 high-quality metagenome-assembled genomes (MAGs) spanning 30 prokaryotic species, retrieved from microbial metagenomes of three octocoral species and seawater. RESULTS Symbionts of healthy octocorals were affiliated with the taxa Endozoicomonadaceae, Candidatus Thioglobaceae, Metamycoplasmataceae, unclassified Pseudomonadales, Rhodobacteraceae, unclassified Alphaproteobacteria and Ca. Rhabdochlamydiaceae. Phylogenomics inference revealed that the Endozoicomonadaceae symbionts uncovered here represent two species of a novel genus unique to temperate octocorals, here denoted Ca. Gorgonimonas eunicellae and Ca. Gorgonimonas leptogorgiae. Their genomes revealed metabolic capacities to thrive under suboxic conditions and high gene copy numbers of serine-threonine protein kinases, type 3-secretion system, type-4 pili, and ankyrin-repeat proteins, suggesting excellent capabilities to colonize, aggregate, and persist inside their host. Contrarily, MAGs obtained from seawater frequently lacked symbiosis-related genes. All Endozoicomonadaceae symbionts harbored endo-chitinase and chitin-binging protein-encoding genes, indicating that they can hydrolyze the most abundant polysaccharide in the oceans. Other symbionts, including Metamycoplasmataceae and Ca. Thioglobaceae, may assimilate the smaller chitin oligosaccharides resulting from chitin breakdown and engage in chitin deacetylation, respectively, suggesting possibilities for substrate cross-feeding and a role for the coral microbiome in overall chitin turnover. We also observed sharp differences in secondary metabolite production potential between symbiotic lineages. Specific Proteobacteria taxa may specialize in chemical defense and guard other symbionts, including Endozoicomonadaceae, which lack such capacity. CONCLUSION This is the first study to recover MAGs from dominant symbionts of octocorals, including those of so-far unculturable Endozoicomonadaceae, Ca. Thioglobaceae and Metamycoplasmataceae symbionts. We identify a thus-far unanticipated, global role for Endozoicomonadaceae symbionts of corals in the processing of chitin, the most abundant natural polysaccharide in the oceans and major component of the natural zoo- and phytoplankton feed of octocorals. We conclude that niche partitioning, metabolic specialization, and adaptation to low oxygen conditions among prokaryotic symbionts likely contribute to the plasticity and adaptability of the octocoral holobiont in changing marine environments. These findings bear implications not only for our understanding of symbiotic relationships in the marine realm but also for the functioning of benthic ecosystems at large. Video Abstract.
Collapse
Affiliation(s)
- Tina Keller-Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Lydia Kozma
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- École Polytechnique Fédérale de Lausanne, Écublens, Switzerland
| | - Sandra G. Silva
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Rodolfo Toscan
- Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jorge Gonçalves
- Centro de Ciências Do Mar, Universidade Do Algarve, Faro, Portugal
| | - Asunción Lago-Lestón
- Centro de Investigación Científica Y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
- Centro de Ciências Do Mar, Universidade Do Algarve, Faro, Portugal
| |
Collapse
|
70
|
Schultz J, Modolon F, Rosado AS, Voolstra CR, Sweet M, Peixoto RS. Methods and Strategies to Uncover Coral-Associated Microbial Dark Matter. mSystems 2022; 7:e0036722. [PMID: 35862824 PMCID: PMC9426423 DOI: 10.1128/msystems.00367-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The vast majority of environmental microbes have not yet been cultured, and most of the knowledge on coral-associated microbes (CAMs) has been generated from amplicon sequencing and metagenomes. However, exploring cultured CAMs is key for a detailed and comprehensive characterization of the roles of these microbes in shaping coral health and, ultimately, for their biotechnological use as, for example, coral probiotics and other natural products. Here, the strategies and technologies that have been used to access cultured CAMs are presented, while advantages and disadvantages associated with each of these strategies are discussed. We highlight the existing gaps and potential improvements in culture-dependent methodologies, indicating several possible alternatives (including culturomics and in situ diffusion devices) that could be applied to retrieve the CAM "dark matter" (i.e., the currently undescribed CAMs). This study provides the most comprehensive synthesis of the methodologies used to recover the cultured coral microbiome to date and draws suggestions for the development of the next generation of CAM culturomics.
Collapse
Affiliation(s)
- Júnia Schultz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Flúvio Modolon
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre S. Rosado
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Raquel S. Peixoto
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
71
|
Li J, Zou Y, Yang J, Li Q, Bourne DG, Sweet M, Liu C, Guo A, Zhang S. Cultured Bacteria Provide Insight into the Functional Potential of the Coral-Associated Microbiome. mSystems 2022; 7:e0032722. [PMID: 35695425 PMCID: PMC9426491 DOI: 10.1128/msystems.00327-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/20/2022] [Indexed: 01/07/2023] Open
Abstract
Improving the availability of representative isolates from the coral microbiome is essential for investigating symbiotic mechanisms and applying beneficial microorganisms to improve coral health. However, few studies have explored the diversity of bacteria which can be isolated from a single species. Here, we isolated a total of 395 bacterial strains affiliated with 49 families across nine classes from the coral Pocillopora damicornis. Identification results showed that most of the strains represent potential novel bacterial species or genera. We also sequenced and assembled the genomes of 118 of these isolates, and then the putative functions of these isolates were identified based on genetic signatures derived from the genomes and this information was combined with isolate-specific phenotypic data. Genomic information derived from the isolates identified putative functions including nitrification and denitrification, dimethylsulfoniopropionate transformation, and supply of fixed carbon, amino acids, and B vitamins which may support their eukaryotic partners. Furthermore, the isolates contained genes associated with chemotaxis, biofilm formation, quorum sensing, membrane transport, signal transduction, and eukaryote-like repeat-containing and cell-cell attachment proteins, all of which potentially help the bacterium establish association with the coral host. Our work expands on the existing culture collection of coral-associated bacteria and provides important information on the metabolic potential of these isolates which can be used to refine understanding of the role of bacteria in coral health and are now available to be applied to novel strategies aimed at improving coral resilience through microbiome manipulation. IMPORTANCE Microbes underpin the health of corals which are the building blocks of diverse and productive reef ecosystems. Studying the culturable fraction of coral-associated bacteria has received less attention in recent times than using culture-independent molecular methods. However, the genomic and phenotypic characterization of isolated strains allows assessment of their functional role in underpinning coral health and identification of beneficial microbes for microbiome manipulation. Here, we isolated 395 bacterial strains from tissues of Pocillopora damicornis with many representing potentially novel taxa and therefore providing a significant contribution to coral microbiology through greatly enlarging the existing cultured coral-associated bacterial bank. Through analysis of the genomes obtained in this study for the coral-associated bacteria and coral host, we elucidate putative metabolic linkages and symbiotic establishment. The results of this study will help to elucidate the role of specific isolates in coral health and provide beneficial microbes for efforts aimed at improving coral health.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jian Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - David G. Bourne
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Cong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Anjie Guo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
72
|
Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle. THE ISME JOURNAL 2022; 16:1883-1895. [PMID: 35444262 PMCID: PMC9296628 DOI: 10.1038/s41396-022-01226-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Endozoicomonas are prevalent, abundant bacterial associates of marine animals, including corals. Their role in holobiont health and functioning, however, remains poorly understood. To identify potential interactions within the coral holobiont, we characterized the novel isolate Endozoicomonas marisrubri sp. nov. 6c and assessed its transcriptomic and proteomic response to tissue extracts of its native host, the Red Sea coral Acropora humilis. We show that coral tissue extracts stimulated differential expression of genes putatively involved in symbiosis establishment via the modulation of the host immune response by E. marisrubri 6c, such as genes for flagellar assembly, ankyrins, ephrins, and serpins. Proteome analyses revealed that E. marisrubri 6c upregulated vitamin B1 and B6 biosynthesis and glycolytic processes in response to holobiont cues. Our results suggest that the priming of Endozoicomonas for a symbiotic lifestyle involves the modulation of host immunity and the exchange of essential metabolites with other holobiont members. Consequently, Endozoicomonas may play an important role in holobiont nutrient cycling and may therefore contribute to coral health, acclimatization, and adaptation.
Collapse
|
73
|
Wong KH, Putnam HM. The genome of the mustard hill coral, Porites astreoides. GIGABYTE 2022; 2022:gigabyte65. [PMID: 36824531 PMCID: PMC9693771 DOI: 10.46471/gigabyte.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
Anthropogenic effects have contributed to substantial declines in coral reefs worldwide. However, some corals are more resilient to environmental changes and have increased in relative abundance, thus these species may shape future reef communities. Here, we provide the first draft reference genome for the mustard hill coral, Porites astreoides, collected in Bermuda. DNA was sequenced via Pacific Biosciences (PacBio) HiFi long-read technology. PacBio read assembly with FALCON UnZip resulted in a 678-Mbp assembly with 3051 contigs with an N50 of 412,256 and the BUSCO completeness analysis resulted in 90.9% of the metazoan gene set. An ab initio transcriptome was also produced with 64,636 gene models with a transcriptome BUSCO completeness analysis of 77.5% versus the metazoan gene set. Functional annotation was completed for 86.6% of proteins. These data are valuable resources for improving biological knowledge of P. astreoides, facilitating comparative genomics for corals, and supporting evidence-based restoration and human-assisted evolution of corals.
Collapse
Affiliation(s)
- Kevin H. Wong
- University of Rhode Island, Department of Biological Sciences, USA
| | - Hollie M. Putnam
- University of Rhode Island, Department of Biological Sciences, USA
| |
Collapse
|
74
|
Vollmers J, Wiegand S, Lenk F, Kaster AK. How clear is our current view on microbial dark matter? (Re-)assessing public MAG & SAG datasets with MDMcleaner. Nucleic Acids Res 2022; 50:e76. [PMID: 35536293 PMCID: PMC9303271 DOI: 10.1093/nar/gkac294] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
As of today, the majority of environmental microorganisms remain uncultured and is therefore referred to as 'microbial dark matter' (MDM). Hence, genomic insights into these organisms are limited to cultivation-independent approaches such as single-cell- and metagenomics. However, without access to cultured representatives for verifying correct taxon-assignments, MDM genomes may cause potentially misleading conclusions based on misclassified or contaminant contigs, thereby obfuscating our view on the uncultured microbial majority. Moreover, gradual database contaminations by past genome submissions can cause error propagations which affect present as well as future comparative genome analyses. Consequently, strict contamination detection and filtering need to be applied, especially in the case of uncultured MDM genomes. Current genome reporting standards, however, emphasize completeness over purity and the de facto gold standard genome assessment tool, checkM, discriminates against uncultured taxa and fragmented genomes. To tackle these issues, we present a novel contig classification, screening, and filtering workflow and corresponding open-source python implementation called MDMcleaner, which was tested and compared to other tools on mock and real datasets. MDMcleaner revealed substantial contaminations overlooked by current screening approaches and sensitively detects misattributed contigs in both novel genomes and the underlying reference databases, thereby greatly improving our view on 'microbial dark matter'.
Collapse
Affiliation(s)
- John Vollmers
- Institute for Biological Interfaces 5 (Institut für Biologische Grenzflächen IBG 5), Karlsruhe Institute of Technology (KIT) 76344, Eggenstein-Leopoldshafen, Germany
| | - Sandra Wiegand
- Institute for Biological Interfaces 5 (Institut für Biologische Grenzflächen IBG 5), Karlsruhe Institute of Technology (KIT) 76344, Eggenstein-Leopoldshafen, Germany
| | - Florian Lenk
- Institute for Biological Interfaces 5 (Institut für Biologische Grenzflächen IBG 5), Karlsruhe Institute of Technology (KIT) 76344, Eggenstein-Leopoldshafen, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5 (Institut für Biologische Grenzflächen IBG 5), Karlsruhe Institute of Technology (KIT) 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
75
|
Zhu Y, Liao X, Han T, Chen JY, He C, Lu Z. Symbiodiniaceae microRNAs and their targeting sites in coral holobionts: A transcriptomics-based exploration. Genomics 2022; 114:110404. [PMID: 35714829 DOI: 10.1016/j.ygeno.2022.110404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 01/23/2023]
Abstract
Corals should make excellent models for cross-kingdom research because of their natural animal-photobiont holobiont composition, yet a lack of studies and experimental data restricts their use. Here we integrate new full-length transcriptomes and small RNAs of four common reef-building corals with the published Cladocopium genomes to gain deeper insight into gene regulation in coral-Symbiodiniaceae holobionts. Eleven novel Symbiodiniaceae miRNAs get identified, and enrichment results of their target genes show that they might play a role in downregulating rejection from host coral cells, protecting symbiont from autophagy and apoptosis in parallel. This work provides evidence for the early origin of cross-kingdom regulation as a mechanism of self-defense autotrophs can use against heterotrophs, sheds more light on coral-Symbiodiniaceae holobionts, and contributes valuable data for further coral research.
Collapse
Affiliation(s)
- Yunchi Zhu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China
| | - Xin Liao
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai, Guangxi, China
| | - Tingyu Han
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China
| | - J-Y Chen
- Nanjing Institute of Paleontology and Geology, Nanjing, China
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China.
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
76
|
Shi S, Cui L, Zhang K, Zeng Q, Li Q, Ma L, Long L, Tian X. Streptomyces marincola sp. nov., a Novel Marine Actinomycete, and Its Biosynthetic Potential of Bioactive Natural Products. Front Microbiol 2022; 13:860308. [PMID: 35572650 PMCID: PMC9096227 DOI: 10.3389/fmicb.2022.860308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/24/2022] [Indexed: 12/28/2022] Open
Abstract
Marine actinomycetes are an important source of antibiotics, but many of them are yet to be explored in terms of taxonomy, ecology, and functional activity. In this study, two marine actinobacterial strains, designated SCSIO 64649T and SCSIO 03032, were isolated, and the potential for bioactive natural product discovery was evaluated based on genome mining, compound detection, and antimicrobial activity. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain SCSIO 64649T formed a single clade with SCSIO 03032 (similarity 99.5%) and sister clades with the species Streptomyces specialis DSM 41924T (97.1%) and Streptomyces manganisoli MK44T (96.8%). The whole genome size of strain SCSIO 64649T was 6.63 Mbp with a 73.6% G + C content. The average nucleotide identity and digital DNA–DNA hybridization between strain SCSIO 64649T and its closest related species were well below the thresholds recommended for species delineation. Therefore, according to the results of polyphasic taxonomy analysis, the strains SCSIO 64649T and SCSIO 03032 are proposed to represent a novel species named Streptomyces marincola sp. nov. Furthermore, strains SCSIO 64649T and 03032 encode 37 putative biosynthetic gene clusters, and in silico analysis revealed that this new species has a high potential to produce unique natural products, such as a novel polyene polyketide compounds, two mayamycin analogs, and a series of post-translationally modified peptides. In addition, other important bioactive natural products, such as heronamide F, piericidin A1, and spiroindimicin A, were also detected in strain SCSIO 64649T. Finally, this new species’ metabolic crude extract showed a strong antimicrobial activity. Thanks to the integration of all these analyses, this study demonstrates that the novel species Streptomyces marincola has a unique and novel secondary metabolite biosynthetic potential that not only is beneficial to possible marine hosts but that could also be exploited for industrial applications.
Collapse
Affiliation(s)
- Songbiao Shi
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Linqing Cui
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kun Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zeng
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qinglian Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Liang Ma
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xinpeng Tian
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Chinese Academy of Sciences, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
77
|
Cowen LJ, Putnam HM. Bioinformatics of Corals: Investigating Heterogeneous Omics Data from Coral Holobionts for Insight into Reef Health and Resilience. Annu Rev Biomed Data Sci 2022; 5:205-231. [PMID: 35537462 DOI: 10.1146/annurev-biodatasci-122120-030732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coral reefs are home to over two million species and provide habitat for roughly 25% of all marine animals, but they are being severely threatened by pollution and climate change. A large amount of genomic, transcriptomic, and other omics data is becoming increasingly available from different species of reef-building corals, the unicellular dinoflagellates, and the coral microbiome (bacteria, archaea, viruses, fungi, etc.). Such new data present an opportunity for bioinformatics researchers and computational biologists to contribute to a timely, compelling, and urgent investigation of critical factors that influence reef health and resilience. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lenore J Cowen
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA;
| |
Collapse
|
78
|
Shi SB, Cui LQ, Zeng Q, Long LJ, Tian XP. Nocardioides coralli sp. nov., an actinobacterium isolated from stony coral in the South China Sea. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, non-pigmented and non-motile actinobacterium, designated strain SCSIO 67246T, was isolated from a stony coral sample collected from the Sanya sea area, Hainan province, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SCSIO 67246T shared the highest similarities with
Nocardioides rotundus
MCCC 1A10561T (96.5 %) and
Nocardioides sonneratiae
KCTC 39565T (96.1%). The novel strain grew at 15–37 °C, at pH 5.0–10.0 and in the presence of 0–10 % (w/v) NaCl. The genome length of strain SCSIO 67246T was 3.52 Mbp with a DNA G+C content of 72.0 mol% and 3397 protein-coding genes. The novel strain showed an average nucleotide identity value of 76.5 % and a digital DNA–DNA hybridization value of 20.1 % with
N. rotundus
MCCC 1A10561T. Strain SCSIO 67246T contained MK-8(H4) as the major menaquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and five phospholipids. The major cellular fatty acids were iso-C16 : 0, C17 : 1
ω8c and summed feature 9 (iso-C17 : 1
ω9c/10-methyl C16 : 0). ll-2,6-Diaminopimelic acid was the diagnostic diamino acid. The whole-cell sugars were galactose, glucose and ribose. Based on this polyphasic taxonomic study, strain SCSIO 67246T represents a novel species of the genus
Nocardioides
, for which the name Nocardioides coralli sp. nov. is proposed. The type strain is SCSIO 67246T (=MCCC 1K06251T=KCTC 49719T).
Collapse
Affiliation(s)
- Song-Biao Shi
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, SCSIO, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Lin-Qing Cui
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, SCSIO, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Qi Zeng
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, SCSIO, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Li-Juan Long
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, SCSIO, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Xin-Peng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Sanya Institute of Oceanology, SCSIO, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China
| |
Collapse
|
79
|
Long-Term Heat Selection of the Coral Endosymbiont Cladocopium C1 acro (Symbiodiniaceae) Stabilizes Associated Bacterial Communities. Int J Mol Sci 2022; 23:ijms23094913. [PMID: 35563303 PMCID: PMC9101544 DOI: 10.3390/ijms23094913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Heat-tolerant strains of the coral endosymbiont, Cladocopium C1acro (Symbiodiniaceae), have previously been developed via experimental evolution. Here, we examine physiological responses and bacterial community composition (using 16S rRNA gene metabarcoding) in cultures of 10 heat-evolved (SS) and 9 wild-type (WT) strains, which had been exposed for 6 years to 31 °C and 27 °C, respectively. We also examine whether the associated bacterial communities were affected by a three-week reciprocal transplantation to both temperatures. The SS strains had bacterial communities with lower diversities that showed more stability and lower variability when exposed to elevated temperatures compared with the WT strains. Amplicon sequence variants (ASVs) of the bacterial genera Labrenzia, Algiphilus, Hyphobacterium and Roseitalea were significantly more associated with the SS strains compared with the WT strains. WT strains showed higher abundance of ASVs assigned to the genera Fabibacter and Tropicimonas. We hypothesize that these compositional differences in associated bacterial communities between SS and WT strains also contribute to the thermal tolerance of the microalgae. Future research should explore functional potential between bacterial communities using metagenomics to unravel specific genomic adaptations.
Collapse
|
80
|
Lo R, Dougan KE, Chen Y, Shah S, Bhattacharya D, Chan CX. Alignment-Free Analysis of Whole-Genome Sequences From Symbiodiniaceae Reveals Different Phylogenetic Signals in Distinct Regions. FRONTIERS IN PLANT SCIENCE 2022; 13:815714. [PMID: 35557718 PMCID: PMC9087856 DOI: 10.3389/fpls.2022.815714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 05/24/2023]
Abstract
Dinoflagellates of the family Symbiodiniaceae are predominantly essential symbionts of corals and other marine organisms. Recent research reveals extensive genome sequence divergence among Symbiodiniaceae taxa and high phylogenetic diversity hidden behind subtly different cell morphologies. Using an alignment-free phylogenetic approach based on sub-sequences of fixed length k (i.e. k-mers), we assessed the phylogenetic signal among whole-genome sequences from 16 Symbiodiniaceae taxa (including the genera of Symbiodinium, Breviolum, Cladocopium, Durusdinium and Fugacium) and two strains of Polarella glacialis as outgroup. Based on phylogenetic trees inferred from k-mers in distinct genomic regions (i.e. repeat-masked genome sequences, protein-coding sequences, introns and repeats) and in protein sequences, the phylogenetic signal associated with protein-coding DNA and the encoded amino acids is largely consistent with the Symbiodiniaceae phylogeny based on established markers, such as large subunit rRNA. The other genome sequences (introns and repeats) exhibit distinct phylogenetic signals, supporting the expected differential evolutionary pressure acting on these regions. Our analysis of conserved core k-mers revealed the prevalence of conserved k-mers (>95% core 23-mers among all 18 genomes) in annotated repeats and non-genic regions of the genomes. We observed 180 distinct repeat types that are significantly enriched in genomes of the symbiotic versus free-living Symbiodinium taxa, suggesting an enhanced activity of transposable elements linked to the symbiotic lifestyle. We provide evidence that representation of alignment-free phylogenies as dynamic networks enhances the ability to generate new hypotheses about genome evolution in Symbiodiniaceae. These results demonstrate the potential of alignment-free phylogenetic methods as a scalable approach for inferring comprehensive, unbiased whole-genome phylogenies of dinoflagellates and more broadly of microbial eukaryotes.
Collapse
Affiliation(s)
- Rosalyn Lo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Katherine E. Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
81
|
Evaluation of Host Depletion and Extraction Methods for Shotgun Metagenomic Analysis of Bovine Vaginal Samples. Microbiol Spectr 2022; 10:e0041221. [PMID: 35404108 PMCID: PMC9045270 DOI: 10.1128/spectrum.00412-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The reproductive tract metagenome plays a significant role in the various reproductive system functions, including reproductive cycles, health, and fertility. One of the major challenges in bovine vaginal metagenome studies is host DNA contamination, which limits the sequencing capacity for metagenomic content and reduces the accuracy of untargeted shotgun metagenomic profiling. This is the first study comparing the effectiveness of different host depletion and DNA extraction methods for bovine vaginal metagenomic samples. The host depletion methods evaluated were slow centrifugation (Soft-spin), NEBNext Microbiome DNA Enrichment kit (NEBNext), and propidium monoazide (PMA) treatment, while the extraction methods were DNeasy Blood and Tissue extraction (DNeasy) and QIAamp DNA Microbiome extraction (QIAamp). Soft-spin and QIAamp were the most effective host depletion method and extraction methods, respectively, in reducing the number of cattle genomic content in bovine vaginal samples. The reduced host-to-microbe ratio in the extracted DNA increased the sequencing depth for microbial reads in untargeted shotgun sequencing. Bovine vaginal samples extracted with QIAamp presented taxonomical profiles which closely resembled the mock microbial composition, especially for the recovery of Gram-positive bacteria. Additionally, samples extracted with QIAamp presented extensive functional profiles with deep coverage. Overall, a combination of Soft-spin and QIAamp provided the most robust representation of the vaginal microbial community in cattle while minimizing host DNA contamination. IMPORTANCE In addition to the host tissue collected during the sampling process, bovine vaginal samples are saturated with large amounts of extracellular DNA and secreted proteins that are essential for physiological purposes, including the reproductive cycle and immune defense. Due to the high host-to-microbe genome ratio, which hampers the sequencing efficacy for metagenome samples and the recovery of the actual metagenomic profiles, bovine vaginal samples cannot benefit from the full potential of shotgun sequencing. This is the first investigation on the most effective host depletion and extraction methods for bovine vaginal metagenomic samples. This study demonstrated an effective combination of host depletion and extraction methods, which harvested higher percentages of 16S rRNA genes and microbial reads, which subsequently led to a taxonomical profile that resembled the actual community and a functional profile with deeper coverage. A representative metagenomic profile is essential for investigating the role of the bovine vaginal metagenome for both reproductive function and susceptibility to infections.
Collapse
|
82
|
Zhou Z, Wan L, Cai W, Tang J, Wu Z, Zhang K. Species-specific microplastic enrichment characteristics of scleractinian corals from reef environment: Insights from an in-situ study at the Xisha Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152845. [PMID: 34990693 DOI: 10.1016/j.scitotenv.2021.152845] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The microplastic pollution has become a worldwide ecological concerns and imposed negative impacts on the coral reef ecosystems. In the present study, the distribution and characteristics of microplastics in the seawater, marine sediment and three scleractinian coral species (Pocillopora damicornis, Galaxea fascicularis, and Porites lutea) at five representative atolls in the Xisha Islands were investigated. The average microplastic abundances in the seawater and marine sediment were 9.5 ± 3.7 particles L-1 and 280.9 ± 231.9 particles kg-1 (dry weight), and the average contents of microplastics in P. damicornis, G. fascicularis and P. lutea were 0.9 ± 0.5 particles cm-2, 1.2 ± 0.6 particles cm-2, and 2.5 ± 1.6 particles cm-2, respectively. There were no significant correlations for the microplastic concentration between the reef environment and the corals. These results infer that the microplastic pollution is severe in the coral reef ecosystem in the Xisha Islands, and scleractinian corals could enrich microplastics from the reef environment. In addition, more than 80% of the microplastics in the seawater, marine sediment and corals were smaller than 2 mm, and the most common types of microplastics were cellophane (61.13%) and polyethylene terephthalate (33.49%). Black and fibers were the most common color and shape of the microplastics in the seawater and marine sediment, respectively. The microplastics in transparent color, film shape and small size (<2 mm) were highly accumulated in corals. Besides, cluster analysis showed that significant difference of microplastic characteristics existed between the corals and the reef environment, and the features of enriched microplastics among three coral species were also different. Moreover, P. lutea exhibited a stronger ability in enriching microplastics than G. fascicularis and P. damicornis. These results suggest that the microplastic-enriching capacities of scleractinian corals are species-specific, and species acclimated to microplastic pollution might become predominant in future coral community.
Collapse
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| | - Lu Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Wenqi Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
83
|
Maire J, Buerger P, Chan WY, Deore P, Dungan AM, Nitschke MR, van Oppen MJH. Effects of Ocean Warming on the Underexplored Members of the Coral Microbiome. Integr Comp Biol 2022; 62:1700-1709. [PMID: 35259253 PMCID: PMC9801979 DOI: 10.1093/icb/icac005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/05/2023] Open
Abstract
The climate crisis is one of the most significant threats to marine ecosystems. It is leading to severe increases in sea surface temperatures and in the frequency and magnitude of marine heatwaves. These changing conditions are directly impacting coral reef ecosystems, which are among the most biodiverse ecosystems on Earth. Coral-associated symbionts are particularly affected because summer heatwaves cause coral bleaching-the loss of endosymbiotic microalgae (Symbiodiniaceae) from coral tissues, leading to coral starvation and death. Coral-associated Symbiodiniaceae and bacteria have been extensively studied in the context of climate change, especially in terms of community diversity and dynamics. However, data on other microorganisms and their response to climate change are scarce. Here, we review current knowledge on how increasing temperatures affect understudied coral-associated microorganisms such as archaea, fungi, viruses, and protists other than Symbiodiniaceae, as well as microbe-microbe interactions. We show that the coral-microbe symbiosis equilibrium is at risk under current and predicted future climate change and argue that coral reef conservation initiatives should include microbe-focused approaches.
Collapse
Affiliation(s)
| | - Patrick Buerger
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia,Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wing Yan Chan
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pranali Deore
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ashley M Dungan
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia,Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
84
|
Sun Y, Jiang L, Gong S, Diaz-Pulido G, Yuan X, Tong H, Huang L, Zhou G, Zhang Y, Huang H. Changes in physiological performance and protein expression in the larvae of the coral Pocillopora damicornis and their symbionts in response to elevated temperature and acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151251. [PMID: 34728194 DOI: 10.1016/j.scitotenv.2021.151251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Climate change causes ocean warming and acidification, which threaten coral reef ecosystems. Ocean warming and acidification cause bleaching and mortality, and decrease calcification in adult corals, leading to changes in the composition of coral communities; however, their interactive effects on coral larvae are not comprehensively understood. To examine the underlying molecular mechanisms of larval responses to elevated temperature and pCO2, we examined the physiological performance and protein expression profiles of Pocillopora damicornis at two temperatures (29 and 33 °C) and pCO2 levels (500 and 1000 μatm) for 5 d. Extensive physiological and proteomic changes were observed in coral larvae. The results indicated a significant decrease in net photosynthesis (PNET) and autotrophic capability (PNET/RD) of larvae exposed to elevated temperature but a marked increase in PNET and PNET/RD of larvae exposed to high pCO2 levels. Elevated temperature significantly reduced endosymbiont densities by 70% and photochemical efficiency, indicating that warming impaired host-symbiont symbiosis. Expression of photosynthesis-related proteins, the photosystem (PS) I reaction center subunits IV and XI as well as oxygen-evolving enhancer 1, was downregulated at higher temperatures in symbionts, whereas expression of the PS I iron‑sulfur center protein was increased under high pCO2 conditions. Furthermore, expression of phosphoribulokinase (involved in the Calvin cycle) and phosphoenolpyruvate carboxylase (related to the C4 pathway) was downregulated in symbionts under thermal stress; this finding suggests reduced carbon fixation at high temperatures. The abundance of carbonic anhydrase-associated proteins, which are predicted to exert biochemical roles in dissolved inorganic carbon transport in larvae, was reduced in coral host and symbionts at high temperatures. These results elucidate potential mechanisms underlying the responses of coral larvae exposed to elevated temperature and acidification and suggest an important role of symbionts in the response to warming and acidification.
Collapse
Affiliation(s)
- Youfang Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong 999077, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong 999077, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Sanqiang Gong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Guillermo Diaz-Pulido
- School of Environment and Science, and Australian Rivers Institute - Coast & Estuaries, Nathan Campus, Griffith University, Brisbane, Nathan Campus, Queensland 4111, Australia
| | - Xiangcheng Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Haoya Tong
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong 999077, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Lintao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guowei Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Yuyang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya National Marine Ecosystem Research Station; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya 572000, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya 572000, China.
| |
Collapse
|
85
|
Coral-microbe interactions: their importance to reef function and survival. Emerg Top Life Sci 2022; 6:33-44. [PMID: 35119475 DOI: 10.1042/etls20210229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
Many different microorganisms associate with the coral host in a single entity known as the holobiont, and their interactions with the host contribute to coral health, thereby making them a fundamental part of reef function, survival, and conservation. As corals continue to be susceptible to bleaching due to environmental stress, coral-associated bacteria may have a potential role in alleviating bleaching. This review provides a synthesis of the various roles bacteria have in coral physiology and development, and explores the possibility that changes in the microbiome with environmental stress could have major implications in how corals acclimatize and survive. Recent studies on the interactions between the coral's algal and bacterial symbionts elucidate how bacteria may stabilize algal health and, therefore, mitigate bleaching. A summary of the innovative tools and experiments to examine host-microbe interactions in other cnidarians (a temperate coral, a jellyfish, two anemones, and a freshwater hydroid) is offered in this review to delineate our current knowledge of mechanisms underlying microbial establishment and maintenance in the animal host. A better understanding of these mechanisms may enhance the success of maintaining probiotics long-term in corals as a conservation strategy.
Collapse
|
86
|
Dougan KE, González-Pech RA, Stephens TG, Shah S, Chen Y, Ragan MA, Bhattacharya D, Chan CX. Genome-powered classification of microbial eukaryotes: focus on coral algal symbionts. Trends Microbiol 2022; 30:831-840. [DOI: 10.1016/j.tim.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
|
87
|
Qi Z, Diao X, Yang T, Zeng R, Wang H, Zhou H. Spatial and interspecific differences in coral-associated bacterial diversity in Hainan, China. MARINE POLLUTION BULLETIN 2022; 175:113321. [PMID: 35149312 DOI: 10.1016/j.marpolbul.2022.113321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Coral reefs are suffering from environmental change and anthropogenic disturbances. It is well known that microbes play an indispensable role in the stable state of coral reef health. Furthermore, the coral reef microbial database helps to understand the connections among microbiomes shifts and ecosystem stress. Hainan Province is the main coral reef distribution area in China. Therefore, targeted microbial reference information from Hainan, including several coral microbiomes, was generated by 16S rRNA gene sequencing in this study. This study focused on a small range of coral-associated bacterial information and found a relationship between microbes and the surrounding environment based on coral interspecific and environmental factors. Interestingly, compared with species, the differences of bacterial community structures are best explained by site. It seems that various environmental factors contribute more to the microbial structure of corals than interspecific influences.
Collapse
Affiliation(s)
- Zhao Qi
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Life Science, Hainan Normal University, Haikou 571158, China.
| | - Tinghan Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Ruohan Zeng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Haihua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; College of Life Sciences and Pharmacy, Hainan University, Haikou 570228, China
| |
Collapse
|
88
|
Shoguchi E. Gene clusters for biosynthesis of mycosporine-like amino acids in dinoflagellate nuclear genomes: Possible recent horizontal gene transfer between species of Symbiodiniaceae (Dinophyceae). JOURNAL OF PHYCOLOGY 2022; 58:1-11. [PMID: 34699617 PMCID: PMC9298759 DOI: 10.1111/jpy.13219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 05/12/2023]
Abstract
Global warming increases the temperature of the ocean surface, which can disrupt dinoflagellate-coral symbioses and result in coral bleaching. Photosynthetic dinoflagellates of the family Symbiodiniaceae include bleaching-tolerant and bleaching-sensitive coral symbionts. Therefore, understanding the molecular mechanisms for changing symbiont diversity is potentially useful to assist recovery of coral holobionts (corals and their associated microbes, including multiple species of Symbiodiniaceae), although sexual reproduction has not been observed in the Symbiodiniaceae. Recent molecular phylogenetic analyses estimate that the Symbiodiniaceae appeared 160 million years ago and diversified into 15 groups, five genera of which now have available draft genomes (i.e., Symbiodinium, Durusdinium, Breviolum, Fugacium, and Cladocopium). Comparative genomic analyses have suggested that crown groups have fewer gene families than early-diverging groups, although many genes that were probably acquired via gene duplications and horizontal gene transfers (HGTs) have been found in each decoded genome. Because UV stress is likely a contributor to coral bleaching, and because the highly conserved gene cluster for mycosporine-like amino acid (MAA) biosynthesis has been found in thermal-tolerant symbiont genomes, I reviewed genomic features of the Symbiodiniaceae, focusing on possible acquisition of a biosynthetic gene cluster for MAAs, which absorb UV radiation. On the basis of highly conserved noncoding sequences, I hypothesized that HGTs have occurred among members of the Symbiodiniaceae and have contributed to the diversification of Symbiodiniaceae-host relationships. Finally, I proposed that bleaching tolerance may be strengthened by multiple MAAs from both symbiotic dinoflagellates and corals.
Collapse
Affiliation(s)
- Eiichi Shoguchi
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaOkinawa904‐0495Japan
| |
Collapse
|
89
|
Silva DP, Epstein HE, Vega Thurber RL. Best practices for generating and analyzing 16S rRNA amplicon data to track coral microbiome dynamics. Front Microbiol 2022; 13:1007877. [PMID: 36891260 PMCID: PMC9987214 DOI: 10.3389/fmicb.2022.1007877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 02/22/2023] Open
Abstract
Over the past two decades, researchers have searched for methods to better understand the relationship between coral hosts and their microbiomes. Data on how coral-associated bacteria are involved in their host's responses to stressors that cause bleaching, disease, and other deleterious effects can elucidate how they may mediate, ameliorate, and exacerbate interactions between the coral and the surrounding environment. At the same time tracking coral bacteria dynamics can reveal previously undiscovered mechanisms of coral resilience, acclimatization, and evolutionary adaptation. Although modern techniques have reduced the cost of conducting high-throughput sequencing of coral microbes, to explore the composition, function, and dynamics of coral-associated bacteria, it is necessary that the entire procedure, from collection to sequencing, and subsequent analysis be carried out in an objective and effective way. Corals represent a difficult host with which to work, and unique steps in the process of microbiome assessment are necessary to avoid inaccuracies or unusable data in microbiome libraries, such as off-target amplification of host sequences. Here, we review, compare and contrast, and recommend methods for sample collection, preservation, and processing (e.g., DNA extraction) pipelines to best generate 16S amplicon libraries with the aim of tracking coral microbiome dynamics. We also discuss some basic quality assurance and general bioinformatic methods to analyze the diversity, composition, and taxonomic profiles of the microbiomes. This review aims to be a generalizable guide for researchers interested in starting and modifying the molecular biology aspects of coral microbiome research, highlighting best practices and tricks of the trade.
Collapse
Affiliation(s)
- Denise P Silva
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Hannah E Epstein
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | | |
Collapse
|
90
|
Monti M, Giorgi A, Easson CG, Gochfeld DJ, Olson JB. Transmission studies and the composition of prokaryotic communities associated with healthy and diseased Aplysina cauliformis sponges suggest that Aplysina Red Band Syndrome is a prokaryotic polymicrobial disease. FEMS Microbiol Ecol 2021; 97:6472236. [PMID: 34931677 DOI: 10.1093/femsec/fiab164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/17/2021] [Indexed: 11/15/2022] Open
Abstract
Aplysina cauliformis, the Caribbean purple rope sponge, is commonly affected by Aplysina Red Band Syndrome. This transmissible disease manifests as circular lesions with red margins and results in bare spongin fibers. Leptolyngbya spp. appear to be responsible for the characteristic red coloration but transmission studies with a sponge-derived isolate failed to establish disease, leaving the etiology of ARBS unknown. To investigate the cause of ARBS, contact transmission experiments were performed between healthy and diseased sponges separated by filters with varying pore sizes. Transmission occurred when sponges were separated by filters with pore sizes ≥2.5 μm, suggesting a prokaryotic pathogen(s) but not completely eliminating eukaryotic pathogen(s). Using 16S rRNA gene sequencing methods, thirty-eight prokaryotic taxa were significantly enriched in diseased sponges, including Leptolyngbya, whereas seven taxa were only found in some, but not all, of the ARBS-affected sponges. These results do not implicate a single taxon, but rather a suite of taxa that changed in relative abundance with disease, suggesting a polymicrobial etiology as well as dysbiosis. As a better understanding of dysbiosis is gained, changes in the composition of associated prokaryotic communities may have increasing importance for evaluating and maintaining the health of individuals and imperiled coral reef ecosystems.
Collapse
Affiliation(s)
- Matteo Monti
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Aurora Giorgi
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Cole G Easson
- Biology Department, Middle Tennessee State University, P.O. Box 60, Murfreesboro, TN 37132, USA
| | - Deborah J Gochfeld
- National Center for Natural Products Research, University of Mississippi, P.O. Box 1848, University, MS 38677, USA
- Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, MS 38677, USA
| | - Julie B Olson
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35487, USA
| |
Collapse
|
91
|
Barreto MM, Ziegler M, Venn A, Tambutté E, Zoccola D, Tambutté S, Allemand D, Antony CP, Voolstra CR, Aranda M. Effects of Ocean Acidification on Resident and Active Microbial Communities of Stylophora pistillata. Front Microbiol 2021; 12:707674. [PMID: 34899619 PMCID: PMC8656159 DOI: 10.3389/fmicb.2021.707674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ocean warming and ocean acidification (OA) are direct consequences of climate change and affect coral reefs worldwide. While the effect of ocean warming manifests itself in increased frequency and severity of coral bleaching, the effects of ocean acidification on corals are less clear. In particular, long-term effects of OA on the bacterial communities associated with corals are largely unknown. In this study, we investigated the effects of ocean acidification on the resident and active microbiome of long-term aquaria-maintained Stylophora pistillata colonies by assessing 16S rRNA gene diversity on the DNA (resident community) and RNA level (active community). Coral colony fragments of S. pistillata were kept in aquaria for 2 years at four different pCO2 levels ranging from current pH conditions to increased acidification scenarios (i.e., pH 7.2, 7.4, 7.8, and 8). We identified 154 bacterial families encompassing 2,047 taxa (OTUs) in the resident and 89 bacterial families including 1,659 OTUs in the active communities. Resident communities were dominated by members of Alteromonadaceae, Flavobacteriaceae, and Colwelliaceae, while active communities were dominated by families Cyclobacteriacea and Amoebophilaceae. Besides the overall differences between resident and active community composition, significant differences were seen between the control (pH 8) and the two lower pH treatments (7.2 and 7.4) in the active community, but only between pH 8 and 7.2 in the resident community. Our analyses revealed profound differences between the resident and active microbial communities, and we found that OA exerted stronger effects on the active community. Further, our results suggest that rDNA- and rRNA-based sequencing should be considered complementary tools to investigate the effects of environmental change on microbial assemblage structure and activity.
Collapse
Affiliation(s)
- Marcelle Muniz Barreto
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | | | - Chakkiath Paul Antony
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Manuel Aranda
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
92
|
Shinzato C, Takeuchi T, Yoshioka Y, Tada I, Kanda M, Broussard C, Iguchi A, Kusakabe M, Marin F, Satoh N, Inoue M. Whole-Genome Sequencing Highlights Conservative Genomic Strategies of a Stress-Tolerant, Long-Lived Scleractinian Coral, Porites australiensis Vaughan, 1918. Genome Biol Evol 2021; 13:6456307. [PMID: 34878117 PMCID: PMC8691061 DOI: 10.1093/gbe/evab270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Massive corals of the genus Porites, common, keystone reef builders in the Indo-Pacific Ocean, are distinguished by their relative stress tolerance and longevity. In order to identify genetic bases of these attributes, we sequenced the complete genome of a massive coral, Porites australiensis. We developed a genome assembly and gene models of comparable quality to those of other coral genomes. Proteome analysis identified 60 Porites skeletal matrix protein genes, all of which show significant similarities to genes from other corals and even to those from a sea anemone, which has no skeleton. Nonetheless, 30% of its skeletal matrix proteins were unique to Porites and were not present in the skeletons of other corals. Comparative genomic analyses showed that genes widely conserved among other organisms are selectively expanded in Porites. Specifically, comparisons of transcriptomic responses of P. australiensis and Acropora digitifera, a stress-sensitive coral, reveal significant differences in regard to genes that respond to increased water temperature, and some of the genes expanded exclusively in Porites may account for the different thermal tolerances of these corals. Taken together, widely shared genes may have given rise to unique biological characteristics of Porites, massive skeletons and stress tolerance.
Collapse
Affiliation(s)
- Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Ipputa Tada
- Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | | | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | - Frédéric Marin
- Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Mayuri Inoue
- Division of Earth Science, Graduate School of Natural Science and Technology, Okayama University, Japan
| |
Collapse
|
93
|
Thatcher C, Høj L, Bourne DG. Probiotics for coral aquaculture: challenges and considerations. Curr Opin Biotechnol 2021; 73:380-386. [PMID: 34749049 DOI: 10.1016/j.copbio.2021.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/12/2023]
Abstract
Globally, coral reefs are under pressure from climate change, with concerning declines in coral abundance observed due to increasing cumulative impacts. Active intervention measures that mitigate the declines are increasingly being applied to buy time for coral reefs as the world transitions to a low-carbon economy. One such mitigation strategy is coral restoration based on large-scale coral aquaculture to provide stock for reseeding reefs, with the added potential of selecting corals that better tolerate environmental stress. Application of probiotics during production and deployment, to modulate the naturally occurring bacteria associated with corals, may confer health benefits such as disease resistance, increased environmental tolerance or improved coral nutrition. Here, we briefly describe coral associated bacteria and their role in the coral holobiont, identify probiotics traits potentially beneficial to coral, and discuss current research directions required to develop, test and verify the feasibility for probiotics to improve coral aquaculture at industrial scales.
Collapse
Affiliation(s)
- Callaway Thatcher
- College of Science and Engineering, James Cook University, 1 Angus Smith Drive, Douglas, QLD 4814, Australia; Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD 4810, Australia; AIMS@JCU, James Cook University, DB17-148, Townsville, QLD 4811, Australia
| | - Lone Høj
- Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD 4810, Australia; AIMS@JCU, James Cook University, DB17-148, Townsville, QLD 4811, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, 1 Angus Smith Drive, Douglas, QLD 4814, Australia; Australian Institute of Marine Science, PMB 3 Townsville MC, Townsville, QLD 4810, Australia; AIMS@JCU, James Cook University, DB17-148, Townsville, QLD 4811, Australia.
| |
Collapse
|
94
|
Dubé CE, Ziegler M, Mercière A, Boissin E, Planes S, Bourmaud CAF, Voolstra CR. Naturally occurring fire coral clones demonstrate a genetic and environmental basis of microbiome composition. Nat Commun 2021; 12:6402. [PMID: 34737272 PMCID: PMC8568919 DOI: 10.1038/s41467-021-26543-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Coral microbiomes are critical to holobiont functioning, but much remains to be understood about how prevailing environment and host genotype affect microbial communities in ecosystems. Resembling human identical twin studies, we examined bacterial community differences of naturally occurring fire coral clones within and between contrasting reef habitats to assess the relative contribution of host genotype and environment to microbiome structure. Bacterial community composition of coral clones differed between reef habitats, highlighting the contribution of the environment. Similarly, but to a lesser extent, microbiomes varied across different genotypes in identical habitats, denoting the influence of host genotype. Predictions of genomic function based on taxonomic profiles suggest that environmentally determined taxa supported a functional restructuring of the microbial metabolic network. In contrast, bacteria determined by host genotype seemed to be functionally redundant. Our study suggests microbiome flexibility as a mechanism of environmental adaptation with association of different bacterial taxa partially dependent on host genotype.
Collapse
Affiliation(s)
- C. E. Dubé
- grid.11642.300000 0001 2111 2608UMR 9220 ENTROPIE, UR-IRD-CNRS-UNC-IFREMER, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis Cedex, La Réunion France ,grid.11136.340000 0001 2192 5916PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia ,grid.23856.3a0000 0004 1936 8390Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, G1V 0A6 Canada
| | - M. Ziegler
- grid.8664.c0000 0001 2165 8627Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 IFZ, 35392 Giessen, Germany ,grid.45672.320000 0001 1926 5090Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia
| | - A. Mercière
- grid.11136.340000 0001 2192 5916PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia
| | - E. Boissin
- grid.11136.340000 0001 2192 5916PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia
| | - S. Planes
- grid.11136.340000 0001 2192 5916PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan, France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia
| | - C. A. -F. Bourmaud
- grid.11642.300000 0001 2111 2608UMR 9220 ENTROPIE, UR-IRD-CNRS-UNC-IFREMER, Université de La Réunion, 15 Avenue René Cassin, CS 92003, 97744 Saint-Denis Cedex, La Réunion France ,Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea French Polynesia
| | - C. R. Voolstra
- grid.45672.320000 0001 1926 5090Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Saudi Arabia ,grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
95
|
González-Castillo A, Carballo JL, Bautista-Guerrero E. Genomics and phylogeny of the proposed phylum 'Candidatus Poribacteria' associated with the excavating sponge Thoosa mismalolli. Antonie van Leeuwenhoek 2021; 114:2163-2174. [PMID: 34668097 DOI: 10.1007/s10482-021-01670-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/03/2021] [Indexed: 11/24/2022]
Abstract
Members of the proposed phylum 'Candidatus Poribacteria' are among the most abundant microorganisms in the highly diverse microbiome of the sponge mesohyl. Genomic and phylogenetic characteristics of this proposed phylum are barely known. In this study, we analyzed metagenome-assembled genomes (MAGs) obtained from the coral reef excavating sponge Thoosa mismalolli from the Mexican Pacific Ocean. Two MAGs were extracted and analyzed together with 32 MAGs and single-amplified genomes (SAGs) obtained from NCBI. The phylogenetic tree based on the sequences of 139 single-copy genes (SCG) showed two clades. Clade A (23 genomes) represented 67.7% of the total of the genomes, while clade B (11 genomes) comprised 32.3% of the genomes. The Average Nucleotide Identity (ANI) showed values between 66 and 99% for the genomes of the proposed phylum, and the pangenome of genomes revealed a total of 37,234 genes that included 1722 core gene. The number of genes used in the phylogenetic analysis increased from 28 (previous studies) to 139 (this study), which allowed a better resolution of the phylogeny of the proposed phylum. The results supported the two previously described classes, 'Candidatus Entoporibacteria' and 'Candidatus Pelagiporibacteria', and the genomes SB0101 and SB0202 obtained in this study belong to two new species of the class 'Candidatus Entoporibacteria'. This is the first comparative study that includes MAGs from a non-sponge host (Porites lutea) to elucidate the taxonomy of the poorly known Candidatus phylum in a polyphasic approach. Finally, our study also contributes to the sponge microbiome project by reporting the first MAGs of the proposed phylum 'Candidatus Poribacteria' isolated from the excavating sponge T. mismalolli.
Collapse
Affiliation(s)
- Adrián González-Castillo
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (Unidad Académica Mazatlán), Mazatlán, México.
| | - José Luis Carballo
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (Unidad Académica Mazatlán), Mazatlán, México.,Laboratorio de Biología Marina, Departamento de Zoología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Sevilla, Spain
| | - Eric Bautista-Guerrero
- Laboratorio de Ecología Marina, Centro de Investigaciones Costeras, Centro Universitario de la Costa, Universidad de Guadalajara, Puerto Vallarta, México
| |
Collapse
|
96
|
Wang Y, Ye J, Ju F, Liu L, Boyd JA, Deng Y, Parks DH, Jiang X, Yin X, Woodcroft BJ, Tyson GW, Hugenholtz P, Polz MF, Zhang T. Successional dynamics and alternative stable states in a saline activated sludge microbial community over 9 years. MICROBIOME 2021; 9:199. [PMID: 34615557 PMCID: PMC8495973 DOI: 10.1186/s40168-021-01151-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 08/19/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Microbial communities in both natural and applied settings reliably carry out myriads of functions, yet how stable these taxonomically diverse assemblages can be and what causes them to transition between states remains poorly understood. We studied monthly activated sludge (AS) samples collected over 9 years from a full-scale wastewater treatment plant to answer how complex AS communities evolve in the long term and how the community functions change when there is a disturbance in operational parameters. RESULTS Here, we show that a microbial community in activated sludge (AS) system fluctuated around a stable average for 3 years but was then abruptly pushed into an alternative stable state by a simple transient disturbance (bleaching). While the taxonomic composition rapidly turned into a new state following the disturbance, the metabolic profile of the community and system performance remained remarkably stable. A total of 920 metagenome-assembled genomes (MAGs), representing approximately 70% of the community in the studied AS ecosystem, were recovered from the 97 monthly AS metagenomes. Comparative genomic analysis revealed an increased ability to aggregate in the cohorts of MAGs with correlated dynamics that are dominant after the bleaching event. Fine-scale analysis of dynamics also revealed cohorts that dominated during different periods and showed successional dynamics on seasonal and longer time scales due to temperature fluctuation and gradual changes in mean residence time in the reactor, respectively. CONCLUSIONS Our work highlights that communities can assume different stable states under highly similar environmental conditions and that a specific disturbance threshold may lead to a rapid shift in community composition. Video Abstract.
Collapse
Affiliation(s)
- Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Jun Ye
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Feng Ju
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Joel A. Boyd
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Donovan H. Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Xiaotao Jiang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Ben J. Woodcroft
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Gene W. Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Martin F. Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
97
|
Gault JA, Bentlage B, Huang D, Kerr AM. Lineage-specific variation in the evolutionary stability of coral photosymbiosis. SCIENCE ADVANCES 2021; 7:eabh4243. [PMID: 34550731 PMCID: PMC8457658 DOI: 10.1126/sciadv.abh4243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
More than half of reef-building corals (Scleractinia) participate in a nutritional symbiosis, known as photosymbiosis, with photosynthetic dinoflagellates that ranges from obligate to facultative dependence. Fitting hidden-rates models allowing among-lineage variation in the rate of trait evolution to supertree and molecular phylogenies of Scleractinia, we reconstruct the history of photosymbiosis within Scleractinia and characterize its evolutionary stability. We find that most lineages of scleractinians are extraordinarily stable for the trait, evincing no instances of loss, but that in some clades photosymbiosis is more labile, thus providing a framework for comparative studies to further our mechanistic understanding of the factors that shape the evolutionary fates of scleractinian photosymbiosis.
Collapse
Affiliation(s)
- Jordan A. Gault
- Marine Laboratory, University of Guam, 303 University Dr., Mangilao, GU 96913, USA
| | - Bastian Bentlage
- Marine Laboratory, University of Guam, 303 University Dr., Mangilao, GU 96913, USA
| | - Danwei Huang
- Department of Biological Sciences, Tropical Marine Science Institute, and Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore
| | - Alexander M. Kerr
- Marine Laboratory, University of Guam, 303 University Dr., Mangilao, GU 96913, USA
| |
Collapse
|
98
|
Buitrago-López C, Mariappan KG, Cárdenas A, Gegner HM, Voolstra CR. The Genome of the Cauliflower Coral Pocillopora verrucosa. Genome Biol Evol 2021; 12:1911-1917. [PMID: 32857844 PMCID: PMC7594246 DOI: 10.1093/gbe/evaa184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Climate change and ocean warming threaten the persistence of corals worldwide. Genomic resources are critical to study the evolutionary trajectory, adaptive potential, and genetic distinctiveness of coral species. Here, we provide a reference genome of the cauliflower coral Pocillopora verrucosa, a broadly prevalent reef-building coral with important ecological roles in the maintenance of reefs across the Red Sea, the Indian Ocean, and the Pacific Ocean. The genome has an assembly size of 380,505,698 bp with a scaffold N50 of 333,696 bp and a contig N50 of 75,704 bp. The annotation of the assembled genome returned 27,439 gene models of which 89.88% have evidence of transcription from RNA-Seq data and 97.87% show homology to known genes. A high proportion of the genome (41.22%) comprised repetitive elements in comparison to other cnidarian genomes, in particular in relation to the small genome size of P. verrucosa.
Collapse
Affiliation(s)
- Carol Buitrago-López
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Germany
| | - Hagen M Gegner
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Centre for Organismal Studies (COS), University of Heidelberg, Germany
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological BESE, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Germany
| |
Collapse
|
99
|
Nutrient Enrichment Predominantly Affects Low Diversity Microbiomes in a Marine Trophic Symbiosis between Algal Farming Fish and Corals. Microorganisms 2021; 9:microorganisms9091873. [PMID: 34576770 PMCID: PMC8471015 DOI: 10.3390/microorganisms9091873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
While studies show that nutrient pollution shifts reef trophic interactions between fish, macroalgae, and corals, we know less about how the microbiomes associated with these organisms react to such disturbances. To investigate how microbiome dynamics are affected during nutrient pollution, we exposed replicate Porites lobata corals colonized by the fish Stegastes nigricans, which farm an algal matrix on the coral, to a pulse of nutrient enrichment over a two-month period and examined the microbiome of each partner using 16S amplicon analysis. We found 51 amplicon sequence variants (ASVs) shared among the three hosts. Coral microbiomes had the lowest diversity with over 98% of the microbiome dominated by a single genus, Endozoicomonas. Fish and algal matrix microbiomes were ~20 to 70× more diverse and had higher evenness compared to the corals. The addition of nutrients significantly increased species richness and community variability between samples of coral microbiomes but not the fish or algal matrix microbiomes, demonstrating that coral microbiomes are less resistant to nutrient pollution than their trophic partners. Furthermore, the 51 common ASVs within the 3 hosts indicate microbes that may be shared or transmitted between these closely associated organisms, including Vibrionaceae bacteria, many of which can be pathogenic to corals.
Collapse
|
100
|
Barno AR, Villela HDM, Aranda M, Thomas T, Peixoto RS. Host under epigenetic control: A novel perspective on the interaction between microorganisms and corals. Bioessays 2021; 43:e2100068. [PMID: 34463364 DOI: 10.1002/bies.202100068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Coral reefs have been challenged by the current rate and severity of environmental change that might outpace their ability to adapt and survive. Current research focuses on understanding how microbial communities and epigenetic changes separately affect phenotypes and gene expression of corals. Here, we provide the hypothesis that coral-associated microorganisms may directly or indirectly affect the coral's phenotypic response through the modulation of its epigenome. Homologs of ankyrin-repeat protein A and internalin B, which indirectly cause histone modifications in humans, as well as Rv1988 histone methyltransferase, and the DNA methyltransferases Rv2966c, Mhy1, Mhy2, and Mhy3 found in coral-associated bacteria indicate that there are potential host epigenome-modifying proteins in the coral microbiome. With the ideas presented here, we suggest that microbiome manipulation may be a means to alter a coral's epigenome, which could aid the current efforts to protect coral reefs. Also see the video abstract here: https://youtu.be/CW9GbChjKM4.
Collapse
Affiliation(s)
- Adam R Barno
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Helena D M Villela
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Manuel Aranda
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Australia
| | - Raquel S Peixoto
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Saudi Arabia.,Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|